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ABSTRACT. We estimate the Hurst parameter H of a fractional Brow-
nian motion from discrete noisy data, observed along a high frequency
sampling scheme. The presence of the systematic experimental noise
makes harder the recovering of H since relevant information is mostly
contained in the high frequencies of the signal.

We quantify the difficulty of the statistical problem in the minimax
sense, and prove that the rate n™/“#+2) ig optimal for estimating H.
Our estimators are based on adaptive estimation of quadratic functionals
using wavelets.

1. INTRODUCTION

1.1. Motivation. Many phenomena arising in physics, molecular biology or
traffic networks, possess, or are suspected to possess self-similar properties
that are essential for their understanding or modelling. Recovering these so-
called scaling exponents from experimental data is a challenging and ongoing
issue (Abry and Veitch [2], Willinger et al. [29], West and Grigolini [27],
Scafetta et al. [22] and the references therein). The purpose of this paper is
to investigate a new statistical method for estimating self-similarity, based on
adaptive estimation of quadratic functionals of the noisy data using wavelets.
We keep to dimension 1 and focus on the paradigmatic example of fractional
Brownian motion.

1.2. Statistical model. Let X be a one-dimensional process of interest,
that has the form

Xt = O'WtH,
where WH is a fractional Brownian motion defined on the real line, with
self-similar index (or Hurst parameter) H € (0,1) and scaling parameter
o € (0,400). Both H and ¢ are unknown.

In practice, it is unrealistic to assume that a sample path of X can be
observed (in which case the parameters H and o would be identified). In-
stead, X is rather observed at discrete times with frequency n over a time
interval, say [0, 1]. The problem of estimating H (and o) in this context has
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been paid considerable attention (see e.g. Dahlhaus [6], Istas and Lang [15],
Ludena [18] among many others and the references therein).

In this paper, we take the next logical step: we assume that each obser-
vation is contaminated by noise, so we observe

for ¢ = 0,...,n, where the { are centered noise terms and z ~ a(z) is
an unknown variance function. Throughout, we assume for simplicity that
n = 2N. Recovering the Hurst parameter H from the data (Y;*) is our
objective.

1.3. Results. We show in Theorems 1 and 2 that the rate
’Un(H) _ n—l/(4H+2)

is optimal for estimating H. This means that (2) and (3) below agree, with
vp = vp(H). The accuracy v,(H) is slower by a polynomial order than
the usual n~/2 obtained in the absence of noise. The difficulty lies in the
fact the the information about H is contained in the high frequencies of the
signal t ~» X;. Although the high frequency sampling rate n usually allows
to recover H with the classical rate n~'/2 when X /n 18 directly observed
(e.g. by means of quadratic variations, see [15]) the presence of the £ in
our context significantly alters the nature of the problem.

2. MAIN RESULTS

2.1. Methodology. We denote by D C (0,1) x (0, +00) the parameter set
in which lies (H, o). The process X and the noise variables (£]') are defined
on some common probability space endowed with a probability measure
P¥ - Denote by ) the sigma field generated by the observations (1). The
joint law of (Y;™) is thus the restriction ]P’"H’U‘y so the sequence of statistical
experiments

&= ( 7Il{,a|y7 (H7U) S D)n21

specifies our mathematical model. Note that £ also implicitly depends on
the choice of z ~» a(x) and the conditional joint law of the (£]') given X.

A rate v, — 0 is said to be achievable over D if there exists a (sequence
of) estimator(s) H, such that the (sequence of) normalized error(s)

v;l(ﬁ[n —H) (2)

is bounded in P —probability, uniformly over D. The rate vy, is said to be
a lower rate of convergence over D if there exists ¢ > 0 such that

liminfinf sup IF’}‘LJ{vgl\F —H|>c} >0, (3)
n—oo F (Hs)eD

where the infimum is taken over all estimators (i.e. )-measurable variables).
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2.2. The estimation strategy. The fact that X is a fractional Brownian
motion enables to predict that its energy levels

Qj = Zd%k = Z (fRXS wj7k(s)ds)2 (4)
k

k
scale! with a ratio related to H:

Qjt1 _ o-2n

Q; ; (5)

up to an error term that vanishes as the frequency level j increases. Here,

d; 1, is the random wavelet coefficient of X related to a certain wavelet basis

(¥jk,J >0,k € Z). In Section 3.2 below, we construct a procedure
(Yin) ~ (2, k=0,...,27 —=1,0< j < Jy) (6)

Jikm?

that processes the data into estimates of the squared wavelet coefficients d? i

up to the maximal resolution level .J, = [1logy(n)]. We obtain a family of
estimators for H by setting

7y 1 Aj+1,n .

ijn::—§log2 = , =1, J,—1,

j?n

with -

Qj,n = d?,k,n'

k

The ratio level j between two estimated energy levels that contains maximal
information about H is chosen by means of a block thresholding rule see
below. The rule is inspired by the methodology intoduced for the adaptive
estimation of quadratic functionals (among others: Efromovich and Low [8],
Gayraud and Tribouley [10], Tribouley [24] and the references therein).

2.3. Statement of the results. We consider parameter sets of the form:

D:=[H_,H{] % [o_,04] C(3,1) x (0,400). (7)
Assumption A. (i) The function x ~ a(x) is bounded, continuously dif-
ferentiable with a bounded derivative.

(ii) The continuous time process X is F' -adapted with respect to a filtration
Fr = (Frt>0).

(11i) The noise term & at time i/n is f(’ZL.Jrl)/n—measurable. Moreover:
i & | Fipt =0, o (6 | Fip} =1,

and SUP(H,0)eD SUP4n E?{,a{(&n)[l} < +o0.

Theorem 1. Grant Assumption A. The rate v, (H) := n~"*H+2) js achiev-
able for estimating H, over any parameter space of the form (7). Moreover,
the estimator constructed in Section 3 and given by (9)—(11) below achieves
the rate vy, (H).

LAs for the approximation symbol ~, we do not yet specify; see Proposition 1 below.
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This rate is indeed optimal as soon as the noise process enjoys some reg-
ularity:

Assumption B. (i) We have inf; a(z) > 0.

(11) Conditional on X, the variables £ are independent, absolutely contin-
uous with C? densities x ~» exp ( — vijn(az)) vanishing at infinity (together
with their derivatives) at a rate strictly faster than 1/xz% and:

SiufE{(d%w,n(S?))?(l +1EM)} < +oo. (8)

Moreover, the functions x ~> dci—ggvi,n(a:) are Lipschitz continuous, with Lip-
schitz constants independent of i,n.

Theorem 2. Grant Assumptions A and B. For estimating H, the rate
vp(H) = n~VEHE2) s o lower rate of convergence over any parameter
set of the form (7) with non empty interior.

We complete this section by an ancillary result about the estimation of
the scaling parameter o, although we are primarily interested in recovering
H. The estimation of o has been adressed by Gloter and Jacod [12] for the
case H = 1/2 and by Gloter and Hoffmann [11] in a slightly different model
when H > 1/2 is known. Altogether, the rate v, (H) is proved to be optimal
for estimating o when H is known. Our next result shows that we loose a
logarithmic factor when H is unknown.

Theorem 3. Grant Assumptions A and B. For estimating o, the rate
n~1/(4H+2) log(n) is a lower rate of convergence over any parameter set of

the form (7).
2.4. Discussion.

2.4.1. About the rate. We see that the presence of noise dramatically alters
the accuracy of estimation of the Hurst parameter: the optimal rate v, (H) =
n~1/(4H+2) inflates by a polynomial order as H increases. In particular, the
classical (parametric rate) n~12 is obtained by formally letting H tend to
0 (a case we do not have here).

2.4.2. About Theorem 1. The restriction H_ > 1/2 is important here, and
it is linked to the discretization effect of the estimator. Assumption A can
easily be fulfilled in the case of a noise process that is independent of the
signal X. It is not minimal: more general noise processes could presumably
be considered, and, more interestingly, more general scaling processes than
fractional Brownian motion as well. To this end, it is required that the
energy levels of X satisfy Proposition 1 and that the empirical energy levels
satisfy Proposition 2 in Section 4 below. We do not pursue that here. See
also Lang and Roueff [17].

2.4.3. About Theorem 2. It should be emphasised that our lower bound is
local, in the sense that D can be taken arbitrarily small in the class specified
by (7). Observe that since the rate v, (H) depends on the parameter value,



ESTIMATION OF THE HURST PARAMETER 5

the min-max lower bounds (3) are only really meaningful for parameter sets
D that are concentrated around some given value of H.

Assumption B (ii) is not minimal; it simply ensures that if we replace
X./n by a single unknown value 6, each translation-dilatation model 6
0 + a(0)&! admit a finite Fisher information. It is satisfied in particular
when the £ are i.i.d. centered Gaussian. More generally, any noise process
would yield the same lower bound as soon as Proposition 4 is satisfied (see
Section 6.1).

2.4.4. The stationary case. Golubev [13] remarked that in the particular
case of i.i.d. Gaussian noises, independent of W, a direct spectral approach
is simpler. Indeed, the observation generated by the Y;/,, —Y{;_1)/, becomes
stationary Gaussian, and a classical Whittle estimator shall do (Whittle
[28] or Dahlhaus [6]). In particular, although some extra care has to be
taken about the approximation in n, such an approach would certainly prove
simpler in that specific context for obtaining the lower bound.

2.4.5. Quadratic variations alternatives. Our estimator (precisely construc-
ted in Section 3 below) can be linked to more traditional quadratic variations
methods. Indeed, the fundamental energy levels Q; defined in (4) can be
obtained from the quadratic variations of X/, in the particular case of the
Schauder basis (which has not sufficiently many vanishing moments for our
purpose). However, the choice of an optimal j remains and we were not able
to obtain the exact rate of convergence by this approach. We do not pursue
that here.

2.5. Organisation of the paper. In Section 3, we give the complete con-
struction of an optimal estimator H,, that achieves the minimax rate v, (H).
Section 4 explores the properties of the energy levels of X (Proposition 1)
as well as their empirical version (Proposition 2). Theorem 1 is proved in
Section 5. Finally, Sections 6 and 7 are devoted to the lower bounds. It is
noteworthy that the complex stochastic structure of our model due to the
two sources or randomness requires particular efforts for the lower bound.
Our strategy to obtain lower bounds is outlined in the Section 6, it requires
a delicate 'coupling’ result proved in Section 7. The proof of some technical
results are leaved to the Appendix in Section 8.

3. CONSTRUCTION OF AN ESTIMATOR

3.1. Pick a wavelet basis (¢ ,j > 0,k € Z) generated by a mother wavelet
1 with two vanishing moments and compact support in [0, S] where S is
some integer. The basis is fixed throughout the Sections 3-5. Assuming

we have estimators d? wn, Of the squared wavelet coefficients, recalling the

definition (4) of the energy levels, we obtain a family of estimators for H by
setting

i 1 o Qi—i—l,n

J’n::_ing , J=4dJ, . Iy — 1,

j7n
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with
21—1_1
. N
Qj’” - Z dj7k7n7
k=0
where J,, := [4logy(n)] is a maximum level of detail needed in our statisti-

cal procedure and J := [logy(S — 1)] 4+ 2 is some (irrelevant) minimum level
introduced to avoid border effect while computing wavelet coefficient corre-
sponding to location on [0, 1/2] from an observation corresponding to [0, 1].
Following Gayraud and Tribouley [10] in the context of adaptive estimation
of quadratic functionals, we let

Jri=max{j=J,.. an_g 9)

(and in the case the set above is empty we let J* = J so that everything
remains meaningful in the sequel). Eventually, our estimator of H is

HJ;;,n- (10)

The performance of H Jxn is related to scaling properties of X and the
accuracy of the procedure (6).

3.2. Preliminary estimation of the d?k. Since v has compact support
in [0, S], the wavelet coefficient d;;, writes:

Wi x(WHAt.

S2NTI—1 k2 4 (14+1) /2N
dj,k =0 /
k

e /25 +1/2N
This suggests the approximation:

§2N—3—1 k)29 +(1+1)/2N
G 3 (]
k/2941/2N

for, J < j < J,,0 < k <271 —1. The difference djkn — d; 1 splits into
bj kn + €jkn, respectively a bias term and a centered noise term:

Vir()dt) Vb

Vjk(t) (Xt — Xy y2i41/2v)dL,

S2NI—1 g/2i 4 (141) /2N
bjkn = = /
k

1=0 2 +1/2N
—i—1

it = z (/
—0 k

We denote by vj 1, the variance of e; ,, conditional on Fio-is
equal to

k/29+(1+1)/2N
p(t)dt X1 /9j (L
/29 4+1/2N Wik (t) ) (X2 11/28 )Ehan - 41

which is

S2NTI—1 /24 (141) /2N
Uj7k:7n = /
k

2
Uyr(0)dt) By g [a(Xiyai0/29)* | Fil].

1=0 /212N

The conditional expectations appearing in this expression are close to a (X}, /2i )2
and thus may be estimated from the observation without the knowledge of
H,o. We define

9N/2 9N/2

a? k(200 =20 N/ZZ ron - 4p)? (2 e Z KN - J+l’) ’

I'=1 I'=1
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and we set
S2 L pk/2 () /2N 2
Tipm = / | zpj,k(t)dt) P2 -
=0 kj2i+1/2N
Eventually, we set
& = (djen)? = Tjom- (11)

and H Jx n is well-defined. Remark that if the function a is assumed known,

one can considerably simplify the construction of the approximation a2 k)20 -

4. THE BEHAVIOUR OF THE ENERGY LEVELS

We denote by Py, the law of X = oWH, defined on an appropriate
probability space. We recall the expression of the energy at level j:

20-11
Q= > dix
k=0
Proposition 1. (i) For all € > 0, there exists r_(¢) € (0,1) such that
i inf 22HQ . > >1—c.
(HilTl)fEDIPH7J{JIII§§2 Qi >r_(e)} >1—¢ (12)
(i) The sequence
Z; = 212 sup ‘—QH—I — 2_2H} (13)
1> !

is bounded in Py ,-probability, uniformly over D.

Proposition 2. Let j,(H) := [ﬁlog@(n)]. Then Jn, > jn(H) for all
H e [H_,H.] and for any L >0

9in(H)/2 9—J ‘ N, _ ‘ }
{n In2i2i )L Qin =4 n>(4(S—1)28)(1-+28)
is bounded in P  -probability, uniformly over D.

We shall see below that Proposition 1 and 2 together imply Theorem 1.

4.1. Fractional Brownian motion. The fractional Brownian motion ad-
mits the harmonizable representation

ité 1
Wl = /R (;)HWB(df)a

where B is a complex Gaussian measure (Samorodnitsky and Taqqu [21]).
Another representation using a standard Brownian motion B on the real
line is given by

1 > _ _
H_ L gH-Y2 H-12 0
Wi = T /_OO[(t o) S4B,

(" is the Euler function.) The process W is H self-similar and the covari-
ance structure of W is explicitly given by

w(H
Cov(WH Wiy = S Lg2H 4 |g2H _ | — [2H}
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where k(H) = ArEm s Recall that dj, = Jr ¥jk(s)Xsds denote the
random wavelet coefficients of X, given a wavelet v Wlth 2 vanishing mo-
ments. It can be seen, using the stationarity of the increments of W that,
for a fixed level j, the sequence (d; i )rez is centred Gaussian, and stationary
with respect to the location parameter k. Moreover the coefficients have the
self similarity property

(dj)rez = 277D (dg 1) ez,
see Kawasaki and Morita [16], Delbeke and Abry [7], Abry and Veitch [2],
[25], Abry et al., [26], [1]). Moreover,
Var{dj k} = o%c(y)r(H)2 I (H2H),
where c(1) = £ [ (s)Y(&){|t|*7 +]|s|* — |t — s|*! }dsdt, and the covariance
COV(deg, dj,k’) = 2_](2H+1)COV(d0’k, d07k/)

decays polynomially as k — k' — oo due to the two vanishing moments of 1)
and

|Cov(do g, do )| < c(1 4 |k — K/[)2H=2),
for some ¢ which does not depend on ¢ nor H. See also Tewfik and Kim

[23], Hirchoren and D’Attelis [14], Istas and Lang [15], Gloter and Hoffmann
[11].

Proposition 3. We have

sup ity {[Q; = 271G WP p < 270+
(H,0)eD 2
Proof. Remark that by stationarity:
0_2 21-1_1
Q=27 e()n(H) = Y (G = Eno{dii))-
k=0
Then the variance of the sum above is evaluated using the decorrelation

property of the wavelet coefficients (similar computations can be found in
Istas and Lang [15] or Gloter and Hoffmann [11]). O

4.2. Proof of Proposition 1. By Proposition 3, we derive in the same
way as in Lemma II1.4. of Ciesielski et al. [5] that, for all € > 0:
o2 2

Z sup Py, {27HQ; gé[ c(y )H(H)—&,%C(¢)K(H)+€]}<OO,

>0 (H,0)eD

from which (i) easily follows. By (i), the probability that |Z;| is greater that
a constant M is less than

e+ Pho{ Slup|Ql+1 — 2720 Q2 > M2 (e)). (14)
>J

By self-similarity Ey »{Qi+1 — 2727Q;} = 0. By Markov’s inequality, (14)
is less than

[M2 2 1zvarHo'{Ql+l_2 2HQ}241H2]
1>7
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By Proposition 3, the sum above can be made arbitrarily small for large
enough M, which proves (ii).

4.3. Proof of Proposition 2. We first claim that the following estimates
holds:

sup sup 2_j/2ET[L{J{‘C/Q\j,n — Qj‘} <en L (15)
Jn>j>jn(H)~L (H,0)ED ’

Proposition 2 readily follows. To prove (15), we first split @j,n — Q; into
S8 ™ with

u=1 jn’
_ 2 F2 2
- Z bj,k:,n? j n Z(ej,k,n - Uj,k,n)a
k

k

G = 4) _
Tj,n - Z(U]7k7n - Uj,k:,n)a 7/“j,’I'L - 2 Z ijkvndj7k’
k

k

5 6
7“(’72 = 2Z€j,k,ndj,k:7 ( ) - 2ijkne]kn
k

Using that EHU{(Xt X,)?} < e(H)o?|t — s|?H, it is readily seen that
E% oA (bjk n)?} is less than a constant times 277n 2. Summing in k shows
1) .
that the term rj . is negligible since H > 1/2.
Using that e] ko

that EY _[(r (2)) ] is bounded by a constant times Zk Ofl{E .le jkn] +

— vj . are uncorrelated for [k — k'| > S, we deduce

n
EY o lvs kn]} Then using the martingale increments structure of the se-

v for 1 =0,...,82V=7 enables to apply the
Burkolder-Davis inequality. This gives, by Assumption A: E%’J[e;{k’n] <
2 1

cn™?. Then since  ~ a(x) is bounded and thus v;x, < cn™" we obtain
that EZU[(rﬁz)Q} has the right order 2/n~2

Using conditional centering of e; . , with the fact that the variance of d;

is less than ¢277H+1) and the condition j > j,(H)—L = [2H1+1 logy(n)]—L,

) .05 (6)

one easily checks that the terms Tins Tin and Tin

quence a(Xk2*j+12*N)§k2*J’+l2f

have negligible order.

We finally turn to the important term rj?’n, which encompasses the esti-

mation of a. We claim that, for 0 < 1 < §2N¥=J — 1, the following estimates
holds:

EY o {[a2k/2 m = Bl oa(Xp 2 102%)? | Fly-sl[} S en™V4 0 (16)
(3)

Summing in [ and k yields the result for Tin
Indeed, since vj g, — Ujkn is equal to

as soon as (16) is proved:

S2N i1 k)27 +(14+1) /2N 9 )
/ V()0 T2 0= By ola( X jors0/26)” | ]l

=0 /29 41/2N

we have that ]E’Iya{\r](sm} is less than ¢27/2pn=127/2n=1/4 Therefore, under
the restriction j < J,, < [ logy(n)], (15) holds. It remains to prove (16).
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3 1 2 3) .
We have a2y, /55 ,, — E%7U[G(Xk/2j+l/2N) | Fro—il = t,(“)l + t,(”)n +tl(w)z’ with

2N/2 21\1/2
DY X33 jav = ( IR J+zf)
I'=1 I'=1
oN/2
2 _N
B2 = 2% 3 a(Xy o parsom) € ) — iy pla(Xg i 1/09)? | Fiyoi),
I'=1
oN/2
3 _N
tl(c,) =272 Z Xieyaiyur 28 (X joi g1 728 )Egai-n -
'=1

Since the &y 4y are uncorrelated and centered, we readily have that the

expectation of |t,(§3zb| is of order 2=N/4 = n=1/4 For the term t/(€2l)n’ we use
the preliminary decomposition

oN/2
2 - n
tl(c,l),n =2 /2 Z a(Xk/QjJrl’/QN)2[(§k2ij+l/)2 - 1]
'=1
oN/2
+ 272 Z [a( X jos 1o ) = B o [a( Xy jai11/08)? | Frig-s]l-
=1

The L!-norm of the first term above is of order n~ /4 since the summands
a( Xy 211 o )? [(§ZQJ-_N+I,)2—1] are martingale increments with second-order
moments by Assumption A. Likewise, since x ~ a(z) has a bounded deriv-
ative and

B0 {(Xpji 4 j2v — Xipjos)’} < e(H)a? (27 N2,
Emo{(Xp/2i41/2v — Xk/2j)2} < c(H)o?(279/2)2H,
the second term in the expression of tl(fl) ,, has L!-norm less than a constant

times (279/2) < 2in(H)H/2 — —H/(+2H) = and thus has the right order
since H > 1/2.
(1)

Finally, we further need to split ¢,  into

9N/2 9N/2
27N/ Z Xk/23+l’/21\’ - (27N/2 Z Xk/2j+l’/2N)2
1/2]\,1/2 =1
— (27N Z G(Xk/21+l//2N)522N—J‘+l/)2
ll2:1\}/2 oN/2
= 227V Xyoiuyon) (27N alXai i jon )i r)-
I'=1 I'=1

The first term and second term are easily seen to be of the right order
respectively by the smoothness property of X and the uncorrelation property

of the variables {'. The third term is seen to have the right order after

. N/
remarking that one can replace the first sum 27N/2 12,:12 Xy j2iu j2n by
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X}/2s up to a negligible error and then use the conditional uncorrelation of
¢ again. Thus (16) is proved, hence (15) follows. The proof of Proposition
2 is complete.

5. PROOF OF THEOREM 1

First we need the following result that states the the level J, based on
the data, is with large probability greater that some level based on the
knowledge of H.

5.1. A fundamental lemma. For ¢ > 0, define

J,, (€) == max {j >1; r ()27 %H > 2;} (17)

Lemma 1. For all € > 0, there exists L(e) > 0 such that

sup Py, {J; < J, (e) — L(s)} <eg+ cpn(a),
(H,0)eD

where oy, satisfies lim, oo on(g) = 0.
Proof. Let L,e > 0. By definition of J, (¢),
Ly () U42H) g1/ (42H) < 9J() < pr_ () 1/ (142H) 1/ (142H)
hence for large enough n, we have J < J (¢) — L < J,. Thus, by (9),
P o {Jn = Jy (€) — L} is greater than
Ho {@J; -1 227" (6)_L”_1}

that we rewrite as

0 A Jn (e)—L, —1

o A @i -t~ Qoo 227 O = Qi }

and that we bound from below by

Phro { @y e)-rn = Quyey-p, 2 277 O in 1 = 27205 =Dy _ ()}

Py, {inf 227 Q; < r_(e)}.
Jj>1

Proposition 1 (i) and the definition of J,, (¢) yield that this last term is
greater than:
7}{70{ng tn— Qs r_(e) 1/ GHAY) =20/ (H+1) (=L _ 92LH)Y ¢

Then, if L is such that 2F — 2260 < 1 an assumption we shall make from
now on, Lemma 1 is proved, provided we show that

n {’@Jg(s)fL,n ~Qy ol (6)1/(2H+1)n—2H/(2H+1)} (18)
can be made arbitrarily small, uniformly in (H, ). Using again
o (6) 5 %nl/(ZHH)r_(s)l/@HH),
we can pick L' = L'(¢) > 0 independent of n such that
Ty (e) = L 2 jn(H) — L'(e),

n
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therefore (18) is less than
ol s (Qu = Qg 2 (o) G/ D
TN I >0 (H) =L (e)
that we rewrite as
anU{ngjn(H)/Z sup 9= n (=L G, . — Q;] > vp e, n)}
’ In>5>jn(H)—L' ()
where
(e n) = 2V ©p_()/CH+D) 1/ (4H+2)

and where we use that 2/»(H) is of order n'/H+1  We conclude by applying
Proposition 2, using that for fixed € > 0, 2F' )y (g)l/CHAD)R1/(AH42) _, o0
as n — oo. The uniformity in (H, o) is straightforward. O

5.2. Proof of Theorem 1, completion. Since ¢ ~» 272 is invertible on
(0,1) with inverse uniformly Lipschitz on the compact sets of (0, 1), it suffices

to prove Theorem 1 with 272 in place of H and Q Ji+1in/ Q Jxn in place of
H s . First, we bound
’QJ +1,n _ 92 H‘
QJxn
by a “bias” and a variance term, namely

Qi1 _QH)_’_‘QJ +1n_QJ+1‘_ Bol + Vil
QJ;{ *n

say. Second, we prove Theorem 1 for B, and V,, separately. Remark that the
“bias” term (deterministic conditionally to the signal X), Q;+1/Q; — 272,

decreases as the level j increases, while the variance term Qj41.,/Qjn —
Qj+1/Qj increases. They both match at the level j = J;, (¢). On contrary to
many “bias-variance” situation, the behavior of the variance term depends
on the unknown regularity of the signal through the decrease rate of the
denominators @j,n and @;. This explains the choice made in (9) to control

the estimated level of energy @+, by below.
5.2.1. The bias term. Let M > 0 and € > 0. By Lemma 1, we have
]P)?I,a {nl/(4H+2) |By| > M}

< Py, {n/ D 1B > M, T > 0 () - L) b+ = + pule)
< Py, {nl/(‘lH”)Q’J’?(E)/22L(€)/2|ZJ;(5)7L(5)| > M} +e+ nle)
< {\[r ()~ (AH+2D) 9 L( s)/2,Z )—L(e)] 2M}+€+<pn(£),

where we used for the last line that, by (17)
9= (&) < 9p_(¢)~V/(@H+Y) p~1/(H+1)

We conclude by Proposition 1 (ii) and taking successively e sufficiently small,
M sufficiently large and n sufficiently large.
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5.2.2. The variance term. We split the variance term into V,, = V,f” +Vn(2),

where

Qustin — Qurt1

 Qu+1(Qur — Qurn)
n — o~ .

Quxn QrrnQrx

v = and V2 :

Having lemma 1 in mind, we bound for any M > 0 and L integer, the
probability P, {n!/H+2|VV] > 0} by:

o {0 DV 2 M, Ty 2 7 (e) ~ L} + Pl {05 < J(e) — L}
Fix € > 0 and pick L = L(¢) as in Lemma 1 so that the second probability
P o {J5 < J (e) — L(e)} is bounded by € + ¢p (). It remains now to deal
with the first probability. As soon as n is large enough, J, (¢) — L(¢) > J

and thus by definition of J, the denominator of V,f” is bounded below by
274 /n, this yields to the new bound for the first probability:

.o {”1/(4H+2)+12_J:‘@J;+1,n Q| =M, Jy > J, (e) — L(S)} .

Recall that we defined j,(H) = [ﬁlogﬂn)] in Proposition 2 and by
definition of J,, (¢), we have

9Jn (€) < %nl/@HH)r_(a)l/@Hﬂ).
Therefore, we can pick a positive L' = L'(¢) independent of n such that

Jn () = L(e) = jn(H) — L'(e)

n

and then one can bound the first probability by:

Pyﬁ,a{nl/(A‘HH)H sup Tj@j,n - Q4| > M}
In>3>jn(H)—L'(€)

Next, using that n'/(H+2+1 ig of order n 2/»(H)/2 and Proposition 2, this
term can be made arbitrarily small (uniformly in n) by taking M large
enough.

We now turn to the term Vn@. Fix ¢ > 0 and M > 0. Recalling the
definition of Z; in Proposition 1, we have

ngr{n}K4H+Q”L¢2” > Af}

1/(4H+2 QJ; - QJT*ML
< P%,a{n /( )| Xdn
QJ;;,n

Now the tightness of the sequence Z; implies that for some fixed constant
M, this probability is less than

(27 + Zo) > M |

P, {nl/(4H+2) QJ,*L — QJT*”n
T A
QJ;;,n

Then the conclusion follows exactly as for Vn(l). The proof of Theorem 1 is
complete.

M
Z 272H+M’} +€~
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6. PROOF OF THEOREMS 2 AND 3

Consistently with Section 4, we denote by Py, the probability measure
on the Wiener space Cy of continuous functions on [0, 1] under which the
canonical process X has the law of cWH. We write P? for the law of the
data, conditional on X = f thus Py ., = = Jo, Pro(df) P}

6.1. Preliminaries. Define, for a € (0,1):
ft) = f(s
Il = 17+ sup =T
0<s<t<1 |t — s

The total variation of a signed measure p is

lelirv = sup | [ fdpul.
fllo<1

If 4 and v are two probability measures, the total variation of y — v is max-
imal when p and v have disjoint support, in which case || — v||Tv = 2.

Proposition 4. Grant Assumptions A and B, then there exists some con-
stant ¢ such that:

1 1
[P} — Pyl v < en2 | f — gl
1 2B} - Pyllzv = R (enllf — gli3 + ¢l £l +elglfare)
2
where R is some (universal) non increasing > 0 function.

Proof. Let D(p,v) == [( log )du < +o0o denote the Kullback-Leibler di-
vergence between two probablhty measures 1 and v. We recall the classical
Pinsker’s inequality || — v|v < vV2D(u,v)Y/2.

Using Assumption B (ii) and the representation (1) we deduce,

dprp
#{log ek O v b =

=0 a(.gz/n)
where A; , = &' (a(fz/’ﬂ — 1) + fijn=9ifn By a second order Taylor expan-
b a’(gz/n a(gi/n) ’

sion, this yields the expression for the Kullback—Leibler divergence:

n

D(dP},dPy) =" { (&5 vin) (€7) Ain] — log (gfm

=0

+ % ZEf[(de Vg n)(f + 02 nAz n)A%n], (20)
=0

for some (random) 6; , € (0,1). Using that  ~ exp ( — v; n(z)) vanishes at
infinity we have E?[(%Um)(ff)] =0 and E?[(%vm)(ﬂ)gﬂ = 1 integrating
by part. It follows that the terms in the first sum of (20) are equal to

a(gi/n) a(gz/n)
quantity is less than some constant times (f; /n— i /n)2.

). The assumptions on = ~» a(x) yields that this
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For the second order terms, using the uniform Lipschitz assumption on
2
z ~ L0, () together with the uniform bound for E?Hgﬂ?’] gives,

n 2 n n 2 n
EF (52 vin) (€ + 0inin) A ]| < clfin — ginl® + [EF(Fzvin) (€7)AF ]

Again we can bound \E?[%vm(ff)A?nH by a constant times (f;/, — gi/n)2

. 2 2 2
using that B[ 50, (7)), B [(g5z0in(6))€] and B} [({vin(€0)) (E)?]
are controlled by sup; , E’}}{(%vi,n(fﬂ)z(l + 1€7?)}. Thus the divergence
between the conditional laws is bounded by

n
D(AP},dPY) < ¢S\ fiyn = gisnl:
i=0
and the first part of the proposition follows from Pinsker’s inequality. For
the second part of the proposition, we use

n 1
SV fipm — giyul? < 4n /0 (F(2) — gla))*da + 80" (|| f[120 + llg30)
1=0

valid for any a € (0, 1) together with the fact that for two measures p, v the
total variation ||u—v||Tv remains bounded away from 2 when the divergences
D(p,v) and D(v, ) are bounded away from +oo. O

The next result is the key to the lower bound. Its proof is delayed until
Section 7. Let (0¢, Hp) be a point in the interior of D. Set, for I > 0,
£n = [t~ 1/(4Ho+2) gpd

H,:= Hy+¢e,, o01:=0927°°",

where
jo = [logy(n!/GHoTD],

Proposition 5. For I large enough, there exists a sequence of probability
spaces (X", X", P™) on which can be defined two sequences of stochastic pro-
cesses, (6" )ie0,1], @ = 0,1 such that:

(i) For 1/2 < a < Hy, the sequences ||€%"||1a and ||EV7|1a are tight under
P

(it) Define P*" = [, P (dw)Pf, - Then:
Jim | Pt — P, pyyllTv =10, i=0,1.

(iii) There exists a measurable transformation T" : X™ +— X" such that the

sequence n|[EY (w) — 9 (T™(w))||3 is tight under P™.

(iv) If n is large enough, the probability measure P™ and its image measure

T"P™ are equivalent on (X™,X™). Moreover, for some ¢* € (0,2), we have
|IP" —T"P"||py <2—c" <2

provided n is taken large enough.
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Remark. The processes £%" and ¢ play the role of an approximation for
ooWHo and oy WH respectively. The point (i) means that £ shares the
same smoothness property as Wi; while (ii) implies that observing a noisy
discrete sampling of o; Wi (i = 0, 1) or of its approximation is statistically
equivalent as n — oo. Of course these points trivially hold in the case
0 = goWHo and ¢ = o WH1, However, a significant modification of
this simple choice is needed in order to have the fundamental properties (iii)
and (iv). These properties means that one can transform pathwise, using
the application 7™, the process £%" into approximate realizations of £b7;
meanwhile this application essentially does not transform the measure P"
into a measure singular with it.

We next prove that Proposition 4 and 5 together imply Theorems 2 and
3.

6.2. Proof of Theorems 2 and 3. We prove Theorem 2 only. The proof
of Theorem 3 is analogous after having remarked that the choice of H; and
o; entails that o1 — og is of order

oolog(n) _1/(21amy)
I(1+2H,) '

Pick n large enough so that that (o1, H1) € D. Pick an arbitrary estimator
H,. Let M >0, with M < 1/(2I) for further purposes, we have:

SUDP(1,6)eD PTIEI,a{nl/(4H+2)’f—\In - H| > M}

IPTL

Hyp,o0

Y

1 ~ 1 ~
{n4H0+2 |H,, — Ho| > M} + %P?Il’al{n4H1+2 |H, — Hy| > M}
1 ~ 1 ~
> 3pondnimE |l - Ho| = M} + 3 Pon{n i |, - | = M+,

where u,, — 0 as n — oo by (ii) of Proposition 5. By definition of P*" and
by taking n large enough, it suffices to bound from below

5 Jon [Pl ) (A7) + P () (AD)] P (dw), (21)

, 1
where A" = {n2+4Hi |H,, — H;| > M} By (iv) of Proposition 5, for n large
enough:

dp”
oO\pn 0 0 npn
/Xn £0.m w) A )P (dw) /Xn EO*"(UJ)(A )dTnPn (w)T P (dW)
dpm
0 n n
/Xn £0n (T (w)) (A )dTnPn(T w)P (dw)
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Thus (21) is equal to half the quantity

Y]

e_A/ [P0 (may (A%) + Peion oy (AD]1_apn 5 e 2P ()

drnpn

drnpn

= 67)\ /X" [ ?O’"(T"w) (AO) + P?Ln(w) (Al)] 1 apn (T"w)Ze*APn(dw)'
for any A > 0, and where & denotes the set of w € X™ such that

€% (T"w) — €M (W)I3, [[€2™(T"w) ||y and [|€9" ()]0
are bounded by r > 0.

Lemma 2. For any r > 0 there exists c(r) > 0 such that, on X :
go,n(an) (A%) + Pgl,n(w) (AY) > ¢(r) > 0.

Lemma 3. For large enough n, we have:

P"{X”ﬁ dr"

P (T 2 e 2 PR — e =12

Applying successively Lemma 2 and 3, we derive the following lower
bound:
e e(r)[PM(AY) —e N — 14 ¢*/2).
Thus Theorem 2 is proved as soon as

lim liminf P*(X") = 1. (22)
r—00 N—00
It suffices then to take A and r large enough. By (i) and (iii) of Proposition
5, (22) only amounts to show the tightness of ||¢%"(T"w) |3« under P™. For
L,L’ > 0, we have

dr"P"
n 0,n n _ n
P {6 (1" (@) I > L} —/anus&n(wmazum(w)P (dw)

> 1/
dpP» —

d1rpn»
< P @)l = L} +P"{ }

< I'P{[[€%" (W) |lpe = L} + (L)

by Chebyshev’s inequality. The tightness of ||€™(T™(w))|/3« then follows
from the tightness of ||€%"||3za. The proof of Theorem 2 is complete.

6.3. Proof of Lemmas 2 and 3.
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6.3.1. Proof of Lemma 2. Since Hy < Hj, it suffices to bound from below
1 1.
goﬂn(an){n4Ho+2 |Hy,, — Ho| > M} + P?l’n(w){n4Ho+2 \H,, — Hy| > M}

Let
dtest (@, V) := sup |[fdp — [fdv|
0<f<1

denote the test distance between two probability measures p and v. The
last term above is thus greater than

n
Eﬁlv"(w){1n1/(4H0+2>\ﬁn*H0\2M + 1TL1/(4H0+2)|H71*H1‘2M}

~iest (Peon rng) Pern(w))-

Now since M < 1/2I and by our choice for Hy and Hjp, one of the two
events in the expectation above must occur with probability one. Using
that deest (1, ) = &[|p — v||Tv, the last term above is further bounded below

by
1—- %H]P)go,n(an) - ]P)gl,n(w)HTV'

We conclude by Proposition 4 together with the fact that w € X"
6.3.2. Proof of Lemma 3. It suffices to bound from below

p{ar} - / Lgpr (e PM(AW)

dTrnpn

= Pn(XZL) —/n larnpn (w)zeATnPn(dw)

dpP™

since T"P" and P" are equivalent. We now replace the measure T"P" in

the integral above by P” with an error controlled by the test distance; the

lower bounds becomes

dT"P"
dp»

VAL b
dpn

Pn{XTn} — Pn{ > 6)\} - dtest(Pn7TnPn)

_ Pn{xp}_Pn{ ze*}—%uP”—T“P”HTV.

We conclude by using Chebyshev inequality and Proposition 5 (iv).

7. PROOF OF PROPOSITION 5.

The proof of Proposition 5 relies on the construction of the fractional
Brownian motion by Meyer, Sellan and Taqqu [20]. In section 7.1, we recall
the main steps of the construction and how to apply it to our framework.
In section 7.2, we construct the sequence of spaces (X™, X", P™). The proof
of (i)—(iv) is delayed until sections 7.3-7.6
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7.1. A synthesis of fractional Brownian motion. Consider, a scaling
function ¢ whose Fourier transform has compact support as in Meyer’s book
[19], with the corresponding wavelet function ¢ € S(R). In [20] the authors
introduced, for d € R, the following differentials of order d (via their Fourier
transform):

. d
— \d — is -
DIs(s) = (is)(s), o2 = (1) o)
where a determination of the argument on C \ R_ with values in (—m,)
is chosen. It is shown that the above formula is well defined and that
D4, A € S(R). Define further, for d =1/2 — H € (—1/2,1/2):

t
:/ Dhp(uydu = DI1p(t), ol () = 287 (201 — k),

Ol = [ 6% —hu, Olk(n) =2tef/

In their Theorem 2 in [20], Meyer et al. prove the following almost sure
representation of fractional Brownian motion (on an appropriate probability
space and uniformly over compact sets of R):

Yo oW+ > 2@ — vk (0)} e,

k=—00 7=0 k=—o00

where el = > i€l _;, and (1 — )% = >"2°  ykr® near r = 0. The €,k €
Z,€jk,j > 0,k € Z are i.i.d. N(0,1) random variables. Note that v, =
O(k~'*%) so the series above converges in quadratic mean and the time
series obtained, (€ff)x, has a spectral density equal to |2sin(3)|'~20. The
scaling

H law joH v H
W 2700 W0,

gives yet another representation for W

S0 2 RN ()l 3T 3T 2l h) — ()

k=—00 J=Jjo k=—o00
(23)
Comparing with other decompositions of fractional Brownian motion (for
instances Ciesielski et al., [5], Benassi et al. [3]) a particular feature is that
the random variables appearing in the high frequency terms

SN 2 HR2 (1)~ pl (0))es

Jj=Jjo k=—o0

are independent and independent of the low frequency terms.

A drawback is that the basis used depends on H and the functions ap-
pearing in the decomposition are not compactly supported. However one
can explore the properties of this basis. In their paper [20], Meyer et al.
shows that the differential of the initial wavelet functions generate a mul-
tiresolution of L%(R) and state the following results.
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Lemma 4 (Lemma 8 in [20]). 1) There exists C*°(R), 2w-periodic functions
Uy and Vg such that the following formulas hold:

G (5) = Ug(s/2)62 (5/2),  Ddp(s) = Va(s/2)¢%5 (s/2).

These ’filters’ and Uy and Vg vanishes respectively in a neighborhood of
and 0.

2) Let (cx)kez € 12(Z), then the function >, cx2¢b2 (2t — k) can be ex-
pressed with the basis ¢“>(t — k) and one level of detail:

> a2t (2t — k) =Y apg®(t—k)+ > bpDM(t - k), (24)
k k k

where (ax)rez and (by)rez € 1?(Z). Moreover a and b are given as fol-
lows: denote A, B and C the 2mw-periodic extension of the discrete Fourier
transforms of a, b and ¢ we have

A(s) = —4_d[Vd(s/2 +7m)C(s/2) — Va(s/2)C(s/2 + W)]eis/Q, (25)
B(s) = =474 ~Uy(s/2 + 7)C(s/2) + Ua(s/2)C(s/2 + 7)]e"*/2. (26)
From these properties we can show the following lemma that will prove

useful to control in H* norm the error made when we truncate the expansion.
It also explores some properties of the basis when H varies.

Lemma 5. Let H € (0,1). (i) If uy, and ujj, are two sequences such that
luk| < c(1+|k|)¢ and |ujk| < c(14 7)1+ |k|)¢, then, for any a € [0,1) and
M >0, there exists c(a, M) such that, for all jo:

Z Z ‘ujkdjijH c(a, M)2~ Mjo

J=jo |k|>27+1
> Huk@m,kHH& (o, M2~ Mo,
|k|>270+1

(ii) For all M > 0 there exists ¢(M) such that for all e > 0 with H +¢ < 1

and t € R:
€

H+e t o H t < M -

)~ 7 (0)] < o)
(t3i) For all e > 0 with H + ¢ < 1 we have, for all k € Z
0, — o = Z ()0 + Z bi(e) {90 (t) = Vi (0)}, (28)

lez lez
where the coefficients a;(¢) and by(e) are such that for all M, there exists
c¢(M) such that for all €
max{|ai(e)], [bi(e)[} < ee(M)(1+ 1)~ (29)

Moreover the 2m-periodic function Be with Fourier coefficient b(e) vanishes
in some neighborhood of zero independent of ¢.

(27)

Proof. See Section 8.1 in the Appendix. O

7.2. The space (X", X", P"). Let us recall that H; = Hy + &, where
En = Iflnfl/(2+4Ho) jo = [1og nl/(1+2Ho)] and o = UQQjOE".
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7.2.1. We take for X" an infinite product of real lines, endowed with the
product sigma field X"™:

2J0+1

R R)@(é) © R)= X0y

. k|<2i+1
k=—2j0+1 j=jo  MS

An element of X™ is denoted by w = (w®,w?) with w® = (W§)k|<io+1 and
wd = (wg))\:(j’k);jz‘jm‘k‘S2j+1. The projection on the coordinates are denoted

by ex(w) = w for [k < 270F and €4 (w) = wyk for j > jo, |k| < 29+L.

On &A™ we define the probability measure P" := PZ ® P, where Py, is the
unique probability on X7 which makes the sequence () a centred Gaussian
stationary time series w1th spectral density |2sin(§ )|}=2Ho_ The probability
measure P is the unique probability on X} that makes the sequence (¢; )

iid. N(O, 1).

7.2.2. As suggested by section 7.1, we define an approximation of UOW({I
by keeping a finite number of coefficients at each scale:

£0n . Z 0_02 ]0(H0+1/2)@H0 ( )Ek;

Josk
k| <2d0°+1

3> e D Lyt i)} e (30)

i>jo |k|<2i+1

Denote by 7™! a linear mapping from X2 to itself such that under the
measure 7™ P, the coordinates (ez) form a centred Gaussian time series
with spectral den51ty |2sin(5)] 721, Let

e (w) = ex (T w). (31)

We then define on the same space an approximation for 01W1H . A natural
choice would be to take again (30) with (o1, H1) and e}, instead of (oo, Ho)
and €;. We proceed a little bit differently: we replace all the @H L by their
truncated expansion on @ okt and w ook using relation (28) We then
reorder the sums and finally drop the terms with index k corresponding to
the localization k/27 outside [—2,2]. The reason is that we want to use the
same basis as in €97, for the low frequency terms.
This leads us to the following approximation for o W1

fl’n(t) — Z 012 ]O(H1+1/2)@§1(:(7) ( )62

|k|<270+1
+ Z 0.12*10(H1+1/2)@g0() Z Gl—kf;g
1| <270+ |]f|<2j0Jrl
Hi+1 2
+ Z 012" Joh1/2) {wjol() Jol } Z bi— kek
|I|<270t1 |k|<2d0+1

+3Y ot {@Zﬁfé (t) — il (O)} €k (32)

J>jdo |k|<2i+1
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where the coefficients a = a(e) and b = b(e) are defined by (28) with H = Hy,
H+e¢=H;.

7.2.3. The last step is the construction of the mapping 7" from (X", X")
to itself. Recalling (iii) of Proposition 5, we see that T™ should transform
outcomes of %" into approximate outcomes of £™. Thus we define the
action of 7" on the the random space (X", X") by making the low frequency
terms of £%"(T™w) exactly match the low frequency terms of &7 (w).

We define 72" on X™ as the linear map such that:

a(T"w) = Y apa(w)+aw), (33)
|k|<2i0+!
€on(TH"w) Z bi—ker(w) + €jo1(w), (34)
K| <2i0 1
el (TH"w) = eju(w) if j > jo. (35)

Remark that the matrix of this linear map in the canonical basis of A" is
of course infinite, but 72" leaves invariant the finite dimensional subspace
X @ (®p<aio+1 R)®(0,0,...) C X" and is the identity on a supplementary
space. On the finite dimensional subspace its matrix is Id + K™ where K"
is the square matrix of size 2[270+2 4 1]:

g — (a8 k<2 O (36)
bi— ) kj<2iorr O

Finally, we set
n _ Tn,2 ° Tn,l’ (37)
where we denote again by 7™! the extension of 7™! (previously defined
only on Xg') to X" such that it is the identity on Oxp ® XJ.
As announced the choice of 7", with (30)—(35) and the fact that o277 =
0p2/0en =i — 5q9=joHo yields

gl,n( ) gﬁn Tn Z Z 012~ J(H14+1/2) {1/} ( ) ¢f];(0)}€j’k<W)

J>Jjo |k|<2i+1

33 g2t {wflg (t) — 1/);1]3(0)} ejn(w). (38)

J>jo |k|<2i+1

We now have completed the setup of (X", X", P") and it now remains to
prove that Proposition 5 hold. Let us stress that the choice of jj is for that
matter crucial. Clearly Proposition 5 (iii) requires that jy is large enough.
Meanwhile, Proposition 5 (iv) requires that the number of components of
X" on which T™ is different from the identity is as small as possible, which
requires that jg is not too large.

7.3. Proof of Proposition 5, (i). Define temporarily a probability space
(20, A% PY) with random Varifibles (gg,k)ijo,kEZ and (€))gez as in the repre-
sentation of section 7.1. Let W0 be the corresponding fractional Brownian
motion defined on this space. It is well known that |[|[W 0| ya is almost
surely finite on this probability space. We write the decomposition

U()WHO — €0,n + 7:0,71,
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where €™ has an expression analogous to (30) and

Fon — Z 002 Jo(Hot+1/2) g Ho (1t )~2

Josk
|k|>270+1

+3 % g2t {¢ 0(¢) — w]k(O)}%{k.

JjZjo |k|>2i+1

The tightness of [|£%"(|3;« under P™ i
PY and thus will follow from the study of |70 ||ya. It is sufficient to show
that its expectation is bounded independently of jo. Using the Gaussianity
of the random variables (see lemma 11 below) there exists a positive C(w)
such that E{CP} depends only on p and:

Vi > jo,Vk € Z, |e k| < C(w) log(2+7) log(2+|k[) and [é;| < C(w) log(2+|k]).
By Lemma 5 (i) we obtain that for arbitrarily large M
1797, < Clw)e(M)2770M, (39)

hence E{||7*"||%a} < ¢ and the result is proved. We now turn to ||£1 ”HHa
Define likewise on a probability space (Ql AL, Pl) the process Wt

o0

S p-heh+/2gH: (4 k+z Z 9~I(Hi+1/2) {w n(t) — wfé(o)}gjl',k-

k=—0o0 Jj=jo k=—o0

We use Lemma 5 (iii) for |k| < 270+

WtHl = Z ~12 Jo(H1+1/2) <Z aj— k@](]l( )+ @JO (1 ))

|k|<270+1 leZ
+ Y ety {¢g?z(t)_¢g?z(0)}
|k|<2i0+1 =
+ Y 2Rl (e
|k|>2j0+1
+Z Z 9—i(H1+1/2) {¢ (1) — ¢]k(0)}€},k-
J=jo k=—c0

We derive the following decomposition

UlWHl — gl,n + ,F].,n
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where §~ Ln has under P!, the same law as €4 under P™ and

~ln —jo(H1+1/2) oy Ho ~1
A= S e e Y wdl
|7]>270+1 \k\<2jo+1
Jo(H1+1/2)
+ Z 012" 2 {wjol() ]Ol 0)} Z bi- kek
|l|>270+1 |k|<2i0t+1
Jo(H1+1/2)
+ Z 012" @Jm (t ) €k
|k|>270+1

+3 % O,12—J(m+1/2){¢ () — wﬂg(g)}%ﬂ

JjZjo |k|>2i+1

Then using again Lemma 5 (i) and Lemma 11 in the Appendix we obtain that
757 |1y, < C(w)e(M)279M for M arbitrarily large where C' is a random
variable with finite moment independent of jg. The result follows.

7.4. Proof of Proposition 5 (ii). Let A € Y be an event in the observa-
tion space. We have

n _ 0 ™0 n,0 _ m m0
Phon( ) = [ Py (D B0, PO = [P (4) (),
It follows that

||Pf10’go‘y—pn,0”Tv </~ |P" ootV Ho0 (o Pgoyn(w)HTVPO(dw).

By Proposition 4 this is less than the expectation with respect to PO of
c(nf|oWHo — 0|2 )2 = e(n||FO"|%)%. But, by (39), n[r®"|2%, <
7¢, 1s bounded by some random variable with finite moment of any

order under PV times n2790M for arbitrarily large M. Since 2770 tends to
zero as a negative power of n, if M is sufficiently large we obtain:

. 0
h_)m ”PIT}OM'OD} — P"||py = 0.
One obtain analogously that lim, . || Py Hyon [y Py = 0.

7.5. Proof of Proposition 5 (iii). From the choice of &, and jo, all we
need to prove is the tighness of e, 22%0Ho||¢1n () — €0 (T (w))||3. We plan
to use the following decomposition

£ (w) = €2 (T (W) = qu(t) — q1(0) + g2(t) — 42(0),
where

()= > o2 /U)ol () ek (w),

J>jo |k|<2i+1

Z Z (012~ J(H1+1/2) _ 50— J(H0+1/2))1/) k(t)ﬁgk( w).

Jj>jo |k|<27+1
Using the independence of the €;

Epo{q(t)’} =3 > of2 9CME(li(1) —yil(1)>

J>jo |k|<2i+1
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Then, by Lemma 5 (ii) for any M > 0, this is less than
i 2
Y Y o (2H,+1) 2eq
7+ —
J2jo |k|<29+L (L+ |27 — K[)2M

Since H; > Hy, by taking M > 1/2 we readily obtain Epn{qi(t)?} <
ce227%oHo hence

Epn (l41() = q1(0)]3) < eep2™ 0%, (40)
Since 012770%" = g we have
YT @ 1 ey e )
J>jo |k|<2i+1

By the independence of the ¢;; and the fact that Yt € S(R), we derive,
for any M > O:

. ' Y
EPn{CD } < c 9(Jo— ])En_1|20,227](2H0+1) '
J>ZJ0 |k|§+1 0 (14 |27t — k|)2M

For M > 1/2, this quantity is smaller than c<2 Zj>j0 (5 — j0)?272%H0 hence

Ep, {g2(t)°} < ep2720fh,

from which we deduce a bound analogous to (40) for ¢s.
7.6. Proof of Proposition 5 (iv).

7.6.1. Let us first briefly explain why
TP — Tn,? o Tn,IPn ~ P".

Recall that the measure P" = Py ® Pj on X2 ® &Y is such that Pj is
an infinite dimensional white noise and P} makes the components of X" a
Gaussian time series with spectral density |2sin($)|'72#°. But the almost
sure positivity of this spectral density implies that P? is equivalent to the
Lebesgue measure dz on X7 (see e.g. Brockwell and Davis p.137 [4]). Thus
P" ~ dr®@Pj. But the measure T™'P" has the same structure as P™ except
that the components of X' now have the law of a time series with spectral
dens1ty 2sin($)[1 7271 > 0. Hence 7™'P" ~ dz ® PY too. It follows that
~ T 1Pn

Next, recall that 7™2 is a linear map on A" = X" ® (Qpj<2iot R) ®
(&7 j, @ xj<2i+1 R) which has matrix Id+K" (recall (36)) on the restriction
X @ (Q)|y)<2io+1 R) and the identity on @< ;) @) <oi+1 R. We deduce that
a sufficient condition for the equivalence

Tn,2 o Tn,IPn ~ Tn,IPn

is that the matrix Id + K™ is non degenerate. But the summation of the
coefficients along the lines and columns of K™ are bounded by cz,, and by
Schur Lemma this is sufficient to imply that all the eigenvalues of K™ are at
most of magnitude &,. Hence Id + K" is invertible for large enough n and
the equivalence is proved.
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7.6.2. Using the triangle inequality Proposition 5 (iv) is proved as soon as
P — TP |7y (41)
and
||7-n,2 o /Z-n,lpn o z]-n,l]_)nHTV (42)
can be made arbitrarily small for an appropriate choice of I and for large
enough n. It will be convenient to use again the inequality ||u — v|ry <
V2D (i, v)'/?, where D(p,v) denotes the Kullback-Leibler divergence be-
tween p and v.

Let us recall the following fundamental fact on Gaussian measures: If p 4
and pp are two (centred) Gaussian measures on RY with non degenerate
covariance matrices A and B, then

D(pa,pp) = Tr(AB™Y) —logdet(AB™1) — Tr(Id).
On the vector space of matrices of size N, we will make use of the trace
norm HAH%r := Tr(A*A) and the operator norm HAH(Z)p = supj|y|=1 [|4z||,

where || - || is the usual Euclidean norm on RY. Recall that
1Allop < 1Al < VNI Allop
and that
Te(AB)] < [|Alltell Blltrs [|AB¢r < min{[[Aflop | Bllr: [[Aller | Bllop -

We further take N := 27072 4 1, the dimensionality of X and define
fo(s) =2 sm( )\1 2o and fi(s) := |2sin( ]1 2H, (43)

the two spectral densities involved in the definition of P™ and 7™'P" re-
spectively. Their restrictions to X' are Gaussian measures with covariance
matrices given by the Toeplitz matrices T (fo) and Tn(f1) (the notation
Tn(f) means the matrix with entries Ty (f)r; = iffﬁf(s)ei(k*l)sds).
Thus, we derive the following upper bound for the variation distance ||P"™ —
Tn,anHTV:

V2 [Te(Tn(f1)Tn(fo) ') —log det(Tn(f1)Tn(fo) ') — Tr(Id)] . (44)
But the inequality

fi(s) = fo(s)[2sin(5 )7 > fols)

implies, by Lemma 6 in the Appendix, that Tn(f1) > Tn(fo). In particular,
the eigenvalues A1, ..., Ay of the matrix T (f1)Tn(fo) ! are all greater than
one, hence (44) becomes

2

N
V23 (A —log A — 1) Z (A = 1)% = Tr ([In (f1) T (fo) ™ — 1d]?)).
i=1

If we introduce the difference
9o (5) = F1(5) = fols) = [I12sin()I 7 1] fols), (45)

we obtain 2
[P = TPy < Tr([Tw(ge, )T (fo) ~']7).
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If we apply lemma 8 in Appendix below, we find that this quantity is less
than cNe2 ~ cI~2. This yields an arbitrary control on (41) if I is taken
large enough.

In order to obtain a control on (42), we need to compare two Gaussian
measures o and pp on RV with now N/ = 2(200t2 4 1), ¢ = (Id +

K™)D(Id + K™)* and
_(In(f1) | O
D= ( 0 Id )’
as follows from (36). In the same way as for (41), we have
|72 0 Tip"™ — T™p"||ry < V2[Tr(CD ™) —logdet(CD™Y) — Tr(Id)].
Write
CD'=1d+ K"+ DK™ D'+ K"DK"*D™!
hence |72 o T™!'P" — T™'P"||1y is bounded by
V2[2 Tr(K™) — 2logdet(Id + K™) + Tr(K"DK™* D™1)].
Since all the eigenvalues of K" are of magnitude ¢, the upper bound becomes
¢[Ne2 + Tr(K"DK™ D™1)].
Since K™ is given by (36), it can be rewritten with the help of Toeplitz
matrices as (4.)
Tn(A:) | 0
K" = )
< TN(BE) 0 >
where A, and B, are the 2m—periodic function associated with the Fourier
sequences a;(¢) and b;(e) already introduced in the proof of Lemma 5. The
product of these blockwise matrices shows that
Tr(K"DK™ DY) = Tre(Tn (A) T (f1) T (A Tv (f1) 1)+
Tr(Tn(B:)Tn (f1) TN (Be)7).

These two traces of Toeplitz matrices are shown in Lemma 9-10 in Appendix
below to be of order cNe2 ~ cI~!. We finally get an arbitrary control on
(42) for a large enough I.

8. APPENDIX

8.1. Proof of lemma 5. (i) Let L > 2 and k, |k| € [L27, (L +1)27]. Since
v e S(R),
tSl[é%lwfk(t)\ + G < «(M)2Y2 (14 (L-1)2))M, (46)
€10,
for an arbitrarily large M. The left hand side of the first inequality to be
established is then less than

ST 2 ST a2,

J=jo L=2 |k|€[L27,(L+1)27]

Using the assumption on u;x, we bound this quantity by c(M)> 272, (1 +
3OS, 25/2(14(L—1)27)M for another constant c¢(M). If M > c+1,

the latter expression is smaller than (M) 772 . (14525271 /(M —c—1)(1+
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27)¢=M+1" wwhich has the desired form. The second inequality is proved
similarly, noticing that

. t .
O, (1) = 29/ / 642 (2 — k)du,
0

where ¢ is an element of S(R) and the forgoing arguments apply with
Gfk in place of )
(ii) By definition of ¥7| we have

DHF=(s) — pH (s) = [(is) 7 — 1] F(s) i= g.(s).

For the Meyer wavelet, ¢ vanishes in a neighbourhood of 0 and has compact
support, so does 1 (s) and the function g.(s) is smooth with compact
support. The classical relation between the norm of the derivatives of the
Fourier transform of a function and the size of the function gives (27).

(iii) We have

—— — is —

PmeB(s) = 92 (s) = (=)™ — Usb2(s).

In the construction of Meyer et al. ¢%?(s) vanishes if |s| > 47/3, so we can

. —&
find a smooth function h.(s), with period 47 and equal to (1_Z‘;S) —1if
|s| < 4m/3 that vanishes in a neighborhood of 27 and such that

—

$oB (5) — GBA(s) = he(5)$BA(s),

Using Lemma 4, gz@(s) - &L\A(s) = Cg(s/2)q@(s/2), where C.(s) =
he(2s)Uq(s) is 2m-periodic. In the real variable domain:

(bde,A( ¢d A Z Ck 2¢d A )

where ¢ (g) are the discrete Fourier coefficients of the function C.. By yet
Lemma 4 again:

OTEA) — oA (H) = Y ()¢t -1 + Z bi(e)DY(t 1), (47)
l

where the a;(¢), b;(¢) and ¢;(€) are related by (25)-(26). Making the change
of variable t by t —k in (47) and then integrating between 0 and ¢ gives (28).
The next step is (29). It follows from the explicit expression for A. and B.
and C; together with the fact that h. is easily bounded by a constant time
€. Finally the fact that B. vanishes on a neighborhood of 0 follows from
(26) and the fact that U; vanishes near .

8.2. Technical lemmas. We start by some results on Toeplitz matrices
of size N, which given a function f, have entries defined by T (f)r; =

j‘ f i(k— lsds

Lemma 6. Let f and g be two spectral densities with f(s) > g(s) > 0, then
Tn(f) > Tn(g). In particular, if f(s) > ¢ >0, then Tn(f) > cld.
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Proof. If x € RN

In(g)z = ok [T 9(s)[Xiiy e oanl*ds
T FOIh e*oanfPds = 2Ty (f)z.

IA
|~
—

2
O

Lemma 7. (i) Let f and h be 2mw-periodic and positive. Assume that h is
even and decreasing on [0, 7| then

o f(s)ds) . (48)

__L
2N

B
T (1) 2T (1) Pl < [7 s6his)as(
3N
(ii) With the notation of section 7.6, we have

_ 2
HTN(gsn)l/QTN(fO) 1/2H op < cenlog(N).

Proof. For the part (i) we follow closely the idea of Lemma 5.3 in Dahlhaus

[6]:

1/2 —1/2)2 T Tv(fh)z
P LA

oy LSO ey
lall=t [T F(8)[So0ly eFoag[2ds
wp J7. F(s)h(s)é(s)ds

T e [T f(s)E(s)ds

where the supremum in the last line above is taken for all functions £ > 0,
bounded by N, with [¢ = 1. Using that h is decreasing on [0,7] and
symmetric, we see that the supremum is reached for & = N1_y/2 N/
which exactly leads to (48). For (ii), we set f(s) = fo(s) and f(s)h(s) =
fo(s)[|2sin(5)|~2» — 1], apply (i) and then evaluate the integrals. O

We now study the behaviour of Tr ([Tn(g:)Tw(fo) *]?). Such kind of
estimates are considered (for statistical purposes) in Dahlhaus [6] or Fox and
Taqqu [9], but cannot be directly applied here, since the spectral density g.,
does not remains unchanged as the size of the matrix N — oco. We however
heavily rely on their techniques.

Lemma 8. There exists some constant ¢, such that for allm > 0,
192
Tr ([T (9:,) T (f0)7']%) < eNel.
Proof. Set
C :=Tw(9:)" T (fo) T (9)*, D= Te(ge)* T (fy )T (92)' /.
The aim of this Lemma is to show Tr(C?) < cNe2. Note that
1 _ 2 _ 1,2
Tr(C?) < [|ClFy < 1T (o) 2T (f0) ™ lopll Tn (fo) /> T (92) 2 -
Using that [|-||¢; < \/NH'Hop and that the operator norm of a matrix and
of its transpose are equal, we get: Tr(C?) < NHTN(gE)l/2TN(fQ)_1/2”ép.
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Applying Lemma 7 we derive
Tr(C?) < eNe?log(N)2
Thus the result on Tr(C?) follows from the considerations on the operator
norm given in Lemma 7 up to a log factor. We now present how to get rid of
this logarithmic factor by considering directly Tr(C?). The proof is divided
into two steps: first we show, as in Dahlhaus [6], that the difference between
Tr(D?) and Tr(C?) is negligible. Then we study Tr(D?).
First step. After some algebra, we have that
IT(C?) = T(D?)] < (|Cllop + IDllop)IC = Dllgr-

Then writing

C — D =Tn(g:)"*Tw(fo)*(1d = T (o) T (f5 ) Twv (fo)'/?)
T (fo)™*Tn(ge)"?,
we deduce by Lemma 7 that

IC = Dllgy < celog(N)|[1d = T (fo) > T (fo )T (o) -

But it is proved in Lemma 5.2 of [6] that the trace norm of the matrix
Id—Tn (fo)'/* T (f5 )T (fo)'/? grows at most with rate N° for an arbitrary
small § > 0. By Lemma 7 again, we have ||C||p, < celog(N) hence || D||op, <

celog(N) + ||C — D4y < celog(N)N?. This eventually gives:
Tr(C?) — Tr(D?)] < ce?log(N)*N?,

which is clearly negligible versus 2N if § is small enough.
Second step. Following the method of Fox and Taqqu [9], we study the
asymptotic behavior of

Te(D?) = Tr ([T (9:) T (51)]°)

Let us define ho(s) = [|2sin(s/2)|7¢ — 1], so that g. = hefoy (recall (45)). We
can expand the trace of D? using the spectral densities as:

Te(D?) = (27)~ / e () fo (1) £ () e () Fos) fo(ya) ™ Poy (w)dy

where the integration is over y = (y1,...,y4) € [-m, 7]* and
Pn(y) = Z tr—i2yr  gi(Ja—ig1)ya
1<j1,.Jas<N

This kernel Py can be rewritten in the convenient way:

Po(y) = An(y1 — y2) AN (y2 — y3) AN (Y3 — ya) AN (ya — 1),

where we have set Ay(s) = Egzl e~ An important fact on this kernel
Py is that it concentrate on the diagonal y; = - -+ = y4 and we shall make
use of the crucial bound |An(s)| < cLy(s) where Ly is the 2r—periodic
extension of the function such that

[ 1ls| ifm s> 1N
Ln(s) —{ N ifls| < 1N
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Now let Jy be the integral Jx = (2m)~* [ h.(y1)he(y3) Py (y)dy, the proof
of the lemma consists in showing the two following points:

Te(D?) — Jy| = o(c2N) (49)

|In| < ce?N (50)

For the proof of (49) we consider first the integral

;o Jo(y1) folys)
In = /hs(yl)fo(y2)h€(y3){f0(y4) B (v)dy.

As stated in Dalhaus in can be seen that for all 4 > 0 small enough we have
1-36
the bound, |M -1 < clys=yall 7 Hence, using periodicity of fj, for

fo(ya) lys|'—°
Y3, Y4 € [—7, 7] we deduce:
\fo(‘%) —1 < Lv(ys — yg) 1
fo(ya) - lys|t =0

Together with |he(s)| < cg|s|79/2 (for any & > 0), | fo(y1)| < clyr| "0 and
the boundness of 1/ fo(y2) we deduce that,

’J]/V‘ < 062/\y1]2H°_1_6/2|y3]_1+6/2

Ln(yr — y2) L (y2 — y3) LR (y3 — ya) L (ya — y1)dy.

Now we use that Ly(ys — y4) < N and then that we can integrate with
respect to ya, [ Ln(ys — y1)dys < clog(N) to deduce

|‘]§V| < C€2N36 log(N)/|y1|2H0—1—6/2|y3|—1+6/2

Ln(y1 — y2) Ly (y2 — y3)dy1dyzdys.

Now, for y1,y2,y3 € [—m, 7| we can write,

1 P 1 ]15
lyi—y2+27]  |y1—y2l  |y1 —y2 — 27|

1 1 1 59

+ +

ly2 —yz +2n|  |y2 —y3|  |y2 —y3 — 27|
This enable us obtain the bound,

| T | < ce?N1=0log(N) [ |yy|Ho=1=0/2|y|~1+6/2

Ly(y1 — y2) < eN° [

La(ys — ys) < eN'55 [

1-6
1 1 1
X
[|y1—y2+2w| T lyi—yal T \yl—yz—zﬂ}

1
1 1 1
x [|y2—y3+27r| + ly2—ys| + \y2—y3—27f|} dy1dydys

As soon as ¢ is small enough, the latter integral converges by power counting
criteria (see Theorem 3.1 in [9]) and we deduce that J4 = o(e?N).
We can obtain similarly an analogous bound for the integral

Jh = /hg(yl) {;ZEZ;; - 1} he(y3) Py (y)dy1dyedysdys,

and (49) follows.
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We now turn to the proof of (50). Using the property (2m)~! [* An(u—
v)ANn(v —w)dv = Ay (u — w), we can rewrite Jy as
1

JN = 2/ he(y1)he(y3) AN (y1 — y3) An (ys — y1)dy1dys,
(277) [—m,m]2

which is equal to 3, ; . <y @e(j1 — j2)ae(j2 — j1) where a. are the Fourier
coefficient of the periodic function h.. Hence, we deduce that:
JIN| <N ae(k)® < Nhe|fz
keZ
But we can easily find the bound,
|hellfe = (271')1/ [[25in(s/2)[% — 1]%ds < ce2.

—Tr

This gives (49). O
Lemma 9. We have
I Te(Twv (Ae) T (f1) T (Ae) T (f1) )| < eNep. (51)

Proof. First, let us recall that A. is bounded by ce. Moreover we may assume
that A.(0) = 0 by subtracting the true value of A.(0) and notice that it does
not affect (51). Then the proof relies on the quasi commutative property of
Toeplitz matrices. For this, let us write the left hand side of (51) as

Tr(Tn (A) T (Ae) )+ T [(Tn (A) T (f1) — T (1) T (Ae)) T (A2) T (f1)] -
But Tr(Tn(A:)Tn(A)*) < NY o, ar(e)? < Ne? and the other trace is less
than:

1T (Ae)Tv (f1) = T (F1) T (Ae) g I Tv (Ae)“Tiv (1) gy

The remainder of the proof is broken in two steps.

First step: For some § > 0, || T (A)*Tn (f1) " gy < eN' %

Second step: For any 6 > 0, || T (A)Tn(f1) — T (f1) T (Al < cN°e.

For the first step, using that T (f1) ™! is bounded in operator norm, yields
TN (Ae)* T (f1) " lgr < eN'V2e.

For the second step, we evaluate ||Tn(A:)Tn(f1) — Tn(f1)Tn(A:) |ty as
in lemma 8 by the integral:

/[f1 (Y1) Ac(=y2) — Ac(=y1) f1(y2)][Ac(y3) f1(ya) — f1(y3) Ac(ya)]| Pn (y)dy.

Using that the function in the integral above vanishes on the diagonals
y1 = y2 and y3 = y4, it can be shown that this integral is of order z—:?lN‘S. U

Lemma 10. We have
| Te[Tn (Be, )TN (f1) T (B, )"]| < eNej.
Proof. We evaluate again the trace by the integral

/Bs(yl)fl(yz)Be(—y:s)PN(y)dy-

Using that | B[ is less than ¢ and vanishes in a neighborhood of zero, it can
be shown that the integral above is of order Ne?. O
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Lemma 11. Let (ey,(w))nez be identically distributed random variables with
law N'(0,1). Then there exists C(w), with finite moment of any order, such
that almost surely

len(w)] < C(w)(log(2 + [n]))?.

If the family of random variable is enumerated as (€;1(w));j>0kez then we
have instead:

=

1
lej6(w)] < Cw)(log(2+ 7)) (log(2+ k) 2.
Proof. See Lemma 3 in Meyer et al. [20]. O
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