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Abstract

We study the estimation of parameters θ = (µ, σ2) for a diffusion
dXt = a(Xt, σ

2)dBt + b(Xt, µ)dt, when we observe a discretization with
step ∆ of the integral It =

∫ t

0
Xsds. To keep computations tractable

we focus on the case of an Ornstein–Uhlenbeck process, but our results
provide information on how to deal with other processes. We study
an efficient estimator θ̂n based on the Gaussian property of the process

(
∫ (i+1)∆

i∆
Xsds)i≥0, and we give an estimator θ̃n based on Ryden’s idea of

maximum likelihood split data. We compare these different estimators:
first we give some numerical results, then we give a theoretical explanation
for these results.

AMS 1991 subject classification. 62F12, 62M09, 62M10.

key words: diffusion processes, discrete time observation, parametric inference,

minimum contrast, Whittle approximation.

1



1 Introduction

Parameter estimation for a diffusion process (Xt)t≥0, which solves dXt =

a(Xt, σ
2)dBt + b(Xt, µ)dt is now classical. It has been treated under many

different assumptions for the observation of the sample path: (Xt) may be con-

tinuously observed throughout a time interval [0, T ] (see Kutoyants (1981)); or

only a discretization may be observed, the sampling interval ∆ being fixed or

tending to zero as the number of observations tends to infinity (see Bibby and

Sørensen (1995), Dacunha–Castelle and Florens-Zmirou (1986), Genon–Catalot

and Jacod (1993), Kessler (1997)).

In this paper we suppose that we don’t observe the process (Xt) itself but a

discrete sampling of the integrated process It =
∫ t

0
Xsds.

Integrals of diffusion processes have recently been considered in the field of

finance in relation with the stochastic volatility models (see e.g. Ghysels et al.

(1996) for a survey of these models). Data may be obtained from option prices

and their associated implied volatilities (see e.g., Pastorello et al (1994), Taylor

and Xu (1994, 1995)).

The process (It)t≥0 is discretely observed with a regular sampling interval ∆.

For a general diffusionX, the exact distribution of a n–sample (Ii∆, i ≤ n) is not

explicit. Therefore, we consider one of the few models for which computations

are possible in order to try and compare different inference methods in view of

further generalizations. In this paper, we study the case where (Xt) is a strictly

stationary Ornstein–Uhlenbeck process:

dXt = µXtdt+ σdBt.

The unknown parameter θ = (µ, σ2) is to be estimated from the observation

of (Ii∆, i ≤ n) which is equivalent to the observation of the increments (Ji =

I(i+1)∆ − Ii∆, i ≤ n− 1).

We first investigate the probabilistic properties of the process (Ji, i ∈ N)

(Section 2). It is a Gaussian ARMA(1,1) process with exponentially decaying

α–mixing coefficient.

In Section 3, we study efficient estimators of θ. Although the exact distribu-

tion of (Ji, i ≤ n) is explicit, the likelihood function is hardly tractable. So we

study the Whittle estimator of θ which is known to be asymptotically equivalent

to the maximum likelihood estimator (see Dzhaparidze and Yaglom (1983)). It

turns out that the Whittle contrast is explicit (Theorem 3.1). In particular,

when µ is known, the Whittle estimator σ̂2
n is explicit and its asymptotic vari-

ance is equal to 2σ4.
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In Section 4, noting that (Ji, i ∈ N) is a special case of Hidden Markov

Chain, we use Ryden’s approach to build other estimators namely the maximum

likelihood split data estimator (MLSDE) (see Ryden (1994)). For m integer,

the MLSDE θ̃
(m)
n is based on the maximization of the likelihood of a n-sample

distributed as (J0, J1, . . . , Jm−1). Thus θ̃(m)
n uses nm datas. We prove that it

is consistent, asymptotically Gaussian and give an expression for its asymptotic

covariance matrix.

Section 5 deals with the comparison of asymptotic covariances of the pre-

vious estimators. We give numerical values and a theoretical comparison. The

conclusions are the following. For large values of m, the MLSDE and the Whit-

tle estimator have a close asymptotic behaviour. For small ∆, the results are

more surprising. For the drift parameter, the asymptotic variances of estima-

tors are similar. For the diffusion coefficient parameter, they are quite different.

The asymptotic variance of σ̂2
n does not depend on ∆, whereas the asymptotic

variance of σ̃2
(m)

n is of order 1
∆ (Theorem 5.1).

In Section 6, we discuss possibilities of extensions of the two methods to

more general diffusion processes.

2 Model and assumptions

In this section, we describe the probabilistic properties of the observed process.

Let (C = C(R+,R), C, (Ct)t≥0, (Xt, t ≥ 0),Pθ) be the canonical probability

space associated with the observation of a strictly stationary Ornstein-Uhlenbeck

process with parameter θ = (µ, σ2): for t ≥ 0, Xt is defined on C by Xt(w) = wt,

Ct = σ(Xs, 0 ≤ s ≤ t), C = σ(Xt, t ≥ 0); θ = (µ, σ2) is a two-dimensional

parameter: θ1 = µ is negative, and θ2 = σ2 positive; Pθ is the probability on

(C, C), such that, under Pθ, there exists a standard Brownian motion (Bθt , t ≥ 0),

adapted to (Ct)t≥0 and such that the canonical process (Xt)t≥0 is solution of:

dXt = µXtdt+ σdBθt (1)

with X0 centered, Gaussian, with variance σ2

2|µ| and independent of Bθ.

Under Pθ, the process (Xt, t ≥ 0) is a stationary Ornstein-Uhlenbeck process.

Solving (1), we obtain, for all t ≥ 0 and h ≥ 0:

Xt+h = eµhXt + eµ(t+h)σ

∫ t+h

t

e−µsdBθs (2)

For ∆ a positive real and i ∈ N, let

Ji =
∫ (i+1)∆

i∆

Xsds for i ∈ N (3)
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The process (Ji)i≥0 is not Markov, but we can link Ji and Ji+1 by a relation of

ARMA(1,1) type.

Proposition 2.1. Under Pθ, for all i ≥ 0,

Ji+1 − eµ∆Ji =
σ

µ

∫ (i+1)∆

i∆

(eµ∆ − eµ((i+1)∆−s))dBθs

+
σ

µ

∫ (i+2)∆

(i+1)∆

(eµ((i+2)∆−s) − 1)dBθs

Hence for all i ≥ 1, Ji+1 − eµ∆Ji is independent of (J0, . . . , Ji−1)

Proof. See the appendix.

We define the following expressions

r(0, µ) =
1
µ2

(
∆ +

1− eµ∆

µ

)
(4)

r(k, µ) = − 1
2µ3

eµ|k|∆e−µ∆
(
eµ∆ − 1

)2
for k 6= 0 (5)

A0(µ) =
1
µ2

(
∆ +

1− e2µ∆

µ
+ ∆e2µ∆

)
(6)

A1(µ) =
1

2µ2

(
e2µ∆ − 1

µ
− 2eµ∆∆

)
(7)

B0(µ) = 1 + e2µ∆, B1(µ) = −eµ∆ (8)

Proposition 2.2. The process (Ji)i∈N is strictly stationary and Gaussian with

for i, j ≥ 0,

E(Ji) = 0, V ar(Ji) = r(0, µ)σ2, Cov(Ji, Jj) = r(i− j, µ)σ2 for i 6= j.

Its spectral density f(λ, θ) has the explicit form:

f(λ, θ) = σ2A0(µ) + 2A1(µ) cosλ
B0(µ) + 2B1(µ) cosλ

(9)

with
B0(µ)− 2B1(µ) > 0 , A1(µ) > 0 , A0(µ)− 2A1(µ) > 0. (10)

Proof. See the appendix

An immediate consequence of (10) is that infλ∈R f(λ, θ) > 0. Due to the

form of its spectral density, the process (Ji)i∈N has an ARMA(1,1) representa-

tion (see e.g. Brockwell and Davis (1991)). Moreover, we can study its α–mixing

coefficient.
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Proposition 2.3. Let αJ(k) denote the α–mixing coefficient of (Ji)i∈N (see e.g.

Doukhan (1994) chap.1). We have

αJ(k) ≤ eµ(k+1)∆.

Hence, the process is ergodic.

Proof. LetQθ denote the stationary distribution of (Xt)t≥0, i.e. Qθ = N
(

0, σ
2

2|µ|

)
.

The infinitesimal generator of the Ornstein-Uhlenbeck process considered as an

operator on L2(Qθ) is self-adjoint and has discrete spectrum equal to {nµ, n ∈
N} (see Karlin and Taylor (1981) p.332). Thus, using Proposition 1 p.112 in

Doukhan (1994), we know that the α-mixing coefficient αX(t) of (Xt)t≥0 satis-

fies:

αX(t) = α (σ(X0), σ(Xt)) ≤ eµt

(The first equality above is valid because (Xt)t≥0 is a strictly stationary Markov

process). Since Ji is σ(Xs, i∆ ≤ s ≤ (i + 1)∆) measurable, αJ(k − 1) ≤ eµk∆.

Now, µ < 0 implies limk→∞ αJ(k) = 0, which gives the ergodicity.

3 An efficient estimator

The likelihood function of the (J0, . . . , Jn−1) is explicitly known but its ex-

act formula is difficult to compute. Therefore, instead of the exact likelihood,

we shall use its Whittle approximation which provides efficient estimators (see

e.g., Dzhaparidze and Yaglom (1983)). This approximation is also studied in

Dacunha–Castelle and Duflo (1986) (chapter 3) and called the Whittle contrast.

3.1 The Whittle contrast

Recall the definition of the periodogram In(λ) for n ∈ N and λ ∈ R:

In(λ) =
1
n

∣∣∣∣∣
n−1∑
p=0

Jpe
−ipλ

∣∣∣∣∣
2

(11)

The Whittle contrast is given by:

Un(θ) =
1

2π

∫ π

−π

[
ln f(λ, θ) +

In(λ)
f(λ, θ)

]
dλ (12)

Let θ̂n = arginfθ∈Θ Un(θ). This estimator is called the Whittle estimator.

We can actually compute the Whittle contrast explicitly.
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Theorem 3.1. We have

Un(θ) = ln
(
σ2A1(µ)
−ξ(µ)

)
+

1
σ2n

n−1∑
k,l=0

JkJlc(k − l, µ) (13)

where (see (6) – (8))

c(0, µ) =

(
B1(µ)ξ2(µ) +B0(µ)ξ(µ) +B1(µ)

ξ(µ)
√
A2

0(µ)− 4A2
1(µ)

+
B1(µ)
A1(µ)

)
(14)

c(k, µ) = ξ(µ)|k|−1

(
B1(µ)ξ2(µ) +B0(µ)ξ(µ) +B1(µ)√

A2
0(µ)− 4A2

1(µ)

)
if |k| 6= 0 (15)

ξ(µ) =
−A0(µ) +

√
A2

0(µ)− 4A2
1(µ)

2A1(µ)
(16)

(Note that, by (10), ξ(µ) is well defined and is negative.)

Proof. For the sake of simplicity, we omit µ in all expressions depending on µ

only. Using (11) and (12) we have to prove that

1
2π

∫ π

−π
ln f(λ, θ)dλ = ln(σ2A1

−ξ
) (17)

1
2π

∫ π

−π
f(λ, θ)−1dλ =

(
B1ξ

2 +B0ξ +B1

ξ
√
A2

0 − 4A2
1

+
B1

A1

)
1
σ2

(18)

1
2π

∫ π

−π
eikλf(λ, θ)−1dλ = ξ|k|−1

(
B1ξ

2 +B0ξ +B1√
A2

0 − 4A2
1

)
1
σ2

if |k| 6= 0 (19)

First, we state a useful equality (see e.g. Theorem 15.18 p.307 in Rudin

(1987)):

For |x| ≤ 1,
∫ π

−π
ln(1 + x2 − 2x cosλ)dλ = 0 (20)

Let us prove (17). Using (9),(8) we have

ln f(λ, θ) = ln(σ2A1

−ξ
) + ln(−A0ξ

A1
− 2ξ cosλ)− ln(1 + e2µ∆ − 2eµ∆ cosλ)

But using (16), we have A1ξ
2 +A0ξ +A1 = 0, and so

ln f(λ, θ) = ln(σ2A1

−ξ
) + ln(1 + ξ2 − 2ξ cosλ)− ln(1 + e2µ∆ − 2eµ∆ cosλ)

Since, by (16), |ξ| ≤ 1 and eµ∆ ≤ 1, we can apply (20), and this gives (17).

Let us prove (18). We compute:

1
2π

∫ π

−π
f(λ, θ)−1dλ =

1
2πσ2

∫ π

−π

(
B0 + 2B1 cosλ
A0 + 2A1 cosλ

)
dλ

=
1

σ22iπ

∫
U

B0 +B1(z + z−1)
(A0 +A1(z + z−1))z

dz, where U is the unit circle

=
1

σ22iπ

∫
U

B1z
2 +B0z +B1

(A1z2 +A0z +B1)z
dz
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Using the residue Theorem we have (with G(z) = B1z
2+B0z+B1

(A1z2+A0z+B1)z for the sake

of simplicity)

c(0) =
∑

α pole of G, |α|<1

res(G,α)

The pole zero has residue B1
A1

, and ξ is the only other pole with residue B1ξ
2+B0ξ+B1

ξ
√
A2

0−4A2
1

.

This gives (18).

To get (19), we compute the expression of 1
2π

∫ π
−π e

ikλf(λ, θ)−1dλ, in the

same way as for (18).

3.2 Properties of the Whittle estimator

To study the Whittle estimator, we assume that Θ = [µ, µ] × [σ2, σ2] with

µ < µ < 0, 0 < σ2 < σ2. The assumption of compacity for Θ is used in

Dacunha–Castelle and Duflo (1986) in order to simplify the proof of consis-

tency of minimum contrast estimators (see Dacunha–Castelle and Duflo (1986),

Theorem 3.2.8). We denote by θ0 = (µ0, σ
2
0) the true value of the parameter

and assume that θ0 ∈
◦
Θ.

Let I(θ) be the 2× 2 matrix defined for θ ∈
◦
Θ, by

for i, j ∈ {1, 2} I(θ)i,j =
1

4π

∫ π

−π

∂

∂θi
ln f(λ, θ)

∂

∂θj
ln f(λ, θ)dλ (21)

Proposition 3.2. 1) For all θ ∈
◦
Θ, the matrix I(θ) is non singular.

2)
√
n(θ̂n − θ0) n→∞−−−−→ N (0, I−1(θ0)) in distribution under Pθ0 .

Proof. Provided I(θ0) is non singular, 2) is easily obtained by a classical proof

(see Dacunha–Castelle and Duflo (1986), Dzhaparidze and Yaglom (1983)).

Let us prove 1). By noticing, using (9), that f(λ, θ) = σ2g(λ, µ), we obtain:

∂

∂σ2
ln(f(λ, θ)) =

1
σ2

Hence the matrix I(θ) is:

I(θ) =

 1
4π

∫ π
−π

(
∂
∂µ ln g(λ, µ)

)2

dλ 1
4πσ2

∫ π
−π

(
∂
∂µ ln g(λ, µ)

)
dλ

1
4πσ2

∫ π
−π

(
∂
∂µ ln g(λ, µ)

)
dλ 1

2σ4

 (22)

Suppose that I(θ) is singular, then det I(θ) = 0. Because of (22) we have∫ π
−π

(
∂
∂µ ln g(λ, µ)

)2

dλ =
(∫ π
−π

(
∂
∂µ ln g(λ, µ)

)
dλ
)2

; but equality in the Cauchy-

Schwarz inequality implies that ∂
∂µ ln g(λ, µ) is independent of λ. We deduce

that
∂

∂µ

(
∂

∂λ
ln g(λ, µ)

)
=

∂

∂λ

(
∂

∂µ
ln g(λ, µ)

)
= 0
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Derivating (9), we find(
∂

∂λ
ln g(λ, µ)

)
|λ=π

2

=
−2A1

A0
− −2B1

B0

where this expression should not depend on µ. Replacing (6) and (7) above

yields the fact that

−
e2µ∆−1

µ − 2eµ∆∆

∆ + 1−e2µ∆

µ + ∆e2µ∆
− 2eµ∆

1 + e2µ∆
should be independent of µ

By letting µ→ −∞ we find it is equal to zero. Hence, for all µ,

−
(
e2µ∆ − 1− 2µ∆eµ∆

) (
1 + e2µ∆

)
−
(
µ∆ + 1− eµ∆ + µ∆e2µ∆

)
2eµ∆ = 0

This is absurd. So I−1(θ) exists.

Remark 3.3. If µ0 is known, then the Whittle estimator σ̂2
n of σ2

0 is given by

σ̂2
n =

1
n

n−1∑
k,l=0

JkJlc(k − l, µ0)

and satisfies
√
n(σ̂2

n − σ2
0) n→∞−−−−→ N (0, 2σ4

0). This is the same asymptotic dis-

tribution as the MLE of σ2 based on the observation of (Xi∆)i≤n.

4 Maximum likelihood split data estimator

4.1 Introduction and notations

The process (Ji)i∈N is not Markov, but is a deterministic function of the 2-

dimensional Markov chain (Ji, X(i+1)∆)i∈N. This is a special case of Hidden

Markov Model, therefore we use Ryden’s idea (Ryden (1994)). We split the

observation into groups of fixed size, consider these groups as independent and

then maximize the resulting likelihood. The resulting estimator is called the

maximum likelihood split data estimator (MLSDE). In this section, we prove

the consistency and asymptotic normality of the MLSDE.

Let m be an integer, m ≥ 1. Define for i = 0, 1, . . . , n− 1,

K
(m)
i = (Jim, Jim+1, . . . , Jim+m−1)∗ (23)

If x is a vector or a matrix, we denote by x∗ its transpose. Since m is fixed

throughout this section, we shall set,

K
(m)
i = Ki (24)
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The process (Ki, i ∈ N) is ergodic and its α-mixing coefficient satisfies αK(k) ≤
αJ((k + 1)m). By infλ∈R f(λ, θ) > 0, the covariance matrix of K0,(

σ2M
(m)
i,j (µ)

)
0≤i,j≤m−1

= σ2 (r(i− j, µ))0≤i,j≤m−1 , (25)

is invertible.

Let P (m)
θ be the distribution of K0, p(m)(., θ) its density under Pθ, and:

l(m)(., θ) = ln p(m)(., θ) (26)

U (m)
n (θ) =

1
n

n−1∑
i=0

l(m)(Ki, θ), θ̃(m)
n = argmax

θ∈Θ
U (m)
n (θ)

For i, j ∈ {1, 2},

I
(m)
i,j (θ) = Eθ

[
∂

∂θi
l(m)(K0, θ)

∂

∂θj
l(m)(K0, θ)

]
(27)

For i, j ∈ {1, 2}, k ≥ 1,

γ
(m)
i,j (k, θ) = Eθ

[
∂

∂θi
l(m)(K0, θ)

∂

∂θj
l(m)(Kk, θ)

]
(28)

4.2 Asymptotic behaviour of the maximum likelihood split
data estimator

Before stating results for θ̃(m)
n we need two preliminary propositions. The first

one is the identifiability assumption.

Proposition 4.1. If m ≥ 2, then P
(m)
θ = P

(m)
θ′ if and only if θ = θ′.

Proof. Assume that θ = (µ, σ2), θ′ = (µ′, σ2′) and P
(m)
θ = P

(m)
θ′ . Since P (m)

θ is

a m-dimensional Gaussian law and m ≥ 2, P (m)
θ = P

(m)
θ′ implies the equality

between the variance of J0 and the covariance of (J0, J1) under Pθ and Pθ′ . By

Proposition 2.2 and (4), (5):

σ2

µ2

(
∆ +

1− eµ∆

µ

)
=
σ2′

µ′2

(
∆ +

1− eµ′∆

µ′

)
(29)

σ2

2µ3

(
1− eµ∆

)2
=

σ2′

2µ′3
(

1− eµ
′∆
)2

It follows by a simple calculation that µ = µ′ and σ2 = σ2′.

Remark 4.2. If m = 1, then only one parameter may be identified.

Now, for the asymptotic normality, we need the following result.

Proposition 4.3. For m ≥ 2 and θ ∈
◦
Θ, I(m)(θ) is non singular.
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Proof. Assume that I(m)(θ) is singular, then det I(m)(θ) = 0. By (27),

Eθ

[(
∂

∂µ
l(m)(K0, θ)

)2
]
Eθ

[(
∂

∂σ2
l(m)(K0, θ)

)2
]

=
(
Eθ

[
∂

∂µ
l(m)(K0, θ)

∂

∂σ2
l(m)(K0, θ)

])2

This equality in the Cauchy-Schwarz inequality implies that there exits a con-

stant c(θ) such that (recall (26)):

∂

∂µ
ln p(m)(x, θ) = c(θ)

∂

∂σ2
ln p(m)(x, θ) ∀x ∈ Rm (30)

Using the fact that the covariance matrix of K0 is σ2M (m)(µ), we get:

ln p(m)(x, θ) = −1
2

[
m2π +m lnσ2 + ln detM (m)(µ) +

1
σ2
x∗
(
M (m)(µ)

)−1

x

]
∂

∂σ2
ln p(m)(x, θ) = −1

2

[
m

σ2
− 1
σ4
x∗(M (m)(µ))

−1
x

]
(31)

∂

∂µ
ln p(m)(x, θ) = −1

2

[
∂

∂µ
(ln detM (m)(µ)) +

1
σ2
x∗

∂

∂µ

(
(M (m)(µ))

−1
)
x

]
So, by (30), we must have ∂

∂µ

(
(M (m)(µ))−1

)
= − c(θ)σ2 (M (m)(µ))−1; sinceM (m)(µ)

does not depend on σ2, the same is true for − c(θ)σ2 . Set c̃(µ) = − c(θ)σ2 , then we

have:
∂

∂µ

(
(M (m)(µ))−1

)
= c̃(µ)(M (m)(µ))−1

We can solve this equation: (M (m)(µ))−1 = (M (m)(µ0))−1 exp
(∫ µ

µ0
c̃(s)ds

)
.

Hence,

M (m)(µ) = M (m)(µ0) exp
(
−
∫ µ

µ0

c̃(s)ds
)

But this implies that M (m)
0,0 (µ) and M

(m)
0,1 (µ) have the same asymptotic be-

haviour as µ → −∞ (∼ constant exp
(
−
∫ µ
µ0
c̃(s)ds

)
). And this is absurd:

M
(m)
0,0 (µ) is of order µ−2, and M

(m)
0,1 (µ) is of order µ−3 (using (4) and (5)).

We can now prove that θ̃(m)
n is asymptotically normal.

Theorem 4.4. Assume m ≥ 2 then

H
(m)
i,j (θ) =

∞∑
k=1

γ
(m)
i,j (k, θ), Γ(m)

i,j (θ) = I
(m)
i,j (θ) + 2H(m)

i,j (θ) (32)

are well defined (for i, j ∈ {1, 2} and θ ∈
◦
Θ) and

√
n(θ̃(m)

n − θ0) n→∞−−−−→N
(

0, I(m)(θ0)−1Γ(m)(θ0)I(m)(θ0)−1
)

= N
(

0, I(m)(θ0)−1 + 2I(m)(θ0)−1H(m)(θ0)I(m)(θ0)−1
)

in distribution under Pθ0 .
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Proof. Consistency is obtained by adapting Ryden’s proof (Ryden (1994)) to

this model. We only consider the asymptotic normality.

Denote

∇l(m)(x, θ) =
(
∂
∂µ l

(m)(x, θ), ∂
∂σ2 l

(m)(x, θ)
)

and∇2l(m)(x, θ) =
[

∂2

∂θiθj
l(m)(x, θ)

]
i,j∈{1,2}

.

By using standard arguments it is enough to prove

1) 1
n

∑n−1
i=0 ∇2l(m)(Ki, θ0) n→∞−−−−→ −I(m)(θ0) Pθ0a.s.

2) 1√
n

∑n−1
i=0 ∇l(m)(Ki, θ0) n→∞−−−−→ N (0,Γ(m)(θ0)), in law under Pθ0 and Γ(m)(θ0)

is well defined.

3) For i, j, k in {1, 2}, supn∈N,θ∈Θ
1
n

∑n−1
i=0

∣∣∣ ∂3

∂θiθjθk
l(m)(Ki, θ)

∣∣∣ is bounded in

Pθ0 probability.

Point 1) is obtained by the ergodicity of (Ki, i ≥ 0), since Eθ0(∇2l(m)(K0, θ0)) =

−I(m)(θ0).

To obtain 2) by Theorem 1 p.46 in Doukhan (1994), it is enough to show

that H(m)(θ) is well defined . (Because the other assumptions of the theorem

are easy to check: E[|K0|2+δ] < ∞ and
∑∞
k=0 αK(k)

δ
2+δ < ∞, for some δ > 0,

since αK(k − 1) ≤ αJ(km).)

Applying the first covariance inequality given in Doukhan (1994), Theorem

3 p.9 we get, for all θ ∈
◦
Θ, (see (28))

γ
(m)
i,j (k, θ) ≤ 8α

1
2
J (mk)

{
Eθ

[
∂

∂θi
l(m)(K0, θ)

]4

Eθ

[
∂

∂θj
l(m)(Kk, θ)

]4
} 1

4

= 8α
1
2
J (mk)

{
Eθ

[
∂

∂θi
l(m)(K0, θ)

]4

Eθ

[
∂

∂θj
l(m)(K0, θ)

]4
} 1

4

.

Using Proposition 2.3, we see that
∑∞
k=0 α

1
2
J (mk) ≤ ∞. Hence, H(m)(θ) is well

defined.

Finally, for i, j, k in {1, 2} and n > 0,

sup
θ∈Θ

1
n

n−1∑
i=0

∣∣∣∣ ∂3

∂θiθjθk
l(m)(Ki, θ)

∣∣∣∣ ≤ 1
n

n−1∑
i=0

sup
θ∈Θ

∣∣∣∣ ∂3

∂θiθjθk
l(m)(Ki, θ)

∣∣∣∣ ,
which converges when, n→∞, to Eθ0

[
supθ∈Θ

∣∣∣ ∂3

∂θiθjθk
l(m)(θ)

∣∣∣].
So we have the result.

Remark 4.5. If µ0 is known, using (31) we get:

σ̃2
(m)

n =
1
mn

n−1∑
k=0

K∗k(M (m)(µ0))−1Kk

11



5 Comparison of the theoretical asymptotic vari-
ances

In this section our aim is to compare the efficient estimator θ̂n with the MLSD

estimators θ̃(m)
n by means of their asymptotic theoretical variances for different

values of ∆ and m.

Clearly, when m increases, the MLSD estimator must behave better: indeed,

the asymptotic covariance matrices of
√
nm(θ̂mn−θ0) and

√
nm(θ̃(m)

n −θ0) tend

to be similar as m becomes large (see Table 2).

When ∆ varies, for fixed m, the results are more surprising. The asymptotic

variances of µ̂n and µ̃
(m)
n are very similar: Table 1 shows that this variance is

high for small ∆. This is consistent with the usual results of drift estimation

for diffusions based on the discrete observation of the diffusion itself (Dacunha-

Castelle and Florens-Zmirou (1986)), where the asymptotic variance is shown

to be of order O( 1
∆ ).

On the contrary, the asymptotic variances of σ̂2
n and σ̃2

(m)

n behave differ-

ently as shown in Table 2. When ∆ is small, the variance of the MLSD estimator

is high. Indeed, the numerical results are confirmed by the theorical result of

Theorem 5.1.

Table 1: We assume that σ0 = 1 is known, and µ0 = −1, the figures take
account of the fact that µ̃(2)

n uses 2n datas.

Theoretical asymptotic variances of the estimator 1

∆ = 2 ∆ = 1 ∆ = 0.1 ∆ = 0.01
V ar

√
n(µ̂n − µ0) 1.1 2.0 20.0 200.0

V ar
√

2n(µ̃(2)
n − µ0) 1.1 2.0 20.0 200.0

Table 2: We assume that µ0 = −1 is known, and σ0 = 1, the figures take

account of the fact that σ̃2
(m)

n uses mn datas.

Theoretical asymptotic variances of the estimator 1

∆ = 2 ∆ = 1 ∆ = 0.1 ∆ = 0.01
V ar

√
n(σ̂2

n − σ2) 2 2 2 2

V ar
√

2n(σ̃2
(2)

n − σ2
0) 2.2 2.7 7.4 52.4

V ar
√

4n(σ̃2
(4)

n − σ2
0) 2.0 2.3 3.6 14.8

V ar
√

8n(σ̃2
(8)

n − σ2
0) 2.1 2.2 2.6 5.3

12



The rest of the section is now devoted to the theoretical study of matri-

ces I(m)(θ), H(m)(θ), and Γ(m)(θ). As m → ∞, it is possible to prove that

I(m)(θ)
−1

Γ(m)(θ)I(m)(θ)
−1 ∼m→∞ m−1I(θ) (a detailed proof is available upon

request). The latter property is consistent with the numerical results of Table

2.

For m = 2, as ∆→ 0, the following theorem precises the difference between

both types of estimator.

Theorem 5.1. In the case m = 2, we may precise the following expressions for

I(2)(θ) and Γ(2)(θ)

I
(2)
2,2 (θ) =

1
σ4
, Γ(2)

2,2(θ) ∼∆→0
1

4σ4 |µ|∆
. (33)

Hence, if µ0 is known, the asymptotic variance of σ̃2
(2)

n is equivalent when ∆→ 0

to σ4
0

4|µ0|∆ .

Proof. I(2)
2,2 (θ) is the Fisher information for the parameter σ2 of a Gaussian

vector with covariance matrix σ2M (2)(µ) of size 2 × 2. So we know that

I
(2)
2,2 (σ2) = 1

σ4 .

To prove the second part of (33), let us calculate the sum H
(2)
2,2 (θ). We

write the following diagonalization of M (2)(µ) (recall that, by (25), M (2)(µ) =[
r(0, µ) r(1, µ)
r(1, µ) r(0, µ)

]
):

M (2)(µ) = V (2)∗D(2)(µ)V (2)

V (2) =
1√
2

[
1 1
−1 1

]
, D(2)(µ) =

[
r(0, µ) + r(1, µ) 0

0 r(0, µ)− r(1, µ)

]
Denote L(2)

k = V (2)Kk, for k = 0, . . . , n − 1 and N
(2)
i , i = 2k, 2k + 1 the

components of L(2)
k :

L
(2)
0 =

[
N

(2)
0

N
(2)
1

]
, L

(2)
1 =

[
N

(2)
2

N
(2)
3

]
, . . . , L

(2)
n−1 =

[
N

(2)
2(n−1)

N
(2)
2n−1

]

Now, formula (31) writes:

∂

∂σ2
ln p(2)(Kk, θ) =

1
2σ4

 N
(2)
2k

2

r(0, µ) + r(1, µ)
− σ2

+

 N
(2)
2k+1

2

r(0, µ)− r(1, µ)
− σ2


1 We have calculated varµ̂n numerically with the formulae (9) and (21) the integral being

classically approximated.

We have calculated varµ̃
(2)
n and varσ̃2

(m)

n numerically with the formulae (27), (28), (32)
the expectations beeing calculated by using the special Gaussian form of the considered r.v.
We numerically diagonalize their covariance matrices to get computation on independent
variables.
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To compute γ
(2)
2,2(k, θ) (see (28)), we use the fact that if (Z,Z ′) is a Gaus-

sian vector with law N
(

0,
[
a b
b a

])
, E[(Z2 − a)(Z ′2 − a)] = 2b2, and that

Covθ(N
(2)
i , N

(2)
2k+j) = e2(k−1)µ∆Covθ(N

(2)
i , N

(2)
j ). we obtain:

γ
(2)
2,2(k, θ) =

e4(k−1)µ∆

2σ8
S(∆) ,

where

S(∆) =
Covθ(N

(2)
0 , N

(2)
2 )2

(r(0, µ) + r(1, µ))2
+
Covθ(N

(2)
0 , N

(2)
3 )2

r(0, µ)2 − r(1, µ)2
+

Covθ(N
(2)
1 , N

(2)
2 )2

r(0, µ)2 − r(1, µ)2
+
Covθ(N

(2)
1 , N

(2)
3 )2

(r(0, µ)− r(1, µ))2

Hence,
∞∑
k=1

γ
(2)
2,2(k, θ) =

1
2σ8(1− e4µ∆)

S(∆)

So, we have to give the limit of S(∆) when ∆ → 0. Using N (2)
0 = 1√

2
(J0 +

J1), N (2)
1 = 1√

2
(−J0 +J1), N (2)

2 = 1√
2
(J2 +J3), N (2)

3 = 1√
2
(J2−J3), and Propo-

sition 2.2, we obtain:

S(∆) =
σ4

4
(2r(2, µ) + r(1, µ) + r(3, µ))2

(r(0, µ) + r(1, µ)2
+
σ4

4
(r(1, µ)− r(3, µ))2

r(0, µ)2 − r(1, µ)2
+

σ4

4
(r(3, µ)− r(1, µ))2

r(0, µ)2 − r(1, µ)2
+
σ4

4
(2r(2, µ)− r(1, µ)− r(3, µ))2

(r(0, µ) + r(1, µ))2

And we easily deduce that S(∆) ∆→0−−−→ σ4, by using the following straightforward

equalities (by (4)–(5)):

r(0, µ) = −∆2

2µ
− ∆3

6
+ o(∆3), r(1, µ) = −∆2

2µ
− ∆3

2
+ o(∆3)

r(2, µ) = −∆2

2µ
−∆3 + o(∆3), r(3, µ) = −∆2

2µ
− 3∆3

2
+ o(∆3).

6 Conclusions and possible extensions

Let us now draw some conclusions on the two methods in view of possible ex-

tensions. Suppose we want to estimate unknown parameters of an ergodic one-

dimensional diffusion (Xt) from the observation of the sample Ji =
∫ (i+1)∆

i∆
Xsds,

0 ≤ i ≤ n−1. First note that the exact distribution of a m-tuple (Ji, i ≤ m−1)

is hardly tractable for large m (hence for the whole sample m = n). So, actually,

we started with the idea of using Ryden’s method for small values of m in the

14



general case. In fact, our result enlight the fact that the method will not be

appropriate at least for estimating the diffusion coefficient parameters.

Moreover, even for small values of m (m = 1, 2) Ryden’s likelihood will not

be easily computable.

On the contrary, the Whittle contrast seems more suitable for generalization

since it relies only on the covariance structure of the Ji’s and there are several

ergodic diffusions for which these covariances are explicit and simple. Further

work is in progess in this direction.

7 Appendix

7.1 Proof of the proposition 2.1

We integrate (2), (with h = ∆), between i∆ and (i+ 1)∆:

Ji+1 − eµ∆Ji = σ

∫ (i+1)∆

i∆

eµ(t+∆)

∫ t+∆

t

e−µsdBθsdt

Using the Fubini Theorem, we get:

Ji+1 − eµ∆Ji = σ

∫ (i+1)∆

i∆

dBθs

(
e−µs

∫ s

i∆

eµ(t+∆)dt

)
+ σ

∫ (i+2)∆

(i+1)∆

dBθs

(
e−µs

∫ (i+1)∆

s−i∆
eµ(t+∆)dt

)
This gives the results

7.2 Proof of proposition 2.2

Since (Xs)s≥0 is a strictly stationary Gaussian process, so is the process (Ji)i∈N.

Because the expectation of Xs is zero, by the Fubini Theorem E[Ji] = 0, for all

i.

Let us calculate the covariance function of (Ji)i∈N. Elementary computa-

tions show that covariance function of (Xs)s≥0 is given by: Cov(Xs, Xs′) =
σ2

−2µe
µ|s′−s|.

So, with some computations, for 0 ≤ i ≤ j,

E(JiJj) =
∫ (i+1)∆

i∆

∫ (j+1)∆

j∆

E[XsXs′ ]dsds′ = σ2r(j − i, µ)

The spectral density f(λ, θ) is given by:

f(λ, θ) = σ2r(0, µ) +
∞∑
k=1

σ2(eiλkr(k, µ) + e−iλkr(k, µ)) = σ2A0 + 2A1 cosλ
B0 + 2B1 cosλ

The inequalities of (10) are obtained by elementary computations.
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