Catching Local Replications: a Local Score-based approach to replicated association studies.

Mickaël Guedj1,2, Jérôme Wojcik2 and Grégory Nuel1.

IGES 2007, York UK

1 Statistics and Genome laboratory, CNRS, INRA, University of Evry, FRANCE
2 Serono Pharmaceutical Research, Geneva, SWITZERLAND
Introduction

- Replication as the gold standard for results validation.
- Performed at the marker or haplotypic level.
Introduction

- Replication as the gold standard for results validation.
- Performed at the marker or haplotypic level.
- However replications are difficult to obtain:
 - Successful replication rate of 16-30%.

(Ioannidis 03)
Introduction

- Replication as the gold standard for results validation.
- Performed at the marker or haplotypic level.
- However replications are difficult to obtain:
 - Successful replication rate of 16-30%.
 - Lack of Power.
 - Multiple-Testing.
 - Genotyping Error, Missing Values.
 - Population Stratifications.
Introduction

- Beside these study-design and data-analysis related factors ...

- ... inconsistent findings might also result from real biological differences between populations:
Introduction

- Beside these study-design and data-analysis related factors ...

- ... inconsistent findings might also result from real biological differences between populations:
 - Differences in allele frequencies.
 - Allele and locus heterogeneity.
 - Variation in the strength of LD:

![Images of population distributions](Caucasian, African-American, Asian)
Introduction

- Local Replication:
Introduction

- Local Replication:

- We expect to observe an accumulation of high statistics of association around a disease susceptibility locus (DSL):
Introduction

- **Local Replication:**

- We expect to observe an accumulation of high statistics of association around a disease susceptibility locus (DSL):
 - Linkage Disequilibrium with surrounding markers.
 - Aggregation of several DSL in a same genomic location.
Introduction

- Local Replication:
 - We expect to observe an accumulation of high statistics of association around a disease susceptibility locus (DSL):
 - Linkage Disequilibrium with surrounding markers.
 - Aggregation of several DSL in a same genomic location.
 - Such accumulations may be locally replicated across populations ...
Introduction

- **Local Replication:**

- We expect to observe an accumulation of high statistics of association around a disease susceptibility locus (DSL):
 - Linkage Disequilibrium with surrounding markers.
 - Aggregation of several DSL in a same genomic location.

- Such accumulations may be locally replicated across populations ...

- ... without restraint about the specific allele or pattern of alleles to be replicated.
Introduction

- **Local Replication**: definition

A local accumulation of high statistics of association in a given genomic region...

...replicated among the different populations.
Population 1

Population 2
Sliding-Frames

Population 1

Population 2

the frame size has to be specified
Population 1

Population 2

Sliding-Frames ?! >> Local Score
Definition: Let $\mathbf{X} = (X_i)_{i=1}^n$ be a sequence of random variables \rightarrow association statistics:
e.g. Pearson χ^2 on case/control genotype frequencies.
Local Score

Definition: Let $X = (X_i)_{i=1}^n$ be a sequence of random variables associated with association statistics: e.g. Pearson χ^2 on case/control genotype frequencies.

$$H = \max \sum_{i}^{j} X^k$$
Local Score

1 -2 -4 2 1 1 -3 1 -2
Local Score

\[
\begin{array}{cccccccc}
1 & -2 & -4 & 2 & 1 & 1 & -3 & 1 & -2 \\
\end{array}
\]

\[H = 4\]
Local Score

\[\begin{array}{ccccccccccc}
1 & -2 & -4 & 2 & 1 & 1 & -3 & 1 & -2 \\
-1 & 2 & 1 & -4 & -2 & -2 & 2 & 1 & -1 & 3 & 1 & -2 \\
\end{array} \]

\[H = 4 \]
Local Score

\[
\begin{array}{cccccccc}
1 & -2 & -4 & 2 & 1 & 1 & -3 & 1 & -2 \\
-1 & 2 & 1 & -4 & -2 & -2 & 2 & 1 & -1 & 3 & 1 & -2 \\
\end{array}
\]

\[H = 4\]

\[
\begin{array}{cccccccc}
1 & -2 & -4 & 2 & 1 & 1 & -3 & 1 & -2 \\
-1 & 2 & 1 & -4 & -2 & -2 & 2 & 1 & -1 & 3 & 1 & -2 \\
\end{array}
\]

\[H = 6\]
Local Score

Definition: Let \(X = (X_i)_{i=1}^{n} \) be a sequence of random variables → association statistics:
e.g. Pearson \(\chi^2 \) on case/control genotype frequencies.

On average, the sequence \(X \) must be negative otherwise the best region would easily span the entire sequence.

\[
H = \max \sum_{i}^{j} X^k
\]

- Best region
Definition: Let $X = (X_i)_{i=1}^n$ be a sequence of random variables associated with association statistics: e.g. Pearson χ^2 on case/control genotype frequencies.

On average, the sequence X must be negative otherwise the best region would easily span the entire sequence $\Rightarrow X' = X - \delta$ ($\delta = 5\%$ level).
Local Score

- The k first best regions: $H^{(1)}, \ldots, H^{(k)}$.

- $H^{(k)}$ is defined as the Local Score of the initial sequence disjoint from the preceding $k-1$ best regions.
Local Score

- The k first best regions: $H^{(1)}, \ldots, H^{(k)}$.
- $H^{(k)}$ is defined as the Local Score of the initial sequence disjoint from the preceding $k-1$ best regions.

Find the first best region.
Local Score

- The k first best regions: $H^{(1)}, ..., H^{(k)}$.
- $H^{(k)}$ is defined as the Local Score of the initial sequence disjoint from the preceding $k-1$ best regions.

Find the first best region.
- Remove it from the sequence.
Local Score

- The k first best regions: $H^{(1)}, \ldots, H^{(k)}$.
- $H^{(k)}$ is defined as the Local Score of the initial sequence disjoint from the preceding $k-1$ best regions.

Find the first best region.

- Remove it from the sequence.
- Then find the second best region.
Local Score

- The k first best regions: $H^{(1)}, \ldots, H^{(k)}$.
- $H^{(k)}$ is defined as the Local Score of the initial sequence disjoint from the preceding $k-1$ best regions.

- Find the first best region.
- Remove it from the sequence.
- Then find the second best region.

until $H^{(k+1)} < 0$
Local Score

- Statistical significance of the regions:

<table>
<thead>
<tr>
<th>Region</th>
<th>$H^{(k)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region 1</td>
<td>$H^{(1)}$</td>
</tr>
<tr>
<td>Region 2</td>
<td>$H^{(2)}$</td>
</tr>
<tr>
<td>Region 3</td>
<td>$H^{(3)}$</td>
</tr>
<tr>
<td>Region 4</td>
<td>$H^{(4)}$</td>
</tr>
<tr>
<td>Region 5</td>
<td>$H^{(5)}$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Region k</td>
<td>$H^{(k)}$</td>
</tr>
</tbody>
</table>
Local Score

- Statistical significance of the regions:

Region 1 \(H^{(1)} \rightarrow pv^{(1)} \)
Region 2 \(H^{(2)} \rightarrow pv^{(2)} \)
Region 3 \(H^{(3)} \rightarrow pv^{(3)} \)
Region 4 \(H^{(4)} \rightarrow pv^{(4)} \)
Region 5 \(H^{(5)} \rightarrow pv^{(5)} \)

\[\vdots \]
Region \(k \) \(H^{(k)} \rightarrow pv^{(k)} \)
Local Score

- Statistical significance of the regions:
- Extreme-Value theory but requires restrictive assumptions (e.g. independence of markers):

$$\Pr \left(H \geq \frac{\ln n}{\lambda} + x \right) \simeq 1 - \exp(-Ke^{-\lambda x})$$

Gumbel distribution
Local Score

- Statistical significance of the regions:

- Extreme-Value theory but requires restrictive assumptions (e.g. independence of markers):

 \[Pr \left(H \geq \frac{\ln n}{\lambda} + x \right) \approx 1 - \exp(-Ke^{-\lambda x}) \]

 Gumbel distribution

- Monte-Carlo simulations permuting case-control labels but a more important time of execution.
Local Score

- **In Statistics:** asymptotic and exact distributions

 e.g. Iglehart (1972)
 Extreme values in the $gi/g/1$ queues. *Annals of Mathematical Statistics.*

- **In Computer Science:** clever detection of Local Scores

 e.g. Ruzzo and Tompa (1999)
 A linear time algorithm for finding all maximal scoring subsequences. *Proceedings from ISMB.*

- **In Genomics:** biological sequences analysis/alignment

 e.g. Karlin (2005)
 Statistical signals in Bioinformatics. *PNAS.*
Local Score

In Genetic Epidemiology:

Fast and simple tool to detect associated genomic regions at the first-stage of GWAS:

Application in a two-stage design:

Aschard, Guedj and Demenais (in press)
Local Score

- Application to Local Replications:
Local Score

- Application to Local Replications:

 - Let pop_A and pop_B denote the two populations and

 $\mathbf{X}_A = (X_{Ai})_{i=1...n}$ and $\mathbf{X}_B = (X_{Bi})_{i=1...n}$

 their respective sequences of test statistics for the same set of markers.
Local Score

Application to Local Replications:

Let pop_A and pop_B denote the two populations and

$$X_A = (X_{Ai})_{i=1}^n \text{ and } X_B = (X_{Bi})_{i=1}^n$$

their respective sequences of test statistics for the same set of markers.

Let $X'_A = X_A - \delta$ and $X'_B = X_B - \delta$.
Local Score

- Application to Local Replications:
- Let pop_A and pop_B denote the two populations and

 \[X_A = (X_{Ai})_{i=1}^{n} \text{ and } X_B = (X_{Bi})_{i=1}^{n} \]

 their respective sequences of test statistics for the same set of markers.

- Let $X'_A = X_A - \delta$ and $X'_B = X_B - \delta$.

- $X'_{AB} = X'_A + X'_B$: on which we apply the Local Score.
Local Score

- Application to Local Replications:
 - Let pop_A and pop_B denote the two populations and

 \[X_A = (X_{Ai})_{i=1}^{n} \text{ and } X_B = (X_{Bi})_{i=1}^{n} \]

 their respective sequences of test statistics for the same set of markers.

 - Let $X'_A = X_A - \delta$ and $X'_B = X_B - \delta$.

 - $X'_{AB} = X'_A + X'_B$: on which we apply the Local Score.

 - Easily extended to more than two populations and different sets of markers.
Power study
Power study

- Based on Monte-Carlo simulations.
Power study

- Based on Monte-Carlo simulations.
- Based on Real Data (to preserve a realistic pattern of LD).
- 301 and 289 chr19 from French (pop\textsubscript{A}) and Swedish (pop\textsubscript{B}) controls as an empirical distribution of possible diplotypes.
- chr 19 = 674 SNPs genotyped using a 100K Affymetrix chip.
- This data set is used as the basis to generate cases and controls.
Power study

- Genetic and Disease Model:
 - One bi-allelic DSL (aa, aA and AA)
 - Susceptibility allele frequency: $p_A = 0.3$
 - Coef. of consanguinity in the general population: $F = 0$
 - Relative Risk of the homozygous susceptibility genotype: RR_{AA} from 1 to 2.5
 - Additive Mode of Transmission $\Rightarrow RR_{aA} = (RR_{AA}+1)/2$

- The DSL is hidden after the sampling of cases and controls
Power study

- **Situation 1/4:**
- The two populations have similar patterns of LD.
- The DSL is localised in a block of LD.
Power study

- **Situation 2/4:**
- The two populations have similar patterns of LD.
- The DSL is randomly chosen among SNPs that present a Minor Genotype Frequency of at least 1%.
Power study

- Situation 3/4:
 - The two populations have different patterns of LD.
 - The DSL is localised in a block of LD.
Power study

- **Situation 4/4:**
- The two populations have different patterns of LD.
- The DSL is randomly chosen among SNPs that present a Minor Genotype Frequency of at least 1%.
Power study

- Test statistic: $-\log_{10}(pv)$

 \[\Rightarrow\] (unbiased) exact allelic test.
Power study

- **Test statistic:** \(-\log_{10}(p_v)\)

- **Local Score:** \(H_0\) is rejected if the Local Score of at least the best region is significant at the 5% level.

- \(X_A = \left[-\log_{10}(p_{v_{Ai}}) \right]_{i = 1 \ldots n}\) and \(X_B = \left[-\log_{10}(p_{v_{Bi}}) \right]_{i = 1 \ldots n}\)

- \(\delta = -\log_{10}(0.05)\)

- \(X'_A = \left[-\log_{10}(p_{v_{Ai}}) - \delta \right]_{i = 1 \ldots n}\)

- \(X'_B = \left[-\log_{10}(p_{v_{Bi}}) - \delta \right]_{i = 1 \ldots n}\)

- \(X'_{AB} = X'_A + X'_B\)
Power study

- Test statistic: $-\log_{10}(pv)$

- Local Score: $H0$ is rejected if the Local Score of at least the best region is significant at the 5% level.

- $X_A = \left[-\log_{10}(pv_{Ai}) \right]_{i=1}^{n}$ and $X_B = \left[-\log_{10}(pv_{Bi}) \right]_{i=1}^{n}$

- Single-marker analysis: $H0$ is rejected if at least one SNP is replicated in the two populations.

- $pv_{Ai} \leq \alpha$ AND $pv_{Bi} \leq \alpha$

Corrected for multiple-testing by Bonferroni (FWER) and Benjamini-Hochberg (FDR).
Power study

Results:

1. Local Score
2. FWER
3. FDR

Power

RR_2

RR_{AA}
Power study

Results:

1. DSL in a bloc

2. DSL chosen randomly

- Local Score
- FWER
- FDR
Power study

Results:

1. Local Score
2. FWER
3. FDR

Graphs showing the relationship between Power and RR_{AA} for different values of RR2.
Power study

Results:

Pattern of LD =

Pattern of LD ≠

Local Score
FWER
FDR
Power study

Results:

1. Local Score
2. FWER
3. FDR

Power study results shown in the graph with different markers representing Local Score, FWER, and FDR.
Application

- **Data:** Systemic Lupus Erythematosus.
- **2 populations:**
 - **Argentina:** 255 cases and 256 controls.
 - **Sweden:** 279 cases and 515 controls.
- **100K Affymetrix chip.**
- **Results:** 3 regions are ‘locally replicated’ (significant at the 5% level) with the Local Score approach.
- 2 of them do not share any marker with the results of marker-based replications.
Conclusions

- Looking at Local Replications appears more robust to biological differences between populations.
- Local Score as a simple and natural framework.
Conclusions

- Looking at Local Replications appears more robust to biological differences between populations.
- Local Score as a simple and natural framework.
- Strict Replications show a stronger evidence for true replication.
Conclusions

- Looking at Local Replications appears more robust to biological differences between populations.
- Local Score as a simple and natural framework.
- Strict Replications show a stronger evidence for true replication.
- Considering Local Replications can help to identify DSL shared across populations ...
- ... but also across diseases: auto-immune diseases (e.g. pop_A : lupus / pop_B : psoriasis).
Software : LHiSA

- C++

- R *(new)* can work for any study design *(case-control, families)*, with any test statistic *(if specified by the user)* and handles more than one population *(for Local Replications)*.

http://stat.genopole.cnrs.fr/software/lhisa
Acknowledgements

G Nuel, J Wojcik and B Prum for supervision.
Merck-Serono for the data.
F Demenais for useful discussions.
IGES Scientific Program Committee.

Email: mickael.guedj@genopole.cnrs.fr
Annexe 1:

Region 1 \(H^{(1)} \) \(pv^{(1)} \)
Region 2 \(H^{(2)} \) \(pv^{(2)} \)
Region 3 \(H^{(3)} \) \(pv^{(3)} \)
Region 4 \(H^{(4)} \) \(pv^{(4)} \)
Region 5 \(H^{(5)} \) \(pv^{(5)} \)

Sequential testing procedure on ordered statistics.

Control the resulting type-I error rate.
Annexe 2:

Same Marker Set

<table>
<thead>
<tr>
<th></th>
<th>X'_A</th>
<th>X'_A</th>
<th>X'_A</th>
<th>X'_A</th>
<th>X'_A</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'_A</td>
<td>X'_{A1}</td>
<td>X'_{A2}</td>
<td>X'_{A3}</td>
<td>X'_{A4}</td>
<td>X'_{A5}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>X'_B</th>
<th>X'_B</th>
<th>X'_B</th>
<th>X'_B</th>
<th>X'_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'_B</td>
<td>X'_{B1}</td>
<td>X'_{B2}</td>
<td>X'_{B3}</td>
<td>X'_{B4}</td>
<td>X'_{B5}</td>
</tr>
</tbody>
</table>

Different Marker Sets

<table>
<thead>
<tr>
<th></th>
<th>X'_A</th>
<th>X'_A</th>
<th>X'_A</th>
<th>X'_A</th>
<th>X'_A</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'_A</td>
<td>X'_{A1}</td>
<td>X'_{A2}</td>
<td>X'_{A3}</td>
<td>_</td>
<td>X'_{A5}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>X'_B</th>
<th>X'_B</th>
<th>X'_B</th>
<th>X'_B</th>
<th>X'_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'_B</td>
<td>_</td>
<td>X'_{B3}</td>
<td>X'_{B4}</td>
<td>X'_{B5}</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>X'_A</th>
<th>X'_A</th>
<th>X'_A</th>
<th>X'_A</th>
<th>X'_A</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'_A</td>
<td>X'_{A1}</td>
<td>X'_{A2}</td>
<td>_</td>
<td>X'_{A3}</td>
<td>$X'{A4}$ + $X'{B4}$</td>
</tr>
</tbody>
</table>