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ESTIMATION OF THE HURST PARAMETER FROM
DISCRETE NOISY DATA

BY ARNAUD GLOTER AND MARC HOFFMANN

Université de Marne-la-Vallée

We estimate the Hurst parameter H of a fractional Brownian motion from
discrete noisy data observed along a high frequency sampling scheme. The
presence of systematic experimental noise makes recovery of H more diffi-
cult since relevant information is mostly contained in the high frequencies of
the signal.

We quantify the difficulty of the statistical problem in a min-max sense:
we prove that the rate n−1/(4H+2) is optimal for estimating H and propose
rate optimal estimators based on adaptive estimation of quadratic functionals.

1. Introduction.

1.1. Motivation. Many processes of interest in physics, molecular biology, fi-
nance and traffic networks possess, or are suspected to possess, self-similar proper-
ties. In this context, recovering the so-called scaling exponents from experimental
data is a challenging problem. The purpose of this paper is to investigate a new
statistical method for estimating self-similarity based on adaptive estimation of
quadratic functionals of the noisy data by wavelet thresholding.

We stay with dimension 1 and focus on the paradigmatic example of fractional
Brownian motion.

1.2. Statistical model. Let X be a one-dimensional process of the form

Xt = σWH
t ,

where WH is a fractional Brownian motion with self-similar index (or Hurst para-
meter) H ∈ (0,1) and scaling parameter σ ∈ (0,+∞). In particular, X is centered
Gaussian with covariance E[XsXt ] proportional to |t |2H + |s|2H − |t − s|2H ; see
more in Section 4.1 below.

In practice, it is unrealistic to assume that a sample path of X can be observed
(in which case the parameters H and σ would be identified). Instead, X is rather
observed at discrete times. The problem of estimating H and σ in this context
has been given considerable attention (some references are Dahlhaus [5], Istas and
Lang [15] and Ludeña [18]).
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In this paper we take the next logical step: we assume that each observation is
contaminated by noise, so that for i = 0, . . . , n we observe

Yn
i = Xi� + a(Xi�)ξn

i ,(1)

where the ξn
i are (centered) noise terms and �−1 is the sampling frequency. The

function x � a(x) is an unknown nuisance parameter.
Throughout, we assume that the experiment lives over a fixed time horizon

[0, T ], so we have T = n�. With no loss of generality we take T = 1, hence
� = �n = n−1. Recovering the Hurst parameter H from the data (Y n

i ) is our ob-
jective.

1.3. Results. We show in Theorems 1 and 2 below that the rate

vn(H) = n−1/(4H+2)

is optimal for estimating H . The accuracy vn(H) is slower by a polynomial or-
der than the usual n−1/2 obtained in the absence of noise. The difficulty lies in
the fact that the information about H is contained in the high frequencies of the
signal t � Xt . Although the high frequency sampling rate n usually allows one to
recover H at the classical rate n−1/2 when X is directly observed (by means of
quadratic variations; see, e.g., [15]), the presence of the noise ξn

i in this context
significantly alters the nature of the problem.

2. Main results.

2.1. Methodology. The parameters (H,σ) live in D ⊂ (0,1) × (0,+∞). The
process X and the noise variables (ξn

i ) are simultaneously defined on a common
probability space endowed with a probability measure Pn

H,σ for each n ≥ 1.
A rate vn → 0 is said to be achievable over D if there exists a (sequence of)

estimator(s) Ĥn such that the (sequence of) normalized error(s)

v−1
n (Ĥn − H)(2)

is bounded in Pn
H,σ -probability uniformly over D . The rate vn is said to be a lower

rate of convergence over D if there exists c > 0 such that

lim inf
n→∞ inf

Ĥ
sup

(H,σ)∈D
Pn

H,σ [v−1
n |Ĥ − H | ≥ c] > 0,(3)

where the infimum is taken over all estimators Ĥ that are random variables mea-
surable with respect to the sigma-field generated by the data (Y n

i ).
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2.2. The estimation strategy. The fact that X is a fractional Brownian motion
enables one to predict that its energy levels

Qj := ∑
k

d2
j,k := ∑

k

(∫
R
Xsψj,k(s) ds

)2

(4)

scale (as for the approximation symbol ∼, we do not yet specify it; see Proposi-
tion 1 below) with a ratio related to H ,

Qj+1 ∼ 2−2HQj ,(5)

up to an error term that vanishes as the frequency level j increases. Here, dj,k is
the random wavelet coefficient of the function t � Xt relative to a certain wavelet
basis (ψj,k, j ≥ 0, k ∈ Z). In Section 3.2 below we construct a procedure

(Y n
i ) � (d̂2

j,k,n, k = 0, . . . ,2j − 1,0 ≤ j ≤ Jn)(6)

that processes the data into estimates of the squared wavelet coefficients d2
j,k up

to the maximal resolution level Jn = [1
2 log2(n)]. We obtain a family of estimators

for H by setting

Ĥj,n := −1

2
log2

Q̂j+1,n

Q̂j,n

, j = 1, . . . , Jn − 1,

with

Q̂j,n = ∑
k

d̂2
j,k,n.

The ratio level j between two estimated energy levels that contains maximal in-
formation about H is chosen by means of a block thresholding rule; see below.
The rule is inspired by the methodology introduced for the adaptive estimation of
quadratic functionals (see, among others, Efromovich and Low [7], Gayraud and
Tribouley [9] and the references therein).

2.3. Statement of the results. We consider for (H,σ) regions of the form

D := [H−,H+] × [σ−, σ+] ⊂ (1
2 ,1

) × (0,+∞).(7)

ASSUMPTION A. (i) The function x � a(x) is bounded and continuously dif-
ferentiable with a bounded derivative.

(ii) The continuous time process X is F n-adapted with respect to a filtration
F n = (F n

t , t ≥ 0).
(iii) The noise term ξn

i at time i/n is F n
(i+1)/n-measurable. Moreover,

En
H,σ [ξn

i |F n
i/n] = 0, En

H,σ [(ξn
i )2|F n

i/n] = 1,
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and

sup
(H,σ)∈D

sup
i,n

En
H,σ [(ξn

i )4] < +∞.

THEOREM 1. Grant Assumption A. The rate vn(H) := n−1/(4H+2) is achiev-
able for estimating H over any region D of the form (7). Moreover, the estimator
constructed in Section 3 and given by (9)–(11) below achieves the rate vn(H).

This rate is indeed optimal as soon as the noise process enjoys some regularity:

ASSUMPTION B. (i) infx a(x) > 0.

(ii) Conditional on X, the variables ξn
i are independent, absolutely continu-

ous with C2 densities x � exp(−vi,n(x)) vanishing at infinity (together with their
derivatives) at a rate strictly faster than 1/x2 and

sup
i,n

E

[(
d

dx
vi,n(ξ

n
i )

)2

(1 + |ξn
i |2)

]
< +∞.(8)

Moreover, the functions x � d2

dx2 vi,n(x) are Lipschitz continuous, with Lipschitz
constants independent of i, n.

THEOREM 2. Grant Assumptions A and B. For estimating H , the rate
vn(H) := n−1/(4H+2) is a lower rate of convergence over any region D of the
form (7) with nonempty interior.

We complete this section by giving an ancillary result about the estimation of
the scaling parameter σ , although we are primarily interested in recovering H . The
estimation of σ has been addressed by Gloter and Jacod [12] for the case H = 1/2
and by Gloter and Hoffmann [10] in a slightly different model when H ≥ 1/2
is known. Altogether, the rate vn(H) is proved to be optimal for estimating σ

when H is known. Our next result shows that we lose a logarithmic factor when H

is unknown.

THEOREM 3. Grant Assumptions A and B. For estimating σ , the rate
n−1/(4H+2) log(n) is a lower rate of convergence over any region of the form (7).

2.4. Discussion.

2.4.1. About the rate. We see that the presence of noise dramatically alters
the accuracy of estimation of the Hurst parameter: the optimal rate vn(H) =
n−1/(4H+2) inflates by a polynomial order as H increases. In particular, the classi-
cal (parametric) rate n−1/2 is obtained by formally letting H tend to 0 (a case we
do not have here).
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2.4.2. About Theorem 1. The restriction H− > 1/2 is linked to the discretiza-
tion effect of the estimator. Assumption A can easily be fulfilled in the case of a
noise process that is independent of the signal X. It is not minimal: more general
noise processes could presumably be considered, and, more interestingly, scaling
processes more general than fractional Brownian motion as well. To this end, it is
required that the energy levels of X satisfy Proposition 1 and that the empirical
energy levels satisfy Proposition 2 in Section 4 below. We do not pursue that here.
See also Lang and Roueff [17].

2.4.3. About Theorem 2. The lower bound is local, in the sense that D can
be taken arbitrarily small in the class specified by (7). Observe that since the rate
vn(H) depends on the parameter value, the min-max lower bounds (3) are only
meaningful for parameter sets D that are concentrated around some given value
of H .

Assumption B(ii) is not minimal: it is satisfied, in particular, when the ξn
i are

i.i.d. centered Gaussian. More generally, any noise process would yield the same
lower bound as soon as Proposition 4 is satisfied (see Section 6.1).

2.4.4. The stationary case. Golubev [13] remarked that in the particular case
of i.i.d. Gaussian noise independent of WH , a direct spectral approach is simpler.
Indeed, the observation generated by the Yn

i − Yn
i−1 becomes stationary Gaussian,

and a classical Whittle estimator will do (Whittle [25] or Dahlhaus [5]). In partic-
ular, although some extra care has to be taken about the approximation in n, such
an approach would certainly prove simpler in that specific context for obtaining
the lower bound.

2.4.5. Quadratic variation alternatives. The estimator constructed in Sec-
tion 3 can be linked to more traditional quadratic variation methods. Indeed, the
fundamental energy levels Qj defined in (4) can be obtained from the quadratic
variation of X in the particular case of the Schauder basis (which does not have
sufficiently many vanishing moments for our purpose). However, the choice of an
optimal j remains and we were not able to obtain the exact rate of convergence by
this approach.

2.5. Organization of the paper. In Section 3 we give the complete construc-
tion of an estimator Ĥn that achieves the min-max rate vn(H). Section 4 explores
the properties of the energy levels of X (Proposition 1), as well as their empirical
version (Proposition 2). Theorem 1 is proved in Section 5. Finally, Sections 6 and 7
are devoted to the lower bounds. It is noteworthy that the complex stochastic struc-
ture of the model due to the two sources or randomness (WH and the noise ξn

i ) re-
quires particular efforts for the lower bound. Our strategy is outlined in Section 6:
it requires a “coupling” result proved in Section 7. The proof of supplementary
technical results, too long to be detailed here, may be found in [11].
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3. Construction of an estimator.

3.1. Pick a wavelet basis (ψj,k, j ≥ 0, k ∈ Z) generated by a mother
wavelet ψ with two vanishing moments and compact support in [0, S], where S

is some integer. The basis is fixed throughout Sections 3–5. Assuming we have

estimators d̂2
j,k,n of the squared wavelet coefficients, recalling the definition (4) of

the energy levels, we obtain a family of estimators for H by setting

Ĥj,n := −1

2
log2

Q̂j+1,n

Q̂j,n

, j = J , . . . , Jn − 1,

with

Q̂j,n =
2j−1−1∑

k=0

d̂2
j,k,n,

where Jn := [1
2 log2(n)] is the maximum level of detail needed in our statistical

procedure and J := [log2(S − 1)] + 2 is some (irrelevant) minimum level intro-
duced to avoid border effects while computing wavelet coefficients correspond-
ing to location on [0,1/2] from observations corresponding to [0,1]. Following
Gayraud and Tribouley [9] in the context of adaptive estimation of quadratic func-
tionals, we let

J �
n := max{j = J , . . . , Jn : Q̂j,n ≥ 2j /n}(9)

(and in the case where the set above is empty, we let J �
n = J for definiteness).

Eventually, our estimator of H is

ĤJ �
n ,n.(10)

The performance of ĤJ �
n ,n is related to scaling properties of X and the accuracy of

the procedure (6).

3.2. Preliminary estimation of the d2
j,k . For simplicity and with no loss of

generality, we assume from now on that n has the form n = 2N . Since ψ has
compact support in [0, S], the wavelet coefficient dj,k is

dj,k = σ

S2N−j−1∑
l=0

∫ k/2j+(l+1)/2N

k/2j+l/2N
ψj,k(t)W

H
t dt.

This suggests the approximation

d̃j,k,n =
S2N−j−1∑

l=0

(∫ k/2j+(l+1)/2N

k/2j+l/2N
ψj,k(t) dt

)
Yn

k2N−j+l
,
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for J ≤ j ≤ Jn,0 ≤ k ≤ 2j−1 − 1. The difference d̃j,k,n − dj,k splits into bj,k,n +
ej,k,n, respectively a bias term and a centered noise term,

bj,k,n = −
S2N−j−1∑

l=0

∫ k/2j+(l+1)/2N

k/2j+l/2N
ψj,k(t)(Xt − Xk/2j+l/2N ) dt,

ej,k,n =
S2N−j−1∑

l=0

(∫ k/2j+(l+1)/2N

k/2j+l/2N
ψj,k(t) dt

)
a(Xk/2j+l/2N )ξn

k2N−j+l
.

We denote by vj,k,n the variance of ej,k,n, conditional on F n
k2−j , which is equal to

vj,k,n =
S2N−j−1∑

l=0

(∫ k/2j+(l+1)/2N

k/2j+l/2N
ψj,k(t) dt

)2

En
H,σ [a(Xk/2j+l/2N )2 | F n

k2−j ].

The conditional expectations appearing in this expression are close to a(Xk/2j )2

and thus may be estimated from the observations without the knowledge of H,σ .
We define

â2
k/2j ,n := 2−N/2

2N/2∑
l′=1

(Y n
k2N−j+l′)

2 −
(

2−N/2
2N/2∑
l′=1

Yn
k2N−j+l′

)2

and we set

vj,k,n =
S2N−j−1∑

l=0

(∫ k/2j+(l+1)/2N

k/2j+l/2N
ψj,k(t) dt

)2

â2
k/2j ,n.

Eventually, we set

d̂2
j,k,n := (d̃j,k,n)

2 − vj,k,n(11)

and ĤJ �
n ,n is well defined. We remark that if the function a is assumed known, one

can considerably simplify the construction of the approximation â2
k/2j ,n.

4. The behavior of the energy levels. We denote by PH,σ the law of X =
σWH , defined on an appropriate probability space. We recall the expression of the
energy at level j ,

Qj =
2j−1−1∑

k=0

d2
j,k.

PROPOSITION 1. (i) For all ε > 0, there exists r−(ε) ∈ (0,1) such that

inf
(H,σ)∈D

PH,σ

{
inf
j≥1

22jHQj ≥ r−(ε)

}
≥ 1 − ε.(12)
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(ii) The sequence

Zj := 2j/2 sup
l≥j

∣∣∣∣Ql+1

Ql

− 2−2H

∣∣∣∣(13)

is bounded in PH,σ -probability, uniformly over D , as j → +∞.

PROPOSITION 2. Let jn(H) := [ 1
2H+1 log2(n)]. Then Jn ≥ jn(H) for all H ∈

[H−,H+], and for any L > 0, the sequence

n2jn(H)/2 sup
Jn≥j≥jn(H)−L

2−j |Q̂j,n − Qj |

is bounded in Pn
H,σ -probability, uniformly over D , as n → ∞.

We shall see below that Propositions 1 and 2 together imply Theorem 1.

4.1. Fractional Brownian motion. The fractional Brownian motion admits the
harmonizable representation

WH
t =

∫
R

eitξ − 1

(iξ)H+1/2 B(dξ),

where B is a complex Gaussian measure (Samorodnitsky and Taqqu [21]). Another
representation using a standard Brownian motion B on the real line is given by

WH
t = 1

�(H + 1/2)

∫ ∞
−∞

[(t − s)
H−1/2
+ − s

H−1/2
+ ]dBs

(� is the Euler function). The process WH is H self-similar and the covariance
structure of WH is explicitly given by

Cov(WH
s ,WH

t ) = κ(H)

2
{|t |2H + |s|2H − |t − s|2H },

where κ(H) = π/H�(2H) sin(πH). Recall that dj,k = ∫
R ψj,k(s)Xs ds denotes

the random wavelet coefficients of X, given a wavelet ψ with two vanishing
moments. It can be seen, using the stationarity of the increments of WH , that,
for a fixed level j , the sequence (dj,k)k∈Z is centered Gaussian and stationary
with respect to the location parameter k. Moreover, the coefficients have the self-
similarity property

(dj,k)k∈Z
law= 2−j (H+1/2)(d0,k)k∈Z;

see Delbeke and Abry [6], Veitch and Abry [23], Abry, Gonçalvès and Flandrin [1]
and Veitch, Taqqu and Abry [24]. Moreover,

Var(dj,k) = σ 2c(ψ)κ(H)2−j (1+2H),
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where c(ψ) = 1
2

∫
ψ(s)ψ(t){|t |2H + |s|2H − |t − s|2H }ds dt , and the covariance

Cov(dj,k, dj,k′) = 2−j (2H+1)Cov(d0,k, d0,k′)

decays polynomially as k − k′ → ∞ due to the two vanishing moments of ψ and

|Cov(d0,k, d0,k′)| ≤ c(1 + |k − k′|)2(H−2),

for some c which does not depend on σ or H . See also Tewfik and Kim [22],
Hirchoren and D’Attellis [14], Istas and Lang [15] and Gloter and Hoffmann [10].

PROPOSITION 3. We have, for some constant c > 0,

sup
(H,σ)∈D

EH,σ

[(
Qj − 2−2jH σ 2

2
c(ψ)κ(H)

)2]
≤ c2−j (1+4H).

PROOF. Remark that, by stationarity,

Qj − 2−2jH σ 2

2
c(ψ)κ(H) =

2j−1−1∑
k=0

(d2
j,k − EH,σ [d2

j,k]).

Then the variance of the sum above is evaluated using the decorrelation property of
the wavelet coefficients (similar computations can be found in Istas and Lang [15]
and Gloter and Hoffmann [10]). �

4.2. Proof of Proposition 1. By Proposition 3, we derive in the same way as
in Lemma II.4 of Ciesielski, Kerkyacharian and Roynette [4] that, for all ε > 0,

∑
j≥0

sup
(H,σ)∈D

PH,σ

[
22jHQj /∈

[
σ 2

2
c(ψ)κ(H) − ε,

σ 2

2
c(ψ)κ(H) + ε

]]
< ∞,

from which (i) easily follows. By (i), the probability that |Zj | is greater than a
constant M is less than

ε + PH,σ

[
sup
l≥j

|Ql+1 − 2−2HQl|22lH ≥ M2−j/2r−(ε)

]
.(14)

By self-similarity, EH,σ {Ql+1 − 2−2HQl} = 0. By Markov’s inequality, (14) is
less than

ε + [M2r2−(ε)]−1
∑
l≥j

VarH,σ (Ql+1 − 2−2H Ql)2
4lH 2j .

By Proposition 3, the sum above can be made arbitrarily small for large enough M ,
which proves (ii).
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4.3. Proof of Proposition 2. We first claim that the following estimate holds:

sup
Jn≥j≥jn(H)−L

sup
(H,σ)∈D

2−j/2En
H,σ [|Q̂j,n − Qj |] ≤ cn−1.(15)

Proposition 2 readily follows. To prove (15), we first split Q̂j,n − Qj into∑6
u=1 r

(u)
j,n , with

r
(1)
j,n = ∑

k

b2
j,k,n, r

(2)
j,n = ∑

k

(e2
j,k,n − vj,k,n),

r
(3)
j,n = ∑

k

(vj,k,n − vj,k,n), r
(4)
j,n = 2

∑
k

bj,k,ndj,k,

r
(5)
j,n = 2

∑
k

ej,k,ndj,k, r
(6)
j,n = 2

∑
k

bj,k,nej,k,n.

Using the result that EH,σ [(Xt − Xs)
2] ≤ c(H)σ 2|t − s|2H , it is readily seen that

En
H,σ [(bj,k,n)

2] is less than a constant times 2−jn−2H . Summing over k shows that

the term r
(1)
j,n is negligible since H > 1/2.

Using the fact that e2
j,k,n − vj,k,n are uncorrelated for |k − k′| ≥ S, we de-

duce that En
H,σ [(r(2)

j,n)
2] is bounded by a constant times

∑2j−1−1
k=0 {En

H,σ [e4
j,k,n] +

En
H,σ [v2

j,k,n]}. Then using the martingale increments structure of the sequence

a(Xk2−j+l2−N )ξn
k2−j+l2−N for l = 0, . . . , S2N−j (recall that n = 2N ), we may ap-

ply the Burkholder–Davis inequality. This gives, by Assumption A, En
H,σ [e4

j,k,n] ≤
cn−2. Then since x � a(x) is bounded and, thus, vj,k,n ≤ cn−1, we obtain that

En
H,σ [(r(2)

j,n)
2] has the right order 2jn−2.

Using conditional centering of ej,k,n with the fact that the variance of dj,k is
less than c2−j (2H+1) and the condition j ≥ jn(H)−L = [ 1

2H+1 log2(n)]−L, one

easily checks that the terms r
(4)
j,n, r

(5)
j,n and r

(6)
j,n have negligible order.

We finally turn to the important term r
(3)
j,n, which encompasses the estimation

of a. We claim that, for 0 ≤ l ≤ S2N−j − 1, the following estimate holds:

En
H,σ

[∣∣â2
k/2j ,n − En

H,σ [a(Xk/2j+l/2N )2 | F n
k2−j ]

∣∣] ≤ cn−1/4.(16)

Summing over l and k yields the result for r
(3)
j,n as soon as (16) is proved. Indeed,

since vj,k,n − vj,k,n is equal to

S2N−j−1∑
l=0

(∫ k/2j+(l+1)/2N

k/2j+l/2N
ψj,k(t) dt

)2(
â2

k/2j ,n − En
H,σ [a(Xk/2j+l/2N )2 | F n

k2−j ]),
we have that En

H,σ [|r(3)
j,n|] is less than c2j/2n−12j/2n−1/4. Therefore, under the

restriction j ≤ Jn ≤ [1
2 log2(n)], (15) holds. It remains to prove (16).
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We have â2
k/2j ,n − En

H,σ [a(Xk/2j+l/2N )2 | F n
k2−j ] = t

(1)
k,n + t

(2)
k,l,n + t

(3)
k,n, with

t
(1)
k,n = 2−N/2

2N/2∑
l′=1

X2
k/2j+l′/2N −

(
2−N/2

2N/2∑
l′=1

Yn
k/2N−j+l′

)2

,

t
(2)
k,l,n = 2−N/2

2N/2∑
l′=1

a(Xk/2j+l′/2N )2(ξn
k2j−N+l′)

2 − En
H,σ [a(Xk/2j+l/2N )2 | F n

k2−j ],

t
(3)
k,n = 2−N/2+1

2N/2∑
l′=1

Xk/2j+l′/2N a(Xk/2j+l′/2N )ξn
k2j−N+l′ .

Since the ξn
k2j−N+l′ are uncorrelated and centered, we readily have that the expecta-

tion of |t (3)
k,n| is of order 2−N/4 = n−1/4. For the term t

(2)
k,l,n, we use the preliminary

decomposition

t
(2)
k,l,n = 2−N/2

2N/2∑
l′=1

a(Xk/2j+l′/2N )2[(ξn
k2j−N+l′)

2 − 1]

+ 2−N/2
2N/2∑
l′=1

(
a(Xk/2j+l′/2N )2 − En

H,σ [a(Xk/2j+l/2N )2 | F n
k2−j ]).

The expectation of the absolute value of the first term above is of order n−1/4

since the summands a(Xk/2j+l′/2N )2[(ξn
k2j−N+l′)

2 − 1] are martingale increments
with second-order moments by Assumption A. Likewise, since x � a(x) has a
bounded derivative and

EH,σ [(Xk/2j+l′/2N − Xk/2j )
2] ≤ c(H)σ 2(2−N/2)2H ,

EH,σ {(Xk/2j+l/2N − Xk/2j )
2} ≤ c(H)σ 2(2−j/2)2H ,

the second term in the expression of t
(2)
k,l,n has absolute expected value less than a

constant times (2−j/2)H ≤ 2jn(H)H/2 = n−H/(1+2H), and thus has the right order
since H ≥ 1/2.

Finally, we further need to split t
(1)
k,n into

2−N/2
2N/2∑
l′=1

X2
k/2j+l′/2N −

(
2−N/2

2N/2∑
l′=1

Xk/2j+l′/2N

)2

−
(

2−N/2
2N/2∑
l′=1

a(Xk/2j+l′/2N )ξn
k2N−j+l′

)2

− 2

(
2−N/2

2N/2∑
l′=1

Xk/2j+l′/2N

)(
2−N/2

2N/2∑
l′=1

a(Xk/2j+l′/2N )ξn
k2N−j+l′

)
.
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The first term and second term are easily seen to be of the right order, respectively,
by the smoothness property of X and the fact that the variables ξn

i are uncorre-
lated. The third term is seen to have the right order after observing that one can

replace the first sum 2−N/2 ∑2N/2

l′=1 Xk/2j+l′/2N by Xk/2j up to a negligible error
and then use the conditional zero correlation of the ξn

i again. Thus, (16) is proved;
hence, (15) follows. The proof of Proposition 2 is complete.

5. Proof of Theorem 1. First we need the following result that states the
level J �

n , based on the data, is with large probability greater than some level based
on the knowledge of H .

5.1. A fundamental lemma. For ε > 0, define

J−
n (ε) := max

{
j ≥ 1; r−(ε)2−2jH ≥ 2j

n

}
.(17)

LEMMA 1. For all ε > 0, there exists L(ε) > 0 such that

sup
(H,σ)∈D

Pn
H,σ [J �

n < J−
n (ε) − L(ε)] ≤ ε + ϕn(ε),

where ϕn satisfies limn→∞ ϕn(ε) = 0.

PROOF. Let L,ε > 0. By definition of J−
n (ε),

1
2r−(ε)1/(1+2H)n1/(1+2H) ≤ 2J−

n (ε) ≤ r−(ε)1/(1+2H)n1/(1+2H);
hence, for large enough n, we have J ≤ J−

n (ε)−L ≤ Jn. Thus, by (9), Pn
H,σ [J �

n ≥
J−

n (ε) − L] is greater than

Pn
H,σ

[
Q̂J−

n (ε)−L,n ≥ 2J−
n (ε)−Ln−1]

,

which we rewrite as

Pn
H,σ

{
Q̂J−

n (ε)−L,n − QJ−
n (ε)−L ≥ 2J−

n (ε)−Ln−1 − QJ−
n (ε)−L

}
and which we bound from below by

Pn
H,σ

[
Q̂J−

n (ε)−L,n − QJ−
n (ε)−L ≥ 2J−

n (ε)−Ln−1 − 2−2(J−
n (ε)−L)H r−(ε)

]
− PH,σ

[
inf
j≥1

22jHQj < r−(ε)

]
.

Proposition 1(i) and the definition of J−
n (ε) yield that this last term is greater than

Pn
H,σ

[
Q̂J−

n (ε)−L,n − QJ−
n (ε)−L ≥ r−(ε)1/(2H+1)n−2H/(2H+1)(2−L − 22LH )

] − ε.
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Then, if L is such that 2L − 22LH ≤ −1, an assumption we shall make from now
on, Lemma 1 is proved, provided we show that

Pn
H,σ

[∣∣Q̂J−
n (ε)−L,n − QJ−

n (ε)−L

∣∣ ≥ r−(ε)1/(2H+1)n−2H/(2H+1)](18)

can be made arbitrarily small, uniformly in (H,σ). Using again

2J−
n (ε) > 1

2n1/(2H+1)r−(ε)1/(2H+1),

we can pick L′ = L′(ε) > 0 independent of n such that

J−
n (ε) − L ≥ jn(H) − L′(ε).

Therefore, (18) is less than

Pn
H,σ

[
sup

Jn≥j≥jn(H)−L′(ε)
|Q̂j,n − Qj | ≥ r−(ε)1/(2H+1)n−2H/(2H+1)

]
,

which we rewrite as

Pn
H,σ

[
n2jn(H)/2 sup

Jn≥j≥jn(H)−L′(ε)
2−(jn(H)−L′(ε))|Q̂j,n − Qj | ≥ vH (ε,n)

]
,

where

vH (ε,n) := 2L′(ε)r−(ε)1/(2H+1)n1/(4H+2)

and where we use the fact that 2jn(H) is of order n1/(2H+1). We conclude by apply-
ing Proposition 2, using the fact that, for fixed ε > 0, 2L′(ε)r−(ε)1/(2H+1)n1/(4H+2) →
∞ as n → ∞. The uniformity in (H,σ) is straightforward. �

5.2. Proof of Theorem 1, completion. Since t � 2−2t is invertible on (0,1)

with inverse uniformly Lipschitz on the compact sets of (0,1), it suffices to prove
Theorem 1 with 2−2H in place of H and Q̂J �

n+1,n/Q̂J �
n ,n in place of ĤJ �

n ,n. First,
we bound ∣∣∣∣Q̂J �

n+1,n

Q̂J �
n ,n

− 2−2H

∣∣∣∣
by a “bias” and a variance term, namely,∣∣∣∣QJ�

n+1

QJ�
n

− 2−2H

∣∣∣∣ + ∣∣∣∣Q̂J �
n+1,n

Q̂J �
n ,n

− QJ�
n+1

QJ�
n

∣∣∣∣ =: |Bn| + |Vn|,

say. Second, we prove Theorem 1 for Bn and Vn separately. We remark that the
“bias” term Qj+1/Qj − 2−2H is deterministic, conditional on X, and decreases as
the level j increases, while the variance term Q̂j+1,n/Q̂j,n −Qj+1/Qj increases.
They both match at level j = J−

n (ε). In contrast to many “bias-variance” situa-
tions, the behavior of the variance term depends on the unknown regularity of the
signal through the rate of decrease of the denominators Q̂j,n and Qj . This explains
the choice made in (9) to control the estimated level of energy Q̂J �

n ,n from below.
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5.2.1. The bias term. Let M > 0 and ε > 0. By Lemma 1, we have

Pn
H,σ

[
n1/(4H+2)|Bn| ≥ M

]
≤ Pn

H,σ

[
n1/(4H+2)|Bn| ≥ M,J�

n ≥ J−
n (ε) − L(ε)

] + ε + ϕn(ε)

≤ Pn
H,σ

[
n1/(4H+2)2−J−

n (ε)/22L(ε)/2∣∣ZJ−
n (ε)−L(ε)

∣∣ ≥ M
] + ε + ϕn(ε)

≤ Pn
H,σ

[√
2r−(ε)−1/(4H+2)2L(ε)/2∣∣ZJ−

n (ε)−L(ε)

∣∣ ≥ M
] + ε + ϕn(ε),

where we have used for the last line the fact that, by (17),

2−J−
n (ε) ≤ 2r−(ε)−1/(2H+1)n−1/(2H+1).

We conclude by Proposition 1(ii) and by taking successively ε sufficiently small,
M sufficiently large and n sufficiently large.

5.2.2. The variance term. We split the variance term into Vn = V
(1)
n + V

(2)
n ,

where

V (1)
n := Q̂J �

n+1,n − QJ�
n+1

Q̂J �
n ,n

and V (2)
n := QJ�

n+1(QJ�
n

− Q̂J �
n ,n)

Q̂J �
n ,nQJ�

n

.

Having Lemma 1 in mind, we bound, for any M > 0 and L an integer, the proba-
bility Pn

H,σ [n1/(4H+2)|V (1)
n | ≥ M] by

Pn
H,σ

[
n1/(4H+2)

∣∣V (1)
n

∣∣ ≥ M,J�
n ≥ J−

n (ε) − L
] + Pn

H,σ [J �
n < J−

n (ε) − L].
Fix ε > 0 and pick L = L(ε) as in Lemma 1 so that the second probability
Pn

H,σ [J �
n < J−

n (ε) − L(ε)] is bounded by ε + ϕn(ε). It remains now to deal with
the first probability. As soon as n is large enough, J−

n (ε) − L(ε) > J and, thus, by
definition of J �

n , the denominator of V
(1)
n is bounded below by 2J �

n /n. This yields
a new bound for the first probability,

Pn
H,σ

[
n1/(4H+2)+12−J �

n |Q̂J �
n+1,n − QJ�

n+1| ≥ M,J�
n ≥ J−

n (ε) − L(ε)
]
.

Recall that we defined jn(H) = [ 1
2H+1 log2(n)] in Proposition 2 and by definition

of J−
n (ε) we have

2J−
n (ε) > 1

2n1/(2H+1)r−(ε)1/(2H+1).

Therefore, we can pick a positive L′ = L′(ε) independent of n such that

J−
n (ε) − L(ε) ≥ jn(H) − L′(ε),

and then we can bound the first probability by

Pn
H,σ

[
n1/(4H+2)+1 sup

Jn≥j≥jn(H)−L′(ε)
2−j |Q̂j,n − Qj | ≥ M

]
.



ESTIMATION OF THE HURST PARAMETER 1961

Next, using the fact that n1/(4H+2)+1 is of order n2jn(H)/2 and Proposition 2, this
term can be made arbitrarily small (uniformly in n) by taking M large enough.

We now turn to the term V
(2)
n . Fix ε > 0 and M > 0. Recalling the definition

of Zj in Proposition 1, we have

Pn
H,σ

[
n1/(4H+2)

∣∣V (2)
n

∣∣ ≥ M
]

≤ Pn
H,σ

{
n1/(4H+2)

∣∣∣∣QJ�
n

− Q̂J �
n ,n

Q̂J �
n ,n

∣∣∣∣(2−2H + Z0) ≥ M

]
.

Now the tightness of the sequence Zj implies that, for some fixed constant M ′,
this probability is less than

Pn
H,σ

[
n1/(4H+2)

∣∣∣∣QJ�
n

− Q̂J �
n ,n

Q̂J �
n ,n

∣∣∣∣ ≥ M

2−2H + M ′
]

+ ε.

Then the conclusion follows exactly as for V
(1)
n . The proof of Theorem 1 is com-

plete.

6. Proof of Theorems 2 and 3. Consistently with Section 4, we denote
by PH,σ the probability measure on the Wiener space C0 of continuous functions
on [0,1] under which the canonical process X has the law σWH . We write Pn

f for
the law of the data, conditional on X = f .

6.1. Preliminaries. Define, for α ∈ (0,1) and f ∈ C0,

‖f ‖Hα := ‖f ‖∞ + sup
0≤s<t≤1

|f (t) − f (s)|
|t − s|α ,(19)

with ‖f ‖∞ = supt |f (t)|.
The total variation of a signed measure µ is

‖µ‖TV = sup
‖f ‖∞≤1

∣∣∣∣∫ f dµ

∣∣∣∣.
If µ and ν are two probability measures, the total variation of µ − ν is maximal
when µ and ν have disjoint support, in which case ‖µ − ν‖TV = 2.

PROPOSITION 4. Grant Assumptions A and B. We have, for some constant
c > 0,

‖Pn
f − Pn

g‖TV ≤ cn1/2‖f − g‖1/2∞
and

1 − 1
2‖Pn

f − Pn
g‖TV ≥ R(cn‖f − g‖2

2 + c‖f ‖2
H1/2 + c‖g‖2

H1/2),

where R is some universal nonincreasing positive function and
‖f ‖2 = (

∫ 1
0 f (s)2)1/2.
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PROOF. Let D(µ,ν) := ∫
(log dµ

dν
) dµ ≤ +∞ denote the Kullback–Leibler di-

vergence between the probability measures µ and ν. We recall the classical Pinsker
inequality ‖µ − ν‖TV ≤ √

2D(µ,ν)1/2.
Using Assumption B(ii) and the representation (1), we deduce

En
f

[
log

dP n
f

dP n
g

(Y n
0 , . . . , Y n

n )

]

=
n∑

i=0

En
f

[
vi,n(ξ

n
i + �i,n) − vi,n(ξ

n
i ) − log

(
a(fi/n)

a(gi/n)

)]
,

where �i,n = ξn
i (

a(fi/n)

a(gi/n)
− 1)+ fi/n−gi/n

a(gi/n)
. By a second-order Taylor expansion, this

yields the expression for the Kullback–Leibler divergence,

D(dP n
f , dP n

g ) =
n∑

i=0

{
En

f

[(
d

dx
vi,n

)
(ξn

i )�i,n

]
− log

(
a(fi/n)

a(gi/n)

)}
(20)

+ 1

2

n∑
i=0

En
f

[(
d2

dx2 vi,n

)
(ξn

i + θi,n�i,n)�
2
i,n

]
,

for some (random) θi,n ∈ (0,1). Using the fact that x � exp(−vi,n(x)) vanishes
at infinity, we have En

f [( d
dx

vi,n)(ξ
n
i )] = 0 and En

f [( d
dx

vi,n)(ξ
n
i )ξn

i ] = 1, integrating

by parts. It follows that the terms in the first sum of (20) are equal to a(fi/n)

a(gi/n)
−

1 − log(
a(fi/n)

a(gi/n)
). The assumptions on x � a(x) yield that this quantity is less than

some constant times (fi/n − gi/n)
2.

For the second-order terms, using the uniform Lipschitz assumption on x �
d2

dx2 vi,n(x), together with the uniform bound for En
f [|ξn

i |3], gives∣∣∣∣En
f

[(
d2

dx2 vi,n

)
(ξn

i + θi,n�i,n)�
2
i,n

]∣∣∣∣
≤ c|fi/n − gi/n|3 +

∣∣∣∣En
f

[(
d2

dx2 vi,n

)
(ξn

i )�2
i,n

]∣∣∣∣.
Again, we can bound |En

f [ d2

dx2 vi,n(ξ
n
i )�2

i,n]| by a constant times (fi/n −gi/n)
2, us-

ing the result that En
f [ d2

dx2 vi,n(ξ
n
i )], En

f [( d2

dx2 vi,n(ξ
n
i ))ξn

i ] and En
f [( d2

dx2 vi,n(ξ
n
i ))(ξn

i )2]
are controlled by supi,n En

f {( d
dx

vi,n(ξ
n
i ))2(1 + |ξn

i |2)}. Thus, the divergence be-
tween the conditional laws is bounded by

D(dP n
f , dP n

g ) ≤ c

n∑
i=0

|fi/n − gi/n|2,
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and the first part of the proposition follows from Pinsker’s inequality. For the sec-
ond part of the proposition, we use

n∑
i=0

|fi/n − gi/n|2 ≤ 4n

∫ 1

0

(
f (x) − g(x)

)2
dx + 8n1−2α(‖f ‖2

Hα + ‖g‖2
Hα ),

valid for any α ∈ (0,1), together with the fact that for two measures µ,ν the total
variation ‖µ− ν‖TV remains bounded away from 2 when the divergences D(µ,ν)

and D(ν,µ) are bounded away from +∞. �

The next result is the key to the lower bound. Its proof is delayed until Section 7.
Let (σ0,H0) be a point in the interior of D . Set, for I > 0, εn := I−1n−1/(4H0+2)

and

H1 := H0 + εn, σ1 := σ02j0εn,

where

j0 = [
log2

(
n1/(2H0+1))].

PROPOSITION 5. For I large enough, there exists a sequence of probabil-
ity spaces (Xn,Xn,Pn) on which can be defined two sequences of stochastic
processes, (ξ

i,n
t )t∈[0,1], i = 0,1 such that:

(i) For 1/2 ≤ α < H0, the sequences ‖ξ0,n‖Hα and ‖ξ1,n‖Hα are tight un-
der Pn.

(ii) Define P i,n = ∫
Xn Pn(dω)Pn

ξ i,n(ω)
, and Qn

H,σ = ∫
PH,σ (df )Pn

f , that is, the

law of the data (Y n
i ). Then

lim
n→∞‖P i,n − Qn

H,σ‖TV = 0, i = 0,1.

(iii) There exists a measurable transformation T n :Xn �→ Xn such that the se-
quence n‖ξ1,n(ω) − ξ0,n(T n(ω))‖2

2 is tight under Pn.
(iv) If n is large enough, the probability measure Pn and its image measure

T nPn are equivalent on (Xn,Xn). Moreover, for some c� ∈ (0,2), we have

‖Pn − T nPn‖TV ≤ 2 − c� < 2,

provided n is taken large enough.

REMARK. The processes ξ0,n and ξ1,n play the role of approximations for
σ0W

H0 and σ1W
H1 , respectively. Part (i) means that ξ i,n shares the same smooth-

ness property as WHi , while (ii) implies that observing a noisy discrete sampling
of σiW

Hi (i = 0,1) or of its approximation is statistically equivalent as n → ∞.
Of course, these points trivially hold in the case ξ0,n = σ0W

H0 and ξ1,n = σ1W
H1 .

However, a significant modification of this simple choice is needed in order to have
the fundamental properties (iii) and (iv). These properties mean that one can trans-
form pathwise, using T n, the process ξ0,n into approximate realizations of ξ1,n,
while T n essentially does not transform Pn into a measure singular with it.
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We next prove that Propositions 4 and 5 together imply Theorems 2 and 3.

6.2. Proof of Theorems 2 and 3. We prove Theorem 2 only. The proof of The-
orem 3 is analogous since the choice of Hi and σi implies that σ1 − σ0 is of order

σ0 log(n)

I (1 + 2H0)
n−1/(2+4H0).

Pick n large enough so that (σ1,H1) ∈ D . Pick an arbitrary estimator Ĥn. Let
M > 0, with M < 1/2I for further purposes. We have

sup
(H,σ)∈D

Pn
H,σ

[
n1/(4H+2)|Ĥn − H | ≥ M

]
≥ 1

2Pn
H0,σ0

[
n1/(4H0+2)|Ĥn − H0| ≥ M

]
+ 1

2Pn
H1,σ1

[
n1/(4H1+2)|Ĥn − H1| ≥ M

]
≥ 1

2P 0,n[
n1/(4H0+2)|Ĥn − H0| ≥ M

]
+ 1

2P 1,n[
n1/(4H1+2)|Ĥn − H1| ≥ M

] + un,

where un → 0 as n → ∞ by (ii) of Proposition 5. By definition of P i,n and by
taking n large enough, it suffices to bound from below

1
2

∫
Xn

(
Pn

ξ0
n (ω)

[A0] + Pn
ξ1
n (ω)

[A1])Pn(dω),(21)

where Ai = {n1/(2+4Hi)|Ĥn − Hi | ≥ M}. By (iv) of Proposition 5, for n large
enough, ∫

Xn
Pn

ξ0,n(ω)
[A0]Pn(dω) =

∫
Xn

Pn
ξ0,n(ω)

[A0] dPn

dT nPn
(ω)T nPn(dω)

=
∫
Xn

Pn
ξ0,n(T n(ω))

[A0] dPn

dT nPn
(T nω)Pn(dω).

Thus (21) is equal to half the quantity∫
Xn

(
Pn

ξ0,n(T nω)
[A0] dPn

dT nPn
(T nω) + Pn

ξ1,n(ω)
[A1]

)
Pn(dω)

≥ e−λ
∫
Xn

(
Pn

ξ0,n(T nω)
[A0] + Pn

ξ1,n(ω)
[A1])1 dPn

dT nPn (T nω)≥e−λPn(dω)

≥ e−λ
∫
Xn

r

(
Pn

ξ0,n(T nω)
[A0] + Pn

ξ1,n(ω)
[A1])1 dPn

dT nPn (T nω)≥e−λPn(dω),

for any λ > 0, and where Xn
r denotes the set of ω ∈ Xn such that

n‖ξ0,n(T nω) − ξ1,n(ω)‖2
2, ‖ξ0,n(T nω)‖Hα and ‖ξ1,n(ω)‖Hα

are bounded by r > 0. We will next need the two following technical lemmas.
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LEMMA 2. For any r > 0, there exists c(r) > 0 such that, on Xn
r ,

Pn
ξ0,n(T nω)

[A0] + Pn
ξ1,n(ω)

[A1] ≥ c(r) > 0.

LEMMA 3. For large enough n, we have

Pn

[
Xn

r ∩ dPn

dT nPn
(T n·) ≥ e−λ

]
≥ Pn[Xn

r ] − e−λ − 1 + c�/2.

Applying successively Lemmas 2 and 3, we derive the lower bound

e−λc(r)(Pn[Xn
r ] − e−λ − 1 + c�/2).

Thus, Theorem 2 is proved as soon as we verify

lim
r→∞ lim inf

n→∞ Pn[Xn
r ] = 1.(22)

It suffices then to take λ and r large enough. By (i) and (iii) of Proposition 5, (22)
only amounts to showing the tightness of ‖ξ0,n(T nω)‖Hα under Pn. For L,L′ > 0,
we have

Pn[‖ξ0,n(T n(ω))‖Hα ≥ L] =
∫
Xn

1{‖ξ0,n(ω)‖Hα ≥L}
dT nPn

dPn
(ω)Pn(dω)

≤ L′Pn[‖ξ0,n(ω)‖Hα ≥ L] + Pn

[
dT nPn

dPn
≥ L′

]
≤ L′Pn[‖ξ0,n(ω)‖Hα ≥ L] + (L′)−1

by Chebyshev’s inequality. The tightness of ‖ξ0,n(T n(ω))‖Hα then follows from
the tightness of ‖ξ0,n‖Hα . The proof of Theorem 2 is complete.

6.3. Proof of Lemmas 2 and 3.

6.3.1. Proof of Lemma 2. Since H0 < H1, it suffices to bound from below

Pn
ξ0,n(T nω)

[
n1/(4H0+2)|Ĥn − H0| ≥ M

] + Pn
ξ1,n(ω)

[
n1/(4H0+2)|Ĥn − H1| ≥ M

]
.

Let

dtest(µ, ν) := sup
0≤f ≤1

∣∣∣∣∫ f dµ −
∫

f dν

∣∣∣∣
denote the test distance between the probability measures µ and ν. The last term
above is thus greater than

En
ξ1,n(ω)

[
1
n1/(4H0+2)|Ĥn−H0|≥M

+ 1
n1/(4H0+2)|Ĥn−H1|≥M

]
− dtest

(
Pn

ξ0,n(T nω)
,Pn

ξ1,n(ω)

)
.
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Now since M ≤ 1/2I and by our choice for H0 and H1, one of the two events in the
expectation above must occur with probability one. Using the fact that dtest(µ, ν) =
1
2‖µ − ν‖TV, the last term above is further bounded below by

1 − 1
2

∥∥Pn
ξ0,n(T nω)

− Pn
ξ1,n(ω)

∥∥
TV.

We conclude by Proposition 4 together with the fact that ω ∈ Xn
r .

6.3.2. Proof of Lemma 3. It suffices to bound from below

Pn[Xn
r ] −

∫
Xn

1 dPn

dT nPn (T nω)≤e−λPn(dω)

= Pn[Xn
r ] −

∫
Xn

1 dT nPn

dPn (ω)≥eλT
nPn(dω),

since T nPn and Pn are equivalent. We now replace the measure T nPn in the in-
tegral above by Pn with an error controlled by the test distance; the lower bounds
become

Pn[Xn
r ] − Pn

[
dT nPn

dPn
≥ eλ

]
− dtest(Pn, T nPn)

= Pn[Xn
r ] − Pn

[
dT nPn

dPn
≥ eλ

]
− 1

2
‖Pn − T nPn‖TV.

We conclude by the Chebyshev inequality and Proposition 5(iv).

7. Proof of Proposition 5. The proof of Proposition 5 relies on the construc-
tion of the fractional Brownian motion given by Meyer, Sellan and Taqqu [20]. In
Section 7.1 we recall the main steps of the construction and how to apply it to our
framework. In Section 7.2 we construct the sequence of spaces (Xn,Xn,Pn). The
proof of (i)–(iv) is delayed until Sections 7.3.1–7.3.4.

7.1. A synthesis of fractional Brownian motion. Consider a scaling function φ

whose Fourier transform has compact support as in Meyer’s book [19], with the
corresponding wavelet function ψ ∈ S(R). In [20] the authors introduced, for
d ∈ R, the following differentials of order d (via their Fourier transform):

D̂dψ(s) := (is)dψ̂(s), φ̂d,�(s) :=
(

is

1 − eis

)d

φ̂(s),

where a determination of the argument on C\R− with values in (−π,π) is chosen.
It is shown that the above formula is well defined and that Ddψ,φd,� ∈ S(R).
Define further, for d = 1/2 − H ∈ (−1/2,1/2),

ψH(t) :=
∫ t

−∞
Ddψ(u)du = Dd−1ψ(t), ψH

j,k(t) := 2j/2ψH(2j t − k),

�H
k (t) :=

∫ t

0
φd,�(u − k) du, �H

j,k(t) = 2j/2�H
k (2j t).
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In their Theorem 2, Meyer, Sellan and Taqqu [20] prove the following almost sure
representation of fractional Brownian motion (on an appropriate probability space
and uniformly over compact sets of R):

WH
t =

∞∑
k=−∞

�H
k (t)εH

k +
∞∑

j=0

∞∑
k=−∞

2−j (H+1/2){ψH
j,k(t) − ψH

j,k(0)}εj,k,

where εH
k = ∑∞

l=0 γlε
′
k−l and (1 − r)d = ∑∞

k=0 γkr
k near r = 0. The ε′

k,

k ∈ Z, εj,k, j ≥ 0, k ∈ Z are i.i.d. N (0,1) random variables. Note that γk =
O(k−1+d), so the series above converges in quadratic mean and the time series
obtained, (εH

k )k , has spectral density equal to |2 sin(v
2 )|1−2H0 . The scaling

WH
t

law= 2−j0HWH

2j0 t

gives yet another representation for WH
t ,

∞∑
k=−∞

2−j0(H+1/2)�H
j0,k

(t)εH
k

(23)

+
∞∑

j=j0

∞∑
k=−∞

2−j (H+1/2){ψH
j,k(t) − ψH

j,k(0)}εj,k.

Comparing with other decompositions of fractional Brownian motion (e.g.,
Ciesielski, Kerkyacharian and Roynette [4] and Benassi, Jaffard and Roux [2]),
a particular feature is that the random variables appearing in the high frequency
terms

∞∑
j=j0

∞∑
k=−∞

2−j (H+1/2){ψH
j,k(t) − ψH

j,k(0)}εj,k

are independent and independent of the low frequency terms.
A drawback is that the basis used depends on H and the functions appearing

in the decomposition are not compactly supported. However, one can explore the
properties of this basis. In [20], Meyer, Sellan and Taqqu show that the derivative
of the initial wavelet function generates a multiresolution analysis and state the
following results.

LEMMA 4 (Lemma 8 in [20]). (1) There exist smooth 2π -periodic func-
tions Ud and Vd such that

φ̂d,�(s) = Ud(s/2)φ̂d,�(s/2), D̂dψ(s) = Vd(s/2)φ̂d,�(s/2).

These “filters” and Ud and Vd vanish respectively in a neighborhood of π and 0.
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(2) Let (ck)k∈Z ∈ l2(Z). Then the function
∑

k ck2φd,�(2t −k) can be expressed
with the basis φd,�(t − k) and one level of detail,∑

k

ck2φd,�(2t − k)

(24)
= ∑

k

akφ
d,�(t − k) + ∑

k

bkD
dψ(t − k),

where (ak)k∈Z and (bk)k∈Z ∈ l2(Z). Moreover, a and b are given as follows: denot-
ing by A, B and C the 2π -periodic extensions of the discrete Fourier transforms
of a, b and c, we have

A(s) = −4−d [Vd(s/2 + π)C(s/2) − Vd(s/2)C(s/2 + π)]eis/2,(25)

B(s) = −4−d [−Ud(s/2 + π)C(s/2) + Ud(s/2)C(s/2 + π)]eis/2.(26)

From these properties we can show the following lemma, which will prove use-
ful in controlling in Hα norm the error made when we truncate the expansion. It
also explores some properties of the basis when H varies.

LEMMA 5. Let H ∈ (0,1). (i) If uk and uj,k are two sequences such that
|uk| ≤ c(1 + |k|)c and |uj,k| ≤ c(1 + j)c(1 + |k|)c, then, for any α ∈ [0,1) and
M ≥ 0, there exists c(α,M) such that, for all j0,

∞∑
j=j0

∑
|k|≥2j+1

‖uj,kψ
H
j,k‖Hα

≤ c(α,M)2−Mj0,

∑
|k|≥2j0+1

‖uk�
H
j0,k

‖
Hα

≤ c(α,M)2−Mj0 .

(ii) For all M ≥ 0, there exists c(M) such that, for all ε > 0 with H + ε < 1
and t ∈ R,

|ψH+ε(t) − ψH(t)| ≤ c(M)
ε

(1 + |t |)M .(27)

(iii) For all ε > 0 with H + ε < 1, we have, for all k ∈ Z,

�H+ε
k − �H

k
(28)

= ∑
l∈Z

al(ε)�
H
k+l + ∑

l∈Z

bl(ε){ψH
0,k+l(t) − ψH

0,k+l(0)},

where the coefficients al(ε) and bl(ε) are such that, for all M , there exists c(M)

such that, for all ε,

max{|al(ε)|, |bl(ε)|} ≤ εc(M)(1 + |l|)−M.(29)

Moreover, the 2π -periodic function Bε with Fourier coefficients bl(ε) vanishes in
some neighborhood of zero independent of ε.
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The proof of Lemma 5 may be found in the Appendix of [11].

7.2. The space (Xn,Xn,Pn). Let us recall that H1 = H0 + εn, where εn =
I−1n−1/(2+4H0); j0 = [log2 n1/(1+2H0)] and σ1 = σ02j0εn .

7.2.1. We take for Xn an infinite product of real lines, endowed with the
product sigma field Xn,

Xn :=
( 2j0+1⊗

k=−2j0+1

R

)
⊗

( ∞⊗
j=j0

⊗
|k|≤2j+1

R

)
=: Xn

e ⊗ Xn
d.

An element of Xn is denoted by ω = (ωe,ωd) with ωe = (ωe
k)|k|≤2j0+1 and

ωd = (ωd
λ)λ=(j,k);j≥j0,|k|≤2j+1 . The projections on the coordinates are denoted by

εk(ω) = ωe
k for |k| ≤ 2j0+1 and εj,k(ω) = ωd

j,k for j ≥ j0, |k| ≤ 2j+1.
On Xn we define the probability measure Pn := Pn

e ⊗Pn
d, where Pn

e is the unique
probability on Xn

e which makes the sequence (εk) a centered Gaussian stationary
time series with spectral density |2 sin( s

2)|1−2H0 . The probability measure Pn
d is the

unique probability on Xn
d that makes the sequence (εj,k) i.i.d. N (0,1).

7.2.2. As suggested by Section 7.1, we define an approximation of σ0W
H
0 by

keeping a finite number of coefficients at each scale,

ξ0,n(t) := ∑
|k|≤2j0+1

σ02−j0(H0+1/2)�
H0
j0,k

(t)εk

(30)
+ ∑

j≥j0

∑
|k|≤2j+1

σ02−j (H0+1/2){ψH0
j,k(t) − ψ

H0
j,k(0)}εj,k.

Denote by T n,1 a linear mapping from Xn
e to itself such that, under the measure

T n,1Pn
e , the coordinates (εk) form a centered Gaussian time series with spectral

density |2 sin( s
2)|1−2H1 . Let

ε′
k(ω) := εk(T

n,1ω).(31)

We then define on the same space an approximation for σ1W
H
1 . A natural choice

would be to take again (30) with (σ1,H1) and ε′
k instead of (σ0,H0) and εk . We

proceed a little bit differently: we replace all the �
H1
j0,k

by their truncated expansion

on �
H0
j0,k+l and ψ

H0
j0,k+l using relation (28). We then reorder the sums and finally

drop the terms with index k corresponding to the localization k/2j outside [−2,2].
The reason is that we want to use the same basis as in ξ0,n for the low frequency
terms.



1970 A. GLOTER AND M. HOFFMANN

This leads us to the following approximation for σ1W
H1 :

ξ1,n(t) := ∑
|k|≤2j0+1

σ12−j0(H1+1/2)�
H0
j0,k

(t)ε′
k

+ ∑
|l|≤2j0+1

σ12−j0(H1+1/2)�
H0
j0,l

(t)
∑

|k|≤2j0+1

al−kε
′
k

(32)
+ ∑

|l|≤2j0+1

σ12−j0(H1+1/2){ψH0
j0,l

(t) − ψ
H0
j0,l

(0)} ∑
|k|≤2j0+1

bl−kε
′
k

+ ∑
j≥j0

∑
|k|≤2j+1

σ12−j (H1+1/2){ψH1
j,k(t) − ψ

H1
j,k(0)}εj,k,

where the coefficients a = a(ε) and b = b(ε) are defined by (28) with H = H0,
H + ε = H1.

7.2.3. The last step is the construction of the mapping T n from (Xn,Xn) to
itself. Recalling (iii) of Proposition 5, we see that T n should transform outcomes
of ξ0,n into approximate outcomes of ξ1,n. Thus, we define the action of T n on the
random space (Xn,Xn) by making the low frequency terms of ξ0,n(T nω) exactly
match the low frequency terms of ξ1,n(ω).

We define T 2,n on Xn as the linear map such that

εl(T
2,nω) = ∑

|k|≤2j0+1

al−kεk(ω) + εl(ω),(33)

εj0,l(T
2,nω) = ∑

|k|≤2j0+1

bl−kεk(ω) + εj0,l(ω),(34)

εj,l(T
2,nω) = εj,l(ω) if j > j0.(35)

We remark that the matrix of this linear map in the canonical basis of Xn is, of
course, infinite, but T 2,n leaves invariant the finite-dimensional subspace Xn

e ⊗
(⊗|k|≤2j0+1 R) ⊗ (0,0, . . .) ⊂ Xn and is the identity on a supplementary space.
On the finite-dimensional subspace its matrix is Id + Kn, where Kn is the square
matrix of size 2[2j0+2 + 1],

Kn =
(

(al−k)|l|,|k|≤2j0+1 0
(bl−k)|l|,|k|≤2j0+1 0

)
.(36)

Finally, we set

T n = T n,2 ◦ T n,1,(37)

where we denote again by T n,1 the extension of T n,1 (previously defined only on
Xn

e ) to Xn such that it is the identity on 0Xn
e
⊗ Xn

d.
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As announced, the choice of T n, with (30)–(35) and the fact that σ12−j0H1 =
σ02j0εn2−j0H1 = σ02−j0H0 , yields

ξ1,n(ω) − ξ0,n(T n(ω))

= ∑
j≥j0

∑
|k|≤2j+1

σ12−j (H1+1/2){ψH1
j,k(t) − ψ

H1
j,k(0)}εj,k(ω)(38)

− ∑
j≥j0

∑
|k|≤2j+1

σ02−j (H0+1/2){ψH0
j,k(t) − ψ

H0
j,k(0)}εj,k(ω).

We now have completed the setup of (Xn,Xn,Pn) and it now remains to prove
that Proposition 5 holds. Let us stress that the choice of j0 is for that matter crucial.
Clearly, Proposition 5(iii) requires that j0 be large enough. Meanwhile, Proposi-
tion 5(iv) requires that the number of components of Xn on which T n is different
from the identity be as small as possible, which requires that j0 be not too large.
Since the proof is rather technical and quite long, we only sketch it here. A detailed
proof may be found in [11].

7.3. Sketch of the proof of Proposition 5.

7.3.1. Property (i). We see that the representation (23) and our choice (30)
only differ by the terms corresponding to locations k/2j /∈ [−2,2]. With the
help of Lemma 5(i), it can be deduced that on some probability space we
have ‖ξ0,n − σ0W

H0‖Hα
≤ c(ω)2−Mj0 , where M is arbitrarily large and c(ω)

is some random variable with finite moments coming from the randomness of
the coefficient in the expansion (23). A similar bound may be obtained for
‖ξ1,n − σ1W

H1‖Hα
. Then the property (i) of Proposition 5 follows from the al-

most sure smoothness property of the fractional Brownian motion.

7.3.2. Property (ii). Proposition 4 gives immediately an almost sure relation

on the conditional laws: ‖Pn
ξ i,n − Pn

σiW
Hi

‖TV ≤ cn1/2‖ξ i,n − σiW
Hi‖1/2

∞ for i =
0,1. Combining with the study of the difference ξ i,n − σiW

Hi , this shows that
this total variation distance is bounded by c(ω)n1/22−Mj0/2. We are then able to
deduce that the same bound holds for the unconditional laws

‖P i,n − Qn
H,σ‖TV ≤ cn1/22−Mj0/2.

Since M is arbitrarily large, property (ii) of Proposition 5 follows and it is clear
that this property is not crucial for the calibration of j0.

7.3.3. Property (iii). We write (38) as

ξ1,n(ω) − ξ0,n(T n(ω)) = q1(t) − q1(0) + q2(t) − q2(0),
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where

q1(t) := ∑
j≥j0

∑
|k|≤2j+1

σ12−j (H1+1/2){ψH1
j,k(t) − ψ

H0
j,k(t)}εj,k(ω),

q2(t) := ∑
j≥j0

∑
|k|≤2j+1

(
σ12−j (H1+1/2) − σ02−j (H0+1/2))ψH0

j,k(t)εj,k(ω).

But Lemma 5(ii) implies that the difference ψ
H1
j,k −ψ

H0
j,k is a function with uniform

norm bounded by c2j/2ε and well localized around k/2j . This enables us to eval-
uate the sum with respect to k in q1(t) and to deduce (for precise computations,
see [11])

q1(t)
2 � ∑

j≥j0

2−2jH1ε2 � 2−2j0H1ε2 ≤ 2−2j0H0ε2,

where � means equality in stochastic order. An analogous evaluation is obtained
for q2(t), using σ12−jH1 − σ02−jH0 = σ02−jH0(2(j0−j)ε − 1).

Hence, property (iii) of Proposition 5 follows from j0 = [ 1
2H0+1 log2 n], which

implies that 2−2j0H0ε2 is of order n−1.

7.3.4. Property (iv). Let us focus only on the really delicate part, the evalu-
ation of the total variation distance. By the triangle inequality, it suffices to show
that ‖Pn − T n,1Pn‖TV and ‖T n,2 ◦ T n,1Pn − T n,1Pn‖TV can be made arbitrar-
ily small for an appropriate choice of I and for large enough n. Hence, we need
to compare centered Gaussian measures. Let us start by evaluating the distance
between the measures Pn and T n,1Pn.

Recalling the construction of Xn in Section 7.2.1, these two measures only
differ on the space of low frequencies Xn

e , and the covariance matrix of Pn on
this space of dimension m = 2j0+2 + 1 is the Toeplitz matrix Tm(f0) with the
function f0(s) = |2 sin( s

2)|1−2H0 [the notation Tm(f ) is for the matrix with en-
tries Tm(f )k,l := 1

2π

∫ π
−π f (s)ei(k−l)s ds for 1 ≤ k, l ≤ m]. The Gaussian mea-

sure T n,1Pn has, on the same space, covariance matrix Tm(f1) with f1(s) =
|2 sin( s

2)|1−2H1 . Then some considerations of Gaussian measures enable us to
control, here, the distance between these two measures by the trace bound
Tr([Tm(f1)Tm(f0)

−1 − Id]2). Now the proof consists in making the following se-
quence of approximations rigorous:

Tr
([Tm(f1)Tm(f0)

−1 − Id]2) � Tr
(
Tm

[(
f1

f0
− 1

)2])

� m

2π

∫ π

−π

(
f1(s)

f0(s)
− 1

)2

ds

� cmε2 � c2j0ε2 � cI−2.
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The first approximation above expresses the quasi-homomorphism property of the
Toeplitz operator f � Tm(f ), while the second one is a kind of Szegö theorem.
The third approximation is obtained since ‖f1

f0
− 1‖2 ≤ ε, where the L2-norm is

taken over [−π,π ]. Again, a detailed proof is presented in [11], where we use the
method developed in Dahlhaus [5] and Fox and Taqqu [8] to deal with Toeplitz
matrices (and Brockwell and Davis [3] too for more elementary results).

Finally, the control of ‖T n,2 ◦T n,1Pn −T n,1Pn‖TV is obtained by similar tech-
niques (see [11] for details). The property (iv) of Proposition 5 is proved.

Acknowledgments. We are grateful to Yuri Golubev, François Roueff and
Philippe Soulier for helpful discussions and comments.
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