Incorporating linkage disequilibrium blocks in Genome-Wide Association Studies

Alia Dehman Christophe Ambroise Pierre Neuvial

Laboratoire Statistique et Génome

July 2^{nd} , 2013

1 / 22

マロト イヨト イヨト

July 2nd, 2013

Genome-Wide Association Studies

- The regression model
- Sparsity and high-dimension contexts
- Biological context : LD

- 2

< ≧ > < ≧ > ≧ July 2nd, 2013

2 / 22

Genome-Wide Association Studies

- The regression model
- Sparsity and high-dimension contexts
- Biological context : LD

Taking the group structure into account

- Classical approach
- A Two-Step Approach
- Competing methods

July 2nd, 2013

2 / 22

Genome-Wide Association Studies

- The regression model
- Sparsity and high-dimension contexts
- Biological context : LD

2 Taking the group structure into account

- Classical approach
- A Two-Step Approach
- Competing methods

Results

- True number of clusters
- Misspecified number of clusters

July 2nd, 2013

2 / 22

Genome-Wide Association Studies

- The regression model
- Sparsity and high-dimension contexts
- Biological context : LD

2 Taking the group structure into account

- Classical approach
- A Two-Step Approach
- Competing methods

Results

- True number of clusters
- Misspecified number of clusters

Current works

Genome-Wide Association Studies

- The regression model
- Sparsity and high-dimension contexts
- Biological context : LD

2 Taking the group structure into account

- Classical approach
- A Two-Step Approach
- Competing methods

Results

- True number of clusters
- Misspecified number of clusters

 $\langle \Xi \rangle \langle \Xi \rangle$ July 2nd, 2013

3 / 22

Current works

The regression model

- To identify genetic markers that are significantly associated with a phenotype of interest.
- Phenotypic trait : qualitative or quantitative Genetic markers : Single Nucleotide Polymorphisms (SNP)
- The regression model

$$Y_i = \beta_0 + \sum_{j=1}^p X_{ij}\beta_j + \epsilon_i \ , i = 1, \dots, n$$

- n : number of individuals
- p : number of covariates
- Y_i : response for the individual i
- $X_{.j}$: observations for covariate j (coded in 0, 1 or 2)

Sparsity and high-dimension contexts

Sparsity : Only a subset of SNPs is significantly associated with the phenotype.

 $Card\{j, \beta_j \neq 0\} \ll p$

High-dimension : Many thousands of markers vs a few hundred observations.

 $p \gg n$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

The LD measures

Linkage Disequilibrium (or Gametic Disequilibrium) : Is the non-random association of alleles at two or more loci. Its amount depends on the difference between observed allelic frequencies and those expected from a homogenous, randomly distributed model.

- Z_j the indicator of the presence of minor allele for SNP j.
- $Z_j \sim \mathcal{B}(p_j)$

$$D(j,k) = cov(Z_j, Z_k)$$
$$r^2(j,k) = corr(Z_j, Z_k)$$

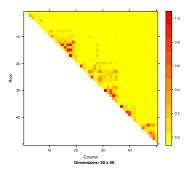
イロト 不得下 イヨト イヨト 二日

How to estimate it?

snp	vv	vV	VV	snp		
uu	а	b	С			
uU	d	е	f		α	$\frac{p}{s}$
UU	g	h	i	0	$ \gamma$	0

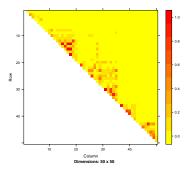
Only the genotype data table is observed

- α , β , γ , δ are estimated
- \bullet a system of equations. e.g : $\alpha = 2a + b + d + pe$


with p the « probability » of the haplotype (uv, UV).

 \Rightarrow estimating p, then (α , β , γ , δ) and finally $D = p_{UV} - p_U p_V$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの


The LD-block structure

 the r² coefficients among the 50 first SNP of the Chromosome 22 (Dalmasso et al. 2008)

The LD-block structure

- the r² coefficients among the 50 first SNP of the Chromosome 22 (Dalmasso et al. 2008)
- LD structured in blocks

- Genome-Wide Association Studies
 - The regression model
 - Sparsity and high-dimension contexts
 - Biological context : LD
- Taking the group structure into account
 - Classical approach
 - A Two-Step Approach
 - Competing methods

Results

- True number of clusters
- Misspecified number of clusters

 $\underbrace{\blacksquare} \\ \mathsf{July} 2^{nd} . 2013$

9 / 22

Current works

Classical approach : tag-SNP

To deal with high-dimensional problems and dependence among SNP :

- based on LD
- selection of « representative » SNP of each LD-block : tagging

Loss of information

Loss of power : tag-SNP not necessarily the causal SNP.

(日) (周) (日) (日) (日)

July 2nd, 2013

10 / 22

A different approach :

• a block-selection

A Two-Step Approach

Inference of blocks

- ullet only the genotype data ${f X}$ are used.
- a $p \times p$ matrix LD pairwise measures is calculated.
- Ward Constrained Hierarchichal Clustering (*R* package rioja)

Selection of blocks associated with phenotype

• The Group Lasso : well-adapted to group-structured variables

$$\hat{\boldsymbol{\beta}}_{\lambda} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \sum_{i} \left(y_{i} - \mathbf{X}_{i} \boldsymbol{\beta} \right)^{2} + \lambda \sum_{g=1}^{G} \sqrt{p_{g}} ||\boldsymbol{\beta}_{g}||_{2}).$$

(日) (周) (日) (日) (日)

Competing methods

Lasso

$$\hat{\boldsymbol{\beta}}^{l1} = \operatorname*{arg\,min}_{\beta} \sum_{i} (y_i - \mathbf{X}_{i.}\boldsymbol{\beta})^2 + \lambda ||\boldsymbol{\beta}||_1,$$

Elastic-Net

$$\hat{\boldsymbol{\beta}}^{EN} = \operatorname*{arg\,min}_{\beta} \sum_{i} (y_i - \mathbf{X}_{i.}\boldsymbol{\beta})^2 + \lambda_1 ||\boldsymbol{\beta}||_1 + \lambda_2 ||\boldsymbol{\beta}||_2^2,$$

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙ July 2nd, 2013

12 / 22

with λ , λ_1 and λ_2 three regularization parameters. (R package quadrupen)

ALIA DEHMAN (Statistique et Génome)

Evaluation

Parameters

- n = 200, p = 512, K = 9 groups of sizes (2, 2, 4, 8, 16, 32, 64, 128, 256).
- The first 2 SNPs of groups of sizes 2, 2, 4, 8 are associated with the phenotype.

•
$$cov(X_{.j}, X_{.j'}) = \rho \mathbf{1}_{j=j'}$$

• Coefficient of determination : $R^2 = 0.2$.

Definition of associated SNPs

Results

・ 同 ト ・ ヨ ト ・ ヨ ト

July 2nd, 2013

э

14 / 22

Outline

- Genome-Wide Association Studies
 - The regression model
 - Sparsity and high-dimension contexts
 - Biological context : LD
- 2 Taking the group structure into account
 - Classical approach
 - A Two-Step Approach
 - Competing methods

Results

- True number of clusters
- Misspecified number of clusters

Current works

True number of clusters

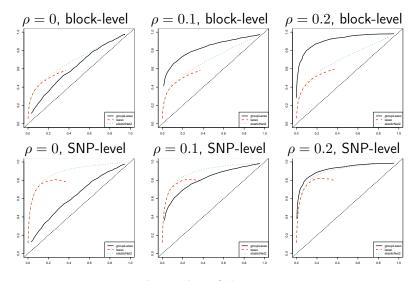


Figure: The number of clusters is set to 9.

ALIA DEHMAN (Statistique et Génome)

July 2nd, 2013 15 / 22

Misspecified number of clusters : too few

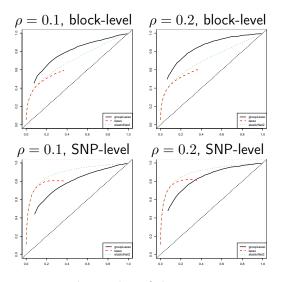


Figure: The number of clusters is set to 5.

ALIA DEHMAN (Statistique et Génome)

```
July 2<sup>nd</sup>, 2013 16 / 22
```

Misspecified number of clusters : too many

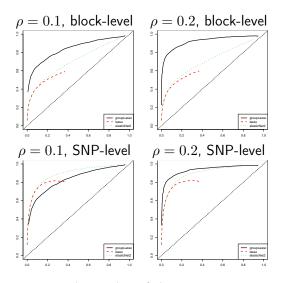


Figure: The number of clusters is set to 13.

ALIA DEHMAN (Statistique et Génome)

July 2nd, 2013 17 / 22

- Genome-Wide Association Studies
 - The regression model
 - Sparsity and high-dimension contexts
 - Biological context : LD
- 2 Taking the group structure into account
 - Classical approach
 - A Two-Step Approach
 - Competing methods
- Results
 - True number of clusters
 - Misspecified number of clusters

Current works

э

- 4 周 ト - 4 日 ト - 4 日 ト

Memory requirement of the clustering

Ward Constrained Hierarchichal Clustering

$$d(A,B) = \frac{n_A n_B}{n_A + n_B} \left(\frac{1}{n_A^2} S_{A,A} + \frac{1}{n_B^2} S_{B,B} - \frac{2}{n_A n_B} S_{A,B} \right)$$

	rioja	cWard
Type of entry	$p \times p$ dissimilarity	the $n imes p$ design
	matrix	matrix
Time complexity	$\mathcal{O}(np^2)$	$\mathcal{O}(np^2)$
Memory complexity	$\mathcal{O}(p^2)$	$\mathcal{O}(np)$
	4	
IA DEHMAN (Statistique et Génome)		July 2^{nd} , 2013 19

19 / 22

ALIA DEHMAN (Statistique et Génome)

Automatic model selection

Inferring the number of clusters :

- maximal gap (Bühlmann et. al., 2012, arXiv :1209.5908v1)
- BIC criterion
- Gap Statistic (Tibshirani et. al., 2001, JRSSB)

Tree-Group Lasso

$$\hat{\boldsymbol{\beta}}^{Tree} = \operatorname*{arg\,min}_{\beta} \sum_{i} (y_i - \mathbf{X}_{i.}\boldsymbol{\beta})^2 + \lambda \sum_{h=0}^{d} \sum_{g=1}^{G_h} \omega_g^h ||\boldsymbol{\beta}_g^h||_2.$$

- 本理 ト ・ ヨト ・ ヨ

Automatic model selection

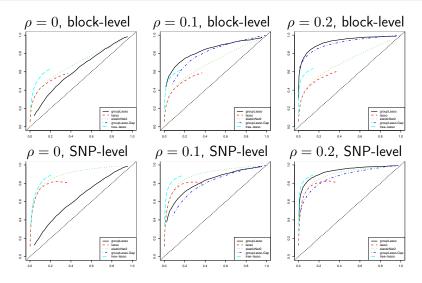


Figure: $\rho = 0:1$ cluster, $\rho = 0.1:5$ clusters, $\rho = 0.2:6$ clusters

July 2nd, 2013 21 / 22

Thank you for your attention !

