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Abstract. We estimate the Hurst parameter H of a fractional Brow-
nian motion from discrete noisy data, observed along a high frequency
sampling scheme. The presence of the systematic experimental noise
makes harder the recovering of H since relevant information is mostly
contained in the high frequencies of the signal.

We quantify the difficulty of the statistical problem in the minimax
sense, and prove that the rate n−1/(4H+2) is optimal for estimating H.
Our estimators are based on adaptive estimation of quadratic functionals
using wavelets.

1. Introduction

1.1. Motivation. Many phenomena arising in physics, molecular biology or
traffic networks, possess, or are suspected to possess self-similar properties
that are essential for their understanding or modelling. Recovering these so-
called scaling exponents from experimental data is a challenging and ongoing
issue (Abry and Veitch [2], Willinger et al. [29], West and Grigolini [27],
Scafetta et al. [22] and the references therein). The purpose of this paper is
to investigate a new statistical method for estimating self-similarity, based on
adaptive estimation of quadratic functionals of the noisy data using wavelets.
We keep to dimension 1 and focus on the paradigmatic example of fractional
Brownian motion.

1.2. Statistical model. Let X be a one-dimensional process of interest,
that has the form

Xt = σWH
t ,

where WH is a fractional Brownian motion defined on the real line, with
self-similar index (or Hurst parameter) H ∈ (0, 1) and scaling parameter
σ ∈ (0,+∞). Both H and σ are unknown.

In practice, it is unrealistic to assume that a sample path of X can be
observed (in which case the parameters H and σ would be identified). In-
stead, X is rather observed at discrete times with frequency n over a time
interval, say [0, 1]. The problem of estimating H (and σ) in this context has
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been paid considerable attention (see e.g. Dahlhaus [6], Istas and Lang [15],
Ludeña [18] among many others and the references therein).

In this paper, we take the next logical step: we assume that each obser-
vation is contaminated by noise, so we observe

Y n
i = Xi/n + a(Xi/n) ξni , (1)

for i = 0, . . . , n, where the ξni are centered noise terms and x  a(x) is
an unknown variance function. Throughout, we assume for simplicity that
n = 2N . Recovering the Hurst parameter H from the data (Y n

i ) is our
objective.

1.3. Results. We show in Theorems 1 and 2 that the rate

vn(H) = n−1/(4H+2)

is optimal for estimating H. This means that (2) and (3) below agree, with
vn = vn(H). The accuracy vn(H) is slower by a polynomial order than
the usual n−1/2 obtained in the absence of noise. The difficulty lies in the
fact the the information about H is contained in the high frequencies of the
signal t Xt. Although the high frequency sampling rate n usually allows
to recover H with the classical rate n−1/2 when X·/n is directly observed
(e.g. by means of quadratic variations, see [15]) the presence of the ξni in
our context significantly alters the nature of the problem.

2. Main results

2.1. Methodology. We denote by D ⊂ (0, 1)× (0,+∞) the parameter set
in which lies (H,σ). The process X and the noise variables (ξni ) are defined
on some common probability space endowed with a probability measure
PnH,σ. Denote by Y the sigma field generated by the observations (1). The
joint law of (Y n

i ) is thus the restriction PnH,σ |Y so the sequence of statistical
experiments

E =
(
PnH,σ |Y , (H,σ) ∈ D

)
n≥1

specifies our mathematical model. Note that E also implicitly depends on
the choice of x a(x) and the conditional joint law of the (ξni ) given X.

A rate vn → 0 is said to be achievable over D if there exists a (sequence
of) estimator(s) Ĥn such that the (sequence of) normalized error(s)

v−1
n (Ĥn −H) (2)

is bounded in PnH,σ–probability, uniformly over D. The rate vn is said to be
a lower rate of convergence over D if there exists c > 0 such that

lim inf
n→∞

inf
F

sup
(H,σ)∈D

PnH,σ{v−1
n |F −H| ≥ c} > 0, (3)

where the infimum is taken over all estimators (i.e. Y-measurable variables).
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2.2. The estimation strategy. The fact that X is a fractional Brownian
motion enables to predict that its energy levels

Qj :=
∑
k

d2
j,k :=

∑
k

(∫
RXs ψj,k(s)ds

)2 (4)

scale1 with a ratio related to H:
Qj+1

Qj
∼ 2−2H , (5)

up to an error term that vanishes as the frequency level j increases. Here,
dj,k is the random wavelet coefficient of X related to a certain wavelet basis
(ψj,k, j ≥ 0, k ∈ Z). In Section 3.2 below, we construct a procedure

(Yi/n) (d̂2
j,k,n, k = 0, . . . , 2j − 1, 0 ≤ j ≤ Jn) (6)

that processes the data into estimates of the squared wavelet coefficients d2
j,k

up to the maximal resolution level Jn = [1
2 log2(n)]. We obtain a family of

estimators for H by setting

Ĥj,n := −1
2

log2

Q̂j+1,n

Q̂j,n
, j = 1, . . . , Jn − 1,

with
Q̂j,n =

∑
k

d̂2
j,k,n.

The ratio level j between two estimated energy levels that contains maximal
information about H is chosen by means of a block thresholding rule see
below. The rule is inspired by the methodology intoduced for the adaptive
estimation of quadratic functionals (among others: Efromovich and Low [8],
Gayraud and Tribouley [10], Tribouley [24] and the references therein).

2.3. Statement of the results. We consider parameter sets of the form:

D := [H−, H+]× [σ−, σ+] ⊂ (1
2 , 1)× (0,+∞). (7)

Assumption A. (i) The function x  a(x) is bounded, continuously dif-
ferentiable with a bounded derivative.
(ii) The continuous time process X is Fn-adapted with respect to a filtration
Fn = (Fnt , t ≥ 0).
(iii) The noise term ξni at time i/n is Fn(i+1)/n-measurable. Moreover:

EnH,σ{ξni | Fni/n} = 0, EnH,σ
{

(ξni )2 | Fni/n
}

= 1,

and sup(H,σ)∈D supi,n EnH,σ{(ξni )4} < +∞.

Theorem 1. Grant Assumption A. The rate vn(H) := n−1/(4H+2) is achiev-
able for estimating H, over any parameter space of the form (7). Moreover,
the estimator constructed in Section 3 and given by (9)–(11) below achieves
the rate vn(H).

1As for the approximation symbol ∼, we do not yet specify; see Proposition 1 below.
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This rate is indeed optimal as soon as the noise process enjoys some reg-
ularity:

Assumption B. (i) We have infx a(x) > 0.
(ii) Conditional on X, the variables ξni are independent, absolutely contin-
uous with C2 densities x  exp

(
− vi,n(x)

)
vanishing at infinity (together

with their derivatives) at a rate strictly faster than 1/x2 and:

sup
i,n

E
{(

d
dxvi,n(ξni )

)2(1 + |ξni |2)
}
< +∞. (8)

Moreover, the functions x  d2

dx2 vi,n(x) are Lipschitz continuous, with Lip-
schitz constants independent of i, n.

Theorem 2. Grant Assumptions A and B. For estimating H, the rate
vn(H) := n−1/(4H+2) is a lower rate of convergence over any parameter
set of the form (7) with non empty interior.

We complete this section by an ancillary result about the estimation of
the scaling parameter σ, although we are primarily interested in recovering
H. The estimation of σ has been adressed by Gloter and Jacod [12] for the
case H = 1/2 and by Gloter and Hoffmann [11] in a slightly different model
when H ≥ 1/2 is known. Altogether, the rate vn(H) is proved to be optimal
for estimating σ when H is known. Our next result shows that we loose a
logarithmic factor when H is unknown.

Theorem 3. Grant Assumptions A and B. For estimating σ, the rate
n−1/(4H+2) log(n) is a lower rate of convergence over any parameter set of
the form (7).

2.4. Discussion.

2.4.1. About the rate. We see that the presence of noise dramatically alters
the accuracy of estimation of the Hurst parameter: the optimal rate vn(H) =
n−1/(4H+2) inflates by a polynomial order as H increases. In particular, the
classical (parametric rate) n−1/2 is obtained by formally letting H tend to
0 (a case we do not have here).

2.4.2. About Theorem 1. The restriction H− > 1/2 is important here, and
it is linked to the discretization effect of the estimator. Assumption A can
easily be fulfilled in the case of a noise process that is independent of the
signal X. It is not minimal: more general noise processes could presumably
be considered, and, more interestingly, more general scaling processes than
fractional Brownian motion as well. To this end, it is required that the
energy levels of X satisfy Proposition 1 and that the empirical energy levels
satisfy Proposition 2 in Section 4 below. We do not pursue that here. See
also Lang and Roueff [17].

2.4.3. About Theorem 2. It should be emphasised that our lower bound is
local, in the sense that D can be taken arbitrarily small in the class specified
by (7). Observe that since the rate vn(H) depends on the parameter value,



ESTIMATION OF THE HURST PARAMETER 5

the min-max lower bounds (3) are only really meaningful for parameter sets
D that are concentrated around some given value of H.

Assumption B (ii) is not minimal; it simply ensures that if we replace
X·/n by a single unknown value θ, each translation-dilatation model θ 7→
θ + a(θ)ξni admit a finite Fisher information. It is satisfied in particular
when the ξni are i.i.d. centered Gaussian. More generally, any noise process
would yield the same lower bound as soon as Proposition 4 is satisfied (see
Section 6.1).

2.4.4. The stationary case. Golubev [13] remarked that in the particular
case of i.i.d. Gaussian noises, independent of WH , a direct spectral approach
is simpler. Indeed, the observation generated by the Yi/n−Y(i−1)/n becomes
stationary Gaussian, and a classical Whittle estimator shall do (Whittle
[28] or Dahlhaus [6]). In particular, although some extra care has to be
taken about the approximation in n, such an approach would certainly prove
simpler in that specific context for obtaining the lower bound.

2.4.5. Quadratic variations alternatives. Our estimator (precisely construc-
ted in Section 3 below) can be linked to more traditional quadratic variations
methods. Indeed, the fundamental energy levels Qj defined in (4) can be
obtained from the quadratic variations of X·/n in the particular case of the
Schauder basis (which has not sufficiently many vanishing moments for our
purpose). However, the choice of an optimal j remains and we were not able
to obtain the exact rate of convergence by this approach. We do not pursue
that here.

2.5. Organisation of the paper. In Section 3, we give the complete con-
struction of an optimal estimator Ĥn that achieves the minimax rate vn(H).
Section 4 explores the properties of the energy levels of X (Proposition 1)
as well as their empirical version (Proposition 2). Theorem 1 is proved in
Section 5. Finally, Sections 6 and 7 are devoted to the lower bounds. It is
noteworthy that the complex stochastic structure of our model due to the
two sources or randomness requires particular efforts for the lower bound.
Our strategy to obtain lower bounds is outlined in the Section 6, it requires
a delicate ’coupling’ result proved in Section 7. The proof of some technical
results are leaved to the Appendix in Section 8.

3. Construction of an estimator

3.1. Pick a wavelet basis (ψj,k, j ≥ 0, k ∈ Z) generated by a mother wavelet
ψ with two vanishing moments and compact support in [0, S] where S is
some integer. The basis is fixed throughout the Sections 3–5. Assuming
we have estimators d̂2

j,k,n of the squared wavelet coefficients, recalling the
definition (4) of the energy levels, we obtain a family of estimators for H by
setting

Ĥj,n := −1
2

log2

Q̂j+1,n

Q̂j,n
, j = J, . . . , Jn − 1,
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with

Q̂j,n =
2j−1−1∑
k=0

d̂2
j,k,n,

where Jn := [1
2 log2(n)] is a maximum level of detail needed in our statisti-

cal procedure and J := [log2(S − 1)] + 2 is some (irrelevant) minimum level
introduced to avoid border effect while computing wavelet coefficient corre-
sponding to location on [0, 1/2] from an observation corresponding to [0, 1].
Following Gayraud and Tribouley [10] in the context of adaptive estimation
of quadratic functionals, we let

J?n := max
{
j = J, . . . , Jn : Q̂j,n ≥ 2j

n

}
(9)

(and in the case the set above is empty we let J?n = J so that everything
remains meaningful in the sequel). Eventually, our estimator of H is

ĤJ?n,n. (10)

The performance of ĤJ?n,n is related to scaling properties of X and the
accuracy of the procedure (6).

3.2. Preliminary estimation of the d2
j,k. Since ψ has compact support

in [0, S], the wavelet coefficient dj,k writes:

dj,k = σ

S2N−j−1∑
l=0

∫ k/2j+(l+1)/2N

k/2j+l/2N
ψj,k(t)WH

t dt.

This suggests the approximation:

d̃j,k,n =
S2N−j−1∑

l=0

(∫ k/2j+(l+1)/2N

k/2j+l/2N
ψj,k(t)dt

)
Y n
k2N−j+l,

for, J ≤ j ≤ Jn, 0 ≤ k ≤ 2j−1 − 1. The difference d̃j,k,n − dj,k splits into
bj,k,n + ej,k,n, respectively a bias term and a centered noise term:

bj,k,n = −
S2N−j−1∑

l=0

∫ k/2j+(l+1)/2N

k/2j+l/2N
ψj,k(t)(Xt −Xk/2j+l/2N )dt,

ej,k,n =
S2N−j−1∑

l=0

(∫ k/2j+(l+1)/2N

k/2j+l/2N
ψj,k(t)dt

)
a(Xk/2j+l/2N )ξnk2N−j+l .

We denote by vj,k,n the variance of ej,k,n, conditional on Fn
k2−j , which is

equal to

vj,k,n =
S2N−j−1∑

l=0

(∫ k/2j+(l+1)/2N

k/2j+l/2N
ψj,k(t)dt

)2
EnH,σ[a(Xk/2j+l/2N )2 | Fnk2−j ].

The conditional expectations appearing in this expression are close to a(Xk/2j )2

and thus may be estimated from the observation without the knowledge of
H,σ. We define

â2
k/2j ,n := 2−N/2

2N/2∑
l′=1

(Y n
k2N−j+l′)

2 −
(

2−N/2
2N/2∑
l′=1

Y n
k2N−j+l′

)2
,
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and we set

vj,k,n =
S2N−j−1∑

l=0

(∫ k/2j+(l+1)/2N

k/2j+l/2N
ψj,k(t)dt

)2
â2
k/2j ,n.

Eventually, we set

d̂2
j,k,n := (d̃j,k,n)2 − vj,k,n. (11)

and ĤJ?n,n is well-defined. Remark that if the function a is assumed known,
one can considerably simplify the construction of the approximation â2

k/2j ,n.

4. The behaviour of the energy levels

We denote by PH,σ the law of X = σWH , defined on an appropriate
probability space. We recall the expression of the energy at level j:

Qj =
2j−1−1∑
k=0

d2
j,k.

Proposition 1. (i) For all ε > 0, there exists r−(ε) ∈ (0, 1) such that

inf
(H,σ)∈D

PH,σ
{

inf
j≥1

22jHQj ≥ r−(ε)
}
≥ 1− ε. (12)

(ii) The sequence

Zj := 2j/2 sup
l≥j

∣∣Ql+1

Ql
− 2−2H

∣∣ (13)

is bounded in PH,σ-probability, uniformly over D.

Proposition 2. Let jn(H) := [ 1
2H+1 log2(n)]. Then Jn ≥ jn(H) for all

H ∈ [H−, H+] and for any L > 0{
n2jn(H)/2 sup

Jn≥j≥jn(H)−L
2−j

∣∣∣Q̂j,n −Qj∣∣∣ }
n≥(4(S−1)2L)(1+2H)

is bounded in PnH,σ-probability, uniformly over D.

We shall see below that Proposition 1 and 2 together imply Theorem 1.

4.1. Fractional Brownian motion. The fractional Brownian motion ad-
mits the harmonizable representation

WH
t =

∫
R

eitξ − 1
(iξ)H+1/2

B(dξ),

where B is a complex Gaussian measure (Samorodnitsky and Taqqu [21]).
Another representation using a standard Brownian motion B on the real
line is given by

WH
t =

1
Γ(H + 1/2)

∫ ∞
−∞

[(t− s)H−1/2
+ − sH−1/2

+ ]dBs.

(Γ is the Euler function.) The process WH is H self–similar and the covari-
ance structure of WH is explicitly given by

Cov(WH
s ,W

H
t ) = κ(H)

2

{
|t|2H + |s|2H − |t− s|2H

}
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where κ(H) = π
HΓ(2H) sin(πH) . Recall that dj,k =

∫
R ψj,k(s)Xsds denote the

random wavelet coefficients of X, given a wavelet ψ with 2 vanishing mo-
ments. It can be seen, using the stationarity of the increments of WH that,
for a fixed level j, the sequence (dj,k)k∈Z is centred Gaussian, and stationary
with respect to the location parameter k. Moreover the coefficients have the
self similarity property

(dj,k)k∈Z
law= 2−j(H+1/2)(d0,k)k∈Z,

see Kawasaki and Morita [16], Delbeke and Abry [7], Abry and Veitch [2],
[25], Abry et al., [26], [1]). Moreover,

Var{dj,k} = σ2c(ψ)κ(H)2−j(1+2H),

where c(ψ) = 1
2

∫
ψ(s)ψ(t){|t|2H + |s|2H −|t−s|2H}dsdt, and the covariance

Cov(dj,k, dj,k′) = 2−j(2H+1)Cov(d0,k, d0,k′)

decays polynomially as k− k′ →∞ due to the two vanishing moments of ψ
and

|Cov(d0,k, d0,k′)| ≤ c(1 + |k − k′|)2(H−2),

for some c which does not depend on σ nor H. See also Tewfik and Kim
[23], Hirchoren and D’Attelis [14], Istas and Lang [15], Gloter and Hoffmann
[11].

Proposition 3. We have

sup
(H,σ)∈D

EH,σ
{

[Qj − 2−2jH σ
2

2
c(ψ)κ(H)]2

}
≤ c2−j(1+4H).

Proof. Remark that by stationarity:

Qj − 2−2jH σ
2

2
c(ψ)κ(H) =

2j−1−1∑
k=0

(d2
j,k − EH,σ{d2

j,k}).

Then the variance of the sum above is evaluated using the decorrelation
property of the wavelet coefficients (similar computations can be found in
Istas and Lang [15] or Gloter and Hoffmann [11]). �

4.2. Proof of Proposition 1. By Proposition 3, we derive in the same
way as in Lemma II.4. of Ciesielski et al. [5] that, for all ε > 0:∑

j≥0

sup
(H,σ)∈D

PH,σ
{

22jHQj /∈ [
σ2

2
c(ψ)κ(H)− ε, σ

2

2
c(ψ)κ(H) + ε]

}
<∞,

from which (i) easily follows. By (i), the probability that |Zj | is greater that
a constant M is less than

ε+ PH,σ
{

sup
l≥j
|Ql+1 − 2−2HQl|22lH ≥M2−

j
2 r−(ε)

}
. (14)

By self-similarity EH,σ{Ql+1 − 2−2HQl} = 0. By Markov’s inequality, (14)
is less than

ε+ [M2r2
−(ε)]−1

∑
l≥j

VarH,σ
{
Ql+1 − 2−2HQl

}
24lH2j .
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By Proposition 3, the sum above can be made arbitrarily small for large
enough M , which proves (ii).

4.3. Proof of Proposition 2. We first claim that the following estimates
holds:

sup
Jn≥j≥jn(H)−L

sup
(H,σ)∈D

2−j/2EnH,σ
{∣∣Q̂j,n −Qj∣∣} ≤ cn−1. (15)

Proposition 2 readily follows. To prove (15), we first split Q̂j,n − Qj into∑6
u=1 r

(u)
j,n , with

r
(1)
j,n =

∑
k

b2j,k,n, r
(2)
j,n =

∑
k

(e2
j,k,n − vj,k,n),

r
(3)
j,n =

∑
k

(vj,k,n − vj,k,n), r
(4)
j,n = 2

∑
k

bj,k,ndj,k,

r
(5)
j,n = 2

∑
k

ej,k,ndj,k, r
(6)
j,n = 2

∑
k

bj,k,nej,k,n.

Using that EH,σ{(Xt − Xs)2} ≤ c(H)σ2|t − s|2H , it is readily seen that
EnH,σ{(bj,k,n)2} is less than a constant times 2−jn−2H . Summing in k shows

that the term r
(1)
j,n is negligible since H > 1/2.

Using that e2
j,k,n − vj,k,n are uncorrelated for |k − k′| ≥ S, we deduce

that EnH,σ[(r(2)
j,n)2] is bounded by a constant times

∑2j−1−1
k=0 {EnH,σ[e4

j,k,n] +
EnH,σ[v2

j,k,n]}. Then using the martingale increments structure of the se-
quence a(Xk2−j+l2−N )ξn

k2−j+l2−N
for l = 0, . . . , S2N−j enables to apply the

Burkölder-Davis inequality. This gives, by Assumption A: EnH,σ[e4
j,k,n] ≤

cn−2. Then since x  a(x) is bounded and thus vj,k,n ≤ cn−1 we obtain
that EnH,σ[(r(2)

j,n)2] has the right order 2jn−2.
Using conditional centering of ej,k,n with the fact that the variance of dj,k

is less than c2−j(2H+1) and the condition j ≥ jn(H)−L = [ 1
2H+1 log2(n)]−L,

one easily checks that the terms r(4)
j,n, r(5)

j,n and r
(6)
j,n have negligible order.

We finally turn to the important term r
(3)
j,n, which encompasses the esti-

mation of a. We claim that, for 0 ≤ l ≤ S2N−j − 1, the following estimates
holds:

EnH,σ{
∣∣â2

k/2j ,n − EnH,σ[a(Xk/2j+l/2N )2 | Fnk2−j ]
∣∣} ≤ cn−1/4. (16)

Summing in l and k yields the result for r(3)
j,n as soon as (16) is proved:

Indeed, since vj,k,n − vj,k,n is equal to

S2N−j−1∑
l=0

(∫ k/2j+(l+1)/2N

k/2j+l/2N
ψj,k(t)dt

)2
[â2

k/2j ,n−EnH,σ[a(Xk/2j+l/2N )2 | Fnk2−j ]],

we have that EnH,σ{|r
(3)
j,n|} is less than c2j/2n−12j/2n−1/4. Therefore, under

the restriction j ≤ Jn ≤ [1
2 log2(n)], (15) holds. It remains to prove (16).



ESTIMATION OF THE HURST PARAMETER 10

We have â2
k/2j ,n−EnH,σ[a(Xk/2j+l/2N )2 | Fn

k2−j ] = t
(1)
k,n + t

(2)
k,l,n + t

(3)
k,n, with

t
(1)
k,n = 2−

N
2

2N/2∑
l′=1

X2
k/2j+l′/2N −

(
2−

N
2

2N/2∑
l′=1

Y n
k/2N−j+l′

)2

t
(2)
k,l,n = 2−

N
2

2N/2∑
l′=1

a(Xk/2j+l′/2N )2(ξnk2j−N+l′)
2 − EnH,σ[a(Xk/2j+l/2N )2 | Fnk2−j ],

t
(3)
k,n = 2−

N
2

+1
2N/2∑
l′=1

Xk/2j+l′/2Na(Xk/2j+l′/2N )ξnk2j−N+l′ .

Since the ξn
k2j−N+l′

are uncorrelated and centered, we readily have that the

expectation of |t(3)
k,n| is of order 2−N/4 = n−1/4. For the term t

(2)
k,l,n, we use

the preliminary decomposition

t
(2)
k,l,n = 2−N/2

2N/2∑
l′=1

a(Xk/2j+l′/2N )2[(ξnk2j−N+l′)
2 − 1]

+ 2−N/2
2N/2∑
l′=1

[a(Xk/2j+l′/2N )2 − EnH,σ[a(Xk/2j+l/2N )2 | Fnk2−j ]].

The L1-norm of the first term above is of order n−1/4 since the summands
a(Xk/2j+l′/2N )2[(ξn

k2j−N+l′
)2−1] are martingale increments with second-order

moments by Assumption A. Likewise, since x a(x) has a bounded deriv-
ative and

EH,σ{(Xk/2j+l′/2N −Xk/2j )
2} ≤ c(H)σ2(2−N/2)2H ,

EH,σ{(Xk/2j+l/2N −Xk/2j )
2} ≤ c(H)σ2(2−j/2)2H ,

the second term in the expression of t(2)
k,l,n has L1-norm less than a constant

times (2−j/2)H ≤ 2jn(H)H/2 = n−H/(1+2H), and thus has the right order
since H ≥ 1/2.

Finally, we further need to split t(1)
k,n into

2−N/2
2N/2∑
l′=1

X2
k/2j+l′/2N −

(
2−N/2

2N/2∑
l′=1

Xk/2j+l′/2N
)2

−
(
2−N/2

2N/2∑
l′=1

a(Xk/2j+l′/2N )ξnk2N−j+l′
)2

− 2
(
2−N/2

2N/2∑
l′=1

Xk/2j+l′/2N
)(

2−N/2
2N/2∑
l′=1

a(Xk/2j+l′/2N )ξnk2N−j+l′
)
.

The first term and second term are easily seen to be of the right order
respectively by the smoothness property ofX and the uncorrelation property
of the variables ξni . The third term is seen to have the right order after
remarking that one can replace the first sum 2−N/2

∑2N/2

l′=1 Xk/2j+l′/2N by
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Xk/2j up to a negligible error and then use the conditional uncorrelation of
ξni again. Thus (16) is proved, hence (15) follows. The proof of Proposition
2 is complete.

5. Proof of Theorem 1

First we need the following result that states the the level J?n, based on
the data, is with large probability greater that some level based on the
knowledge of H.

5.1. A fundamental lemma. For ε > 0, define

J−n (ε) := max
{
j ≥ 1 ; r−(ε)2−2jH ≥ 2j

n

}
. (17)

Lemma 1. For all ε > 0, there exists L(ε) > 0 such that

sup
(H,σ)∈D

PnH,σ
{
J?n < J−n (ε)− L(ε)

}
≤ ε+ ϕn

(
ε
)
,

where ϕn satisfies limn→∞ ϕn(ε) = 0.

Proof. Let L, ε > 0. By definition of J−n (ε),
1
2r−(ε)1/(1+2H)n1/(1+2H) ≤ 2J

−
n (ε) ≤ r−(ε)1/(1+2H)n1/(1+2H)

hence for large enough n, we have J ≤ J−n (ε) − L ≤ Jn. Thus, by (9),
PnH,σ {J?n ≥ J−n (ε)− L} is greater than

PnH,σ
{
Q̂J−n (ε)−L,n ≥ 2J

−
n (ε)−Ln−1

}
that we rewrite as

PnH,σ
{
Q̂J−n (ε)−L,n −QJ−n (ε)−L ≥ 2J

−
n (ε)−Ln−1 −QJ−n (ε)−L

}
and that we bound from below by

PnH,σ
{
Q̂J−n (ε)−L,n −QJ−n (ε)−L ≥ 2J

−
n (ε)−Ln−1 − 2−2(J−n (ε)−L)Hr−(ε)

}
−

−PH,σ{inf
j≥1

22jHQj < r−(ε)}.

Proposition 1 (i) and the definition of J−n (ε) yield that this last term is
greater than:

PnH,σ
{
Q̂J−n (ε)−L,n−QJ−n (ε)−L ≥ r−(ε)1/(2H+1)n−2H/(2H+1)(2−L−22LH)

}
−ε.

Then, if L is such that 2L − 22LH ≤ −1, an assumption we shall make from
now on, Lemma 1 is proved, provided we show that

PnH,σ
{
|Q̂J−n (ε)−L,n −QJ−n (ε)−L| ≥ r−(ε)1/(2H+1)n−2H/(2H+1)

}
(18)

can be made arbitrarily small, uniformly in (H,σ). Using again

2J
−
n (ε) > 1

2n
1/(2H+1)r−(ε)1/(2H+1),

we can pick L′ = L′(ε) > 0 independent of n such that

J−n (ε)− L ≥ jn(H)− L′(ε),
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therefore (18) is less than

PnH,σ
{

sup
Jn≥j≥jn(H)−L′(ε)

|Q̂j,n −Qj | ≥ r−(ε)1/(2H+1)n−2H/(2H+1)
}
,

that we rewrite as

PnH,σ
{
n2jn(H)/2 sup

Jn≥j≥jn(H)−L′(ε)
2−(jn(H)−L′(ε))|Q̂j,n −Qj | ≥ vH(ε, n)

}
,

where
vH(ε, n) := 2L

′(ε)r−(ε)1/(2H+1)n1/(4H+2)

and where we use that 2jn(H) is of order n1/(2H+1). We conclude by applying
Proposition 2, using that for fixed ε > 0, 2L

′(ε)r−(ε)1/(2H+1)n1/(4H+2) →∞
as n→∞. The uniformity in (H,σ) is straightforward. �

5.2. Proof of Theorem 1, completion. Since t  2−2t is invertible on
(0, 1) with inverse uniformly Lipschitz on the compact sets of (0, 1), it suffices
to prove Theorem 1 with 2−2H in place of H and Q̂J?n+1,n/Q̂J?n,n in place of
ĤJ?n,n. First, we bound ∣∣∣Q̂J?n+1,n

Q̂J?n,n
− 2−2H

∣∣∣
by a “bias” and a variance term, namely∣∣∣QJ?n+1

QJ?n
− 2−2H

∣∣∣+
∣∣∣Q̂J?n+1,n

Q̂J?n,n
−
QJ?n+1

QJ?n

∣∣∣ =: |Bn|+ |Vn| ,

say. Second, we prove Theorem 1 for Bn and Vn separately. Remark that the
“bias” term (deterministic conditionally to the signal X), Qj+1/Qj − 2−2H ,
decreases as the level j increases, while the variance term Q̂j+1,n/Q̂j,n −
Qj+1/Qj increases. They both match at the level j = J−n (ε). On contrary to
many “bias-variance” situation, the behavior of the variance term depends
on the unknown regularity of the signal through the decrease rate of the
denominators Q̂j,n and Qj . This explains the choice made in (9) to control
the estimated level of energy Q̂J?n,n by below.

5.2.1. The bias term. Let M > 0 and ε > 0. By Lemma 1, we have

PnH,σ
{
n1/(4H+2) |Bn| ≥M

}
≤ PnH,σ

{
n1/(4H+2) |Bn| ≥M, J?n ≥ J−n (ε)− L(ε)

}
+ ε+ ϕn(ε)

≤ PnH,σ
{
n1/(4H+2)2−J

−
n (ε)/22L(ε)/2|ZJ−n (ε)−L(ε)| ≥M

}
+ ε+ ϕn(ε)

≤ PnH,σ
{√

2r−(ε)−1/(4H+2)2L(ε)/2|ZJ−n (ε)−L(ε)| ≥M
}

+ ε+ ϕn(ε),

where we used for the last line that, by (17)

2−J
−
n (ε) ≤ 2r−(ε)−1/(2H+1)n−1/(2H+1).

We conclude by Proposition 1 (ii) and taking successively ε sufficiently small,
M sufficiently large and n sufficiently large.
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5.2.2. The variance term. We split the variance term into Vn = V
(1)
n +V (2)

n ,
where

V (1)
n :=

Q̂J?n+1,n −QJ?n+1

Q̂J?n,n
and V (2)

n :=
QJ?n+1(QJ?n − Q̂J?n,n)

Q̂J?n,nQJ?n
.

Having lemma 1 in mind, we bound for any M > 0 and L integer, the
probability PnH,σ

{
n1/(4H+2)|V (1)

n | ≥M
}

by:

PnH,σ
{
n1/(4H+2)|V (1)

n | ≥M, J?n ≥ J−n (ε)− L
}

+ PnH,σ
{
J?n < J−n (ε)− L

}
.

Fix ε > 0 and pick L = L(ε) as in Lemma 1 so that the second probability
PnH,σ {J?n < J−n (ε)− L(ε)} is bounded by ε+ ϕn(ε). It remains now to deal
with the first probability. As soon as n is large enough, J−n (ε) − L(ε) > J

and thus by definition of J?n, the denominator of V (1)
n is bounded below by

2J
?
n/n, this yields to the new bound for the first probability:

PnH,σ
{
n1/(4H+2)+12−J

?
n |Q̂J?n+1,n −QJ?n+1| ≥M, J?n ≥ J−n (ε)− L(ε)

}
.

Recall that we defined jn(H) = [ 1
2H+1 log2(n)] in Proposition 2 and by

definition of J−n (ε), we have

2J
−
n (ε) > 1

2n
1/(2H+1)r−(ε)1/(2H+1).

Therefore, we can pick a positive L′ = L′(ε) independent of n such that

J−n (ε)− L(ε) ≥ jn(H)− L′(ε)

and then one can bound the first probability by:

PnH,σ
{
n1/(4H+2)+1 sup

Jn≥j≥jn(H)−L′(ε)
2−j |Q̂j,n −Qj | ≥M

}
Next, using that n1/(4H+2)+1 is of order n 2jn(H)/2 and Proposition 2, this
term can be made arbitrarily small (uniformly in n) by taking M large
enough.

We now turn to the term V
(2)
n . Fix ε > 0 and M > 0. Recalling the

definition of Zj in Proposition 1, we have

PnH,σ
{
n1/(4H+2)|V (2)

n | ≥M
}

≤ PnH,σ
{
n1/(4H+2)

∣∣∣QJ?n − Q̂J?n,n
Q̂J?n,n

∣∣∣ (2−2H + Z0

)
≥M

}
Now the tightness of the sequence Zj implies that for some fixed constant
M ′, this probability is less than

PnH,σ
{
n1/(4H+2)

∣∣∣QJ?n − Q̂J?n,n
Q̂J?n,n

∣∣∣ ≥ M
2−2H+M ′

}
+ ε.

Then the conclusion follows exactly as for V (1)
n . The proof of Theorem 1 is

complete.



ESTIMATION OF THE HURST PARAMETER 14

6. Proof of Theorems 2 and 3

Consistently with Section 4, we denote by PH,σ the probability measure
on the Wiener space C0 of continuous functions on [0, 1] under which the
canonical process X has the law of σWH . We write Pnf for the law of the
data, conditional on X = f thus PnH,σ|Y =

∫
C0 PH,σ(df) Pnf .

6.1. Preliminaries. Define, for α ∈ (0, 1):

‖f‖Hα := ‖f‖∞ + sup
0≤s<t≤1

|f(t)− f(s)|
|t− s|α

. (19)

The total variation of a signed measure µ is

‖µ‖TV = sup
‖f‖∞≤1

∣∣∫ fdµ
∣∣ .

If µ and ν are two probability measures, the total variation of µ− ν is max-
imal when µ and ν have disjoint support, in which case ‖µ− ν‖TV = 2.

Proposition 4. Grant Assumptions A and B, then there exists some con-
stant c such that:

‖Pnf − Png‖TV ≤ cn
1
2 ‖f − g‖

1
2∞,

1− 1
2
‖Pnf − Png‖TV ≥ R

(
cn‖f − g‖22 + c‖f‖2H1/2 + c‖g‖2H1/2

)
,

where R is some (universal) non increasing > 0 function.

Proof. Let D(µ, ν) :=
∫

(log dµ
dν )dµ ≤ +∞ denote the Kullback-Leibler di-

vergence between two probability measures µ and ν. We recall the classical
Pinsker’s inequality ‖µ− ν‖TV ≤

√
2D(µ, ν)1/2.

Using Assumption B (ii) and the representation (1) we deduce,

Enf
{

log
dPnf
dPng

(Y n
0 , . . . , Y

n
n )
}

=
n∑
i=0

Enf
{
vi,n(ξni + ∆i,n)− vi,n(ξni )− log

(
a(fi/n)
a(gi/n)

)}
,

where ∆i,n = ξni

(
a(fi/n)

a(gi/n) − 1
)

+ fi/n−gi/n
a(gi/n) . By a second order Taylor expan-

sion, this yields the expression for the Kullback–Leibler divergence:

D(dPnf , dP
n
g ) =

n∑
i=0

{
Enf [( d

dxvi,n)(ξni )∆i,n]− log
(
a(fi/n)

a(gi/n)

)}
+

1
2

n∑
i=0

Enf [( d2

dx2 vi,n)(ξni + θi,n∆i,n)∆2
i,n], (20)

for some (random) θi,n ∈ (0, 1). Using that x exp
(
− vi,n(x)

)
vanishes at

infinity we have Enf [( d
dxvi,n)(ξni )] = 0 and Enf [( d

dxvi,n)(ξni )ξni ] = 1 integrating
by part. It follows that the terms in the first sum of (20) are equal to
a(fi/n)

a(gi/n) − 1 − log
(
a(fi/n)

a(gi/n)

)
. The assumptions on x  a(x) yields that this

quantity is less than some constant times (fi/n − gi/n)2.
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For the second order terms, using the uniform Lipschitz assumption on
x d2

dx2 vi,n(x) together with the uniform bound for Enf [|ξni |3] gives,

|Enf [( d2

dx2 vi,n)(ξni + θi,n∆i,n)∆2
i,n]| ≤ c|fi/n − gi/n|3 + |Enf [( d2

dx2 vi,n)(ξni )∆2
i,n]|.

Again we can bound |Enf [ d2

dx2 vi,n(ξni )∆2
i,n]| by a constant times (fi/n− gi/n)2

using that Enf [ d2

dx2 vi,n(ξni )], Enf
[(

d2

dx2 vi,n(ξni )
)
ξni
]

and Enf
[(

d2

dx2 vi,n(ξni )
)
(ξni )2

]
are controlled by supi,n Enf

{(
d

dxvi,n(ξni )
)2(1 + |ξni |2)

}
. Thus the divergence

between the conditional laws is bounded by

D(dPnf ,dP
n
g ) ≤ c

n∑
i=0

|fi/n − gi/n|2,

and the first part of the proposition follows from Pinsker’s inequality. For
the second part of the proposition, we use

n∑
i=0

|fi/n − gi/n|2 ≤ 4n
∫ 1

0

(
f(x)− g(x)

)2dx+ 8n1−2α(‖f‖2Hα + ‖g‖2Hα)

valid for any α ∈ (0, 1) together with the fact that for two measures µ, ν the
total variation ‖µ−ν‖TV remains bounded away from 2 when the divergences
D(µ, ν) and D(ν, µ) are bounded away from +∞. �

The next result is the key to the lower bound. Its proof is delayed until
Section 7. Let (σ0, H0) be a point in the interior of D. Set, for I > 0,
εn := I−1n−1/(4H0+2) and

H1 := H0 + εn, σ1 := σ0 2j0εn ,

where
j0 = [log2(n1/(2H0+1))].

Proposition 5. For I large enough, there exists a sequence of probability
spaces (X n,Xn,Pn) on which can be defined two sequences of stochastic pro-
cesses, (ξi,nt )t∈[0,1], i = 0, 1 such that:

(i) For 1/2 ≤ α < H0, the sequences ‖ξ0,n‖Hα and ‖ξ1,n‖Hα are tight under
Pn.

(ii) Define P i,n =
∫
Xn Pn(dω)Pn

ξi,n(ω)
. Then:

lim
n→∞

‖P i,n − PnHi,σi|Y‖TV = 0, i = 0, 1.

(iii) There exists a measurable transformation Tn :X n 7→ X n such that the
sequence n‖ξ1,n(ω)− ξ0,n(Tn(ω))‖22 is tight under Pn.

(iv) If n is large enough, the probability measure Pn and its image measure
TnPn are equivalent on (X n,Xn). Moreover, for some c? ∈ (0, 2), we have

‖Pn − TnPn‖TV ≤ 2− c? < 2

provided n is taken large enough.
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Remark. The processes ξ0,n and ξ1,n play the role of an approximation for
σ0W

H0 and σ1W
H1 respectively. The point (i) means that ξi,n shares the

same smoothness property as WHi ; while (ii) implies that observing a noisy
discrete sampling of σiWHi (i = 0, 1) or of its approximation is statistically
equivalent as n → ∞. Of course these points trivially hold in the case
ξ0,n = σ0W

H0 and ξ1,n = σ1W
H1 . However, a significant modification of

this simple choice is needed in order to have the fundamental properties (iii)
and (iv). These properties means that one can transform pathwise, using
the application Tn, the process ξ0,n into approximate realizations of ξ1,n;
meanwhile this application essentially does not transform the measure Pn

into a measure singular with it.
We next prove that Proposition 4 and 5 together imply Theorems 2 and

3.

6.2. Proof of Theorems 2 and 3. We prove Theorem 2 only. The proof
of Theorem 3 is analogous after having remarked that the choice of Hi and
σi entails that σ1 − σ0 is of order

σ0 log(n)
I(1 + 2H0)

n−1/(2+4H0).

Pick n large enough so that that (σ1, H1) ∈ D. Pick an arbitrary estimator
Ĥn. Let M > 0, with M < 1/(2I) for further purposes, we have:

sup(H,σ)∈D PnH,σ
{
n1/(4H+2)|Ĥn −H| ≥M

}
≥ 1

2PnH0,σ0

{
n

1
4H0+2 |Ĥn −H0| ≥M

}
+ 1

2PnH1,σ1

{
n

1
4H1+2 |Ĥn −H1| ≥M

}
≥ 1

2P
0,n
{
n

1
4H0+2 |Ĥn −H0| ≥M

}
+ 1

2P
1,n
{
n

1
4H1+2 |Ĥn −H1| ≥M

}
+ un,

where un → 0 as n→∞ by (ii) of Proposition 5. By definition of P i,n and
by taking n large enough, it suffices to bound from below

1
2

∫
Xn
[
Pnξ0n(ω)(A

0) + Pnξ1n(ω)(A
1)
]
Pn(dω), (21)

where Ai =
{
n

1
2+4Hi |Ĥn −Hi| ≥ M

}
. By (iv) of Proposition 5, for n large

enough:

∫
Xn

Pnξ0,n(ω)(A
0)Pn(dω) =

∫
Xn

Pnξ0,n(ω)(A
0)

dPn

dTnPn
(ω)TnPn(dω)

=
∫
Xn

Pnξ0,n(Tn(ω))(A
0)

dPn

dTnPn
(Tnω)Pn(dω).
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Thus (21) is equal to half the quantity∫
Xn

[
Pnξ0,n(Tnω)(A

0)
dPn

dTnPn
(Tnω) + Pnξ1,n(ω)(A

1)
]
Pn(dω)

≥ e−λ
∫
Xn

[
Pnξ0,n(Tnω)(A

0) + Pnξ1,n(ω)(A
1)
]
1 dPn

dTnPn
(Tnω)≥e−λP

n(dω)

≥ e−λ
∫
Xnr

[
Pnξ0,n(Tnω)(A

0) + Pnξ1,n(ω)(A
1)
]
1 dPn

dTnPn
(Tnω)≥e−λP

n(dω).

for any λ > 0, and where X nr denotes the set of ω ∈ X n such that

n‖ξ0,n(Tnω)− ξ1,n(ω)‖22,
∥∥ξ0,n(Tnω)

∥∥
Hα and

∥∥ξ1,n(ω)
∥∥
Hα

are bounded by r > 0.

Lemma 2. For any r > 0 there exists c(r) > 0 such that, on X nr :

Pnξ0,n(Tnω)(A
0) + Pnξ1,n(ω)(A

1) ≥ c(r) > 0.

Lemma 3. For large enough n, we have:

Pn
{
X nr ∩

dPn

dTnPn
(Tn·) ≥ e−λ

}
≥ Pn(X nr )− e−λ − 1 + c?/2.

Applying successively Lemma 2 and 3, we derive the following lower
bound:

e−λc(r)[Pn(X nr )− e−λ − 1 + c?/2].

Thus Theorem 2 is proved as soon as

lim
r→∞

lim inf
n→∞

Pn(X nr ) = 1. (22)

It suffices then to take λ and r large enough. By (i) and (iii) of Proposition
5, (22) only amounts to show the tightness of ‖ξ0,n(Tnω)‖Hα under Pn. For
L,L′ > 0, we have

Pn
{
‖ξ0,n

(
Tn(ω)

)
‖Hα ≥ L

}
=
∫
Xn

1{‖ξ0,n(ω)‖Hα≥L}
dTnPn

dPn
(ω)Pn(dω)

≤ L′Pn
{
‖ξ0,n(ω)‖Hα ≥ L

}
+ Pn

{dTnPn

dPn
≥ L′

}
≤ L′Pn

{
‖ξ0,n(ω)‖Hα ≥ L

}
+ (L′)−1

by Chebyshev’s inequality. The tightness of ‖ξ0,n(Tn(ω))‖Hα then follows
from the tightness of ‖ξ0,n‖Hα . The proof of Theorem 2 is complete.

6.3. Proof of Lemmas 2 and 3.
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6.3.1. Proof of Lemma 2. Since H0 < H1, it suffices to bound from below

Pnξ0,n(Tnω)

{
n

1
4H0+2 |Ĥn −H0| ≥M

}
+ Pnξ1,n(ω)

{
n

1
4H0+2 |Ĥn −H1| ≥M

}
.

Let

dtest(µ, ν) := sup
0≤f≤1

|
∫
fdµ−

∫
fdν|

denote the test distance between two probability measures µ and ν. The
last term above is thus greater than

Enξ1,n(ω)

{
1n1/(4H0+2)|Ĥn−H0|≥M + 1n1/(4H0+2)|Ĥn−H1|≥M

}
−dtest(Pnξ0,n(Tnω),P

n
ξ1,n(ω)).

Now since M ≤ 1/2I and by our choice for H0 and H1, one of the two
events in the expectation above must occur with probability one. Using
that dtest(µ, ν) = 1

2‖µ− ν‖TV, the last term above is further bounded below
by

1− 1
2‖P

n
ξ0,n(Tnω) − Pnξ1,n(ω)‖TV.

We conclude by Proposition 4 together with the fact that ω ∈ X nr .

6.3.2. Proof of Lemma 3. It suffices to bound from below

Pn
{
X nr
}
−
∫
Xn

1 dPn

dTnPn
(Tnω)≤e−λP

n(dω)

= Pn(X nr )−
∫
Xn

1dTnPn

dPn
(ω)≥eλT

nPn(dω)

since TnPn and Pn are equivalent. We now replace the measure TnPn in
the integral above by Pn with an error controlled by the test distance; the
lower bounds becomes

Pn
{
X nr
}
−Pn

{dTnPn

dPn
≥ eλ

}
− dtest(Pn, TnPn)

= Pn
{
X nr
}
−Pn

{dTnPn

dPn
≥ eλ

}
− 1

2‖P
n − TnPn‖TV.

We conclude by using Chebyshev inequality and Proposition 5 (iv).

7. Proof of Proposition 5.

The proof of Proposition 5 relies on the construction of the fractional
Brownian motion by Meyer, Sellan and Taqqu [20]. In section 7.1, we recall
the main steps of the construction and how to apply it to our framework.
In section 7.2, we construct the sequence of spaces (X n,Xn,Pn). The proof
of (i)–(iv) is delayed until sections 7.3–7.6



ESTIMATION OF THE HURST PARAMETER 19

7.1. A synthesis of fractional Brownian motion. Consider, a scaling
function φ whose Fourier transform has compact support as in Meyer’s book
[19], with the corresponding wavelet function ψ ∈ S(R). In [20] the authors
introduced, for d ∈ R, the following differentials of order d (via their Fourier
transform):

D̂dψ(s) := (is)dψ̂(s), φ̂d,∆(s) :=
(

is

1− eis

)d
φ̂(s),

where a determination of the argument on C \ R− with values in (−π, π)
is chosen. It is shown that the above formula is well defined and that
Ddψ, φd,∆ ∈ S(R). Define further, for d = 1/2−H ∈ (−1/2, 1/2):

ψH(t) :=
∫ t

−∞
Ddψ(u)du = Dd−1ψ(t), ψHj,k(t) := 2

j
2ψH(2jt− k),

ΘH
k (t) :=

∫ t

0
φd,∆(u− k)du, ΘH

j,k(t) = 2
j
2 ΘH

k (2jt).

In their Theorem 2 in [20], Meyer et al. prove the following almost sure
representation of fractional Brownian motion (on an appropriate probability
space and uniformly over compact sets of R):

WH
t =

∞∑
k=−∞

ΘH
k (t)εHk +

∞∑
j=0

∞∑
k=−∞

2−j(H+1/2){ψHj,k(t)− ψHj,k(0)}εj,k,

where εHk =
∑∞

l=0 γlε
′
k−l, and (1− r)d =

∑∞
k=0 γkr

k near r = 0. The ε′k, k ∈
Z, εj,k, j ≥ 0, k ∈ Z are i.i.d. N (0, 1) random variables. Note that γk =
O(k−1+d) so the series above converges in quadratic mean and the time
series obtained, (εHk )k, has a spectral density equal to |2 sin(v2 )|1−2H0 . The
scaling

WH
t

law= 2−j0HWH
2j0 t

gives yet another representation for WH
t :

∞∑
k=−∞

2−j0(H+1/2)ΘH
j0,k(t)ε

H
k +

∞∑
j=j0

∞∑
k=−∞

2−j(H+1/2){ψHj,k(t)− ψHj,k(0)}εj,k.

(23)
Comparing with other decompositions of fractional Brownian motion (for
instances Ciesielski et al., [5], Benassi et al. [3]) a particular feature is that
the random variables appearing in the high frequency terms

∞∑
j=j0

∞∑
k=−∞

2−j(H+1/2){ψHj,k(t)− ψHj,k(0)}εj,k

are independent and independent of the low frequency terms.
A drawback is that the basis used depends on H and the functions ap-

pearing in the decomposition are not compactly supported. However one
can explore the properties of this basis. In their paper [20], Meyer et al.
shows that the differential of the initial wavelet functions generate a mul-
tiresolution of L2(R) and state the following results.
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Lemma 4 (Lemma 8 in [20]). 1) There exists C∞(R), 2π-periodic functions
Ud and Vd such that the following formulas hold:

φ̂d,∆(s) = Ud(s/2)φ̂d,∆(s/2), D̂dψ(s) = Vd(s/2)φ̂d,∆(s/2).

These ’filters’ and Ud and Vd vanishes respectively in a neighborhood of π
and 0.

2) Let (ck)k∈Z ∈ l2(Z), then the function
∑

k ck2φ
d,∆(2t − k) can be ex-

pressed with the basis φd,∆(t− k) and one level of detail:∑
k

ck2φd,∆(2t− k) =
∑
k

akφ
d,∆(t− k) +

∑
k

bkD
dψ(t− k), (24)

where (ak)k∈Z and (bk)k∈Z ∈ l2(Z). Moreover a and b are given as fol-
lows: denote A, B and C the 2π-periodic extension of the discrete Fourier
transforms of a, b and c we have

A(s) = −4−d[Vd(s/2 + π)C(s/2)− Vd(s/2)C(s/2 + π)]eis/2, (25)

B(s) = −4−d[−Ud(s/2 + π)C(s/2) + Ud(s/2)C(s/2 + π)]eis/2. (26)

From these properties we can show the following lemma that will prove
useful to control inHα norm the error made when we truncate the expansion.
It also explores some properties of the basis when H varies.

Lemma 5. Let H ∈ (0, 1). (i) If uk and uj,k are two sequences such that
|uk| ≤ c(1 + |k|)c and |uj,k| ≤ c(1 + j)c(1 + |k|)c, then, for any α ∈ [0, 1) and
M ≥ 0, there exists c(α,M) such that, for all j0:

∞∑
j=j0

∑
|k|≥2j+1

∥∥uj,kψHj,k∥∥Hα ≤ c(α,M)2−Mj0 ,

∑
|k|≥2j0+1

∥∥ukΘH
j0,k

∥∥
Hα
≤ c(α,M)2−Mj0 .

(ii) For all M ≥ 0 there exists c(M) such that for all ε > 0 with H + ε < 1
and t ∈ R:

|ψH+ε(t)− ψH(t)| ≤ c(M)
ε

(1 + |t|)M
. (27)

(iii) For all ε > 0 with H + ε < 1 we have, for all k ∈ Z

ΘH+ε
k −ΘH

k =
∑
l∈Z

al(ε)ΘH
k+l +

∑
l∈Z

bl(ε)
{
ψH0,k+l(t)− ψH0,k+l(0)

}
, (28)

where the coefficients al(ε) and bl(ε) are such that for all M , there exists
c(M) such that for all ε

max{|al(ε)|, |bl(ε)|} ≤ εc(M)(1 + |l|)−M . (29)

Moreover the 2π-periodic function Bε with Fourier coefficient bl(ε) vanishes
in some neighborhood of zero independent of ε.

Proof. See Section 8.1 in the Appendix. �

7.2. The space (X n,Xn,Pn). Let us recall that H1 = H0 + εn where
εn = I−1n−1/(2+4H0); j0 = [log2 n

1/(1+2H0)] and σ1 = σ02j0εn .
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7.2.1. We take for X n an infinite product of real lines, endowed with the
product sigma field Xn:

X n :=
( 2j0+1⊗
k=−2j0+1

R
)
⊗
( ∞⊗
j=j0

⊗
|k|≤2j+1

R
)

=: X ne ⊗X nd .

An element of X n is denoted by ω = (ωe, ωd) with ωe = (ωe
k)|k|≤2j0+1 and

ωd = (ωd
λ )λ=(j,k);j≥j0,|k|≤2j+1 . The projection on the coordinates are denoted

by εk(ω) = ωe
k for |k| ≤ 2j0+1 and εj,k(ω) = ωd

j,k for j ≥ j0, |k| ≤ 2j+1.

On X n we define the probability measure Pn := Pn
e⊗Pn

d, where Pn
e is the

unique probability on X ne which makes the sequence (εk) a centred Gaussian
stationary time series with spectral density |2 sin( s2)|1−2H0 . The probability
measure Pn

d is the unique probability on X nd that makes the sequence (εj,k)
i.i.d. N (0, 1).

7.2.2. As suggested by section 7.1, we define an approximation of σ0W
H
0

by keeping a finite number of coefficients at each scale:

ξ0,n(t) :=
∑

|k|≤2j0+1

σ02−j0(H0+1/2)ΘH0
j0,k

(t)εk

+
∑
j≥j0

∑
|k|≤2j+1

σ02−j(H0+1/2)
{
ψH0
j,k (t)− ψH0

j,k (0)
}
εj,k. (30)

Denote by T n,1 a linear mapping from X ne to itself such that under the
measure T n,1Pn

e , the coordinates (εk) form a centred Gaussian time series
with spectral density |2 sin( s2)|1−2H1 . Let

ε′k(ω) := εk(T n,1ω). (31)

We then define on the same space an approximation for σ1W
H
1 . A natural

choice would be to take again (30) with (σ1, H1) and ε′k instead of (σ0, H0)
and εk. We proceed a little bit differently: we replace all the ΘH1

j0,k
by their

truncated expansion on ΘH0
j0,k+l and ψH0

j0,k+l using relation (28). We then
reorder the sums and finally drop the terms with index k corresponding to
the localization k/2j outside [−2, 2]. The reason is that we want to use the
same basis as in ξ0,n, for the low frequency terms.

This leads us to the following approximation for σ1W
H1 :

ξ1,n(t) :=
∑

|k|≤2j0+1

σ12−j0(H1+1/2)ΘH0
j0,k

(t)ε′k

+
∑

|l|≤2j0+1

σ12−j0(H1+1/2)ΘH0
j0,l

(t)
∑

|k|≤2j0+1

al−kε
′
k

+
∑

|l|≤2j0+1

σ12−j0(H1+1/2){ψH0
j0,l

(t)− ψH0
j0,l

(0)}
∑

|k|≤2j0+1

bl−kε
′
k

+
∑
j≥j0

∑
|k|≤2j+1

σ12−j(H1+1/2)
{
ψH1
j,k (t)− ψH1

j,k (0)
}
εj,k, (32)
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where the coefficients a = a(ε) and b = b(ε) are defined by (28) withH = H0,
H + ε = H1.

7.2.3. The last step is the construction of the mapping Tn from (X n,Xn)
to itself. Recalling (iii) of Proposition 5, we see that Tn should transform
outcomes of ξ0,n into approximate outcomes of ξ1,n. Thus we define the
action of Tn on the the random space (X n,Xn) by making the low frequency
terms of ξ0,n(Tnω) exactly match the low frequency terms of ξ1,n(ω).

We define T 2,n on X n as the linear map such that:

εl(T 2,nω) =
∑

|k|≤2j0+1

al−kεk(ω) + εl(ω), (33)

εj0,l(T 2,nω) =
∑

|k|≤2j0+1

bl−kεk(ω) + εj0,l(ω), (34)

εj,l(T 2,nω) = εj,l(ω) if j > j0. (35)

Remark that the matrix of this linear map in the canonical basis of X n is
of course infinite, but T 2,n leaves invariant the finite dimensional subspace
X ne ⊗(⊗|k|≤2j0+1 R)⊗(0, 0, . . . ) ⊂ X n and is the identity on a supplementary
space. On the finite dimensional subspace its matrix is Id + Kn where Kn

is the square matrix of size 2[2j0+2 + 1]:

Kn =
(

(al−k)|l|,|k|≤2j0+1 0
(bl−k)|l|,|k|≤2j0+1 0

)
. (36)

Finally, we set
Tn = T n,2 ◦ T n,1, (37)

where we denote again by T n,1 the extension of T n,1 (previously defined
only on X ne ) to X n such that it is the identity on 0Xne ⊗X

n
d .

As announced the choice of Tn, with (30)–(35) and the fact that σ12−j0H1 =
σ02j0εn2−j0H1 = σ02−j0H0 yields

ξ1,n
(
ω)−ξ0,n(Tn(ω)

)
=
∑
j≥j0

∑
|k|≤2j+1

σ12−j(H1+1/2)
{
ψH1
j,k (t)− ψH1

j,k (0)
}
εj,k(ω)

−
∑
j≥j0

∑
|k|≤2j+1

σ02−j(H0+1/2)
{
ψH0
j,k (t)− ψH0

j,k (0)
}
εj,k(ω). (38)

We now have completed the setup of (X n,Xn,Pn) and it now remains to
prove that Proposition 5 hold. Let us stress that the choice of j0 is for that
matter crucial. Clearly Proposition 5 (iii) requires that j0 is large enough.
Meanwhile, Proposition 5 (iv) requires that the number of components of
X n on which Tn is different from the identity is as small as possible, which
requires that j0 is not too large.

7.3. Proof of Proposition 5, (i). Define temporarily a probability space
(Ω̃0, Ã0, P̃0) with random variables (ε̃0j,k)j≥j0,k∈Z and (ε̃0k)k∈Z as in the repre-
sentation of section 7.1. Let W̃H0 be the corresponding fractional Brownian
motion defined on this space. It is well known that ‖W̃H0‖Hα is almost
surely finite on this probability space. We write the decomposition

σ0W̃
H0 = ξ̃0,n + r̃0,n,
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where ξ̃0,n has an expression analogous to (30) and

r̃0,n =
∑

|k|>2j0+1

σ02−j0(H0+1/2)ΘH0
j0,k

(t)ε̃0k

+
∑
j≥j0

∑
|k|>2j+1

σ02−j(H0+1/2)
{
ψH0
j,k (t)− ψH0

j,k (0)
}
ε̃0j,k.

The tightness of ‖ξ0,n‖Hα under Pn is equivalent to that of ‖ξ̃0,n‖Hα under
P̃0 and thus will follow from the study of ‖r̃0,n‖Hα . It is sufficient to show
that its expectation is bounded independently of j0. Using the Gaussianity
of the random variables (see lemma 11 below) there exists a positive C(ω)
such that E{Cp} depends only on p and:

∀j ≥ j0,∀k ∈ Z, |ε̃0j,k| ≤ C(ω) log(2+j) log(2+|k|) and |ε̃0k| ≤ C(ω) log(2+|k|).

By Lemma 5 (i) we obtain that for arbitrarily large M

∥∥r̃0,n
∥∥
Hα ≤ C(ω)c(M)2−j0M , (39)

hence E{‖r̃0,n‖Hα} ≤ c and the result is proved. We now turn to ‖ξ1,n‖Hα .
Define likewise on a probability space (Ω̃1, Ã1, P̃1), the process W̃H1

t as

∞∑
k=−∞

2−j0(H1+1/2)ΘH1
j0,k

(t)ε̃1k +
∞∑
j=j0

∞∑
k=−∞

2−j(H1+1/2)
{
ψH1
j,k (t)− ψH1

j,k (0)
}
ε̃1j,k.

We use Lemma 5 (iii) for |k| ≤ 2j0+1:

W̃H1
t =

∑
|k|≤2j0+1

ε̃1k2
−j0(H1+1/2)

(∑
l∈Z

al−kΘH0
j0,l

(t) + ΘH0
j0,k

(t)

)

+
∑

|k|≤2j0+1

ε̃1k2
−j0(H1+1/2)

∑
l∈Z

bl−k

{
ψH0
j0,l

(t)− ψH0
j0,l

(0)
}

+
∑

|k|>2j0+1

2−j0(H1+1/2)ΘH1
j0,k

(t)ε̃1k

+
∞∑
j=j0

∞∑
k=−∞

2−j(H1+1/2)
{
ψH1
j,k (t)− ψH1

j,k (0)
}
ε̃1j,k.

We derive the following decomposition

σ1W̃
H1 = ξ̃1,n + r̃1,n



ESTIMATION OF THE HURST PARAMETER 24

where ξ̃1,n has under P̃1, the same law as ξ1,n under Pn and

r̃1,n(t) :=
∑

|l|>2j0+1

σ12−j0(H1+1/2)ΘH0
j0,l

(t)
∑

|k|≤2j0+1

al−k ε̃
1
k

+
∑

|l|>2j0+1

σ12−j0(H1+1/2){ψH0
j0,l

(t)− ψH0
j0,l

(0)}
∑

|k|≤2j0+1

bl−k ε̃
1
k

+
∑

|k|>2j0+1

σ12−j0(H1+1/2)ΘH1
j0,k

(t)ε̃1k

+
∑
j≥j0

∑
|k|>2j+1

σ12−j(H1+1/2)
{
ψH1
j,k (t)− ψH1

j,k (0)
}
ε̃1j,k.

Then using again Lemma 5 (i) and Lemma 11 in the Appendix we obtain that
‖r̃1,n‖Hα ≤ C(ω)c(M)2−j0M for M arbitrarily large where C is a random
variable with finite moment independent of j0. The result follows.

7.4. Proof of Proposition 5 (ii). Let A ∈ Y be an event in the observa-
tion space. We have

PnH0,σ0
(A) =

∫
Ω̃0

Pn
σ0W̃H0 (ω)

(A) P̃0(dω), Pn,0(A) =
∫

Ω̃0

Pn
ξ̃0,n(ω)

(A) P̃0(dω).

It follows that

‖PnH0,σ0|Y − P
n,0‖TV ≤

∫
Ω̃0

‖Pn
σ0W̃H0 (ω)

− Pn
ξ̃0,n(ω)

‖TVP̃0(dω).

By Proposition 4 this is less than the expectation with respect to P̃0 of
c(n‖σ0W̃

H0 − ξ̃0,n‖2∞)1/2 = c(n‖r̃0,n‖2∞)1/2. But, by (39), n‖r0,n‖2∞ ≤
n‖r0,n‖2H0

is bounded by some random variable with finite moment of any
order under P̃0 times n2−j0M for arbitrarily large M . Since 2−j0 tends to
zero as a negative power of n, if M is sufficiently large we obtain:

lim
n→∞

‖PnH0,σ0|Y − P
n,0‖TV = 0.

One obtain analogously that limn→∞ ‖PnH1,σ1|Y − P
n,1‖TV = 0.

7.5. Proof of Proposition 5 (iii). From the choice of εn and j0, all we
need to prove is the tighness of ε−2

n 22j0H0‖ξ1,n(ω)− ξ0,n(Tn(ω))‖22. We plan
to use the following decomposition

ξ1,n(ω)− ξ0,n
(
Tn(ω)

)
= q1(t)− q1(0) + q2(t)− q2(0),

where

q1(t) :=
∑
j≥j0

∑
|k|≤2j+1

σ12−j(H1+1/2){ψH1
j,k (t)− ψH0

j,k (t)}εj,k(ω),

q2(t) :=
∑
j≥j0

∑
|k|≤2j+1

(σ12−j(H1+1/2) − σ02−j(H0+1/2))ψH0
j,k (t)εj,k(ω).

Using the independence of the εj,k

EPn{q1(t)2} =
∑
j≥j0

∑
|k|≤2j+1

σ2
12−j(2H1+1)(ψH1

j,k (t)− ψH0
j,k (t))2.
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Then, by Lemma 5 (ii) for any M ≥ 0, this is less than

c(M)
∑
j≥j0

∑
|k|≤2j+1

σ2
12−j(2H1+1) 2jε2

n

(1 + |2jt− k|)2M
.

Since H1 ≥ H0, by taking M > 1/2 we readily obtain EPn{q1(t)2} ≤
cε2
n2−2j0H0 , hence

EPn
(
‖q1(·)− q1(0)‖22

)
≤ cε2

n2−2j0H0 . (40)

Since σ12−j0εn = σ0 we have

q2(t) =
∑
j≥j0

∑
|k|≤2j+1

(2(j0−j)εn − 1)σ02−j(H0+1/2)ψH0
j,k (t)εj,k(ω).

By the independence of the εj,k and the fact that ψH0 ∈ S(R), we derive,
for any M ≥ 0:

EPn{q2(t)2} ≤ c(M)
∑
j≥j0

∑
|k|≤2j+1

|2(j0−j)εn−1|2σ2
02−j(2H0+1) 2j

(1 + |2jt− k|)2M
.

For M > 1/2, this quantity is smaller than cε2
n

∑
j≥j0(j − j0)22−2jH0 , hence

EPn{q2(t)2} ≤ ε2
n2−2j0H0 ,

from which we deduce a bound analogous to (40) for q2.

7.6. Proof of Proposition 5 (iv).

7.6.1. Let us first briefly explain why

TnPn = T n,2 ◦ T n,1Pn ∼ Pn.

Recall that the measure Pn = Pn
e ⊗ Pn

d on X ne ⊗ X nd is such that Pn
d is

an infinite dimensional white noise and Pn
e makes the components of X ne a

Gaussian time series with spectral density |2 sin( s2)|1−2H0 . But the almost
sure positivity of this spectral density implies that Pn

e is equivalent to the
Lebesgue measure dx on X ne (see e.g. Brockwell and Davis p.137 [4]). Thus
Pn ∼ dx⊗Pn

d. But the measure T n,1Pn has the same structure as Pn except
that the components of X ne now have the law of a time series with spectral
density |2 sin( s2)|1−2H1 > 0. Hence T n,1Pn ∼ dx ⊗ Pn

d too. It follows that
Pn ∼ T n,1Pn.

Next, recall that T n,2 is a linear map on X n = X ne ⊗ (
⊗
|k|≤2j0+1 R) ⊗

(
⊗∞

j>j0

⊗
|k|≤2j+1 R) which has matrix Id+Kn (recall (36)) on the restriction

X ne ⊗(
⊗
|k|≤2j0+1 R) and the identity on

⊗∞
j>j0

⊗
|k|≤2j+1 R. We deduce that

a sufficient condition for the equivalence

T n,2 ◦ T n,1Pn ∼ T n,1Pn

is that the matrix Id + Kn is non degenerate. But the summation of the
coefficients along the lines and columns of Kn are bounded by cεn and by
Schur Lemma this is sufficient to imply that all the eigenvalues of Kn are at
most of magnitude εn. Hence Id + Kn is invertible for large enough n and
the equivalence is proved.
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7.6.2. Using the triangle inequality Proposition 5 (iv) is proved as soon as

‖Pn − T n,1Pn‖TV (41)

and
‖T n,2 ◦ T n,1Pn − T n,1Pn‖TV (42)

can be made arbitrarily small for an appropriate choice of I and for large
enough n. It will be convenient to use again the inequality ‖µ − ν‖TV ≤√

2D(µ, ν)1/2, where D(µ, ν) denotes the Kullback-Leibler divergence be-
tween µ and ν.

Let us recall the following fundamental fact on Gaussian measures: If µA
and µB are two (centred) Gaussian measures on RN with non degenerate
covariance matrices A and B, then

D(µA, µB) = Tr(AB−1)− log det(AB−1)− Tr(Id).

On the vector space of matrices of size N , we will make use of the trace
norm ‖A‖2tr := Tr(A∗A) and the operator norm ‖A‖2op = sup‖x‖=1 ‖Ax‖,
where ‖ · ‖ is the usual Euclidean norm on RN . Recall that

‖A‖op ≤ ‖A‖tr ≤
√
N‖A‖op

and that

|Tr(AB)| ≤ ‖A‖tr‖B‖tr, ‖AB‖tr ≤ min{‖A‖op‖B‖tr, ‖A‖tr‖B‖op}.

We further take N := 2j0+2 + 1, the dimensionality of X ne and define

f0(s) := |2 sin(
s

2
)|1−2H0 and f1(s) := |2 sin(

s

2
)|1−2H1 (43)

the two spectral densities involved in the definition of Pn and T n,1Pn re-
spectively. Their restrictions to X ne are Gaussian measures with covariance
matrices given by the Toeplitz matrices TN (f0) and TN (f1) (the notation
TN (f) means the matrix with entries TN (f)k,l := 1

2π

∫ π
−π f(s)ei(k−l)sds).

Thus, we derive the following upper bound for the variation distance ‖Pn−
T n,1Pn‖TV:
√

2
[
Tr(TN (f1)TN (f0)−1)− log det(TN (f1)TN (f0)−1)− Tr(Id)

]
. (44)

But the inequality

f1(s) = f0(s)|2 sin(
s

2
)|−2εn ≥ f0(s)

implies, by Lemma 6 in the Appendix, that TN (f1) ≥ TN (f0). In particular,
the eigenvalues λ1, . . . , λN of the matrix TN (f1)TN (f0)−1 are all greater than
one, hence (44) becomes

√
2

N∑
i=1

(λi − log λi − 1) ≤
N∑
i=1

(λi − 1)2 = Tr
(
[TN (f1)TN (f0)−1 − Id]2]

)
.

If we introduce the difference

gεn(s) = f1(s)− f0(s) =
[
|2 sin(

s

2
)|−2εn − 1

]
f0(s), (45)

we obtain
‖Pn − T n,1Pn‖TV ≤ Tr(

[
TN (gεn)TN (f0)−1

]2).
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If we apply lemma 8 in Appendix below, we find that this quantity is less
than cNε2

n ∼ cI−2. This yields an arbitrary control on (41) if I is taken
large enough.

In order to obtain a control on (42), we need to compare two Gaussian
measures µC and µD on RN ′ with now N ′ = 2(2j0+2 + 1), C = (Id +
Kn)D(Id +Kn)∗ and

D =
(
TN (f1) 0

0 Id

)
,

as follows from (36). In the same way as for (41), we have

‖T n,2 ◦ T n,1pn − T n,1pn‖TV ≤
√

2[Tr(CD−1)− log det(CD−1)− Tr(Id)].

Write
CD−1 = Id +Kn +DKn∗D−1 +KnDKn∗D−1

hence ‖T n,2 ◦ T n,1Pn − T n,1Pn‖TV is bounded by
√

2[2 Tr(Kn)− 2 log det(Id +Kn) + Tr(KnDKn∗D−1)].

Since all the eigenvalues ofKn are of magnitude εn the upper bound becomes

c[Nε2
n + Tr(KnDKn∗D−1)].

Since Kn is given by (36), it can be rewritten with the help of Toeplitz
matrices as

Kn =
(
TN (Aε) 0
TN (Bε) 0

)
,

where Aε and Bε are the 2π–periodic function associated with the Fourier
sequences al(ε) and bl(ε) already introduced in the proof of Lemma 5. The
product of these blockwise matrices shows that

Tr(KnDKn∗D−1) = Tr(TN (Aε)TN (f1)TN (Aε)∗TN (f1)−1)+

Tr(TN (Bε)TN (f1)TN (Bε)∗).

These two traces of Toeplitz matrices are shown in Lemma 9–10 in Appendix
below to be of order cNε2

n ∼ cI−1. We finally get an arbitrary control on
(42) for a large enough I.

8. Appendix

8.1. Proof of lemma 5. (i) Let L ≥ 2 and k, |k| ∈ [L2j , (L+ 1)2j ]. Since
ψH ∈ S(R),

sup
t∈[0,1]

|ψHj,k(t)|+ | ∂∂tψ
H
j,k(t)| ≤ c(M)23/2j(1 + (L− 1)2j)−M , (46)

for an arbitrarily large M . The left hand side of the first inequality to be
established is then less than

c(M)
∞∑
j=j0

∞∑
L=2

23/2j
∑

|k|∈[L2j ,(L+1)2j ]

|uj,k(1 + (L− 1)2j)−M |.

Using the assumption on uj,k, we bound this quantity by c(M)
∑∞

j=j0
(1 +

jc)
∑∞

L=2 25/2j(1+(L−1)2j)c−M for another constant c(M). If M > c+1,
the latter expression is smaller than c(M)

∑∞
j=j0

(1+jc)25/2j1/(M−c−1)(1+
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2j)c−M+1, which has the desired form. The second inequality is proved
similarly, noticing that

ΘH
j,k(t) = 23/2j

∫ t

0
φd,∆(2ju− k)du,

where φd,∆ is an element of S(R) and the forgoing arguments apply with
ΘH
j,k in place of ψHj,k.

(ii) By definition of ψH , we have

ψ̂H+ε(s)− ψ̂H(s) =
[
(is)−ε − 1

]
ψ̂H(s) := gε(s).

For the Meyer wavelet, ψ̂ vanishes in a neighbourhood of 0 and has compact
support, so does ψ̂H(s) and the function gε(s) is smooth with compact
support. The classical relation between the norm of the derivatives of the
Fourier transform of a function and the size of the function gives (27).
(iii) We have

φ̂d−ε,∆(s)− φ̂d,∆(s) = [(
is

1− eis
)−ε − 1]φ̂d,∆(s).

In the construction of Meyer et al. φ̂d,∆(s) vanishes if |s| ≥ 4π/3, so we can

find a smooth function hε(s), with period 4π and equal to
(

is
1−eis

)−ε
− 1 if

|s| ≤ 4π/3 that vanishes in a neighborhood of 2π and such that

φ̂d−ε,∆(s)− φ̂d,∆(s) = hε(s)φ̂d,∆(s).

Using Lemma 4, φ̂d−ε,∆(s) − φ̂d,∆(s) = Cε(s/2)φ̂d,∆(s/2), where Cε(s) =
hε(2s)Ud(s) is 2π-periodic. In the real variable domain:

φd−ε,∆(t)− φd,∆(t) =
∑
k

ck(ε)2φd,∆(2t− k),

where ck(ε) are the discrete Fourier coefficients of the function Cε. By yet
Lemma 4 again:

φd−ε,∆(t)− φd,∆(t) =
∑
l

al(ε)φd,∆(t− l) +
∑
l

bl(ε)Ddψ(t− l), (47)

where the al(ε), bl(ε) and cl(ε) are related by (25)-(26). Making the change
of variable t by t−k in (47) and then integrating between 0 and t gives (28).
The next step is (29). It follows from the explicit expression for Aε and Bε
and Cε together with the fact that hε is easily bounded by a constant time
ε. Finally the fact that Bε vanishes on a neighborhood of 0 follows from
(26) and the fact that Ud vanishes near π.

8.2. Technical lemmas. We start by some results on Toeplitz matrices
of size N , which, given a function f , have entries defined by TN (f)k,l =
1

2π

∫ π
−π f(s)ei(k−l)sds.

Lemma 6. Let f and g be two spectral densities with f(s) ≥ g(s) ≥ 0, then
TN (f) ≥ TN (g). In particular, if f(s) ≥ c > 0, then TN (f) ≥ cId.
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Proof. If x ∈ RN

x∗TN (g)x = 1
2π

∫ π
−π g(s)|

∑N
k=1 e

iksxk|2ds
≤ 1

2π

∫ π
−π f(s)|

∑N
k=1 e

iksxk|2ds = x∗TN (f)x.

�

Lemma 7. (i) Let f and h be 2π-periodic and positive. Assume that h is
even and decreasing on [0, π] then

‖TN (fh)1/2TN (f)−1/2‖2op ≤
∫ 1

2N

− 1
2N

f(s)h(s)ds
(∫ 1

2N

− 1
2N

f(s)ds
)−1

. (48)

(ii) With the notation of section 7.6, we have

‖TN (gεn)1/2TN (f0)−1/2‖2op ≤ cεn log(N).

Proof. For the part (i) we follow closely the idea of Lemma 5.3 in Dahlhaus
[6]:

‖TN (fh)1/2TN (f)−1/2‖2op = sup
‖x‖=1

x∗TN (fh)x
x∗TN (f)x

= sup
‖x‖=1

∫ π
−π f(s)h(s)|

∑N
k=1 e

iksxk|2ds∫ π
−π f(s)|

∑N
k=1 e

iksxk|2ds

≤ sup
ξ

∫ π
−π f(s)h(s)ξ(s)ds∫ π
−π f(s)ξ(s)ds

where the supremum in the last line above is taken for all functions ξ ≥ 0,
bounded by N , with

∫
ξ = 1. Using that h is decreasing on [0, π] and

symmetric, we see that the supremum is reached for ξ = N1[−N/2,N/2]

which exactly leads to (48). For (ii), we set f(s) = f0(s) and f(s)h(s) =
f0(s)

[
|2 sin( s2)|−2εn − 1

]
, apply (i) and then evaluate the integrals. �

We now study the behaviour of Tr
(
[TN (gε)TN (f0)−1]2

)
. Such kind of

estimates are considered (for statistical purposes) in Dahlhaus [6] or Fox and
Taqqu [9], but cannot be directly applied here, since the spectral density gεn
does not remains unchanged as the size of the matrix N →∞. We however
heavily rely on their techniques.

Lemma 8. There exists some constant c, such that for all n ≥ 0,

Tr
([
TN (gεn)TN (f0)−1

]2) ≤ cNε2
n.

Proof. Set

C := TN (gε)1/2TN (f0)−1TN (gε)1/2, D := TN (gε)1/2TN (f−1
0 )TN (gε)1/2.

The aim of this Lemma is to show Tr(C2) ≤ cNε2
n. Note that

Tr(C2) ≤ ‖C‖2tr ≤ ‖TN (gε)
1
2TN (f0)−1/2‖

2

op‖TN (f0)−1/2TN (gε)
1
2 ‖

2

tr.

Using that ‖·‖tr ≤
√
N‖·‖op and that the operator norm of a matrix and

of its transpose are equal, we get: Tr(C2) ≤ N‖TN (gε)1/2TN (f0)−1/2‖4op.
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Applying Lemma 7 we derive

Tr(C2) ≤ cNε2 log(N)2.

Thus the result on Tr(C2) follows from the considerations on the operator
norm given in Lemma 7 up to a log factor. We now present how to get rid of
this logarithmic factor by considering directly Tr(C2). The proof is divided
into two steps: first we show, as in Dahlhaus [6], that the difference between
Tr(D2) and Tr(C2) is negligible. Then we study Tr(D2).

First step. After some algebra, we have that

|Tr(C2)− Tr(D2)| ≤ (‖C‖op + ‖D‖op)‖C −D‖tr.

Then writing

C −D = TN (gε)1/2TN (f0)−1/2
(
Id− TN (f0)1/2TN (f−1

0 )TN (f0)1/2
)

TN (f0)−1/2TN (gε)1/2,

we deduce by Lemma 7 that

‖C −D‖tr ≤ cε log(N)‖Id− TN (f0)1/2TN (f−1
0 )TN (f0)1/2‖tr.

But it is proved in Lemma 5.2 of [6] that the trace norm of the matrix
Id−TN (f0)1/2TN (f−1

0 )TN (f0)1/2 grows at most with rate N δ for an arbitrary
small δ > 0. By Lemma 7 again, we have ‖C‖op ≤ cε log(N) hence ‖D‖op ≤
cε log(N) + ‖C −D‖tr ≤ cε log(N)N δ. This eventually gives:

|Tr(C2)− Tr(D2)| ≤ cε2 log(N)2N2δ,

which is clearly negligible versus ε2N if δ is small enough.
Second step. Following the method of Fox and Taqqu [9], we study the

asymptotic behavior of

Tr(D2) = Tr
([
TN (gε)TN (f−1

0 )
]2)

.

Let us define hε(s) = [|2 sin(s/2)|−ε − 1], so that gε = hεf0 (recall (45)). We
can expand the trace of D2 using the spectral densities as:

Tr(D2) = (2π)−4

∫
hε(y1)f0(y1)f−1

0 (y2)hε(y3)f0(y3)f0(y4)−1PN (y)dy

where the integration is over y = (y1, . . . , y4) ∈ [−π, π]4 and

PN (y) =
∑

1≤j1,...j4≤N
ei(j1−j2)y1 . . . ei(j4−j1)y4 .

This kernel PN can be rewritten in the convenient way:

Pn(y) = ∆N (y1 − y2)∆N (y2 − y3)∆N (y3 − y4)∆N (y4 − y1),

where we have set ∆N (s) =
∑N

n=1 e
−ins. An important fact on this kernel

PN is that it concentrate on the diagonal y1 = · · · = y4 and we shall make
use of the crucial bound |∆N (s)| ≤ cLN (s) where LN is the 2π–periodic
extension of the function such that

LN (s) =
{

1/|s| if π ≥ |s| ≥ 1/N
N if |s| ≤ 1/N
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Now let JN be the integral JN = (2π)−4
∫
hε(y1)hε(y3)PN (y)dy, the proof

of the lemma consists in showing the two following points:

|Tr(D2)− JN | = o(ε2N) (49)

|JN | ≤ cε2N (50)

For the proof of (49) we consider first the integral

J ′N =
∫
hε(y1)

f0(y1)
f0(y2)

hε(y3){f0(y3)
f0(y4)

− 1}PN (y)dy.

As stated in Dalhaus in can be seen that for all δ > 0 small enough we have
the bound, |f0(y3)

f0(y4) − 1| ≤ c |y3−y4|
1−3δ

|y3|1−δ
. Hence, using periodicity of f0, for

y3, y4 ∈ [−π, π]2 we deduce:

|f0(y3)
f0(y4)

− 1| ≤ cLN (y3 − y4)−1+3δ

|y3|1−δ
.

Together with |hε(s)| ≤ cε|s|−δ/2 (for any δ > 0), |f0(y1)| ≤ c|y1|−1+2H0 and
the boundness of 1/f0(y2) we deduce that,

|J ′N | ≤ cε2

∫
|y1|2H0−1−δ/2|y3|−1+δ/2

LN (y1 − y2)LN (y2 − y3)L3δ
N (y3 − y4)LN (y4 − y1)dy.

Now we use that LN (y3 − y4) ≤ N and then that we can integrate with
respect to y4,

∫
LN (y4 − y1)dy4 ≤ c log(N) to deduce

|J ′N | ≤ cε2N3δ log(N)
∫
|y1|2H0−1−δ/2|y3|−1+δ/2

LN (y1 − y2)LN (y2 − y3)dy1dy2dy3.

Now, for y1, y2, y3 ∈ [−π, π] we can write,

LN (y1 − y2) ≤ cN δ

[
1

|y1 − y2 + 2π|
+

1
|y1 − y2|

+
1

|y1 − y2 − 2π|

]1−δ

LN (y2 − y3) ≤ cN1−5δ

[
1

|y2 − y3 + 2π|
+

1
|y2 − y3|

+
1

|y2 − y3 − 2π|

]5δ

This enable us obtain the bound,

|J ′N | ≤ cε2N1−δ log(N)
∫
|y1|2H0−1−δ/2|y3|−1+δ/2

×
[

1
|y1−y2+2π| + 1

|y1−y2| + 1
|y1−y2−2π|

]1−δ

×
[

1
|y2−y3+2π| + 1

|y2−y3| + 1
|y2−y3−2π|

]5δ
dy1dy2dy3

As soon as δ is small enough, the latter integral converges by power counting
criteria (see Theorem 3.1 in [9]) and we deduce that J ′N = o(ε2N).

We can obtain similarly an analogous bound for the integral

J ′′N =
∫
hε(y1)

{
f0(y1)
f0(y2)

− 1
}
hε(y3)PN (y)dy1dy2dy3dy4,

and (49) follows.
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We now turn to the proof of (50). Using the property (2π)−1
∫ π
−π ∆N (u−

v)∆N (v − w)dv = ∆N (u− w), we can rewrite JN as

JN =
1

(2π)2

∫
[−π,π]2

hε(y1)hε(y3)∆N (y1 − y3)∆N (y3 − y1)dy1dy3,

which is equal to
∑

1≤j1,j2≤N αε(j1 − j2)αε(j2 − j1) where αε are the Fourier
coefficient of the periodic function hε. Hence, we deduce that:

|JN | ≤ N
∑
k∈Z

αε(k)2 ≤ N‖hε‖2L2 .

But we can easily find the bound,

‖hε‖2L2 = (2π)−1

∫ π

−π

[
|2 sin(s/2)|2ε − 1

]2 ds ≤ cε2.

This gives (49). �

Lemma 9. We have

|Tr(TN (Aε)TN (f1)TN (Aε)∗TN (f1)−1)| ≤ cNε2
n. (51)

Proof. First, let us recall that Aε is bounded by cε. Moreover we may assume
that Aε(0) = 0 by subtracting the true value of Aε(0) and notice that it does
not affect (51). Then the proof relies on the quasi commutative property of
Toeplitz matrices. For this, let us write the left hand side of (51) as

Tr(TN (Aε)TN (Aε)∗)+Tr [(TN (Aε)TN (f1)− TN (f1)TN (Aε))TN (Aε)∗TN (f1)] .

But Tr(TN (Aε)TN (Aε)∗) ≤ N
∑

k ak(ε)
2 ≤ Nε2 and the other trace is less

than:

‖TN (Aε)TN (f1)− TN (f1)TN (Aε)‖tr‖TN (Aε)∗TN (f1)−1‖tr.
The remainder of the proof is broken in two steps.

First step: For some δ > 0, ‖TN (Aε)∗TN (f1)−1‖tr ≤ cN1−δε.
Second step: For any δ > 0, ‖TN (Aε)TN (f1)− TN (f1)TN (Aε)‖tr ≤ cN δε.
For the first step, using that TN (f1)−1 is bounded in operator norm, yields

‖TN (Aε)∗TN (f1)−1‖tr ≤ cN1/2ε.
For the second step, we evaluate ‖TN (Aε)TN (f1)− TN (f1)TN (Aε)‖tr as

in lemma 8 by the integral:∫
[f1(y1)Aε(−y2)−Aε(−y1)f1(y2)][Aε(y3)f1(y4)− f1(y3)Aε(y4)]PN (y)dy.

Using that the function in the integral above vanishes on the diagonals
y1 = y2 and y3 = y4, it can be shown that this integral is of order ε2

nN
δ. �

Lemma 10. We have

|Tr[TN (Bεn)TN (f1)TN (Bεn)∗]| ≤ cNε2
n.

Proof. We evaluate again the trace by the integral∫
Bε(y1)f1(y2)Bε(−y3)PN (y)dy.

Using that |Bε| is less than ε and vanishes in a neighborhood of zero, it can
be shown that the integral above is of order Nε2. �



ESTIMATION OF THE HURST PARAMETER 33

Lemma 11. Let (εn(ω))n∈Z be identically distributed random variables with
law N (0, 1). Then there exists C(ω), with finite moment of any order, such
that almost surely

|εn(ω)| ≤ C(ω)(log(2 + |n|))
1
2 .

If the family of random variable is enumerated as (εj,k(ω))j≥0,k∈Z then we
have instead:

|εj,k(ω)| ≤ C(ω)
(

log(2 + j)
) 1

2
(

log(2 + |k|)
) 1

2 .

Proof. See Lemma 3 in Meyer et al. [20]. �
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