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Abstract

We estimate a real-valued function f of d variables, subject to
additive Gaussian perturbation at noise level ε > 0, under Lπ-loss,
for π ≥ 1. The main novelty is that f can have an extremely varying
local smoothness, exhibiting a so-called multifractal behaviour. The
results of Jaffard on the Frisch-Parisi conjecture suggest to link the
singularity spectrum of f to Besov properties of the signal that can
be handled by wavelet thresholding for denoising purposes.

We prove that the optimal (minimax) rate of estimation of mul-
tifractal functions with singularity spectrum d(H) has explicit rep-
resentation ε2v(d(•),π), with

v(d(•), π) = min
H

H +
(
d− d(H)

)
/π

2H + d
.

The minimum is taken over a specific domain and the rate is cor-
rected by logarithmic factors in some cases. In particular, the usual
rate ε2s/(2s+d) is retrieved for monofractal functions (with spectrum
reduced to a single value s) irrespectively of π. More interestingly,
the sparse case of estimation over single Besov balls has a new in-
terpretation in terms of multifractal analysis.
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1 Introduction

We consider the usual formulation of signal denoising in nonparametric
estimation: we want to recover a real-valued function f defined on a reg-
ular bounded domain D ⊂ Rd. We can make linear measurements, but
each measurement is contaminated by systematic noise: we observe

Yε = f + ε Ẇ , (1.1)

where Ẇ is a Gaussian white noise on L2(D) and ε > 0 a noise level.
Asymptotics are taken as ε→ 0. Observable quantities take the form

Yε(ϕ) := 〈ϕ, f〉+ ε ξ(ϕ),

where ϕ ∈ L2(D) is a test function and 〈•, •〉 denotes the inner product
on L2(D). The random process ξ(ϕ) is centred Gaussian, with covari-
ance E[ξ(ϕ)ξ(ψ)] = 〈ϕ,ψ〉 for ϕ,ψ ∈ L2(D). The symbol E[•] denotes
mathematical expectation. This setting is meaningless without further
smoothness properties on the signal f . A commonly used assumption is
that f belongs to a Besov ball

Bs
p,∞(r) :=

{
f ∈ Bs

p,∞, ‖f‖Bsp,∞ ≤ r
}
, (1.2)

for some r > 0, with the additional condition s − d/p > 0 so that the
functions in Bs

p,∞(r) are all continuous. Here, Bs
p,∞ denotes the Besov

space on D, appended with boundary conditions and p ranges in (0,+∞);
more in Section 3.1 below.

In this paper, we are interested in signals that possess local smooth-
ness in a Hölder sense that vary extremely from one point to the other
and that we shall informally refer to as multifractal before getting to a
rigorous definition. In this context, the classical approach of single Besov
balls (1.2) needs to be generalized.

1.1 Multifractal analysis

Let x0 ∈ D, α > 1. Following Jaffard [23], we say that f : D → R is
Cα(x0) if there exists c > 0 and a polynomial Px0 of degree at most [α]
such that in a neighbourhood of x0:

|f(x)− Px0(x)| ≤ c|x− x0|α. (1.3)
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If α ∈ (0, 1], we simply replace Px0(x) by f(x0). The Hölder exponent of
f at x0 is

hf (x0) := sup
{
α > 0, f ∈ Cα(x0)

}
. (1.4)

The level sets
Sf (H) := {x ∈ D, hf (x) = H} (1.5)

with maximal Hölder regularity H of the functions we want to consider
have typical Lebesgue measure zero, see [23], and in this setting, it seems
more appropriate to consider the Hausdorff dimension1 of Sf (H). The
function d(H) := dimSf (H) is called the Hölder or singularity spectrum
of f and is extended to the whole line by setting dim(H) = −∞ if H is
nowhere the Hölder exponent of f .

Definition 1.1. A function f : D → R is multifractal if its spectrum of
singularity d(H) 6= −∞ at least on an interval of non-empty interior.

1.2 Empirical multifractal evidence

Empirical evidence of multifractal behaviour in signal modelling was first
obtained in velocity fields of fully developed turbulent flows [13, 14, 15, 16]
around 1980, and lays its roots in the theoretical founding papers of
Kolmogorov and Obukov [27, 32] in 1962. More recently, the multifractal
approach has been introduced in traffic networks [33], coding sequences in
genome analysis [1, 34, 36], financial data [19, 2, 3, 28, 29], and Bayesian
statistical analysis [17, 18]. Clearly however, the spectrum of singularity
d(H) defined by (1.4) and (1.5) is an asymptotic notion that cannot
be related to quantities that are measured with limited accuracy or in
presence of noise. The link between d(H) and related observable objects
can be given by the Frisch-Parisi conjecture which reads2

d(H) = inf
p

{
pH − ps(1/p) + d

}
, (1.6)

where the exponent s(•) is defined pointwise by

s(1/p) := sup
{
s ≥ 0, f ∈ Bs

p,∞
}
.

The use of correspondence (1.6) suggests a strategy to define a consistent
statistical setup since Besov norms are tractable functionals that can be

1We recall the definition of the Hausdorff dimension in the appendix for sake of
completeness.

2A classical heuristic derivation of (1.6) is proposed in Appendix 6.1.
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estimated in presence of noise by wavelet thresholding [9, 10, 11, 12, 26, 6].
Of course, the range of H and p for which (1.6) can be valid must be
assessed precisely, see Section 3.4. When (1.6) holds, we informally say
that f satisfies a multifractal formalism. It is noteworthy that in all the
applied fields cited above, it is a Besov-type related quantity, the so-called
structure function, that measures statistical evidence of multifractality.
The structure function can be defined as

Mj(f, 1/p) := 2−j
2j∑
k=1

∣∣f(k2−j)− f
(
(k − 1)2−j

)∣∣p, (1.7)

in dimension d = 1 with D = [0, 1] for notational simplicity. Multifractal
empirical evidence corresponds to a scaling law of the type

Mj(f, 1/p) ≈ 2−jps(1/p), j →∞ (1.8)

where the function 1/p s(1/p) is not constant. Indeed, interpreting the
local fluctuation of f around k2−j as a wavelet coefficient up to rescaling,
we have

sup
j

2js(1/p)Mj(f, 1/p)1/p ≈ ‖f‖
B
s(1/p)
p,∞

, (1.9)

so having s(•) not being constant and putting together (1.9)–(1.6) yields
the notion of multifractality of Definition 1. The precise meaning of (1.9)
together with the link to Besov norms will become transparent in Sections
2 and 3 below, at least for small values of s(•).

1.3 Organisation and results of the paper

In Section 2, we define rigorously our statistical setting and the corespond-
ing multifractal formalism by means of so-called Besov domains inspired
by Jaffard [23] and that enables us to consider multifractal signals without
loosing the standard minimax approach of recovering functions in Besov
spaces.

An upper bound for estimating signals within a prescribed Besov do-
main is given in Lπ-loss error in Theorem 3.4, for π ≥ 1. It is achieved by
the wavelet threshold algorithm, and the proof heavily relies on the mod-
ern formulation of wavelet estimation over atomic spaces, as introduced
by Cohen et al. [6]. We make a systematic use of embeddings proper-
ties of strong Besov spaces into weak Besov spaces, thanks to the results
of Kerkyacharian and Picard [26], a key reference for the paper. These
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powerful analytical tools render the proof of Theorem 3.4 quite simple,
yet technical. This result is optimal by Theorem 3.5, up to logarithmic
factors. This is actually the most delicate part of the paper: in order to
prove a lower bound, an appropriate prior has to be chosen over functions
which are genuinely multifractal with a prescribed singularity spectrum.
A nontrivial construction is proposed, using tools developed in Jaffard
[23], another central reference to the paper.

The translation in terms of multifractal analysis and Hölder spectrum
whenever the Frisch-Parisi conjecture holds is given in Theorem 3.8. We
show that the minimax rate of estimation of multifractal functions with
singularity spectrum d(H) has explicit representation ε2v(d(•),π), with

v(d(•), π) = min
H

H +
(
d− d(H)

)
/π

2H + d
.

The minimum is taken over a specific domain and the rate is corrected
by logarithmic factors in ε in some cases. As a consequence, the classical
rate ε2s/(2s+d) is retrieved for monofractal functions having singularity
spectrum d(s) = d and d(H) = −∞ for H 6= s, irrespectively of the Lπ-
loss. More interestingly, the sparse case of estimation over single Besov
balls has a new interpretation in terms of multifractal analysis, as well
as the critical case that separates dense and sparse regimes. Examples
and applications are derived in Section 4. In particular, we revisit and
somewhat improve former results of Hall, Kerkyacharian and Picard [20]
on estimation of noisy signals exhibiting abberations of chirp or Doppler
type, thanks to the multifractal approach. The proofs are delayed until
Section 5 and auxiliary technical results are given in an appendix (Section
6).

2 Multifractal formalism and signal estimation

2.1 Besov domains and function classes

We generalize the scale of Besov classes (1.2) of the Introduction by de-
scribing the approach of Besov domains. For f ∈ L2, the minimal as-
sumption so that the statistical model (1.1) is well defined, we have the
following:

Definition 2.1. The scaling function of f is

1/p sf (1/p) := sup{s ≥ 0, f ∈ Bs
p,∞}.
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The function sf (•) is defined pointwise over a domain of 1/p ⊂ [0,+∞)
that contains at least [1/2,+∞) since f ∈ L2 = B0

2,2 ⊂ B0
2,∞. This domain

may contain 0 if we allow for p =∞. The function sf (•) can take the value
+∞, in which case it becomes trivially equal to +∞ over [0,+∞). This
is a consequence of the following simple lemma:

Lemma 2.2. The function sf (•) is increasing, concave and satisfies
s′f (•) ≤ d.

Here, s′f (•) denotes the left-derivative of sf (•). We adopt the same
convention for any concave function in the sequel.

Proof. Since D is bounded, the spaces Bs
p,∞ are decreasing in p thus

1/p sf (1/p) is increasing. If f belongs to Bs1
p1,∞∩B

s2
p2,∞, then f ∈ Bs3

p3,∞
for s3 = us1 + (1 − u)s2 and 1/p3 = u/p1 + (1 − u)/p2 for all u ∈
[0, 1] by interpolation hence sf (•) must be concave. Finally, the Sobolev
embedding Bs1

p1,∞ ⊂ Bs2
p2,∞ if s1 − d/p1 = s2 − d/p2, p2 > p1 yields the

bound s′f (•) ≤ d.

Conversely, we adopt the following:

Definition 2.3. A non-decreasing concave function s(•) : [0,+∞) → R
such that s(0) > 0 is called admissible. The Besov domain of an admissible
function s(•) is the set of functions defined by

M
(
s(•)

)
:=
{
f ∈ L2, ∀ 1/p ∈ [0,+∞), sf (1/p) ≥ s(1/p)

}
.

Remark 2.4. The assumption s(0) > 0 guarantees some uniform Hölder
regularity since M

(
s(•)

)
⊂ Bs(0)−ε

∞,∞ for all ε > 0. In particular, the func-
tions in M

(
s(•)

)
are continuous over D. This assumption is crucial for

the interpretation of Jaffard’s theorem in Section 2.2 in terms of multi-
fractal analysis, but not essential as far as statistical estimation is con-
cerned. We intend to describe extensions beyond the continuous case in a
forthcoming work.

The Besov domain M
(
s(•)

)
coincides with the space⋂

p∈(0,+∞)

⋂
ε>0

Bs(1/p)−ε
p,∞

that consists of functions that saturate their smoothness in Lp with the
exponent s(1/p) simultaneously for all p ∈ (0,+∞). In particular, we
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cover the case of single Besov spaces in the following sense: let s0, p0

satisfy s0 − d/p0 > 0 and define

ss0,p0(1/p) := s0 + d
(
1/p− 1/p0

)
if 0 ≤ 1/p ≤ 1/p0,

and ss0,p0(1/p) := s0 otherwise. Clearly, ss0,p0(•) is admissible and defines
the Besov domain M

(
ss0,p0(•)) with the following property

M
(
ss0,p0(•)) =

⋂
ε>0

Bs0−ε
p0,∞.

We also introduce the restriction of functions ofM
(
s(•)

)
with prescribed

radius in all Bs
p,∞ (quasi)-norms: for r > 0, the Besov domain with radius

r > 0 of an admissible function s(•) is defined by

M
(
s(•), r

)
:=
{
f ∈M

(
s(•)

)
, sup
p∈(0,+∞]

‖f‖
B
s(1/p)
p,∞

≤ r
}
.

2.2 Besov domains and multifractal functions

Let us first recall Jaffard’s theorem in our context: if s(•) is admissible,
define

1/pc := inf
{
t > 0, s(t) ≤ dt

}
, (2.1)

which equals +∞ in the extremal case where s′(•) = d in a neighbourhood
of +∞.

Proposition 2.5. (Theorem 1 in [23]). If s(•) is admissible, the spectrum
of singularity of quasi-all function of M

(
s(•)

)
is [s(0), d/pc] and is given

by
d(H) = inf

p≥pc

{
Hp− ps(1/p) + d

}
. (2.2)

So we interpret M
(
s(•)

)
as containing multifractal functions with

spectrum of singularity satisfying (2.2). The class M
(
s(•)

)
is however

too big and contains functions g with smoother scaling function, in the
sense that

sg(1/p) ≥ s(1/p), p ∈ (0,+∞).

This includes in particular monofractal functions for which sg(•) is con-
stant, see Section 4.1. Nevertheless, the minimax methodology forces op-
timal rates of convergence to be governed by multifractal functions that
sit at the “boundary” ofM

(
s(•)

)
and for which (2.2) holds exactly. This

will become transparent in Section 3.4 below.
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3 Main result

An estimator f̂ of f is a measurable function of the observation Yε defined
in (1.1). We measure its performance in Lπ-loss error simultaneously for
all π ≥ 1 over the class M

(
s(•), r

)
by setting

Eπ
(
f̂
)

:= sup
f∈M(s(•),r)

E
[
‖f̂ − f‖πLπ

]1/π
. (3.1)

We look for an estimator f̂ independent of s(•) and r > 0 with minimal
error Eπ

(
•
)
.

3.1 Wavelet bases and superconcentration

Wavelets are documented in numerous textbooks3. We use regular wavelet
bases (ψλ)λ adapted to the domain D. The multi-index λ concatenates the
spatial index and the resolution level j = |λ|. We set Λj := {λ, |λ| = j}
and Λ := ∪j≥−1Λj . Thus, for f ∈ Lp, we have

f =
∑
j≥−1

∑
λ∈Λj

fλψλ =
∑
λ∈Λ

fλψλ, with fλ := 〈f, ψλ〉,

where we have set j := −1 in order to incorporate the low frequency part
of the decomposition. From now on the basis (ψλ)λ is fixed. Let c(D)
denote a constant such that Card Λj 6 c(D)d2jd.

Definition 3.1. For s > 0 and p ∈ (0,∞], f belongs to Bs
p,∞ if the

following norm is finite:

‖f‖Bsp,∞ := c(D)s−d/p sup
j≥−1

2j
(
s+d(

1
2−

1
p )
)( ∑

λ∈Λj

|〈f, ψλ〉|p
)1/p (3.2)

with the usual modification if p =∞.

Precise connection between this definition of Besov norm and more
standard ones can be found in [5]. Given a basis (ψλ)λ, there exists σ > 0
such that for p > 1 and s 6 σ the Besov space defined by (3.2) exactly
matches the usual definition in terms of modulus of smoothness for f .
The index σ can be taken arbitrarily large. Taking (3.2) as a definition

3We follow closely the notation of Cohen [5].
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is technically convenient in the sequel. In particular, by incorporating
the factor c(D)s−d/p into the definition, the norm ‖f‖Bsp,∞ decreases as p
decreases. Moreover the following Sobolev embedding and interpolation
inequalities hold without inflating the norm:

‖f‖Bs2p2,∞ 6 ‖f‖B
s1
p1,∞

for s1 − d/p1 = s2 − d/p2, p2 > p1 (3.3)

‖f‖Bs3p3,∞ 6 ‖f‖
u
B
s1
p1,∞
‖f‖1−u

B
s2
p2,∞

(3.4)

for s3 = us1 + (1 − u)s2, with 1/p3 = u/p1 + (1 − u)/p2, for u ∈ [0, 1].
The additional properties of the wavelet basis (ψλ)λ that we need are
summarized in the next assumption.

Assumption 3.2. For π ≥ 1:

• We have
‖ψλ‖πLπ ∼ 2|λ|d(π/2−1). (3.5)

• For some σ > 0 and for all s 6 σ, j0 > 0, we have

‖f −
∑
j6j0

∑
λ∈Λj

fλψλ‖Lπ . 2−j0s‖f‖Bsπ,∞ . (3.6)

• For any subset Λ0 ⊂ Λ∫
D

( ∑
λ∈Λ0

|ψλ(x)|2
)π/2

dx ∼
∑
λ∈Λ0

‖ψλ‖πLπ . (3.7)

• If π > 1, for any sequence (uλ)λ∈Λ∥∥(∑
λ∈Λ

|uλψλ|2
)1/2∥∥

Lπ
∼ ‖

∑
λ∈Λ

uλψλ‖Lπ . (3.8)

The symbol ∼ means inequality in both ways, up to a constant depending
on π and D only. The property (3.6) reflects that our definition (3.2) of
Besov spaces matches the definition in term of linear approximation.

Property (3.8) reflects an unconditional basis property, see [26, 7]
and (3.7) is referred to as a superconcentration inequality, or Temlyakov
property [26]. The formulation of (3.7)-(3.8) in the context of statistical
estimation is posterior to the original papers of Donoho and Johnstone
[9, 10] and Donoho et al. [11, 12] and is due to Kerkyacharian and Picard
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[26]. The existence of compactly supported wavelet bases satisfying
Assumption 3.2 is discussed in [30], see also [5].

The threshold algorithm. We consider the classical hard threshold
estimator. For x ∈ R and π ≥ 1, introduce

Tε,π(x) := x 1{
|x|≥κ(π)ε

√
log 1

ε

}, κ(π) := 4
√

max{π, 2}. (3.9)

We consider estimators of the form

f̂ε,π :=
∑
|λ|≤Jε

Tε,π
(
f̂λ
)
ψλ, 2−Jε :=

(
ε
√

log 1
ε

)2/d

.

The empirical wavelet coefficients f̂λ are defined by

f̂λ := Yε(ψλ) = fλ + ε ξ(ψ) (3.10)

with ξ(ψ) a standard normal random variable by (1.1) since ‖ψλ‖L2 = 1.
Thus f̂ε,π is specified by π and the choice of the basis (ψλ)λ only. The
choice of κ(π) in (3.9) is motivated by the following estimates

Lemma 3.3. For all π ≥ 1, we have

E
[
|f̂λ − fλ|π

]
. επ (3.11)

and

P
[
|f̂λ − fλ| ≥ κ(π)

2 ε
√

log 1
ε

]
. ε2 max{π,2}. (3.12)

where . means inequality up to constants depending on π only.

Proof. Inequality (3.11) readily follows from (3.10). If ξ is standard nor-
mal, we have P[|ξ| ≥ t] ≤ exp(−t2/2) for t > 0 so the left-hand side in
(3.12) is less than εκ(π)2/2 = ε2 max{π,2} thanks to the choice of κ(π).

3.2 Upper bound

We introduce the fundamental equation

s(1/p) =
d

2

(
π

p
− 1
)
. (3.13)

We define p? as the necessarily unique solution of (3.13) if it exists. Notice
that the index s(1/p?) depends on d and π.
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Theorem 3.4. Grant Assumption 3.2 for some σ > 0. Let π ≥ 1 and
assume that s(•) is admissible.

• If s′(∞) < dπ/2 (which is always true if π > 2), the solution p? to
(3.13) exists.

• For σ > s(1/π), we have

Eπ
(
f̂ε,π
)
.

(
ε
√

log 1
ε

)2s(1/p?)/(2s(1/p?)+d)(
log

1
ε

)1/π

, (3.14)

where . means up to a constant depending on π, s(•) and r only.

• Extremal case: If s′(•) = 0 in a neighbourhood of 1/p? then we have
the refinement

Eπ
(
f̂ε,π
)
.

(
ε
√

log 1
ε

)2s(1/p?)/(2s(1/p?)+d)

.

3.3 Lower bound

The next result states that the rate obtained in (3.14) is the best one, up
to a logarithmic correction.

Theorem 3.5. Let π > 1, assume that s(•) is admissible and s′(∞) <
dπ/2.

• If s′(1/p?) > 0 then

inf
f̂
Eπ
(
f̂
)
&

(
ε
√

log 1
ε

)2s(1/p?)/(2s(1/p?)+d)

, (3.15)

where the infimum is taken over all estimators and & means up to
constant depending on π, s(•) and r only.

• Extremal case: If s′(1/p?) = 0 we have

inf
f̂
Eπ
(
f̂
)
& ε2s(1/p?)/(2s(1/p?)+d).

Remark 3.6. The distinction s′(1/p?) = 0 versus s′(1/p?) > 0 corre-
sponds to the standard distinction between ’dense’ case and ’sparse’ case,
see Section 4.2 below.
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Remark 3.7. If s′(∞) > dπ/2 then the equation (3.13) has no solution.
However we can choose π′ > π in a way that the equation (3.13), where
π′ replaces π, has now a solution p? as large as we want. Applying the
upper bound (3.14) with π′, and using that necessarily s(∞) = ∞, we
deduce that the Lπ risk is bounded by εγ with γ arbitrarily close to 1.
Hence, we might conjecture that, when s′(∞) > dπ/2, the rate of the
statistical problem is essentially the parametric rate ε. In this paper, we
do not consider this situation.

3.4 Minimax rates under the Frisch-Parisi conjecture

We may now interpret Theorem 3.4 and 3.5 in the light of the Frisch-Parisi
conjecture, thanks to Jaffard’s theorem given in Section 2.2 above. Let
us denote by FP

(
s(•), r

)
the subset ofM

(
s(•), r

)
consisting of functions

satisfying

d(H) = inf
p≥pc

{
Hp− ps(1/p) + d

}
, ∀H ∈ [s(0), d/pc],

recall (2.2) and the definition of pc in (2.1). We interpret FP
(
s(•), r

)
as

the class of genuine multifractal functions as soon as s(•) is not constant.
A consequence of Theorems 3.4 and 3.5 is the following expression for the
minimax risk over FP

(
s(•), r

)
:

Theorem 3.8. In the same setting as Theorems 3.4 and 3.5 and for
π ≥ pc + 2, we have

inf
f̂

sup
f∈FP(s(•),r)

E
[
‖f̂ − f‖πLπ

]1/π ≈ ε2v(d(•),π), (3.16)

where the infimum is taken over all estimators and

v(d(•), π) = min
s(0)≤H≤d/pc

H +
(
d− d(H)

)
/π

2H + d
, (3.17)

with d(•) given by formula (2.2). The notation ≈ loosely means equiva-
lence up to constants, possibly corrected by logarithmic factors in ε, subject
to the same restrictions as in Theorems 3.4 and 3.5.

Remark 3.9. Formula (3.17) quantifies the connection between local
smoothness of a signal and its rate of estimation: it shows how the effect
of points with regularity H is balanced by the frequency of such points,
assessed by d(H). In the ’dense’ case s′(1/p?) = 0, the infimum in (3.17)
is attained at some H satisfying d(H) = d, whereas in the ’sparse’ case
it is attained at some H with d(H) < d.

12



Remark 3.10. It is clear by (2.2) that the singularity spectrum d(•)
contains no information about s(1/p) for p < pc. Thus it is impossible to
relate the results of Theorem 3.4 and 3.5 with the spectrum in the case
p? < pc. Actually the condition π ≥ pc+2 ensures that this situation does
not happen.

Remark 3.11. By a result of Jaffard [22], if a function f ∈ M(s(•), r)
does not satisfy the Frisch Parisi conjecture, we still have the information
on its spectrum d(H) 6 infp≥pc

{
Hp− ps(1/p) + d

}
. Thus the right hand

side of (3.17) always provides a upper bound for the exact rate of esti-
mation of the signal. Remark that the functions of FP(s(•), r) appear as
the functions maximizing the frequency of points with a given smoothness
H, for any H ∈ [s(0), d/pc]. However, the violation of the Frisch Parisi
conjecture might be severe. For instance Jaffard [22] constructs a function
f with a linear scaling function sf , and which is C∞ everywhere except
at one point. In this situation d(H) = −∞ for all H, and the right hand
side of (3.17) is equal to +∞.

4 Examples and applications

4.1 Monofractal functions

Monofractal functions satisfy s(1/p) = H0 for all p > 0. A canonical
example is given by the sample paths of a fractional Brownian motion
with Hurst parameter H0 ∈ (0, 1) in dimension d = 1, see for instance [35].

In this case, we find the minimax rate
(
ε
√

log 1
ε

)2H0/(2H0+d) for all loss
functions π ≥ 1. In particular, the sample path of a noisy 1-dimensional

Brownian motion (H0 = 1/2) is recovered with optimal rate
(
ε
√

log 1
ε

)1/2,
irrespectively of the loss function.

4.2 Besov balls

As already remarked in Section 2.1, single Besov spaces are related to
a Besov domain of a certain admissible function ss0,p0(•). Using mono-
tonicity of the Besov norm with respect to 1/p and (3.3)–(3.4) the relation
with Besov balls becomes exact: Bs0

p0,∞(r) = M
(
ss0,p0(•), r). Theorem 1

in Jaffard [23] shows that among functions f in Bs0
p0,∞(r) that saturate
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their Besov domain precisely for ss0,p0(•), in other words that belong to
the set: {

f ∈ Bs0
p0,∞(r), sf (•) = ss0,p0(•)

}
,

then the Frisch-Parisi holds for quasi-all functions. By Theorems 3.4 and
3.5, we retrieve the classical nonparametric reconstruction results over
Besov balls as developed in the mid-1990 [9, 10, 11, 12] and the earlier
results of the Russian school [21]. In light of our result, we can reinterpret
the classical theory in terms of the multifractal approach: For Besov balls,
the minimax rates of convergence are governed by extremal functions f
such that sf (•) = ss0,p0(•) and which are generically multifractal. How-
ever, this multifractality is very particular, in the sense that ss0,p0(•) is
either constant or with maximal slope d, except in the viscinity of the so-
called critical case where p? = p0. This point separates the so-called dense
and sparse cases (according to the classical terminology [11, 12, 26]).

4.3 Intersection of two Besov balls

As an exercice, we can compute the minimax rate of convergence up to
logarithmic factors by Theorem 3.5 over the intersection of two Besov
balls

C := Bs1
p1,∞(r) ∩Bs2

p2,∞(r), p1 > p2, 0 < s1 < s2,

with s2 − d/p2 + d/p1 < s1, so that no Besov ball is included into the
other. It is easily seen that C =M

(
s(•), r

)
where the graph of s(•) is the

concave envelope of the graph of ss1,p1(•) and ss2,p2(•).

ss2,p2(•)

s(1/p)

1/p

1/p2

s2

s2 − d/p2

1/p1

s1

s1 − d/p1

ss1,p1(•)

In the region for which loss functions π are such that 1/p? ≥ 1/p2

the minimax rates of convergence are governed by the dense regime of
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the space Bs2
p2,∞. Likewise, in the region for which 1/p? ≥ 1/p2, the

sparse Bs1
p1,∞ regime dominates. A new intermediate regime appears for

1/p1 ≤ 1/p? ≤ 1/p2:

Corollary 4.1. In the setting of Theorem 3.4 and 3.5, the minimax
rate of convergence for the class C is given (up to logarithmic fators)
by ε2v(s1,s2,p1,p2,π), where

v(s1, s2, p1, p2, π) =


s2/(2s2 + d) if dπ ≤ p2(d+ 2s2)

s1 + d(1/π − 1/p1)
2(s1 − d/p1) + d

if dπ ≥ p1(d+ 2s1)

in the classical regimes, and

v(s1, s2, p1, p2, π) =
(s2 − s1)/π + s1/p2 − s2/p1

2(s1/p2 − s2/p1) + d(1/p2 − 1/p1)

in the non-classical regime p2(d+ 2s2) ≤ dπ ≤ p1(d+ 2s1).

4.4 A multifractal model for chirps and Dopplers

In [20], Hall, Kerkyacharian and Picard (abbreviated by HKP in the fol-
lowing) develop block threshold methods in the case π = 2 for wavelet
estimators which are adaptive to many variations of signal abbera-
tions including those of chirp and Doppler type, which are of the form
x |x−x0|β cos(|x−x0|−α) for α, β ≥ 0. In dimension 1, HKP introduce
the class H that can be described as follows: g ∈ H if for any j ≥ 0, there
exists a set of integers Sj with CardSj . 2jγ such that:

• For each k ∈ Sj there exist constants a0 = g(k2−j), a1, . . . , aN−1

such that∣∣∣g(x)−
N−1∑
`=0

a`(x− k2−j)`
∣∣∣ . 2−js1 for all x ∈ [k2−j , (k + v)2−j ],

where v > 0 is a given constant and

• For each k /∈ Sj there exist constants a0, a1, . . . , aN−1 such that

∣∣∣g(x)−
N−1∑
`=0

a`(x− k2−j)`
∣∣∣ . 2−js2 for all x ∈ [k2−j , (k + v)2−j ].
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The class is parametrized by 0 6 γ 6 1 and s1 < s2. Proposition 3.2. in
[20] shows that if the analyzing wavelet ψ has compact support included
in [0, v], then

|dλ| . 2−|λ|(s1+1/2)1{k∈Sj} + 2−|λ|(s2+1/2)1{k/∈Sj}. (4.1)

In particular, if s1 > 0, the classH is embedded into continuous functions,
a restriction that HKP do not have, but which is important if we use the
interpretation in terms of multifractal analysis. The characterization (4.1)
enables to show easily that if g ∈ H, then sg(•) ≥ sH(•), with

sH(1/p) :=


s1 + (1− γ)/p for 1/p < (s2 − s1)/(1− γ)

s2 for 1/p ≥ (s2 − s1)/(1− γ).

This reveals the non-trivial Besov domainM
(
sH(•)

)
⊇ H as soon as γ 6=

1. In particular, HKP show in their Theorem 4.1. that the minimax rate
exponent ε2s2/(1+2s2) is achievable for π = 2 if the following condition4

holds:
0 ≤ γ ≤ 2s1 + 1

2s2 + 1
.

In our formalism, this corresponds exactly to the critical case when the
line 1/p  −d/2 + dπ/(2p) (with d = 1 and π = 2) intersects sH(•)
for 1/p > (s2 − s1)/(1 − γ) and our approach shows that the result of
HKP is sharp. Beyond this critical point, our Theorems 3.4 and 3.5 com-
pletes their result and reveals the following non-classical minimax rate of
convergence:

ε
2s1+(1−γ)

2s1+1 if γ >
2s1 + 1
2s2 + 1

,

within a logarithmic factor5.

4.5 Lacunary wavelet series

An example of multifractal signal f on D = [0, 1]d is provided by the
sample path of a lacunary wavelet series as defined in Jaffard (2000b) [24].
This random process f is defined by its wavelet coefficients as follows: let
α ∈ (0, d) and for each level j, choose randomly bc(D)2j(d−α)c locations
among the Card(Λj) ∼ c(D2jd) locations corresponding to this level. The

4The result of HKP is slightly more general, since it allows 2−jγCard Sj to grow as
ε→ 0 at a certain rate, a situation we discard here for simplicity.

5whereas HKP results are sharp up to logarithmic terms.
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chosen coefficients are set to the value 2−j(β+d/2) for some β > 0, all the
other coefficients are set to 0. It is shown in [24] that sf (1/p) = α/p+ β
and that almost surely the Frisch Parisi conjecture holds with a singularity
spectrum given by d(H) = H(d−α)

β for H ∈ [β, dβ
d−α ].

Applying Theorem 3.4, an upperbound for the rate of estimation of
the signal, with Lπ loss, is (up to a logarithmic factor)

ε
2β+2α/π

2β+d

as soon as 2α/π < d. This rate is increasing with the sparsity of the
wavelet series, and the restriction 2α/π < d corresponds to the restriction
by the parametric rate ε. Remark that in this example, the infimum in
the formula (3.17) is attained at H = s(0) = β, which is the minimal
degree of smoothness for a singularity appearing in the signal.

4.6 Cascade processes

Multiplicative cascade processes were introduced in the initial work by
Mandelbrot [28] and mathematical properties were studied further in Ka-
hane and Peyriere [25]. The objective was to provide models which de-
scribe the statistical behavior of turbulent flows. More recently, they were
applied for modeling many signals which exhibit high intermittency such
as the internet traffic, financial data or DNA sequences.

The law of the cascade process is fully characterized by some non neg-
ative random variable W , which expectation is equal to one, and usually
referred to as the ’cascade generator’. This variable determines the evo-
lution, through change of scales, of the cascade process (Xt)t∈[0,1], as can
be seen in the relation:

Xt/2 −X0
law= (Xt −X0)W/2, for all dyadic t.

A large literature is devoted to the study of the properties of the sam-
ple paths of multiplicative cascades (see references in [4]). For instance,
Molchan [31] proves that the sample paths of these processes are almost
surely multifractal and computes the spectrum of singularities as a func-
tion of W . He shows that the Frisch Parisi conjecture holds and essentially
relates the scaling exponent sX(•) of the typical sample path to the gen-
erator W :

sX(1/p) =

{
1− 1

p log2(E(W p)) for p 6 pW
1
p + cW for p > pW
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where pW and cW are the two unique values that make the function sX
of class C1 (pW is thus determined by the condition that s′X(1/pW ) = 1
in both expressions above, and the value of cW follows by the continuity
of sX). Since the choice of the generator W is almost arbitrary, we see
that cascade processes provide examples of stochastic signals with a large
variety of scaling exponents s(•).

5 Proofs

5.1 Proof of Theorem 3.4

Preliminaries from [26]. Weak `q,∞(π) sequence spaces are defined by
means of the atomic measure µπ defined over multiindices λ by setting

µπ({λ}) := ‖ψλ‖πLπ , for 1 ≤ π <∞.

For 0 < q < π, a function f =
∑

λ fλψλ belongs to `q,∞(π) if

‖f‖q`q,∞(π) := sup
t>0

tqµπ
(
λ, |fλ| ≥ t

)
< +∞.

The spaces `q,∞(π) are linked to the choice of the basis (ψλ)λ and related
to classical Besov spaces Bs

p,∞ by the following embedding properties:

Proposition 5.1. (Theorem 6.2 in [26]). Let 1 ≤ π < ∞ and s ≥ 0.
Define ps := dπ

2s+d .

• If p > ps, then Bs
p,∞ ⊂ `ps,∞(π).

• If p = ps and f ∈ Bs
p,∞ ∩Bδ

π,∞ for some δ > 0, then for t < 1/2:

µπ
(
λ, |fλ| ≥ t

)
. t−p log

(
1
t

)
.

• If p < ps and 2d
2s+d < p < ps, then Bs

p,∞ ⊂ `qs,∞(π), with qs =
d(p/2−1)

s+d(1/2−1/p) .

The following proposition was obtained in [26], but in order to prove
Theorem 3.4, we will actually need a slight extension of it. Therefore and
in order to be self-contained, we give a condensed proof of this proposition.
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Proposition 5.2. (Theorem 5.1 in [26]). In the setting of Theorem 3.4,
we have

E
[
‖f̂ε,π − f‖πLπ

]
.

(
ε
√

log 1
ε

)π−q
‖f‖q`q,∞(π) +

∥∥ ∑
|λ|>Jε

fλψλ
∥∥π
Lπ
,

for all 0 < q < π such that the right-hand side is meaningful, and where
. means up to a constant depending on π and ‖f‖Lπ only.

Proof. We have

E
[
‖f̂ε,π − f‖πLπ

]
. E

[
‖
∑
|λ|≤Jε

(Tε,π(f̂λ)− fλ)ψλ‖πLπ
]

+ ‖
∑
|λ|>Jε

fλψλ‖πLπ ,

and in view of the result, only an inspection of the first term in the right-
hand side is needed. Indeed, this first term is, up to a constant, less than
I + II, with

I := E
[
‖
∑
|λ|≤Jε

(f̂λ − fλ)1
{|f̂λ|≥κ(π)ε

√
log

1
ε }
ψλ‖πLπ

]
,

and
II := E

[
‖
∑
|λ|≤Jε

1
{|f̂λ|≤κ(π)ε

√
log

1
ε }
fλψλ‖πLπ

]
.

A fairly classical concentration argument based on (3.12) enables then to
ignore the random part of f̂λ in the indicator in I and II, up to modifying
the threshold level by a factor 1/2 (see [12], [26]). It follows that I and
II can be replaced by

III := E
[
‖
∑
|λ|≤Jε

(f̂λ − fλ)1
{2|fλ|≥κ(π)ε

√
log

1
ε }
ψλ‖πLπ

]
and

IV := ‖
∑
|λ|≤Jε

1
{2|fλ|≤κ(π)ε

√
log

1
ε }
fλψλ‖πLπ

respectively, without affecting the rates of convergence, inflating the
error by a multiplicative factor depending on π and ‖f‖Lπ only.

Step 1: The case π ≤ 2. For any sequence (uλ)λ∈Λ, we have in that
case

‖
∑
λ∈Λ

uλψλ‖πLπ .
∑
λ∈Λ

|uλ|π‖ψλ‖πLπ (5.1)
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as follows from (3.8) and the comparison between `π-norms in the case
π > 1, and from triangle inequality if π = 1. Applying successively (5.1)
and (3.11), we have

III .
∑
|λ|≤Jε

E
[
|f̂λ − fλ|π

]
1{

2|fλ|≥κ(π)ε

√
log

1
ε

}‖ψλ‖πLπ
. επ

∑
|λ|≤Jε

1{
2|fλ|≥κ(π)ε

√
log

1
ε

}‖ψλ‖πLπ (5.2)

.

(
ε
√

log 1
ε

)π−q
‖f‖q`q,∞(π)

by definition of the weak-`q,∞(π) space. By (5.1) again,

IV .
∑
|λ|≤Jε

1
{2|fλ|≤κ(π)ε

√
log

1
ε }
|fλ|π‖ψλ‖πLπ . (5.3)

Next, we use the fact that for all q < π,

sup
t>0

tq−π
∑
λ

|fλ|π1|fλ|≤t‖ψ‖
π
Lπ . ‖f‖

q
`q,∞(π), (5.4)

up to a constant depending on π. The characterization (5.4) of `q,∞(π)
spaces relies on simple calculation (see [26] or section 3 in [6]). So
the right-hand side of (5.3) is further bounded by a constant times(
ε
√

log 1
ε

)π−q‖f‖q`q,∞(π) and Proposition 5.2 follows.

Step 2: The case π ≥ 2. Using successively property (3.8) and
Minkowski’s generalized inequality, we have

III . E
[ ∫
D

( ∑
|λ|≤Jε

1{
2|fλ|≥κ(π)ε

√
log

1
ε

}|f̂λ − fλ|2|ψλ(x)|2
)π/2

dx
]

.
∫
D

( ∑
|λ|≤Jε

1{
2|fλ|≥κ(π)ε

√
log

1
ε

} (E[|f̂λ − fλ|π]
)2/π

|ψλ(x)|2
)π/2

dx
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By (3.11), this last quantity is less than

επ
∫
D

( ∑
|λ|≤Jε

1{
2|fλ|≥κ(π)ε

√
log

1
ε

}|ψλ(x)|2
)π/2

dx

.επ
∑
|λ|≤Jε

1{
2|fλ|≥κ(π)ε

√
log

1
ε

}‖ψλ‖πLπ , (5.5)

where we have used (3.7) for the last line. Thus III has the right order by

the definition of weak `q,∞(π) spaces as before. Write ρε := 2κ(π)ε
√

log 1
ε

for notational simplicity. We have

IV .
∥∥∑
k≥1

∑
|λ|≤Jε

1{2−kρε≤|fλ|≤2−k+1ρε}fλ ψλ
∥∥π
Lπ

.
(∑
k≥1

∥∥ ∑
|λ|≤Jε

1{2−kρε≤|fλ|≤2−k+1ρε}fλ ψλ
∥∥
Lπ

)π
by the triangle inequality. Next, using (3.8) and
|fλ|1{2−kρε≤|fλ|≤2−k+1ρε} ≤ 2−k+1ρε1{|fλ|≥2−kρε}, the above quantity
is less than

ρπε

(∑
k≥1

2−k+1‖
( ∑
|λ|≤Jε

1{|fλ|≥2−kρε}|ψλ|
2
)1/2‖Lπ)π.

By applying first (3.7) and then the definition of weak `q,∞(π) spaces,
this quantity is less than

ρπε

(∑
k≥1

2−k+1
( ∑
|λ|≤Jε

1{|fλ|≥2−kρε}‖ψλ‖
π
Lπ
)1/π)π (5.6)

.
(
ε
√

log 1
ε

)π−q(∑
k≥1

2−k2(k+1)q/π‖f‖q/π`q,∞(π)

)π
.

Since π > q, the geometric series is convergent which ends the proof.

We are now ready to prove Theorem 3.4 in four steps.

Step 1: Definiteness of p?. It suffices to check that the function

t ϕ(t) := s(t)− d
2(tπ − 1)
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hits 0. We have ϕ(0) > 0 since s(0) > 0 and ϕ′(t) = s′(t) − dπ/2.
Moreover, s(•) is concave so having ϕ′(t) < 0 for some t > 0 is sufficient,
but that follows from the bound s′(∞) < dπ/2.

Step 2: Linear term. As soon as f ∈ Bδ
π,∞ for some δ > 0, we have∥∥ ∑

|λ|>Jε

fλψλ
∥∥π
Lπ
. ‖f‖πBδπ,∞2−Jεδπ .

(
ε2 log 1

ε

)δπ/d
.

We now prove that we can take δ = ds(1/p?)/(2s(1/p?) + d), which gives
the desired order. We claim that

s(1/π) ≥ ds(1/p?)
2s(1/p?) + d

, (5.7)

from which the result simply follows since f ∈ B
s(1/π)
π,∞ and by the em-

bedding Bs
π,∞ ⊂ Bs′

π,∞ if s ≥ s′. By definition of p?, we have p? =
πd/(2s(1/p?) + d) so (5.7) is equivalent to

πs(1/π) ≥ πds(1/p?)
2s(1/p?) + d

= p?s(1/p?).

It is enough to prove that t  ϕ̃(t) := s(t)/t is decreasing between 1/π
and 1/p? since, by definition of p?, we always have

1
p?

=
2s(1/p?)
πd

+
1
π
>

1
π
.

Now, ϕ̃′(t) =
(
s′(t)t − s(t)

)
/t2 ≤ −s(0)/t2 ≤ 0 since s(•) is concave and

s(0) > 0.

Step 3: Nonlinear terms, large p. Proposition 5.1 provides two regions
of embedding, separated by the critical case p = ps. Let us first consider
the set (p?,∞), of large p’s, for which the following condition holds

p >
dπ

2s(1/p) + d
.

By Proposition 5.1 case 1, we have the embedding

Bs(1/p)
p,∞ ⊂ `dπ/(2s(1/p)+d),∞(π),
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therefore the nonlinear term
(
ε
√

log 1
ε

)π−q
‖f‖q`q,∞(π) in Proposition 5.2

is for the choice q = dπ/(2s(1/p) + d) of order(
ε
√

log 1
ε

)π−dπ/(2s(1/p)+d)

=
(
ε
√

log 1
ε

) 2s(1/p)π
2s(1/p)+d

.

If s′(1/p0) = 0 for some 1/p0 < 1/p?, s(•) is constant for 1/p ≥ 1/p0 by
concavity hence s(1/p0) = s(1/p?) and we obtain Theorem 3.4 in that
case.

Step 4: Nonlinear terms, critical p. Let us then turn to the critical
case

p? =
dπ

2s(1/p?) + d
.

For this constraint, the decomposition of Proposition 5.2 is of no use since
no embedding of Bs(1/p)

p,∞ in any space `q,∞(π) is valid, so we need to refine
Proposition 5.2. By Proposition 5.1 case 2, we have

∀t < 1/2, µπ
(
λ, |fλ| ≥ t

)
. t−p

?
log
(

1
t

)
(5.8)

if, in addition, f ∈ Bδ
π,∞ for some δ > 0, a case we always have with

δ = s(1/π) for instance. This enables us to revisit the terms III and IV
in Proposition 5.2. Inspecting (5.2), (5.5) in the proof, we readily have,
for all π ≥ 1

III . επµπ
(
|λ| ≤ Jε, |fλ| ≥ κ(π)

2 ε
√

log 1
ε

)
. επ

(
ε
√

log 1
ε

)−p? log
1
ε

.
(
ε
√

log 1
ε

)2s(1/p?)π/(2s(1/p?)+d) log 1
ε

where we have successively used (5.8) and the definition of p?. We now
turn to the more delicate term IV . Define, for notational simplicity ρε :=
κ(π)

2 ε
√

log 1
ε . Inspecting the proof of Proposition 5.2, equation (5.6) yields

in the case π > 2,

IV . ρπε
(∑
k>1

2−k+1µπ
(
|λ| ≤ Jε, |fλ| ≥ 2−kρε

)1/π)π
.
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Using again (5.8), we deduce that IV is of magnitude less than(
ρε
)π−p? log 1

ρε
and thus Theorem 3.4 is proved in the case π > 2. For

π ∈ [1, 2], the term IV can be bounded quite similarly by using (5.3), we
omit the details here. Theorem 3.4 follows.

Remark 5.3. It is instructive to inspect the behaviour of the threshold
algorithm beyond the critical case, i.e. for p satisfying

p <
dπ

2s(1/p) + d
.

Proposition 5.1 case 3 tells us that the embedding

Bs(1/p)
p,∞ ⊂ `d(π/2−1)/(s(1/p)+d(1/2−1/p)),∞(π)

holds, provided further that p > 2d/(2s(1/p)+d) which implies in particu-
lar the restriction π > 2. Moreover, no other inclusion of any Besov space
into a weak `q,∞(π) exists otherwise. In that setting, it is readily checked

that the threshold algorithm attains in this region the rate
(
ε
√

log 1
ε

)q?π,
with

q? =
s(1/p) + d

(
1
π −

1
p

)
s(1/p) + d

(
1
2 −

1
p

) ,
but a closer inspection of the properties of s(•), namely the fact that
s′(1/p) ≤ d shows that this rate is suboptimal.

5.2 Proof of Theorem 3.5

The proof is divided into three steps. We first focus on the case of a
linear admissible function s(•) and solve a Bayesian problem instead of
the initial minimax problem. In a second step, we compare the Bayes
risk with the minimax risk. Finally, we extend the result to an arbitrary
Besov domain s(•). The extremal case s′(1/p?) = d is more delicate and
requires a separate proof.

Step 1: A Bayes risk. A first delicate issue is to construct a prior on
L2 which concentrates on functions with exact scaling function s(•). The
construction of such functions is a fairly complex problem solved in [23].
However, there is a simple expression if the scaling function is linear. Let

s̃(1/p) := β + α/p, 0 < 1/p < +∞
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which is admissible for α ∈ [0, d] and β > 0. The following lemma provides
a simple condition that ensures that a function is in M

(
s̃(•)

)
.

Lemma 5.4. Let g =
∑

λ cλψλ =
∑

j>0

∑
|λ|=j cλψλ be such that:

|cλ| 6 c(D)−β2−j(β+d/2)for all λ with |λ| = j,

and the number of non-zero coefficients on each level satisfies:

Card {λ, |λ| = j and cλ 6= 0} 6 c(D)d−α2j(d−α).

Then, ‖g‖
B
s̃(1/p)
p,∞

6 1 for all p > 0.

Proof. We have
(∑

|λ|=j |cλ|p
)1/p

6 c(D)−β2j(d−α)/pc(D)(d−α)/p2−j(β+d/2)

hence the result by (3.2).

Note that a function that saturates the conditions of Lemma 5.4 has
scaling function s̃(•). We now choose a level j and define a prior µj(df)
on L2 by picking at random the wavelet coefficients according to the
following distribution: if λ 6= j we set 〈f, ψλ〉 = 0 and if λ = j, the
coefficients 〈f, ψλ〉 = cλ are independent Bernoulli variables,

〈f, ψλ〉 = cλ =
{
rc(D)−β2−j(β+d/2) with probability q
0 with probability 1− q ,

with q = c(D)−α2−jα−1. We define the associated Bayes Lπ-error for any
estimator f̂ :

EB,j,π
(
f̂
)

:
(∫

L2

Ef
[
‖f̂ − f‖πLπ

]
µj(df)

)1/π

,

where Pf denotes the law of Yε with parameter6 f . The following proposi-
tion gives a lower bound for this Bayes error. Let us stress that the result
depends on α which characterizes in some way the sparsity of the prior.
According to the usual terminology, for α = 0 the prior is dense, whereas
it is sparse in the other cases.

6We assume that all the probability measures Pf are defined simultaneously on the
canonical space L2. Such a construction is always possible.
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Proposition 5.5. • If α 6= 0, choose M with 0 < M <
r−2c(D)2β2 log 2 and let j = j(ε) satisfy

Mα(j − 1)2(j−1)(d+2β) 6 ε−2 < Mαj2j(d+2β). (5.9)

Then, we have:

inf
f̂
EB,j(ε),π

(
f̂
)π
&

(
ε
√

log 1
ε

)2α+πβ
d+2β

.

• If α = 0, let j = j(ε) satisfy

2(j−1)(d+2β) 6 ε−2 < 2j(d+2β). (5.10)

We have:
inf
f̂
EB,j(ε),π

(
f̂
)π
& ε2 πβ

d+2β .

In both cases, & means up to constant depending on π, r, α, β.

Proof. If f̂ is an arbitrary estimator, denote by ĉλ = 〈f̂ , ψλ〉 the associated
estimated wavelet coefficients. Using that the projection on the space
generated by (ψλ)|λ|=j is continuous in Lπ and Bernstein inequality, we
have for all function f : ‖f̂ − f‖πLπ & 2jd(π/2−1)

∑
|λ|=j |ĉλ − 〈f, ψλ〉|π. We

derive:

EB,j,π
(
f̂
)π
& 2jd(π/2−1)

∫
L2

∑
|λ|=j

Ef
[
|ĉλ − cλ|π

]
µj(df). (5.11)

Let us consider temporarily a multi-index λ0 ∈ Λ with |λ0| = j. The
estimated coefficient ĉλ0 is some function of (Yε) and thus can be seen
as a function of the collection of all the observable coefficients Yε(ψλ) =
cλ + εξ(ψλ) for λ ∈ Λ. Since the variables ξ(ψλ) for λ ∈ Λ are i.i.d. and
by our choice of prior, cλ0 and ξ(ψλ0) are independent of

(
cλ, ξ(ψλ)

)
λ 6=λ0

.
Hence, conditioning with respect to

(
cλ, ξ(ψλ)

)
λ 6=λ0

, for any choice of ĉλ0 ,
the minimum of ∫

L2

Ef
[
|ĉλ0 − cλ0 |π

]
µj(df),

is obtained when ĉλ0 is a function of Yε(ψλ0) = cλ0 + εξ(ψλ0) only. We
derive from (5.11):

EB,j,π
(
f̂
)π
> 2jd(π/2−1)2jdρj,ε,π = 2jdπ/2ρj,ε,π, (5.12)

26



where ρj,ε,π is the one dimensional Bayes risk:

ρj,ε,π = inf
g:R→R

E
[
|g(cj + εZ)− cj |π

]
where Z is a standard Gaussian variable and cj is an indepen-
dent Bernoulli random variable distributed taking values K =
rc(D)−β2−j(β+d/2) and 0 with probability q and 1−q respectively. Similar
1-dimensional problems are studied in [8]. In lemma 6.1 of the Appendix,
we prove that under condition (5.9) if α 6= 0 (or condition (5.10) if α = 0),
we have ρj(ε),ε,π & qKπ. This implies that

EB,j,π
(
f̂
)π
& 2−j(ε)dπ/2qKπ

& 2−j(ε)dπ/22−j(ε)α2−j(ε)π(β+d/2) & 2−j(ε)(α+πβ).

Then using again condition (5.9) (or (5.10) if α = 0) we obtain the propo-
sition.

Step 2: The minimax risk. The next result shows that if α 6= d then
the minimax risk over M(s̃(•), r) and the Bayes risk with prior µj are
comparable.

Proposition 5.6. If α 6= d, then

inf
f̂

sup
f∈M(s̃(•),r)

Ef
[
‖f̂ − f‖πLπ & inf

f̂
EB,j(ε),π

(
f̂
)π
,

where j(ε) is defined in Proposition 5.5.

Proof. For j > 0 and f in L2(D), let Nj(f) := Card{λ, 〈f, ψλ〉 6= 0, |λ| =
j}. By our choice of prior and Lemma 5.4 we have

µj (f ∈M(s̃(•), r)) > µj
(
Nj 6 c(D)d−α2j(d−α)

)
.

Under µj , Nj is a Binomial random variables with parameters Card{Λj}
and c(D)−α2−jα−1. We deduce that its expectation under µj satisfies

Eµj [Nj ] = Card Λj c(D)−α2−jα−1 6
1
2
c(D)d−α2j(d−α).

Moreover, simple computation on Binomial laws shows that the centred
moment of order κ > 1 satisfies

Eµj [|Nj − E(Nj)|κ] 6 c(κ)2jκ/2(d−α).
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By Markov inequality,

µj
[
|Nj − E(Nj)| > E(Nj)/4

]
6 4κ Eµj [Nj ]−κ Eµj [(Nj − E(Nj))κ]

6 4κc(κ)2j(d−α)κ/2.

Since d− α > 0 and κ is arbitrary, if j = j(ε) is given by either (5.9) or
(5.10), we deduce that µj(ε)[Nj(ε) > c(D)d−α2j(ε)(d−α)] is negligible versus
any power of ε as ε → 0. We have thus shown at this stage that for any
c > 0:

µj(ε) [f /∈M(s̃(•), r)] = o(εc). (5.13)

Next, we pick an arbitrary estimator f̂ . Since for any f ∈ M (s̃(•), r)
we have ‖f‖Lπ 6 ‖f‖Bs(1/π)

π,∞
6 r, we can assume that ‖f̂‖Lπ ≤ 2r, say,

without increasing the minimax risk. Now,

sup
f∈M(s̃(•),r)

Ef
[
‖f̂ − f‖πLπ

]
>

∫
Ef
[
‖f̂ − f‖πLπ

]
1{f∈M(s̃(•),r)}µj(df)

µj
[
f ∈M(s̃(•), r)

]
=

EB,j,π
(
f̂
)π

µj
[
f ∈M(s̃(•), r)

] − rj ,
where

rj =

∫
Ef
[
‖f̂ − f‖πLπ

]
1{f /∈M(s̃(•),r)}µj(df)

µj
[
f ∈M(s̃(•), r)

] .

Since µj(ε)
[
f ∈M(s̃(•), r)

]
→ 1 as ε→ 0 by (5.13), using Proposition 5.5,

the result follows if we show that rj(ε) = o(εc) for c large enough. From
the definition of the prior, the wavelet coefficients cλ of f are µj(df)-
a.s. bounded by rc(D)−β2−|λ|(β+d/2). This implies that with full µj(df)-
probability the function f is bounded by some constant (independent of
f) in L∞-norm and thus in Lπ-norm too. Since ‖f̂‖πLπ 6 2r, rj(ε) is
bounded by some constant times

µj(ε)
[
f /∈M(s̃(•), r)

]
/µj(ε)

[
f ∈M(s̃(•), r)

]
and is thus of right order by (5.13) again.

Step 3: Arbitrary Besov domains. Let s(•) be an admissible function
and recall that p? is the unique solution of (3.13). We choose for s̃(•)
any affine function which is tangent to s(•) at the point (1/p∗, s(1/p∗)).
For instance, set s̃(1/p) = β? + α?/p with α? = s′(1/p?) and β(1/p?) −
s′(1/p?)/p?. By the concavity of s(•) we have s̃(•) > s(•) and thus:

M (s̃(•), r) ⊂M (s(•), r) , (5.14)
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so we may prove the lower bound with s̃(•) in place of s(•). We assume
first that s′(1/p?) 6= d. We have

inf
f̂

sup
f∈M(s̃(•),r)

Ef
[
‖f̂ − f‖πLπ

]
& inf

f̂
EB,j(ε),π

(
f̂
)π

& ε2α
?+πβ?

d+2β?
[ (

log 1
ε

)α?+πβ?

d+2β? 1α? 6=0 + 1α?=0

]
where we successively applied Proposition 5.6, the fact that α? 6= d and
Proposition 5.5. The conclusion follows from the following identity:

α? + πβ?

d+ 2β?
=

πs(1/p?)
d+ 2s(1/p?)

. (5.15)

Indeed, if α? = s′(1/p?) = 0 this follows from

β? = s(1/p?)− s′(1/p?)/p? = s(1/p?).

In the general case, replacing α? and β? by their value in function of s(•)
we have:

α? + πβ?

d+ 2β?
=
πs(1/p?) + s′(1/p?)[1− π

p? ]

d+ 2s(1/p?)− s′(1/p?) 2
p?

.

After some computations using (3.13), one checks that the rational func-
tion

x 
πs(1/p?) + x[1− π

p? ]

d+ 2s(1/p?)− x 2
p?

,

is independent of x. We end the proof by noting that the right-hand side
of (5.15) is obtained for x = 0.

Step 4: The case s′(1/p?) = d. We cannot rely on the comparison
between the Bayes risk and the minimax one given in Proposition 5.6
anymore. Nevertheless we still consider s̃(1/p) = α?/p + β with α? =
s′(1/p?) = d and β = s(1/p?)− d/p?. Theorem 3.5 is then a consequence
of (5.15) with α∗ = d and of the following proposition.

Proposition 5.7. We have

inf
f̂

sup
f∈M(s̃(•),r)

Ef
[
‖f̂ − f‖πLπ

]
&

(
ε
√

log 1
ε

)2 d+πβ
?

d+2β?

.
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Proof. For sake of brevity, we only give the mains steps. Define j = j(ε)
by

d

16
(j − 1)2(j−1)(d+2β?) 6 ε−2r2c(D)−2β∗ 6

d

16
j2j(d+2β?), (5.16)

and for λ ∈ Λj set f (λ) := r2−j(d/2+β?)c(D)−βψλ. By Lemma 5.4 the
f (λ) are elements of M (s̃(•), r). Moreover, the following three classical
properties are easily checked:

• For all λ 6= λ′ ∈ Λj , we have ‖f (λ)−f (λ′)‖Lπ > rc(D)−β
?
2−j(d/π+β?).

• For all λ ∈ Λj , we have Pf (λ) � P0 where P0 is the law of the
observation (1.1) when f = 0 and � means absolute continuity
with respect to probability measures.

• We have a bound control on the Kullback-Leibler divergence
K(Pf (λ) | P0) 6 ‖f (λ)‖2L2ε

−2 = r2c(D)−2β∗2−j(d+2β?)ε−2. By (5.16)
and log(Card{Λj}) ∼ dj, we readily obtain, for large enough j:

1
Card Λj

∑
λ∈Λj

K(Pf (λ) | P0) 6 log(Card Λj)/8.

Then, standard arguments based on Fano’s lemma, see e.g. [21], entail:

inf
f̂

sup
λ∈Λj

Pf (λ)

[
‖f̂ − f‖πLπ > rπc(D)πβ

?
2−j(d+πβ?)

]
> c > 0, (5.17)

where c is some constant independent of ε. We conclude by (5.17) and
(5.16).

5.3 Proof of Theorem 3.8

In a first step we show that the exponent s(1/p?)/(d + 2s(1/p?)) can be
reinterpreted as the right hand side of (3.17). Then we prove (3.16).

Step 1: A new expression for the minimax rate. For the proof, we
use the convenient notation α ∈ s′(1/p) when α is a real number in the
interval [s′l(1/p), s

′
r(1/p)] whose endpoints are the, possibly different, left

and right derivatives of s(•) at 1/p. Then the proof of (3.17) is based on
the following key identity:

πs(1/p?)
2s(1/p?) + d

= inf
0≤1/p≤1/pc
α∈s′(1/p)

πs(1/p) + α[1− π
p ]

d+ 2s(1/p)− 2α
p

, (5.18)
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where the infimum is attained for 1/p = 1/p?, with any choice of α ∈
s′(1/p?). Actually, since π ≥ pc + 2, we must have 1/p? ≤ 1/pc and we
have seen in Step 3 of the proof of Theorem 3.5 that, for 1/p = 1/p? the
fractional function above does not depend on α and is equal to the left
hand side of (5.18). It remains to see that the infimum in the right hand
side of (5.18) is attained for 1/p = 1/p?, this can easily be checked by
standard computations relying on the concavity of s. Define the Legendre
transform of s(•) as Ls(α) := infq>0

{
qα − s(q)

}
. If α0 ∈ s′(q0) for some

q0 > 0, we easily see that the infimum in the definition of Ls(α) is attained
at q = q0 and we deduce the useful relationship

Ls(α0) = q0α0 − s(q0).

This enables to transform (5.18) into,

πs(1/p?)
2s(1/p?) + d

= inf
061/p≤1/pc
α∈s′(1/p)

α− πLs(α)
d− 2Ls(α)

= inf
s′r(1/pc)≤α≤s′r(0)

α− πLs(α)
d− 2Ls(α)

, (5.19)

where s′r denotes the right derivative of s(•). Now, since by (3.16), d(H) =
infp≥pc

{
Hp − ps(1/p) + d

}
, we can check that if α ∈ s′(q0) for some

q0 ≤ 1/pc:

d
(
− Ls(α)

)
= d
(
s(q0)− αq0

)
= inf

p≥pc

{
(s(q0)− αq0)p− ps(1/p) + d

}
= (s(q0)− αq0)/q0 + (1/q0)s(q0) + d = −α+ d.

This identity enables to rewrite (5.19) as:

inf
s′r(1/pc)≤α≤s′r(0)

d− d(−Ls(α))− πLs(α)
d− 2Ls(α)

.

The function −Ls(•) maps [s′r(0), s′r(1/pc)] onto

[H0, Hc] := [s(0), s(1/pc)− s′r(1/pc)/pc],

therefore

inf
s′r(1/pc)≤α≤s′r(0)

d− d(−Ls(α))− πLs(α)
d− 2Ls(α)

= inf
s(0)≤H≤Hc

d− d(H) + πH

2H + d
.

For H ∈ [Hc, d/pc], the representation (2.2) yields d(H) = Hpc, and
we deduce, by π ≥ 2 + pc, that the infimum can actually be taken over
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[s(0), d/pc] which is the desired result.

Step 2: Proof of (3.16). Since FP
(
s(•), r

)
is a subset of M

(
s(•), r

)
it

is immediate that the upper bound of Theorem 3.4 holds true over it.
To see that the same lower bound still holds on this subclass, we have
to slightly modify the proof of the Theorem 3.5 in the following way. Let
g0 be some fixed function in FP

(
s(•), r

)
and then modify the prior µj

introduced in Step 1 of Section 5.2 by adding g0 to every realization drawn
under the probability µj . Denote by µ̃j the corresponding new prior. It is
clear that the Bayes risk is unchanged. Moreover, µ̃j(df)-a.s., the wavelet
expansion of f coincides with the one of g0 on low scales. Thus, µ̃j(df)-
a.s, the function f has the same local behavior as f0 and its singularity
spectrum is given by (2.2). We then repeat the arguments of Steps 2
and 3, but now µ̃j is supported with large probability on FP

(
s(•), 2r

)
.

If s′(1/p?) = d, we modify Step 4 of Section 5.2 by adding g0 to the f (λ)

accordingly.

6 Appendix

6.1 The Frisch-Parisi heuristics

If E ⊂ Rd and η > 0 we let C(E, η) denote the set of countable coverings
c of E by open balls b with diameter at most η. The Hausdorff dimension
of E is by definition

dim(E) : inf
{
q ≥ 0, lim

η→0
inf

c∈C(E,η)

∑
b∈c
|b|q = 0

}
= sup

{
q ≥ 0, lim

η→0
inf

c∈C(E,η)

∑
b∈c
|b|q = +∞

}
.

The box-dimension (or Minkowski dimension) of E is defined as follows:
let Cexact(E, η) denote the set of countable coverings of E by open balls
with diameter exactly equal to η. Set

Λ(E, η) := inf
c∈Cexact(E,η)

Card(c),

i.e. the minimal number of balls with diameter η that are necessary to
cover E. The lower box-dimension of E is defined as

d(E) := lim inf
η

log
(
Λ(E, η)

)
− log η
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and likewise, the upper box-dimension of E is

d̄(E) := lim sup
η

log
(
Λ(E, η)

)
− log η

.

We have the following chain of inequality between the Hausdorff dimen-
sion and the box-dimension:

d(E) ≤ d(E) ≤ d̄(E).

In practice, the Hausdorff dimension is often approximated by the box-
dimension. For simplicity, we develop the argument in dimension d = 1
and D = [0, 1]. We interpret a scaling law of the type Mj(f, 1/p) ≈
2−jps(1/p) for j → ∞ where Mj(f, 1/p) is defined in (1.7). The exponent
s(1/p) is the value of the Besov domain of f at 1/p. The contribution of
points with maximal regularity H > 0, that is over the set

Sf (H) := {x ∈ [0, 1], hf (x) = H}

will be given by

2−j
2j∑

k2−j∈Sf (H)

∣∣f(k2−j)− f
(
(k − 1)2−j

)∣∣p ≈ 2−j
(
pH−d(H)+1

)
(6.1)

using that at most 2jd(H) boxes are necessary to cover Sf (H). Here, we
purposefully make a confusion bewteen the box-dimension of Sf (H) and
its Hausdorff dimension. Next, by a geometric series argument, the total
contribution in H will be dominated by the maximal exponent in (6.1)
so that

Mj(f, 1/p) ≈ sup
H>0

2j
(
Hp−d(H)+1

)
≈ 2−jps(1/p)

which yields
ps(1/p) = sup

H>0

{
Hp− d(H) + 1

}
.

We recognize the Legendre transfom of H  d(H)− 1 so if the inversion
is meaningful, we obtain the Frisch-Parisi conjecture

d(H) = sup
p>0

{
pH − ps(1/p) + 1

}
. (6.2)

In dimension d ≥ 2, (6.2) reads like (1.6).
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6.2 An univariate Bayes risk

Lemma 6.1. Set

ρj,ε,π := inf
g:R→R

E
[
|g(cj + εZ)− cj |π

]
(6.3)

where Z is a standard Gaussian variable and cj is an independent
Bernoulli variable taking values K = rc(D)−β2−j(β+d/2) and 0, with prob-
ability q = c(D)−α2−jα−1 and 1 − q and respectively. If j = j(ε) and ε
are related by (5.9) in the case α 6= 0 (and by (5.10) otherwise) we have:

ρj,ε,π > c(α, β, π, d, c(D))qKπ.

Proof. Note first that the infimum in the right-hand-side of (6.3) is ob-
tained for ĝ(c) := argminx∈R E[|x − cj |π | c̃j = c] where c̃j = cj + εZ.
The posterior distribution of cj conditional on c̃j = c has support {0,K}
with:

P[cj = K | c̃j = c] =
qΦK(c)

qΦK(c) + (1− q)Φ0(c)
,

P[cj = 0 | c̃j = c] =
(1− q)Φ0(c)

qΦK(c) + (1− q)Φ0(c)
,

where Φ0 (respectively ΦK) is the Gaussian density function with variance
ε2 and mean 0 (respectively K). Thus ĝ(c) is obtained as the minimizer
of

x |K − x|πqΦK(c) + |x|π(1− q)Φ0(c).

It is clear that the minimizer lies in [0,K]. If π > 1, it is easily checked
that ĝ(c) is the unique solution of the equation of the variable x(

K − x
x

)π−1

=
(1− q)Φ0(c)
qΦK(c)

,

and if π = 1, ĝ(c) = K1{
(1−q)Φ0(c)
qΦK (c)

<1
}. In both cases, we see that ĝ(c) lies

in the interval [0,K/2] as soon as

(1− q)Φ0(c)
qΦK(c)

> 1. (6.4)

Using the identity ΦK(c) = Φ0(c)e(Kc−K2/2)ε−2
, we can rewrite the con-

dition (6.4) as c 6 cε,K,q with:

cε,K,q = K/2− log(q)ε2/K + log(1− q)ε2/K. (6.5)
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We have thus shown at this stage that c < cε,K,q implies ĝ(c) 6 K/2.
This is sufficient to obtain a lower bound for the Bayes risk. Indeed:

ρj,ε,π = E [|ĝ(c̃j)− cj |π]

> E
[
|ĝ(c̃j)− cj |π1{cj=K}1{c̃j<cε,K,q}

]
> (K/2)π P[cj = K, c̃j < cε,K,q]
= (K/2)πq P[K + εZ < cε,K,q](K/2)πq P[Z < (cε,K,q −K)/ε].

The lemma is proved if we can show that the probability above remains
bounded away from zero, or equivalently if

cε,K,q −K
ε

= −K
2ε
− log q

ε

K
+ log(1− q) ε

K
(6.6)

remains bounded away from −∞. In the case α = 0, we have q =
1/2 and if j = j(ε) is given by the condition (5.10) we get K/ε ∈
[2−d−2βr2c(D)−2β, r2c(D)−2β]. This implies that (6.6) remains bounded
by below. In the case α > 0, we have log q ∼ −jα log 2 and if
j = j(ε) is given by (5.9) with M < r−2c(D)2β2 log 2 one checks that
−K/(2ε) − (log q)ε/K → +∞ as ε → 0. Since log(1 − q)ε/K → 0,
the quantity (6.6) remains bounded away from −∞ and the lemma is
proved.
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