Incorporating linkage disequilibrium blocks in Genome-Wide Association Studies

Alia Dehman Director: Christophe Ambroise Co-director: Pierre Neuvial

Laboratoire "Statistique et Génome" "Des Génomes Aux Organismes"

June 7th, 2013

1 / 23

・ロト ・聞 ト ・ヨト ・ヨト 一日

June 7th, 2013

ALIA DEHMAN (Statistique et Génome)

Genome-Wide Association Studies

- The regression model
- Sparsity and high-dimension contexts

<ロ> (四) (四) (三) (三) (三) (三)

June 7th, 2013

2 / 23

• Biological context : LD

Genome-Wide Association Studies

- The regression model
- Sparsity and high-dimension contexts
- Biological context : LD

2 Taking the group structure into account

・ 戸 ト ・ ヨ ト ・ ヨ ト

June 7th, 2013

2 / 23

- Classical approach
- A Two-Step Approach
- Competing methods

Genome-Wide Association Studies

- The regression model
- Sparsity and high-dimension contexts
- Biological context : LD

Taking the group structure into account

- Classical approach
- A Two-Step Approach
- Competing methods

Besults

- True number of clusters
- Under- and over-estimated clustering

June 7th, 2013

2 / 23

Genome-Wide Association Studies

- The regression model
- Sparsity and high-dimension contexts
- Biological context : LD

Taking the group structure into account

- Classical approach
- A Two-Step Approach
- Competing methods

Besults

- True number of clusters
- Under- and over-estimated clustering

June 7th, 2013

2 / 23

Current works

Outline

Genome-Wide Association Studies

- The regression model
- Sparsity and high-dimension contexts
- Biological context : LD

Taking the group structure into account

- Classical approach
- A Two-Step Approach
- Competing methods

Results

- True number of clusters
- Under- and over-estimated clustering

 $\langle \Xi \rangle \langle \Xi \rangle$ June 7th, 2013

3 / 23

Current works

The regression model

- To identify genetic markers that are significantly associated with a phenotype of interest.
- Phenotypic trait : qualitative or quantitative
 Genetic markers : Single Nucleotide Polymorphisms (SNP)
- The regression model

$$Y_i = \beta_0 + \sum_{j=1}^p X_{ij}\beta_j + \epsilon_i , i = 1, ..., n$$

- n : number of individuals
- p : number of covariates
- Y_i : response for the individual i
- $X_{.j}$: observations for covariate j (coded in 0, 1 or 2)

◆□▶ ◆□▶ ★ □▶ ★ □▶ = □ ● ○ ○ ○

Sparsity : Only a subset of SNPs is significantly associated with the phenotype.

 $Card\{j, \beta_j \neq 0\} \ll p$

High-dimension : Many thousands of markers vs a few hundred observations.

 $p \gg n$

▲□▶ ▲圖▶ ▲画▶ ▲画▶ 二面 - のへ⊙ June 7th, 2013

5 / 23

ALIA DEHMAN (Statistique et Génome)

The LD measures

Linkage Disequilibrium (or Gametic Disequilibrium) : Is the non-random association of alleles at two or more loci. Its amount depends on the difference between observed allelic frequencies and those expected from a homogenous, randomly distributed model.

- Z_j^m the indicator of the presence of minor allele for SNP j on maternal copy.
- Z^p_j the indicator of the presence of minor allele for SNP j on paternal copy.
- $Z_j \sim \mathcal{B}(p_j)$

$$D(j,k) = cov(Z_j, Z_k)$$
$$r^2(j,k) = corr(Z_j, Z_k)$$

・ロト ・得入 ・ヨト ・ヨト 三日

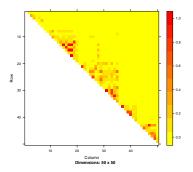
How to estimate it?

snp	vv	vV	VV	snp		
uu	а	b	С			
иU	d	е	f		α	/
UU	g	h	i	0	$ \gamma$	'

Only the genotype data table is observed : $\mathbf{X}_{j} = Z_{j}^{m} + Z_{j}^{p}$.

◆□▶ ◆圖▶ ★ 国▶ ★ 国▶ - 国 - のへの June 7th, 2013

7 / 23

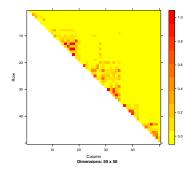

- α , β , γ , δ are estimated
- a system of equations. exmpl : $\alpha = 2a + b + d + pe$

with p the « probability » of the haplotype (uv, UV).

 \Rightarrow estimating p, then (α , β , γ , δ) and finally D.

The LD-block structure

 the r² coefficients among the 50 first SNP of the Chromosome 22 (Dalmasso et al. 2008)


< 17 × 4

June 7th, 2013

8 / 23

The LD-block structure

- the r² coefficients among the 50 first SNP of the Chromosome 22 (Dalmasso et al. 2008)
- LD structured in blocks

Outline

Genome-Wide Association Studies

- The regression model
- Sparsity and high-dimension contexts
- Biological context : LD

Taking the group structure into account

- Classical approach
- A Two-Step Approach
- Competing methods

Results

- True number of clusters
- Under- and over-estimated clustering

 $\langle \Xi \rangle \langle \Xi \rangle$ June 7th, 2013

9 / 23

Current works

To deal with high-dimensional problems and dependence among SNP :

- based on LD
- selection of « representative » SNP of each LD-block : tagging (Chloé Friguet presentation)

Loss of information

Loss of power : tag-SNP not necessarly the causal SNP.

(日) (周) (日) (日) (日)

June 7th, 2013

10 / 23

A different approach :

a block-selection

A Two-Step Approach

Inference of blocks :

- ullet only the genotype data ${f X}$ are used.
- a $p \times p$ matrix LD pairwise measures is calculated.
- Ward Constrained Hierarchichal Clustering (*R* package rioja)

$$d(A,B) = \frac{n_A n_B}{n_A + n_B} \left(\frac{1}{n_A^2} S_{A,A} + \frac{1}{n_B^2} S_{B,B} - \frac{2}{n_A n_B} S_{A,B}\right)$$

Selection of blocks associated with phenotype :

• The Group Lasso : well-adapted to group-structured variables :

$$\hat{\boldsymbol{\beta}}_{\lambda} = \operatorname*{arg\,min}_{\boldsymbol{\beta}}(||\mathbf{y} - \mathbf{X}\boldsymbol{\beta}||_{2}^{2} + \lambda \sum_{g=1}^{G} \sqrt{p_{g}}||\boldsymbol{\beta}_{g}||_{2}).$$

イロト イポト イヨト イヨト 二日

June 7th, 2013

11 / 23

Competing methods

Lasso :

$$\hat{\boldsymbol{\beta}}^{l1} = \operatorname*{arg\,min}_{\beta} \sum_{i} (y_i - \mathbf{X}_{i.}\boldsymbol{\beta})^2 + \lambda ||\boldsymbol{\beta}||_1,$$

Elastic-Net :

$$\hat{\boldsymbol{\beta}}^{EN} = \arg\min_{\boldsymbol{\beta}} \sum_{i} (y_i - \mathbf{X}_{i.}\boldsymbol{\beta})^2 + \lambda_1 ||\boldsymbol{\beta}||_1 + \lambda_2 ||\boldsymbol{\beta}||_2^2$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで June 7th, 2013

12 / 23

with λ , λ_1 and λ_2 three regularization parameters.

ALIA DEHMAN (Statistique et Génome)

SNP-selection & block-selection :

- SNP-level evaluation : causal SNP.
- block-level evaluation : SNP in the same block that a causal SNP.

(日) (周) (日) (日) (日)

June 7th, 2013

13 / 23

- n = 200, p = 512.
- 9 groups of sizes (2, 2, 4, 8, 16, 32, 64, 128, 256).
- the first 2 SNPs of groups of sizes 2, 2, 4, 8 are associated with the phenotype.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

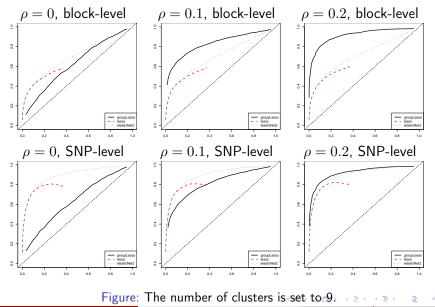
June 7th, 2013 14 / 23

- If $j \neq j'$ are in the same group, $cov(X_{.j}, X_{.j'}) = \rho$ else $cov(X_{.j}, X_{.j'}) = 0.$
- $R^2 = 0.2$ the coefficient of determination.

Outline

- Genome-Wide Association Studies
 - The regression model
 - Sparsity and high-dimension contexts
 - Biological context : LD
- Taking the group structure into account
 - Classical approach
 - A Two-Step Approach
 - Competing methods

Results


- True number of clusters
- Under- and over-estimated clustering

 $\langle \square \rangle \langle \equiv \rangle \langle \equiv \rangle$ June 7th, 2013

15 / 23

Current works

True number of clusters

ALIA DEHMAN (Statistique et Génome

June 7th, 2013 16 / 23

Under-estimated clustering

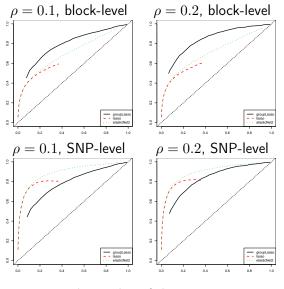


Figure: The number of clusters is set to 5. (=) (=)

ALIA DEHMAN (Statistique et Génome

June 7th, 2013 17 / 23

э

Over-estimated clustering

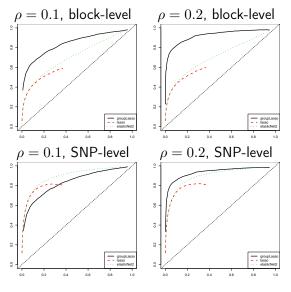


Figure: The number of clusters is set to 13. < 13. < 13

ALIA DEHMAN (Statistique et Génome

June 7th, 2013 18 / 23

э

Outline

- Genome-Wide Association Studies
 - The regression model
 - Sparsity and high-dimension contexts
 - Biological context : LD

Taking the group structure into account

- Classical approach
- A Two-Step Approach
- Competing methods

Results

- True number of clusters
- Under- and over-estimated clustering

 $\checkmark \square \land \land \supseteq \land \land \supseteq \land$ June 7th, 2013

19 / 23

Current works

Memory requirement of the clustering

	rioja	cWard
Type of entry	$p \times p$ dissimilarity	the $n imes p$ design
	matrix	matrix
Time complexity	$\mathcal{O}(np^2)$	$\mathcal{O}(np^2)$
	(2 ())	
Memory complexity	$\mathcal{O}(p^2)$	$\mathcal{O}(np)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Inferring the number of clusters :

- maximal jump (Bühlmann et. al., 2012, arXiv :1209.5908v1)
- BIC criterion
- Gap Statistic (Tibshirani et. al., 2001, JRSSB)

Tree-Group Lasso

$$\hat{\boldsymbol{\beta}}^{Tree} = \operatorname*{arg\,min}_{\beta} \sum_{i} (y_i - \mathbf{X}_{i.}\boldsymbol{\beta})^2 + \lambda \sum_{h=0}^{d} \sum_{g=1}^{G_h} \omega_g^h ||\boldsymbol{\beta}_g^h||_2.$$

Automatic model selection

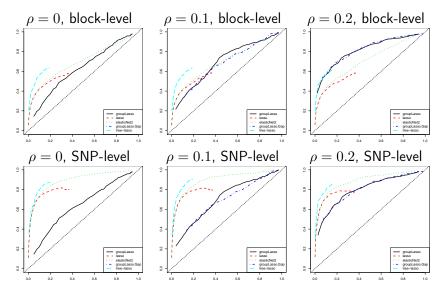


Figure: 1 cluster is inferred for $\rho = 0, 5$ clusters for $\rho = 0.1$ and 6 clusters for $-\infty \infty$ June 7th, 2013 22 / 23

ALIA DEHMAN (Statistique et Génome)

Current works

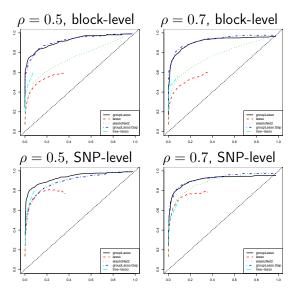


Figure: 7 clusters are inferred for $\rho = 0.5$ and 8 clusters for $\rho = 0.7$.

ALIA DEHMAN (Statistique et Génome)

June 7th, 2013 23 / 23