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Abstract We study the parametric problem of estimating the drift coefficient in a
stochastic volatility model Yt = ∫ t

0

√
Vs dWs , where Y is a log price process and V

the volatility process. Assuming that one can recover the volatility, precisely enough,
from the observation of the price process, we construct an efficient estimator for
the drift parameter of the diffusion V . As an application we present the efficient
estimation based on the discrete sampling (Yiδn)i=0,...,n with δn → 0 and nδn → ∞.
We show that our setup is general enough to cover the case of ‘microstructure noise’
for the price process as well.
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1 Introduction

The aim of this paper is to estimate unknown parameters in the framework of the con-
tinuous time stochastic volatility models introduced by Hull and White [19]. Assume
that the log-price process Yt = logSt of some asset S is given by the simple equation

dYt = μ(Vt )dt +√Vt dWt,
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where the volatility process Vt is a solution of

dVt = b(Vt , θ0)dt + a(Vt )dBt , (1.1)

and (B,W) is a Brownian motion in R
2.

A practical use of these models, for instance, for option pricing or volatility predic-
tion, requires to estimate the unknown parameters governing the process V . However,
this volatility process is unobservable; on the other hand, data coming from the log-
price process (Yt ) are generally available. The problem of estimating the unknown
parameters of the volatility process (Vt ) from the discrete observation of the coordi-
nate (Yt ) has been the subject of several recent contributions. As is always the case
for discretely observed diffusion processes, a direct likelihood approach is hardly
tractable.

Assuming that the volatility process is ergodic, several kinds of explicit estimators
have been proposed. In the case of observations with fixed sampling step, empirical
moment estimators are possible (see, e.g., [12, 25, 28]). However, such estimators
may be strongly biased (see, e.g., [24]). Otherwise, the prediction-based estimating
equations constructed by Sørensen [27] also provide explicit estimators. A maximum
likelihood procedure is proposed in [1] where the unobserved components are recon-
structed via observation of option prices. Filtering the unobserved components also
yields a maximum likelihood procedure in [4].

Meanwhile, a growing literature in finance is devoted to the econometrics of high-
frequency data with a view to reconstructing the unobserved volatility process (see
[3, 21, 26, 31]).

A theoretical approach which is well-fitted to high-frequency data is to assume that
we have some information on the price process at the instants (ti,n)i=0,...,n, where the
maximal sampling step δn = supi (ti+1,n − ti,n) converges to zero and Tn = tn,n → ∞.
For instance, an explicit method based on the observation of a discrete sample
(Yjδn, j ≤ n) is proposed in [11]. This method is able to estimate the unknown para-
meters present in the stationary distribution of the unobserved diffusion V . Our pur-
pose here is to infer the parameters of the (Vt ) model present in the drift coefficient
b(., θ0), under the same ergodicity assumption on V . We focus mainly on the drift
coefficient, for simplicity and since a positive answer can be obtained about the ef-
ficiency of the estimation procedure. Indeed, the problem of estimating the diffusion
coefficient is known to be difficult in general (see [13, 18] in the case of non-ergodic
volatility). Nevertheless, in the case where this diffusion coefficient is needed, we
shall explain how to estimate it consistently before estimating the drift parameter.

The organization of the paper is as follows. In Sect. 2.1 we present our assump-
tions on the diffusion process V . Then we introduce an explicit contrast function
in Sect. 2.2. The idea is that from the high frequency observations we know how
to reconstruct the integrated volatility

∫ (i+1)Δ

iΔ
Vs ds over intervals of size Δ larger

than δn. The problem of estimating the parameter in (1.1) from discrete sampling
of its integral has been addressed in our two previous works [14, 15]. Relying on
these works the study of a contrast function is feasible. The main result is given in
Sect. 2.3. It states that, under suitable conditions on the quality of the reconstruc-
tion of the integrated volatility, our estimator for the drift parameter is consistent and
asymptotically Gaussian. An interesting property is that our estimator has the same
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asymptotic behavior as the maximum likelihood estimator based on the direct obser-
vation of the volatility (Vt , t ≤ Tn); especially, it converges with rate

√
Tn. Thus, no

information about the drift of the volatility process is lost in the observation of the
price process. Moreover, we can deduce that our estimator is asymptotically efficient
(see Remark 2.5).

In Sect. 3 we apply this result to the case of a direct observation of the price
process Y when the volatility is reconstructed with the help of the so-called ‘realized
volatility’. We study the estimator on explicit models and compare its behavior on
finite sample with the estimator given in [11].

In Sect. 4 we show that our procedure applies even if the price process is contami-
nated by some microstructure noise provided the volatility is reconstructed by use of
the ‘two scales realized volatility’ introduced by Zhang et al. [31].

We finally discuss in Sect. 5 the estimation of the diffusion coefficient of the
volatility process.

Section 7 is devoted to the proofs of the results.

2 Main results

2.1 Assumptions on the model

Let (Yt ,Vt ) be the two-dimensional diffusion process defined as the solution on a
probability space (�,A,P ) of

dYt = μ(Vt )dt +√Vt dWt, Y0 = η′, (2.1)

dVt = b(Vt , θ)dt + a(Vt )dBt , V0 = η, (2.2)

where (Bt ,Wt )t≥0 is a two-dimensional Brownian motion with possible correlation
between the components. We assume that the initial random variables (η, η′) are
independent of (Wt ,Bt )t≥0 and that η is positive.

We assume that the unknown parameter θ lies in a compact subset Θ of R
d and

we shall denote by θ0 the true value of the parameter. We make classical assumptions
on a and b, which ensure that the solution of (2.2) is positive recurrent on (0,∞).

(A0) For all θ ∈ Θ , the equation (2.2) admits a unique strong solution V > 0.
(A1) The functions a(.) and b(., θ) are C2 on (0,∞). Moreover, b(x, θ) is C3 with

respect to the parameter θ , and the derivatives with respect to θ are C2 as func-
tions of x. The following bounds hold for some c > 0:

∣
∣a(x)

∣
∣+ ∣∣b(x, θ)

∣
∣+
∣
∣
∣
∣

∂j

∂j θ
b(x, θ)

∣
∣
∣
∣≤ c

(
1 + xc

)
, with j ∈ {1,2,3}.

Moreover, we assume that if f stands for one of the functions a−1, ∂i+j

∂ix ∂j θ
b,

∂i

∂ix
a, where i = 1,2 and j ≤ 3, we have for some c > 0

∣
∣f (x)

∣
∣≤ c

(
xc + x−c

)
. (2.3)
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Let us set

Gt := σ
(
(Ws,Bs), s ≤ t; η; η′). (2.4)

(A2) For all k ∈ R there exists c > 0 such that for all t ≥ 0

E
(

sup
s∈[t,t+1]

V k
s | Gt

)
≤ c
(
1 + V k

t

)
.

Now we give conditions for ergodicity on (0,∞). For this let x0 ∈ (0,∞), and
we define the scale function s(x, θ) = exp(−2

∫ x

x0

b(u,θ)

a2(u)
du) and the speed density

m(x, θ) = a−2(x)s−1(x, θ).

(A3)
∫

0 s(x, θ0)dx = ∫∞
s(x, θ0)dx = ∞,

∫∞
0 m(x, θ0)dx = Mθ0 < ∞.

Let us recall that under (A3), it is known that the diffusion is positive recurrent with
a stationary distribution given by

ν0(dx) = 1

Mθ0

m(x, θ0)1{x∈(0,∞)} dx. (2.5)

(A4) For all c > 0, we have
∫∞

0 (x−c + xc)ν0(dx) < ∞.
(A5) For all c > 0, we have supt≥0 E(V −c

t + V c
t ) < ∞.

Let us introduce the identifiability conditions necessary for estimation of the parame-
ter. We need the d × d-matrix I (θ0) defined by

I (θ0)i,j =
∫ ∞

0

∂

∂θi

b(x, θ0)
∂

∂θj

b(x, θ0)a
−2(x)dν0(x), for 1 ≤ i, j ≤ d . (2.6)

(I1) b(x, θ) = b(x, θ0) dx a.e. on (0,∞) implies θ = θ0.
(I2) The information matrix I (θ0) is invertible.

Note that the condition (A1) on the coefficients is natural, since it mainly states that
the coefficients are smooth on (0,∞), with at most polynomial growth at ∞, and
that they may have a singularity at the end point 0, which is standard for a diffusion
restricted to be positive. The condition (A2) is a uniform control on the behavior of
the diffusion near 0 and ∞, which is a useful tool in our proofs. It was introduced in
[22] and it is shown in [14] that the condition holds for classical diffusion processes
used in finance to model the volatility (see Sect. 2.4). The assumption (A4) is an
integrability condition on the stationary measure and it immediately implies (A5)
when the volatility process is stationary. It is shown in [15] that the condition (A5)
may hold even for non-stationary processes.

2.2 Observations and the contrast function

We assume that we observe the price process Y on the interval [0, Tn] at the sampling

times (ti,n)i=0,...,n with t0,n = 0 and tn,n = Tn
n→∞−−−→ ∞. As it happens in the high fre-

quency setting, these observations might be contaminated by some noise, but we do
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not need to suppose yet an exact structure for the observations. We only assume that
there exists some sequence of filtrations (G̃n

t )0≤t≤Tn generated by a family of vari-
ables independent of G∞ (recall (2.4)). A possible situation is that G̃n

t is generated by
the microstructure noise in the observations up to time t . Then we set Gn

t = G̃n
t ∨ Gt .

Let us assume now that from these observations we are able to recover the volatil-
ity process with some statistical error. Choose 0 < Δn < 1 as some sampling step
(typically larger than the underlying sampling step on Y ) and define the unobserved
integrated volatility on an interval of length Δn,

V i = V i,n = Δ−1
n

∫ (i+1)Δn

iΔn

Vs ds, i = 0, . . . ,Nn − 1, (2.7)

where Nn = 
Tn/Δn�.
We denote by V̂i = V̂i,n for i = 0, . . . ,Nn −1, the approximation of this integrated

volatility based on the observations (see explicit examples in Sects. 3, 4). We specify
the quality of the approximation in the following set of assumptions, where

Ei = Ei,n = V̂i − V i, i = 0, . . . ,Nn − 1,

denotes the estimation error.

(V1) The variable V̂i is Gn
(i+1)Δn

-measurable for all 0 ≤ i ≤ Nn − 1.

(V2) For all p ≥ 1, there exists c(p) > 0 such that E(|V̂i |p | Gn
iΔn

) ≤
c(p)(1 + V

c(p)
iΔn

).

(V2′) The variables V̂i are a.s. positive and for all p ≥ 1 there exists c(p) > 0 such
that E(V̂

−p
i | Gn

iΔn
) ≤ c(p)(1 + V

−c(p)
iΔn

).

(V3) There exists a sequence bn
n→∞−−−→ 0 such that

∀i = 0, . . . ,Nn − 1,
∣
∣E
(
Ei | Gn

iΔn

)∣
∣≤ bnc

(
1 + V c

iΔn

)
.

(V4) There exists a sequence vn
n→∞−−−→ 0 such that for all p ≥ 1 there exists c(p)

with

∀i = 0, . . . ,Nn − 1, E
(|Ei |2p | Gn

iΔn

)≤ v
p
n c(p)

(
1 + V

c(p)
iΔn

)
.

The condition (V1) is natural, since the true integrated volatility V i is G(i+1)Δn -
measurable. Conditions analogous to (V2–V2′) are satisfied for V i by direct appli-
cation of (A2); hence, it is natural to state this control for the approximation. Actu-
ally, (V2) is immediately implied by (V4) and (A2), while (V2′) is more restrictive
and might not hold for some choice of approximation. The condition (V3) controls
the (conditional) bias between true and estimated integrated volatility, while (V4) is
some control on the variance.

In the previous paper [15] we introduced a contrast function for the estimation
of the parameters in (1.1) when we observe (V i). This contrast function is based on
the kind of Euler scheme formula for the integrated process (V i) stated in [14] and
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recalled below in Sect. 7.1.1. Following the same approach we let, using positivity of
V̂i under (V2′),

Cn(θ) = − 1

NnΔn

Nn−2∑

i=1

(V̂i+1 − V̂i )
b(V̂i−1, θ)

a2(V̂i−1)
+ 1

2Nn

Nn−2∑

i=1

b2(V̂i−1, θ)

a2(V̂i−1)
, (2.8)

and set θ̂n = arginfθ∈Θ Cn(θ) for the minimum contrast estimator.
Formally the expression of −Cn(θ) is very similar to the expression of the log-

likelihood of the direct continuous observation of (Vt , t ≤ Tn), which is (see [22])

LTn(θ) = 1

Tn

∫ Tn

0

b(Vs, θ)

a2(Vs)
dVs − 1

2Tn

∫ Tn

0

b2(Vs, θ)

a2(Vs)
ds.

However, the expression (2.8) is far from being immediate to obtain. Indeed, if one
replaces b

a2 (V̂i−1, θ) by b

a2 (V̂i , θ) in the first sum then the contrast does not even

produce a consistent estimator. It is important that the weight factor b

a2 (V̂i−1, θ) in

(2.8) depends only on past observations (V̂j , j < i). Other possible choices are given
in Sects. 2.3 and 3.3.

2.3 Properties of the estimator

Let us define the quantity

C(θ0, θ) = 1

2

∫ ∞

0

(
b(x, θ) − b(x, θ0)

)2
a−2(x)dν0(x). (2.9)

The following proposition justifies the choice of (2.8) as a contrast function.

Proposition 2.1 Assume (A0–A5), (V1–V4), (V2′), bn = o(Δn), vn = o(ΔnTn),
Δn → 0. Then

Cn(θ) − Cn(θ0)
n→∞−−−→ C(θ0, θ), in probability. (2.10)

We deduce the consistency property for the estimator.

Theorem 2.2 Assume (I1) and the assumptions of Proposition 2.1. Then

θ̂n
n→∞−−−→ θ0, in probability.

Remark 2.3 The conditions on Δn, bn, and vn are crucial points in the construction
of the estimator. The fact that Δn → 0 implies that the integrated volatilities V i are
themselves in the framework of short sampling intervals. We shall see in the examples
that these conditions for consistency are not very stringent and a proper choice for
Δn and the V̂i will always be possible in our examples.
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Theorem 2.4 Assume (A0–A5), (V1–V4), (V2′), (I1–I2), and θ0 ∈ ◦
Θ . Assume,

moreover, that NnΔ
3
n → 0, bn = o(Δ

1/2
n Nn

−1/2), vn = o(Δn). Then

√
Tn(θ̂n − θ0)

n→∞−−−→
L

N
(
0, I (θ0)

−1). (2.11)

Remark 2.5 (1) These conditions for asymptotic normality are rather stringent. How-
ever, NnΔ

3
n → 0 is the standard condition on the sampling step encountered for

the estimation of the drift parameter from a direct observation of the sampling
(ViΔn)i=0,...,Nn (see [9, 29]). Actually, this condition suppresses a bias term of or-

der N
1/2
n Δ

3/2
n while proving (2.11) (see details in Sect. 7.1.3). We benefit here from

the fact that we only estimate the drift parameter: indeed, it is known that for the esti-
mation of both drift and diffusion parameter from ViΔn or V i the classical condition
is NnΔ

2
n → 0 (see [15, 22]).

(2) The estimator θ̂n has rate
√

Tn with asymptotic covariance matrix I (θ0)
−1.

It is remarkable that this is the same asymptotic behavior as any efficient estimator
based on the direct observation of the hidden volatility (Vt )t∈[0,Tn]. Since our data are
randomizations of this hidden path, the estimator is efficient in our statistical model.

Remark 2.6 It may happen in some examples (see Sect. 4) that Assumption (V2′)
does not hold. Then the contrast function (2.8) might not be defined if V̂i < 0 for
some i ∈ {1, . . . ,Nn − 1}. In this case consider some smooth real function ψ equal
to zero on some interval (−∞, ε] and equal to 1 on [2ε,∞) for a fixed ε > 0 and
introduce the modified contrast function

C̃n(θ) = − 1

NnΔn

Nn−2∑

i=1

(V̂i+1 − V̂i )
b(V̂i−1, θ)

a2(V̂i−1)
ψ(V̂i−1)

+ 1

2Nn

Nn−2∑

i=1

b2(V̂i−1, θ)

a2(V̂i−1)
ψ(V̂i−1),

and let θ̃n be the corresponding minimum estimator.
If one replaces the assumption (I1) by the condition that the function b(·, θ0) is

identified by its values on some interval [ε,∞), then we can show that under the
assumptions of Theorem 2.2 except (V2′), consistency holds. Moreover, under the
additional conditions of Theorem 2.4 we have

√
Tn(θ̃n − θ0)

n→∞−−−→
L

N
(
0, J̃ (θ0)

−1Ĩ (θ0)J̃ (θ0)
−1),

with

Ĩ (θ0)i,j =
∫ ∞

ε

∂

∂θi

b(x, θ0)
∂

∂θj

b(x, θ0)a
−2(x)ψ2(x)dν0(x), for 1 ≤ i, j ≤ d ,

J̃ (θ0)i,j =
∫ ∞

ε

∂

∂θi

b(x, θ0)
∂

∂θj

b(x, θ0)a
−2(x)ψ(x)dν0(x), for 1 ≤ i, j ≤ d .
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In this situation the asymptotic variance depends on the choice of the truncation func-
tion ψ , but when ε → 0 both matrices Ĩ (θ0) and J̃ (θ0) converge to I (θ0) since ψ

converges a.s. to 1. Thus, the lack of efficiency can be made arbitrarily small by
choosing ε close to zero.

2.4 Explicit volatility models

In this section we apply the results of Sect. 2.3 to some standard models for the
volatility process.

2.4.1 Log-normal volatility model

Suppose the volatility process is log-normal, Vt = exp(Zt ), where Zt is the stationary
solution of dZt = θZt dt + σ dBt (with θ < 0). Thus, the equation for V is, by Itô’s
formula,

dVt =
{

θVt lnVt + σ 2

2
Vt

}

dt + σVt dBt .

In [14] we have proved that (A2) holds for this model. The conditions (A3–A5) are
simple to check, the stationary law being log-normal. Hence, the results of Sect. 2.3
apply, and we can find an explicit minimum for the contrast function (2.8), namely,

θ̂n =
1

Δn

{∑N−2
i=1

(V̂i+1−V̂i )(ln V̂i−1)

V̂i−1

}− σ 2

2

{∑N−2
i=1 ln V̂i−1

}

∑N−2
i=1 (ln V̂i−1)2

. (2.12)

Here an application of Theorem 2.4 gives
√

Tn(θ̂n − θ)
n→∞−−−→ N (0,2|θ |).

2.4.2 GARCH diffusion model

Here the volatility process is the solution of

dVt = (αVt + β)dt + σVt dBt , V0 > 0,

with α < 0, σ,β > 0. We have shown in [14] that (A2) holds for this model. Further-
more, the condition (A3) for ergodicity is satisfied, and we assume the diffusion is
stationary with initial law given by

ν0(dx) = λa

�(a)
x−a−1 exp

(

−λ

x

)

1{x>0} dx,

where a = −2α/σ 2 + 1 > 1 and λ = 2β/σ 2 > 0.
This distribution admits negative moments of any order E[V −c

t ] < ∞, but is heavy
tailed near +∞ and admits positive moments E[V c

t ] < ∞ only for c < a. Thus,
conditions (A4–A5) do not exactly hold. Nevertheless, we can write down an explicit
solution for the minimization of the contrast function (2.8):

[ ∑N−2
i=1 1

∑N−2
i=1 V̂ −1

i−1
∑N−2

i=1 V̂ −1
i−1

∑N−2
i=1 V̂ −2

i−1

][
α̂n

β̂n

]

=
[ 1

Δn

∑N−2
i=1 V̂ −1

i−1(V̂i+1 − V̂i)

1
Δn

∑N−2
i=1 V̂ −2

i−1(V̂i+1 − V̂i)

]

. (2.13)
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Then it can be shown directly that Theorem 2.4 holds for this estimator if the station-
ary law admits enough positive moments.

Theorem 2.7 Assume a > 3, NnΔ
3
n → 0, bn = o(Δ

1/2
n Nn

−1/2), and vn = o(Δn).
Then

[√
Tn(α̂n − α)√
Tn(β̂n − β)

]
n→∞−−−→
D

N
(

0,

[
2σ 2 − 2α −2β

−2β
4β2

σ 2−2α

])

.

Proof We rewrite (2.13) as Mn

[ √
NnΔn(α̂n−α)√
NnΔn(β̂n−β)

]
= Nn, with

Mn = 1

Nn

[ ∑N−2
i=1 1

∑N−2
i=1 V̂ −1

i−1
∑N−2

i=1 V̂ −1
i−1

∑N−2
i=1 V̂ −2

i−1

]

,

and

Nn =
[
(NnΔn)

−1/2∑N−2
i=1 V̂ −1

i−1(V̂i+1 − V̂i − (αV̂i−1 + β)Δn)

(NnΔn)
−1/2∑N−2

i=1 V̂ −2
i−1(V̂i+1 − V̂i − (αV̂i−1 + β)Δn)

]

.

Then the theorem follows from the expression of ν0(dx) and the two following results
whose proof is detailed in Sect. 7.1.4:

since a > 1, Mn
n→∞−−−→

P

[
1

∫∞
0 x−1 dν0(x)

∫∞
0 x−1 dν0(x)

∫∞
0 x−2 dν0(x)

]

, (2.14)

since a > 3, Nn
n→∞−−−→
L

N
(

0, σ 2

[
1

∫∞
0 x−1 dν0(x)

∫∞
0 x−1 dν0(x)

∫∞
0 x−2 dν0(x)

])

. (2.15)

�

2.5 The Heston square root model

In this popular model of finance [17] the volatility is the solution of the equation
dVt = (αVt + β)dt + σ

√
Vt dBt , V0 > 0 with α < 0, β > 0. If c0 = 2β/σ 2 > 1, the

process admits a stationary distribution dν0(x) = λc0�(c0)
−1xc0−1e−λx1{x>0} dx,

with λ = −2α/σ 2. This stationary distribution admits inverse moments ν0(x
−c) < ∞

only for c < c0. Actually, the model only satisfies the condition (A2) for k > −c0 +1,
and (A4–A5) for c < c0 (see [15] for details). However, a direct study of the explicit
estimator obtained as the minimum of (2.8) is feasible and it can be shown that The-
orem 2.4 is still valid if c0 > 13.

3 Direct observation of the price process

We assume that we observe the price process directly at some equidistant sampling:

(Ytj,n )j=0,...,n = (Yjδn)j=0,...,n, (3.1)
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where δn → 0 is the sampling step and nδn = Tn. Since we assume here no mi-
crostructure noise, we let Gn

t = Gt for all n ≥ 1 (recall (2.4)). Moreover, for the sake
of simplicity we assume that the two Brownian motions W and B in (2.1–2.2) are
uncorrelated.

3.1 The realized volatility

We split the data into successive blocks of size k = kn ≤ n, kn → ∞, let Δn = knδn,
and N = Nn = 
n/kn� is the number of blocks obtained. On each block we consider
the quadratic variation of the observation divided by the observation time correspond-
ing to one block

V̂i = V̂i,k,n = Δ−1
n

k−1∑

j=0

(Y(ik+j+1)δn − Y(ik+j)δn)
2, i = 0, . . . ,Nn − 1. (3.2)

The relation between the realized variance (3.2) and the integrated one (2.7) has been
used by several authors for statistical purposes in the context of stochastic volatility
(see, e.g., [3, 5, 16]). In the next proposition we show that this choice satisfies the
conditions (V1), (V3), (V4) (and thus (V2), too).

Proposition 3.1 Assume (A0–A2) and Δn ≤ 1. Recall Ei = V̂i − V i . Then V̂i , V i ,
and Ei are Gn

(i+1)Δn
-measurable. Moreover,

∃c, ∀i, n, k,
∣
∣E(Ei | GiΔn)

∣
∣≤ cδn

(
1 + V c

iΔn

)
, (3.3)

for p ≥ 1, ∃c(p), ∀i, n, k, E
(|Ei |p | GiΔn

)≤ c(p)k−p/2[1 + V
p
iΔn

]
. (3.4)

Proof The measurability condition is immediate by (2.4), (2.7), (3.2). Then denote
by GV the sigma field generated by the hidden path (Vt )t≥0. Conditionally on GV the
process Y is a simple Gaussian diffusion. From this it can be shown (see Lemma 6 in
[16] for details) that

∣
∣E(Ei | GV ∨ GiΔn)

∣
∣≤ cδn sup

s∈[iΔn,(i+1)Δn]
(
1 + V c

s

)
,

E
(|Ei |p | GV ∨ GiΔn

)≤ c(p)k−p/2 sup
s∈[iΔn,(i+1)Δn]

(
1 + V

p
s

)
, for p ≥ 1.

Then we conclude taking conditional expectations with respect to GiΔn and using
(A2) with Δn ≤ 1.

The fact that (V2′) holds is more delicate and is deferred to Sect. 7.2. �

Hence, the realized variances (V̂i ) satisfy the conditions of Sect. 2.2. The follow-
ing choices of kn imply consistency and normality:

1. If kn → ∞ with n−1/2δ−1
n = o(kn) and kn = o(δ−1

n ), then Theorem 2.2 holds.
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2. Assume nδ2
n → 0 and choose kn with δ

−1/2
n = o(kn) and kn = o(n−1/2δ

−3/2
n ).

Then Theorem 2.4 holds.

Let us stress that a choice of kn that insures the consistency is always feasible, and
the lower bound on kn may even disappear if n−1/2δ−1

n → ∞. On the other hand,
a choice that insures the asymptotic normality is only possible under a fast sam-
pling assumption nδ2

n → 0, since the upper and lower bound conditions on kn imply

δ
−1/2
n = o(n−1/2δ

−3/2
n ).

3.2 Behavior on a finite sample

We made numerical simulations to study by a Monte Carlo method how the estimator
performs on a finite sample in the model of Sect. 2.4.2. For the parameters, we choose
the values α = −10, β = 4, σ = 2.5 which are plausible for financial data if the time
scale is expressed in years (see for instance [2]). We assume that we observe the price
process during Tn = 10 years. We present three possible setups for the sampling of
the price process:

− In case A, we let n = 4 × 106. This corresponds to ultra-high frequency sampling
with observations about every 10 seconds.

− In case B, we let n = 5 × 105.
− In case C, we let n = 1.33 × 105. This corresponds to data sampled about every

5 minutes.

To help the interpretation, we give numerical results also for the estimator θn =
(αn, βn) obtained if we could observe directly the integrated volatility V i and use it
in the expression of contrast (2.8) in place of the V̂i .

The results for empirical means (and standard deviations) with different choices
for kn are presented in the first 3 columns of Tables 1–3. The number of replications
used in the Monte Carlo method is 1000.

We find that our estimators α̂n, β̂n perform well in case A and are very similar
to the one based on the direct observation of V i . Here a proper choice for kn seems
kn � 300.

In case B the estimators α̂n, β̂n appear more biased and with larger standard devi-
ation when compared to the estimation based on V i .

In case C the results worsen: either k is chosen small and α̂n, β̂n have large vari-
ances and are very different from αn,βn; or k is chosen large and all the estimators
are strongly biased.

3.3 Improvement on the finite sample

In case C we noticed that we cannot suppress both the bias and the additional variance
due to the errors Ei . Actually, if Δn (or, equivalently, kn) is chosen too small, even
the property (2.14) does not seem to hold when we inspect the simulations.

We can circumvent this problem by a slight modification of the estimator. We let
L ≥ 1 and introduce a new approximation for ViΔn using L ≥ 1 lagged data, namely,

V̂
(L)
i = 1

L

L−1∑

l=0

V̂i−l .
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Table 1 Case A, α = −10, β = 4, σ = 2.5

k α̂n β̂n αn βn L α̂
(L)
n β̂

(L)
n

100 −9.58 3.80 −10.37 4.11 12 −10.27 4.07

(3.53) (1.14) (1.83) (0.50) (1.86) (0.51)

300 −10.08 4.00 −10.33 4.05 4 −10.22 4.04

(1.90) (0.53) (1.86) (0.51) (1.85) (0.51)

1000 −10.02 3.97 −10.09 4.01 1 −10.02 3.97

(1.84) (0.54) (1.85) (0.53) (1.84) (0.54)

Table 2 Case B, α = −10, β = 4, σ = 2.5

k α̂n β̂n αn βn L α̂
(L)
n β̂

(L)
n

50 −9.01 3.57 −10.32 4.08 13 −10.06 3.98

(3.66) (1.17) (1.80) (0.49) (1.85) (0.53)

100 −9.45 3.76 −10.04 4.00 6 −9.79 3.90

(2.13) (0.66) (1.83) (0.51) (1.88) (0.54)

300 −9.54 3.78 −9.77 3.86 1 −9.54 3.78

(1.72) (0.51) (1.75) (0.50) (1.72) (0.51)

Table 3 Case C, α = −10, β = 4, σ = 2.5

k α̂n β̂n αn βn L α̂
(L)
n β̂

(L)
n

30 −8.21 3.27 −10.12 4.03 12 −9.50 3.79

(4.23) (1.36) (1.76) (0.50) (1.84) (0.56)

50 −8.74 3.47 −9.86 3.91 7 −9.27 3.68

(2.45) (0.76) (1.76) (0.49) (1.86) (0.55)

100 −8.77 3.49 −9.40 3.74 3 −9.02 3.59

(1.82) (0.56) (1.75) (0.52) (1.84) (0.57)

150 −8.79 3.48 −9.20 3.64 2 −8.83 3.64

(1.84) (0.54) (1.82) (0.52) (1.90) (0.56)

300 −7.87 3.12 −8.06 3.20 1 −7.87 3.12

(1.69) (0.55) (1.67) (0.54) (1.69) (0.54)

Then we slightly change the weight factors in the expression of the contrast function
(2.8) to

C(L)
n (θ) = − 1

NnΔn

Nn−2∑

i=L+1

(V̂i+1 − V̂i )
b

a2

(
V̂

(L)
i−1, θ

)

+ 1

2Nn

Nn−2∑

i=L+1

b2

a2

(
V̂

(L)
i−1, θ

)
, (3.5)
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Table 4 α = −10, β = 4, σ = 2.5

Case A Case B Case C

α̃n β̃n α̃n β̃n α̃n β̃n

−10.97 4.32 −10.86 4.38 −10.95 4.31

(2.35) (0.74) (2.31) (0.72) (2.45) (0.76)

and we set θ̂
(L)
n = arginfθ∈Θ C(L)

n (θ) for the associated minimum contrast estimator.
It can be shown that, for L fixed and with the same conditions on bn, vn as for

Theorem 2.4, the asymptotic properties of θ̂n and θ̂
(L)
n are the same. However, on a

finite sample, if L is chosen different from 1, while k is not large enough, the behavior
is significantly different.

In the case of the GARCH diffusion, numerical results are given in the two last
columns of Tables 1–3 for choices of L roughly proportional to 1/k.

The estimator is improved in all three cases, and it is much less sensitive to the
choice of k. For applications to real data, it seems important to use this corrected
version of the estimator.

3.4 Comparison with the estimator of [11]

In their paper [11], the authors presented contrast-based estimators for stochastic
volatility models. If the volatility process is the same as in Sect. 2.4.2, they obtained
the explicit contrast function

Un(a,λ) = 1

n

n∑

i=1

{(

a + 1

2

)

log

(

λ + X2
i,n

2

)

− a log(λ) + log

(
�(a)

�(a + 1/2)

)}

,

with Xi,n = δ
−1/2
n (Yiδn − Y(i−1)δn), a = −2α/σ 2 + 1 and λ = 2β/σ 2 > 0. Mini-

mization with respect to (α,β) gives an estimator (α̃n, β̃n). Their contrast function
is suggested by the approximation in law Xi,n � εη1/2 where ε is a standard nor-
mal variable and η is distributed as the stationary measure of the GARCH diffusion
process V (namely as an inverse Gamma distribution).

This estimator is shown in [11] to be asymptotically normal with rate
√

Tn as soon
as nδn → ∞, nδ2

n → 0 and a > 2. But in contrast to ours, it is not asymptotically
efficient. Results of numerical simulations are given in Table 4. Comparison with
Tables 1–3 is unambiguous: the estimators of [11] are much less sensitive than ours
to the conditions on the sampling step δn. However, in cases A and B where our
estimators (α

(L)
n , β

(L)
n ) behave properly, they perform better than (α̃n, β̃n). Here we

benefit from the efficiency property.

4 Observations with microstructure noise

When dealing with ultra-high frequency data, the assumption of observations given
by (3.1) might not be realistic, since tick-by-tick data are not equally sampled. More-
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over, empirical evidence shows that ultra-high frequency data seem contaminated by
some error, commonly called ‘microstructure noise’ (see [31]).

We assume that we observe

Xtj,n = Ytj,n + εj,n, for j = 0, . . . , n,

where 0 = t0,n < · · · < tn,n = Tn and the random variables (εj,n)n≥1;0≤j≤n are
i.i.d. centered with moments of any order.

We denote by δn = supj=0,...,n−1(tj+1,n − tj,n) the maximum step between
two observations and assume that for some fixed constant 0 < c < 1 we have
tj+1,n − tj,n > cδn.

Let us choose Δn > δn. Then it is known that due to the noises εj,n the realized
variance over some interval of size Δn is not a consistent estimator for the integrated
variance. Instead we shall use the ‘Two-Scales Realized Volatility’ (TSRV) intro-
duced by Zhang et al. [31]. Let us briefly recall their construction.

Define, for i = 0, . . . ,Nn − 1, the set Bi,n = {j | tj,n ∈ [iΔn, (i + 1)Δn)} and let
ki,n = �Bi,n be the number of data in the block i. Due to the non-equidistant sampling,
this number is not constant for different blocks, but we have cΔn/δn ≤ ki,n ≤ Δn/δn.
Then Zhang et al. [31] introduce the estimated variance of the noise in the block i as

ε̂2
i = 1

2(ki,n − 1)

∑

j∈Bi
j+1∈Bi

(Xtj+1,n
− Xtj,n)

2.

Then let 1 ≤ M ≤ ki,n be some ‘sub-sampling step’ and define the averaged realized
volatility obtained on this subgrid by

[X,X]avg,M

i = 1

M

∑

j∈Bi
j+M∈Bi

(Xtj+M,n
− Xtj,n)

2.

Following [31], we introduce the TSRV

V̂i = 1

Δn

[

[X,X]avg,M

i − 2(ki,n − M)

M
ε̂2
i

]

. (4.1)

The idea behind this construction is that the effect of the noises εi,n is predominant

in the high frequency quadratic variation ε̂2
i , whereas it decreases in a medium fre-

quency quadratic variation [X,X]avg,M

i . The expression (4.1) is obtained by adjusting
the bias effect due to the noises in the two quadratic variations.

The theoretical study of the asymptotic law, as the number of data in a block
tends to infinity, of V̂i − V i is conducted in [31] (for Δn = Δ fixed and a bounded
volatility process V ); the second order moment of Ei = V̂i − V i is bounded in [6];
a more general study for expressions like (4.1) is presented in [30]. Here we state the
following result.
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Proposition 4.1 Assume (A0–A2), Δn ≤ 1, and that B and W are uncorrelated.
Let Gn

t = Gt ∨ σ(εj,n; j such that tj,n ≤ t) for t ≥ 0, n ≥ 1. Then V̂i is Gn
(i+1)Δn

-
measurable and

∣
∣E
(
Ei | Gn

iΔn

)∣∣≤ c

(
1

M
+ Mδn

Δn

)
(
1 + V c

iΔn

)
, (4.2)

E
(|Ei |p | Gn

iΔn

)≤ c(p)

{
Mδn

Δn

+ ki,n

Δ2
nM

2

}p/2(
1 + V

c(p)
iΔn

)
. (4.3)

The detailed proof of this proposition is long and will not be given here. Equa-
tions (4.2) and (4.3) can be obtained along the lines of [31] where, in particular, we
use assumptions (A0–A2) instead of the boundedness assumption for V stated in
[31]. Using the terminology of [31] the term Mδn/Δn in (4.3) is the ‘variance due to
noise’ and ki,n/(Δ

2
nM

2) is the ‘variance due to discretization’.
Balancing these two terms via the selection of M yields, since ki,n � Δn/δn, the

choice M ∼ cδ
−2/3
n . This is only feasible if ki,n > cδ

−2/3
n which, in turn, yields δ

1/3
n =

O(Δn).
Then, with this choice for M , we see that the TSRV satisfies (V3–V4) with bn =

vn = δ
1/3
n /Δn. The condition (V2′) is not satisfied, since it is clear that (4.1) can take

negative values. By Remark 2.6 in Sect. 2.3 we can still find an estimator. It finally
remains to calibrate Δn such that the conditions for consistency and normality in
Theorems 2.2–2.4 hold. By an easy computation, we obtain:

1. If we choose Δn → 0 with δn = o(Δ6
n), then the consistency of the estimator

holds.
2. Assume that nδ

11/9
n → 0; then it is possible to choose Δn with δ

5/12
n n1/4 = o(Δn)

and Δn = o(n−1/2δ
−1/2
n ) and the estimator is asymptotically normal.

Observe again that it is always possible to choose Δn such that consistency holds.
We made numerical simulations, using the improved version of the estimator (3.5)

in the same framework as in Sects. 3.2–3.3 for the GARCH diffusion process. In
Table 5 we present the results in the ultra-high frequency sampling case, where the
microstructure noise is Gaussian with standard deviation equal to 0.002. In this situa-
tion, the microstructure noise has the same magnitude as a typical increment between
two observations of the price process. The behavior of the estimator based on the
TSRV appears rather independent of the presence of microstructure noise: the esti-
mation of the parameter β is severely biased even in absence of noise, whereas the
estimation of the mean reversion parameter α is very correct in all cases. On the other
hand, the estimator based on the realized volatility (RV) was seriously affected by the
presence of noise. Nevertheless, it seems that using the TSRV instead of the realized
volatility is only useful in the presence of high noise.

5 Consistent estimation of the diffusion parameter

Estimating the diffusion coefficient in (2.2) is difficult. Several methods have been in-
troduced [5, 13] but the problem of rate optimality is unsolved, in general (see [18]).
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Table 5 α = −10, β = 4, σ = 2.5, Case A (Tn = 10, n = 4 · 106), k = 300, L = 12, M = 10

Based on T.S.R.V. (without noise) α̂n −9.99 (1.94) β̂n 3.45 (0.47)

(with noise) α̂n −9.90 (2.15) β̂n 3.42 (0.55)

Based on R.V. (without noise) α̂n −10.14 (1.84) β̂n 4.02 (0.53)

(with noise) α̂n −9.98 (3.22) β̂n 3.97 (1.03)

It is not the aim of this paper to consider this problem, but the minimization of the
contrast function (2.8) may involve the knowledge of some parameter σ in the co-
efficient a(·, σ ). Thus, to insure that our method is feasible we need to estimate this
diffusion coefficient. In [15] one contrast function is introduced to estimate both pa-
rameters σ , θ from the direct observation of V i , but trying to replace V i by V̂i in this
contrast would lead to non-optimal conditions on bn and vn compared to the state-
ment of Theorem 2.2. Instead, we use a two-stage method, as in [23], and estimate
first σ by some specific contrast function.

Define

Un(σ) = 1

Nn

Nn−2∑

i=0

3(V̂i+1 − V̂i )
2

2Δna2(V̂i , σ )
+ 1

Nn

Nn−2∑

i=0

log
(
a2(V̂i , σ )

)
.

This contrast function is a modified version of the contrast function used in [10]
where we take into account that the quadratic variation of (V i) differs from the
quadratic variation of (ViΔn) by a factor 2/3 (see [15]).

Proposition 5.1 Assume that (A0–A5), (V1–V4), (V2′) hold, that ∂a
∂σ

(., σ ) exists
and satisfies (2.3), and that the controls in (A1) are uniform in σ . Then, under the
conditions Δn → 0, vn = o(Δn), we have

Un(σ)
n→∞−−−→

∫ (
a2(x, σ0)

a2(x, σ )
+ log

(
a2(x, σ )

)
)

dν0(x),

in probability, where σ0 is the true value of the parameter.

Proof We know by Theorem 3 in [15] that 1
Nn

∑Nn−1
i=0

3(V i+1−V i)
2

2Δna2(V i ,σ )
converges to

∫
a2(x,σ0)

a2(x,σ )
dν0(x). Then, by computations analogous to the proof of Proposition 2.1,

we can see that the control vn = o(Δn) is sufficient to replace the V i by the V̂i in
this result. The proposition now follows from an application of Proposition 7.1 in
Sect. 7. �

From this proposition it can be seen that, under suitable identifiability conditions,
the minimum contrast estimator σ̂n associated to Un is consistent in probability. Then
one can replace in the contrast function (2.8) the unknown parameter σ by its esti-
mated value and show that the results of Sect. 2.3 still hold. This is done by taking
care that the convergence results on the contrast function Cn(θ) are uniform with
respect to the unknown parameter σ . We do not give more details here.
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6 Conclusion

In this paper we have shown that the efficiency for the estimation of the drift para-
meter in stochastic volatility models can be achieved in a quite general setup for the
observations. Moreover, the method appears suitable in practice for financial data.

7 Proof of the results

In this section we prove the results of Sects. 2 and 3.1.

7.1 Study of the contrast function

First, we need some ergodic property for the (V̂i)i .

Proposition 7.1 Assume (A0–A5), (V1–V4), (V2′), and Δn → 0. Let a function
f ∈ C1((0,∞) × Θ) satisfy

sup
θ∈Θ

{∣
∣f (x, θ)

∣
∣+ ∣∣f ′

x(x, θ)
∣
∣+ ∣∣∇θf (x, θ)

∣
∣
}≤ c

(
xc + x−c

)
.

Then

N−1
n

Nn−1∑

i=0

f (V̂i , θ)
n→∞−−−→

∫ ∞

0
f (x, θ)dν0(x), (7.1)

uniformly in θ , in probability.

Proof It is shown in Proposition 2 of [15] that under (A0–A5) and Δn → 0 we have
the uniform convergence of N−1

n

∑Nn−1
i=0 f (V i, θ) to the limit term of (7.1). It re-

mains to see that the difference between f (V̂i , θ) and f (V i, θ) is controlled ap-
propriately to make the substitution in the sum. But, by the assumptions on f and
Ei = V̂i − V i ,

sup
θ∈Θ

∣
∣f (V̂i , θ) − f (V i, θ)

∣
∣≤ c

(
V̂ c

i + V̂ −c
i + V

c

i + V
−c

i

)|Ei |.

Clearly, we may assume Δn ≤ 1. Then we deduce from 2.1, (V2), (V2′), (V4) that

E
(

sup
θ∈Θ

∣
∣f (V̂i , θ) − f (V i, θ)

∣
∣ | Gn

iΔn

)
≤ c
(
V c

iΔn
+ V −c

iΔn

)
v

1/2
n .

Then (A5) yields the control E(supθ∈Θ |f (V̂i , θ) − f (V i, θ)|) ≤ cv
1/2
n and the

proposition follows from vn → 0 by (V4). �
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7.1.1 Proof of Proposition 2.1

First, we recall the Euler scheme given in [14] for the process (V i).

Theorem 7.2 (Euler scheme) We have for i = 0, . . . ,N − 1:

V i+1 − V i − Δnb(V i, θ0) = a(ViΔn)Δ
1/2
n Ui,n + εi,n, (7.2)

where (Ui,n)i=0,...,N−1 is a centered Gaussian stationary process with the MA(1)
covariance structure var(Ui) = 2/3, cov(Ui,Ui+1) = 1/6. Furthermore, the variable
Ui,n is independent of GiΔn and is G(i+2)Δn -measurable. The remainder term εi,n is
G(i+2)Δn -measurable, of order Δn, and almost centered:

∣
∣E(εi,n | GiΔn)

∣
∣≤ cΔ2

n

(
V c

iΔn
+ V −c

iΔn

)
, (7.3)

E
(|εi,n|p | GiΔn

)≤ cΔ
p
n

(
V c

iΔn
+ V −c

iΔn

)
, for p ≥ 1. (7.4)

The exact values of the constants c = c(p) are here unimportant and the condition on
the moment of εi,n was only stated for moments p ≤ 4 in [14], but a direct inspection
of the proof shows that it holds for any p ≥ 1.

Using this Euler decomposition we can split the contrast function (recall (2.8))
into three terms: Cn(θ) =∑3

l=1
∑N−2

i=1 C
(l)
i (θ), where

C
(1)
i (θ) = −b(V i, θ0)b(V̂i−1, θ)

Nna2(V̂i−1)
+ b2(V̂i−1, θ)

2Nna2(V̂i−1)
,

C
(2)
i (θ) = − 1

NnΔn

{
a(ViΔn)Δ

1/2
n Ui,n + εi,n

}b(V̂i−1, θ)

a2(V̂i−1)
,

C
(3)
i (θ) = − 1

NnΔn

{Ei+1,n,k − Ei,n,k}b(V̂i−1, θ)

a2(V̂i−1)
.

The study of these terms is rather long and very similar to computations in [15] for
most of them. Thus, we shall only give the main steps of the proof.

In the proof of Proposition 2.1 only the first sum
∑

i C
(1)
i (θ) has a non-negligible

contribution. A direct application of Proposition 7.1 gives the convergence

N−2∑

i=1

b2(V̂i−1, θ)

2Nna2(V̂i−1)

n→∞−−−→
∫ ∞

0

b2(x, θ)

2a2(x)
dν0(x).

Then Proposition 7.1 again with E(|V i −V i−1|) ≤ cΔ
1/2
n and (V4) gives the conver-

gence of −∑N−2
i=1

b(V i ,θ0)b(V̂i−1,θ)

Na2(V̂i−1)
to − ∫∞

0
b(x,θ0)b(x,θ)

a2(x)
dν0(x). From this we deduce

(recall (2.9)) that

N−2∑

i=1

C
(1)
i (θ) −

N−2∑

i=1

C
(1)
i (θ0)

n→∞−−−→ C(θ0, θ).
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The negligibility of
∑N−2

i=1 C
(2)
i (θ) involves the almost centering condition on εi,n

and the centered property of Ui,n and relies on a martingale limit theorem. We omit
the proof, since an analogous computation is presented in detail in the proof of The-
orem 2 of [15].

We detail the negligibility of
∑N−2

i=1 C
(3)
i (θ), since it governs the rate conditions

for the convergence to zero of bn and vn. Remark that, by (V1), the sequence

C̃
(3)
2i (θ) = C

(3)
2i (θ) − E

(
C

(3)
2i (θ) | Gn

2iΔn

)
, for i = 1, . . . , 
N/2�,

is a martingale increments array with respect to (Gn
2iΔn

)i , and let Mn
i =∑i′≤i C̃

(3)

2i′ (θ)

be the corresponding martingale. From Assumptions (V3–V4) we easily bound its
bracket by

〈
Mn
〉

N/2� ≤ c


N/2�∑

i=1

1

N2
nΔ2

n

b2(V̂2i−1, θ)

a4(V̂2i−1)

(
1 + |V2iΔn |c

)(
vn + b2

n

)
.

Now Assumptions (V2), (V2′), and (A5) give the control

E
((

Mn

N/2�

)2)= E
(〈
Mn
〉

N/2�

)≤ c
vn + b2

n

NnΔ2
n

∼ c
vn + b2

n

TnΔn

, (7.5)

which converges to zero by the conditions bn = o(Δn) and vn = o(ΔnTn). Using
(V3), the centering term

∑
N/2�
i=1 E(C

(3)
2i (θ) | Gn

2iΔn
) is easily bounded in L1-norm by

cbn/Δn, and hence converges to zero.
Thus, we have shown the L1-convergence to zero of terms of even index in

∑N
i=1 C

(3)
i (θ). The convergence of terms of odd index is obtained similarly.

7.1.2 Proof of Theorem 2.2

After having remarked that, by (I1), the quantity C(θ0, θ) admits a unique minimum
at θ = θ0, it is classical (see [7, 22]) that the consistency property follows from the
uniform convergence

sup
θ∈Θ

∣
∣Cn(θ) − Cn(θ0) − C(θ0, θ)

∣
∣ n→∞−−−→ 0, in probability. (7.6)

For a uniformity in the parameter θ of the convergence (2.10) we use a Kol-
mogorov criterion (see Theorem 20 in Appendix 1 of [20], for example) by proving
E(|∑i{C(�)

i (θ) − C
(�)
i (θ ′)}|p) ≤ c|θ − θ ′|p for � = 1,2,3, and p large enough. We

omit the details here (see the proof of Theorem 2 in [15] or Lemma 1 in [22], for
example).

7.1.3 Proof of Theorem 2.4

First, remark that, since NnΔn ∼ Tn → ∞, the conditions of Theorem 2.4 imply the
consistency.
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Second, on the event {θ̂n ∈ ◦
Θ}, we classically write a Taylor expansion around θ̂n

as

∫ 1

0
∇2Cn

(
θ0 + s(θ̂n − θ0)

)
ds(θ̂n − θ0) = −∇Cn(θ0).

Then the asymptotic normality may be deduced from the two following properties:

√
Tn∇Cn(θ0)

n→∞−−−→
L

N
(
0, I (θ0)

)
, (7.7)

sup
θ∈Θ

∣
∣∂θi

∂θj
Cn(θ) − Ii,j (θ, θ0)

∣
∣ n→∞−−−→

P
0, i, j ∈ {1, . . . , d}, (7.8)

where Ii,j (θ, θ0) is given by

Ii,j (θ, θ0) =
∫ ∞

0
a−2(x)

{
∂θi ,θj

b(x, θ)
(
b(x, θ) − b(x, θ0)

)

+ ∂θi
b(x, θ)∂θj

b(x, θ)
}

dν0(x).

We start with (7.7). We use the decomposition of Sect. 7.1.1, and we shall see that
only

√
Tn

∑N−2
i=1 ∇C

(2)
i (θ0) has a non-negligible contribution.

We write
√

Tn

∑N−2
i=1 ∇C

(2)
i (θ0) as

− 1

N1/2

N−2∑

i=1

Ui,n

∇b(V̂i−1, θ0)a(ViΔn)

a2(V̂i−1)
+ 1

N1/2Δ
1/2
n

N−2∑

i=1

εi,n

∇b(V̂i−1, θ0)

a2(V̂i−1)
.

Using that (Ui,n)i is a Gaussian process with known covariance structure, the first
sum in the expression above can be shown to converge in law to N (0, I (θ0)) (recall
(2.6)) with the help of a theorem for convergence in law for martingale increment
arrays. Details on this convergence may be found in Theorem 4 in [15]. Then the
second sum above can be shown to converge to zero by an application of Lemma 9
in [10], using (7.3–7.4) and N

1/2
n Δ

3/2
n → 0.

Again the negligibility of
√

Tn

∑N−2
i=1 ∇C

(3)
i (θ0) governs the conditions on bn

and vn. By exactly the same computation as for (7.5) we show that the sum√
Tn

∑
N/2�−1
i=1 {∇C

(3)
2i (θ0) − E(∇C

(3)
2i (θ0) | Gn

2iΔn
)}, denoted by M̃n


N/2�, can be
bounded as

E
((

M̃n

N/2�

)2)≤ c
Tn

NΔ2
n

(
b2
n + vn

)∼ c
1

Δn

(
b2
n + vn

) n→∞−−−→ 0.

Then, by (V3), the contribution of
√

Tn

∑
N/2�−1
i=1 |E(∇C

(3)
2i (θ0) | Gn

2iΔn
)| has an L1-

norm controlled by
√

Tnbn/Δn → 0.
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For the term
√

Tn

∑N−2
i=1 ∇C

(1)
i (θ0) we observe the following simple expression

for ∇C
(1)
i (θ0):

∇C
(1)
i (θ0) =∇θ b(V̂i−1, θ0)

Nna2(V̂i−1)

[
b(V̂i−1, θ0) − b(V i, θ0)

]

=∇θ b(V̂i−2, θ0)

Nna2(V̂i−2)

[
b(V̂i−1, θ0) − b(V i, θ0)

]+ ri,n,

with E|ri,n| ≤ N−1
n (Δn +vn), where we have used (V4), E(|V i−1 − V i−2|) ≤ cΔ

1/2
n

and (A5). Then, using the conditions NnΔ
3
n → 0 and vn = o(Δn), we deduce√

Tn

∑N−2
i=1 ri,n → 0 in L1-norm.

To end the proof of (7.7), it can be shown after rather long computations using
Taylor expansions with Theorem 7.2, (V3–V4) and vn = o(Δn) that
∣
∣E
(
b(V i,μ0) − b(V̂i−1,μ0) | Gn

(i−1)Δn

)∣∣≤ c(bn + Δn)
(
V c

(i−1)Δn
+ V −c

(i−1)Δn

)
.

This control, together with the condition on the second moment,

E
((

b(V i, θ0) − b(V̂i−1, θ0)
)2 | Gn

(i−1)Δn

)≤ cΔn

(
V c

(i−1)Δn
+ V −c

(i−1)Δn

)
,

is sufficient to apply Lemma 9 in [10] and deduce the convergence to zero of√
Tn

∑N−2
i=1 ∇C

(1)
i (θ0).

Now we prove (7.8). Exactly as in Sect. 7.1.1 we show that

∂2
θuθv

Cn(θ) =
N−2∑

i=1

∂2
θuθv

C
(1)
i (θ) + oP(1),

where u,v ∈ {1, . . . , d}. Then we differentiate C
(1)
i (θ) twice and obtain, uniformly in

θ , the convergence as in Sect. 7.1.1:

N−2∑

i=1

∂2
θuθv

C
(1)
i (θ)

n→∞−−−→ Iu,v(θ, θ0).

7.1.4 Details on the proof of Theorem 2.7

By applying Proposition 2 in [15], we have that N−1
n

∑N−2
i=1 V

−1
i−1 → ∫

x−1 dν0(x)

and N−1
n

∑N−2
i=1 V

−2
i−1 → ∫

x−2 dν0(x), for a > 1. We can deduce by a repetition of
the proof of Proposition 7.1 the convergence for Mn, where we replace the condition
on the positive moments in (A5) by the fact that x−1, x−2 and their derivatives are
bounded near +∞ and the condition on the first moment of the stationary law, i.e.,
supt E(Vt ) < ∞.

Before proving (2.15), we make precise the Euler scheme of [14] in the case of
the GARCH model

V i+1 − V i − Δn(αV i + β) = σViΔnΔ
1/2
n Ui,n + εi,n,
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where |E(εi,n | Gn
i )| ≤ cΔ2

n(1 + V 2
iΔn

) and E(|εi,n|p | Gn
i ) ≤ cΔ

p
n (1 + V

3p/2
iΔn

), for
1 ≤ p ≤ 4. Then the proof is a repetition of the proof of (7.7) where we carefully
apply the condition (A5) only for positive moments, i.e., supt E(V c

t ) < ∞ with c ≤ 3.

7.2 Proof of condition (V2′) for the realized variance

We intend to show the following result for the quantity V̂i given by (3.2).

Proposition 7.3 Assume (A0–A2) and Δn ≤ 1. Then, for all p ≥ 1, we have for n

large enough and i ∈ {0, . . . ,Nn − 1} the control

E
(
V̂

−p
i | GiΔn

)≤ c(p)
(
1 + V

−p
iΔn

)
.

Proof Conditionally on GV ∨ GiΔn (see the notation in the proof of Proposi-
tion 3.1), the variable V̂i is equal in law to the sum

∑k
j=1 Z2

j with independent
Zj ∼ N (μj , vj ), where

vj = Δ−1
n

∫ (ik+j)δn

(ik+j−1)δn

Vs ds ≥ δn

Δn

(
inf

s∈[iΔn,(i+1)Δn]Vs

)
,

and the μj are some real constants. From Lemma 7.4 below (recall kn → ∞), we
deduce for n large enough that

E
(
V̂

−p
i | GV ∨ GiΔn

)≤ c(p)

(
Δn

δn

)p

sup
s∈[iΔn,(i+1)Δn]

V
−p
s k

−p
n .

Then using Δn/δn = kn and Assumption (A2) while taking conditional expectations
in the expression above yields the result. �

Lemma 7.4 Let Z1, . . . ,Zk be independent random variables such that the law of
Zj is N (μj , vj ). Then, for all p ≥ 0, there exists c(p), a constant depending only on
p, such that for all k ≥ 2p + 3

E
((

Z2
1 + · · · + Z2

k

)−p)≤ c(p)
(

min
j=1,...,k

vj

)−p

k−p.

Proof If there exists j such that vj = 0, the result is obvious. Otherwise, for all

j = 1, . . . , k we set Z̃j = Zj√
vj

. Then

E
((

Z2
1 + · · · + Z2

k

)−p)≤
(

min
j=1,...,k

vj

)−p

E
((

Z̃2
1 + · · · + Z̃2

k

)−p)
.

Since the density of Z̃j is bounded on R by 1√
2π

we can apply Lemma 7.5 given in
Sect. 7.3 and we get the result. �
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7.3 Inverse moments for positive variables

In this section we present a result on the behavior near zero for a sum of positive
random variables that was needed for the proof of Lemma 7.4.

Lemma 7.5 Let Z1, . . . ,Zk be k independent random variables. We suppose that Zj

has a density φj (x) and that there exist R > 0, M > 0 such that for all x ∈ [−R,R]
and for all j ∈ {1, . . . , k}, φj (x) ≤ M . Then, for all p ≥ 0, there exists c(p,M,R),
a constant depending on p,M,R, such that for all k ≥ 2p + 3

E

((
k∑

j=1

Z2
j

)−p)

≤ c(p,M,R)k−p. (7.9)

Proof By increasing M , we may assume that 1
2M

≤ R. Let (Uj )j=1,...,k be k inde-
pendent real variables with uniform distribution on [0, 1

2M
]. First, we show that

Mp := E

((
k∑

j=1

Z2
j

)−p)

≤ E

((
k∑

j=1

U2
j

)−p)

=: Np. (7.10)

Denote by φj the distribution function of |Zj | and by ψ the distribution function of
Uj . Then, for x ≥ 0,

φj (x) = P(|Zj | ≤ x) =
∫ x

−x

φj (s)ds ≤ (2Mx ∧ 1) = ψ(x). (7.11)

This implies that, for all j = 1, . . . , k and t ∈ (0,1),

ψ−1(t) ≤ φ−1
j (t). (7.12)

Now consider k independent real variables, A1, . . . ,Ak , with uniform law on (0,1),
and set, for all j , Z∗

j = φ−1
j (Aj ), U∗

j = ψ−1(Aj ). We know that (Z∗
j )j=1,...,k and

(U∗
j )j=1,...,k have, respectively, the same law as (|Zj |)j=1,...,k and (Uj )j=1,...,k . Fur-

thermore, by (7.12), we have ∀j , U∗
j ≤ Z∗

j a.s., and thus Mp = E((
∑k

j=1 Z∗
j

2)−p) ≤
E((
∑k

j=1 U∗
j

2)−p) = Np . Hence, (7.10) is proved. It remains to obtain an upper
bound for Np . For this note that

P
(
U2

1 + · · · + U2
k ≤ ε

)=
∫

[0, 1
2M

]k
1{u2

1+···+u2
k≤ε}(2M)k du1 · · · duk

≤ (2M)k
∫

Rk

1{u2
1+···+u2

k≤ε} du1 · · · duk.

We denote by σk = 2 π
k
2

�( k
2 )

the area of the unit sphere in the Euclidean space R
k . By a

change of variable, we get

P
(
U2

1 + · · · + U2
k ≤ ε

)≤ (2M)k
∫ √

ε

0
ρk−1 dρσk = (2M)k

ε
k
2

k
σk. (7.13)
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Let ρk be a positive constant depending on k that will be specified later. Define

N ′
p = E

((
U2

1 + · · · + U2
k

)−p1{U2
1 +···+U2

k ≤ρ2
k }
)
.

We have N ′
p ≤∑∞

q=1 uq , where uq = (q + 1)pρ
−2p
k P (U2

1 + · · · + U2
k ∈ [ ρ2

k

q+1 ,
ρ2

k

q
]).

Using (7.13) with ε = ρ2
k q−1, we get uq ≤ (q + 1)pq−k/2(2M)kρ

k−2p
k σkk

−1.

Since k/2 − p ≥ 3/2, we can set s = ∑∞
q=1(q + 1)pq− k

2 < ∞, and

N ′
p ≤ s(2M)kρ

k−2p
k σkk

−1. Let us recall the exact inequality connected with the Stir-
ling formula (see p. 54 [8]):

�

(
k

2

)

>

( k
2 − 1

e

) k
2 −1
√

2π

(
k

2
− 1

)

.

Using this inequality and the value of σk yields

N ′
p ≤ s(2M)kρ

k−2p
k

√
2π

k(
k
2 −1
eπ

)
k
2 −1
√

k
2 − 1

.

Now we set ρk = (
k
2 −1

4eπM2 )
1
2 , and the previous inequality reduces to

N ′
p ≤ s

√
2π(4M)p

(
k
2 −1
eπ

)p−1k

√
k
2 − 1

≤ Ck−p,

where C only depends on p, M , R.

Since E((U2
1 + · · · + U2

k )−p1{U2
1 +···+U2

k >ρ2
k }) ≤ ρ

−2p
k = ( 8eπM2

k−2 )p , we have

E
((

U2
1 + · · · + U2

k

)−p)≤ c(p,M,R)k−p.

Hence, Lemma 7.5 is proved. �
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