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DISCRETE SAMPLING OF AN INTEGRATED DIFFUSION PROCESS
AND PARAMETER ESTIMATION OF THE DIFFUSION COEFFICIENT

Arnaud Gloter
1

Abstract. Let (Xt) be a diffusion on the interval (l, r) and ∆n a sequence of positive numbers tending
to zero. We define Ji as the integral between i∆n and (i+ 1)∆n of Xs. We give an approximation of
the law of (J0, . . . , Jn−1) by means of a Euler scheme expansion for the process (Ji). In some special
cases, an approximation by an explicit Gaussian ARMA(1,1) process is obtained. When ∆n = n−1, we
deduce from this expansion estimators of the diffusion coefficient of X based on (Ji). These estimators
are shown to be asymptotically mixed normal as n tends to infinity.
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1. Introduction

Consider the stochastic process It =
∫ t

0
Xsds where X is a one-dimensional diffusion process given by

dXt = a(Xt)dBt + b(Xt)dt, X0 = η, (1)

B is a standard Brownian motion and η is a random variable independent of B. The process It appears naturally
in many problems studied recently.

First, the two-dimensional process (It, Xt) solves the system:{
dIt = Xt dt
dXt = a(Xt)dBt + b(Xt)dt

(2)

which is a special case of two-dimensional model without noise in the first equation. In Lefebvre [10], the
component It is used for modelling a non Markovian process.

Second, integrals of stochastic processes play an important role in finance. For instance, in the continu-
ous stochastic volatility models, introduced by Hull and White [6], the logarithm of the stock price, Yt, is
modelled by: {

dYt = ρ(Xt)dt+
√
XtdWt,

dXt = a(Xt)dBt + b(Xt)dt
(3)
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where Xt is a positive diffusion process called the volatility of the stock price. The quadratic variation of Yt
is It =

∫ t
0 Xsds. This integrated volatility plays a crucial role in finance. For instance, to derive option prices

formulae, it is necessary to compute the distribution of It (see e.g. Leblanc [9], see also Genon-Catalot et al. [4],
Barndorff-Nielsen and Shephard [1]).

Now, the exact distribution of the integrated process (It) is generally not explicit except for very few models.
In this paper, our first concern is the study of the distribution of a discrete sampling of (It). Then, we have

in view statistical applications to the inference of unknown parameters in the coefficients of model (1) from
such an observation. Data may be obtained from option prices and their associated implied volatilities (see e.g.
Pastorello et al. [11]).

We focus on the estimation of unknown parameters in the diffusion coefficient without knowledge of the drift
in the spirit of Genon-Catalot and Jacod [3]: we shall assume that I is discretely observed on a fixed length
time interval with sampling interval tending to 0, and no ergodicity assumptions will be required on model (1).

For i ≥ 0, let us set Ji =
∫ (i+1)∆

i∆
Xsds = I(i+1)∆ − Ii∆. We study here the joint distribution of (Ji).

The case of X a stationary Ornstein-Uhlenbeck process,

dXt = µXtdt+ σdBt

has been investigated in a previous work (see Gloter [5]). Explicit computations, for this special model, yield
that (Ji) is a Gaussian ARMA(1,1) process.

There are difficulties in dealing with a general case, and our approach, which is now classical in the statistics
of diffusion processes from discrete observations, is to obtain an approximation when the sampling interval
∆ = ∆n depends on n and tends to 0 as n→∞.

Indeed, under the assumption ∆n → 0, the Euler scheme,

X(i+1)∆n
' Xi∆n + b(Xi∆n)∆n + a(Xi∆n)(B(i+1)∆n

−Bi∆n) (4)

provides an approximation of the distribution of (Xi∆n , i ≤ n): conditionally on (Xj∆n , j ≤ i), X(i+1)∆n

is almost Gaussian with mean Xi∆n + ∆nb(Xi∆n) and variance ∆na
2(Xi∆n). This approximation has been

fruitfully used for statistical applications (see e.g. Genon-Catalot and Jacod [3] for the estimation of the diffusion
coefficient and Kessler [8] for estimation of drift and diffusion coefficients under ergodicity assumptions).

Here, we obtain expansions for Jni =
∫ (i+1)∆n

i∆n
Xsds = I(i+1)∆n

−Ii∆n . For simplicity, we omit the superscript
n and simply write Ji = Jni . Noting that Ji

∆n
is close to Xi∆n , we should in particular answer the following

question: can we approximate the law of (J0, . . . , Jn−1), by the law of a Markov process? Actually, we prove
that ( Ji∆n

) is different from (Xi∆n), and this has consequences for the statistical inference.
The paper is organized as follows. Assumptions on the model are presented in Section 2.1.
Then, in Section 2.2, we give our asymptotic expansions. First we compare Ji

∆n
and Xi∆n (Prop. 2.2): the

difference is of order ∆
1
2
n and we give an expansion for the difference Ji

∆n
−Xi∆n .

But, this expansion is not enough for the statistical applications. So, in Theorem 2.3, we give an expansion
of Ji+1

∆n
− Ji

∆n
:

Ji+1

∆n
− Ji

∆n
− b

(
Ji
∆n

)
∆n = a(Xi∆n)(ξi,n + ξ′i+1,n)∆

1
2
n + εi,n

where εi,n is a remainder term and the vector (ξi,n+ξ′i+1,n)0≤i≤n−1 is centered Gaussian with the same covariance

matrix as a MA(1) process. Let us notice that the analogous term in (4),
(
B(i+1)∆n−Bi∆n√

∆n

)
0≤i≤n−1

is Gaussian

with independent indentically distributed components. In particular, when a is constant, our expansion provides
an approximation by a Gaussian ARMA(1,1) process. Hence, ( Ji∆n

) is really different from Xi∆n .
Section 3 is devoted to the estimation, based on the observation of (Ji)0≤i≤n−1, of an unknown parameter σ0,

appearing in the diffusion coefficient a(x) = a(x, σ0).
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Recall that when (X i
n

)i=0,...,n is observed, Dohnal [2] shows that the statistical problem of estimating σ

satisfies the LAMN property. More precisely, his result implies that an asymptotically efficient estimator, σeff
n ,

of σ0 must satisfy

n
1
2 (σeff

n − σ0) D−→ Z,

where Z is conditionally on X centered Gaussian with variance 1
2

(∫ 1

0

(
∂
∂σ a(Xs,σ0)

a(Xs,σ0)

)2

ds

)−1

. The construction

of such efficient estimators is possible and is essentialy based on an approximation of the quadratic variation
of X .

Hence, in Section 3, we choose ∆n = n−1 and first study the quadratic variation of our observed process (Ji).

A surprising consequence of expansions of Section 2.2, is that,
∑n−2
i=0

(
Ji+1
∆n
− Ji

∆n

)2

is not a consistent estimator

of the quadratic variation of (Xt) but converges to 2
3

∫ 1

0
a2(Xs)ds (see Sect. 3.1).

In Section 3.2, we derive statistical applications for the estimation of the parameter σ0, based on the obser-
vation of (Ji). We introduce the following contrast, modification of the contrast used in Genon-Catalot and
Jacod [3],

Un(σ) =
3
2

n−2∑
i=0

(nJi+1 − nJi)2

a2(nJi, σ)
+ n−1

n−2∑
i=0

log(a2(nJi, σ)),

and denote by σn = arginfσ Un(σ) the associated minimum contrast estimator. We show that this estimator is
consistent and asymptotically mixed normal:

n
1
2 (σn − σ0) D−→ S,

where S is conditionally on X centered Gaussian with variance 9
16

(∫ 1

0

(
∂
∂σ a(Xs,σ0)

a(Xs,σ0)

)2

ds

)−1

.

Section 4 is devoted to the extension of our results when we replace the uniform mean 1
∆

∫ (i+1)∆

i∆
Xsds by

the more general form 1
∆

∫ (i+1)∆

i∆ Xsφ( s−i∆∆ )ds with φ a non negative, measurable function defined on [0, 1] and
such that

∫ 1

0
φ(s)ds = 1. This correspond to the discrete observation of the convoluted signal X ? ψ∆, where

ψ∆(x) = 1
∆φ(−x∆ ) and thus model the mesurement of X through an instrument.

In Section 5, we give examples of classical models satisfying our set of assumptions.

2. Asymptotic expansions for small sampling interval

2.1. Assumptions on the diffusion model

We assume that (Xt) is the one dimensional diffusion process defined by:

dXt = a(Xt)dBt + b(Xt)dt, X0 = η (5)

where (Bt)t≥0 and η are defined on a probability space (Ω,G, P ): (Bt)t≥0 is a standard Brownian motion, η is
a random variable independent of (Bt).

Let −∞ ≤ l < r ≤∞ and consider the following assumptions:

(A1) Equation (5) admits a unique strong solution taking value in (l, r); a and b are two real valued functions
defined on (l, r) with continuous second derivatives on (l, r).
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Let us consider two positive measurable functions, Bl and Br defined on (l, r) satisfying the following property:
for all five non negative real numbers α, β, α′, β′, p, there exists a constant c such that for all x ∈ (l, r):

(Bαl (x) + Bβr (x))× (Bα′l (x) + Bβ′r (x)) ≤ c(Bα+α′

l (x) + Bβ+β′

r (x))

(Bαl (x) + Bβr (x))p ≤ c(Bpαl (x) + Bpβr (x)).

These functions are introduced to bound the growth of other functions near the boundaries l and r. For instance,
if −∞ < l <∞ (respectively −∞ < r <∞) we may take Bl(x) = 1 + 1

x−l (respectively Br(x) = 1 + 1
r−x ). And

if l = −∞ (resp. r =∞), we may take Bl(x) = 1 + |x| (resp. Br(x) = 1 + |x|).

(A2) There exist non negative constants c, α1, α2, β1, β2 such that, for all x ∈ (l, r),

|a(x)| + |b(x)| ≤ c(1 + Br(x)),

|a′(x)| ≤ c(Bα1
l (x) + Bα1

r (x)), |a′′(x)| ≤ c(Bα2
l (x) + Bα2

r (x)),

|b′(x)| ≤ c(Bβ1
l (x) + Bβ1

r (x)), |b′′(x)| ≤ c(Bβ2
l (x) + Bβ2

r (x)).

Now, let ∆n be a sequence of positive numbers with ∆n → 0 as n → ∞ and assume (for convenience) that
∆n ≤ 1 for all n.

We set Gt = σ(Bs, s ≤ t; η) and Gni = Gi∆n . Below, the values of the constant c may change from one line
to another but never depends on i or n.

(A3) There exists a positive constant Kl, such that:
∀ k ∈ [0,Kl), ∃c, ∀i, n (i ≤ n), E

(
sups∈[i∆n,(i+1)∆n] Bkl (Xs) | Gni

)
≤ cBkl (Xi∆n)

∀ k ∈ [0,∞), ∃c, ∀i, n (i ≤ n), E
(

sups∈[i∆n,(i+1)∆n] Bkr (Xs) | Gni
)
≤ cBkr (Xi∆n).

Assumption (A3) means that the diffusion will not approach too abruptly the end points l and r.
In Section 5, we check this assumption for some classical models. The reason why our condition is not

symmetric in l and r appears there. Indeed we shall see that for all models, except one (see Sect. 5.2.2), we
have (A3) with Kl =∞.

2.2. Expansions for means of the diffusion process over small intervals

Let Ji = Jni =
∫ (i+1)∆n

i∆n

Xsds,

and consider the following random variables which will appear in our expansions,

ξi,n =
1

∆
3
2
n

∫ (i+1)∆n

i∆n

(s− i∆n)dBs for i, n ≥ 0 (6)

ξ′i+1,n =
1

∆
3
2
n

∫ (i+2)∆n

(i+1)∆n

(i∆n + 2∆n − s)dBs for i ≥ −1, n ≥ 0. (7)
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Lemma 2.1. The r.v. ξi,n and ξ′i+1,n are independent and Gaussian; ξi,n is Gni+1 measurable and independent
of Gni ; ξ′i+1,n is Gni+2 measurable and independent of Gni+1. The following expectations are useful for the sequel:

E (ξi,n | Gni ) = E
(
ξ′i+1,n | Gni

)
= 0

E
(
ξ2
i,n | Gni

)
= E

(
ξ′2i+1,n | Gni

)
=

1
3

E

((
ξ2
i,n −

1
3

)2

| Gni

)
= E

((
ξ′2i+1,n −

1
3

)2

| Gni

)
=

2
9

E

((
ξ2
i,n −

1
3

)
ξ′i,n | Gni

)
= E

((
ξ′2i+1,n −

1
3

)
ξ′i,n | Gni

)
= 0

E
(
ξi,nξ

′
i,n | Gni

)
=

1
6
·

Proof. Easy computations based on (6) and (7) give the result. For example

E
(
ξi,nξ

′
i,n | Gni

)
=

1
∆3
n

∫ (i+1)∆n

i∆n

(s− i∆n)(i∆n + ∆n − s)ds =
1
6
·

Our first result is a first order comparison between Ji
∆n

and Xi∆n .

Proposition 2.2. Assume that 2α1 < Kl, (with α1 and Kl given in (A2, A3)) then:

Ji
∆n
−Xi∆n = a(Xi∆n)∆

1
2
n ξ
′
i,n + ei,n (8)

where,

|E (ei,n | Gni )| ≤ ∆nc(1 + Br(Xi∆n)) (9)

E
(
e2
i,n | Gni

)
≤ ∆2

nc(B2α1
l (Xi∆n) + B2(1+α1)

r (Xi∆n)). (10)

Moreover, if k is a real number ≥ 1, then for all i, n (i ≤ n− 1):

E

(∣∣∣∣ Ji∆n
−Xi∆n

∣∣∣∣k | Gni
)
≤ ∆

k
2
n c(1 + Bkr (Xi∆n)). (11)

Proof. We have:

Ji
∆n
−Xi∆n =

1
∆n

∫ (i+1)∆n

i∆n

(Xv −Xi∆n)dv

and Xv −Xi∆n =
∫ v
i∆n

b(Xs)ds+
∫ v
i∆n

a(Xs)dBs.

So by the Fubini theorem, we get:

Ji
∆n
−Xi∆n =

1
∆n

a(Xi∆n)
∫ (i+1)∆n

i∆n

((i+ 1)∆n − v)dBv + ei,n = ∆
1
2
na(Xi∆n)ξ′i,n + ei,n (12)
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where ei,n = αi,n + βi,n, and

αi,n =
1

∆n

∫ (i+1)∆n

i∆n

(a(Xv)− a(Xi∆n))(i∆n + ∆n − v)dBv (13)

βi,n =
1

∆n

∫ (i+1)∆n

i∆n

∫ v

i∆n

b(Xs)dsdv. (14)

Using Assumption (A2), we get |βi,n| ≤ c∆n(1 + sups∈[i∆n,(i+1)∆n] Br(Xs)).
Now by Assumption (A3), for all k ≥ 0

E
(
|βi,n|k | Gni

)
≤ c∆k

n(1 + Bkr (Xi∆n)). (15)

Also E (αi,n | Gni ) = 0, so we get |E (ei,n | Gni )| ≤ c∆n(1 + Br(Xi∆n)).
Now, for k ≥ 2, applying the Burkholder-Davis-Gundy and the Jensen inequalities yields:

E
(∣∣αki,n∣∣ | Gni ) ≤ c

∆k
n

E

(∫ (i+1)∆n

i∆n

((i+ 1)∆n − v)2(a(Xv)− a(Xi∆n))2dv

) k
2

| Gni


≤ c

∫ (i+1)∆n

i∆n

φk(v)dv

with φk(v) = E
(
|a(Xv)− a(Xi∆n)|k | Gni

)
. By Proposition A of the Appendix, there exists c > 0 such that,

for all v ∈ [i∆n, (i+ 1)∆n],

φk(v) ≤ c∆
k
2
n (Bα1k

l (Xi∆n) + B(α1+1)k
r (Xi∆n)).

Finally,

E
(∣∣αki,n∣∣ | Gni ) ≤ c∆ k

2 +1
n (Bα1k

l (Xi∆n) + B(α1+1)k
r (Xi∆n)). (16)

So, by (15, 16), with k = 2,

E
(
e2
i,n | Gni

)
≤ c∆2

n(B2α1
l (Xi∆n) + B2(α1+1)

r (Xi∆n)).

Using Proposition A (in the Appendix), we have

E

(
sup

s∈[i∆n,(i+1)∆n]

|Xs −Xi∆n |
k | Gni

)
≤ ∆

k
2
n (1 + Bkr (Xi∆n)).

This implies (11).

For statistical applications, Proposition 2.2 is not sufficient. An approximation of the joint law of ( Ji∆n
) is

required. This is done by the following result:

Theorem 2.3. We have

Ji+1

∆n
− Ji

∆n
− b

(
Ji
∆n

)
∆n = a(Xi∆n)(ξi,n + ξ′i+1,n)∆

1
2
n + εi,n (17)
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where εi,n is Gni+2 measurable, and there exists a constant c such that for all i, n:

If β1 ∨ 2β2 ∨ 4α1 < Kl,

|E (εi,n | Gni )| ≤ ∆2
nc(Bβ1∨β2

l (Xi∆n) + B(1+β1)∨(2+β2)
r (Xi∆n)) (18)

If 4α1 ∨ 2α2 < Kl,

E
(
ε2
i,n | Gni

)
≤ ∆2

nc(B2α1∨α2
l (Xi∆n) + B3+2α1+α2

r (Xi∆n)) (19)

E
(
ε4
i,n | Gni

)
≤ ∆4

nc(B4α1∨2α2
l (Xi∆n) + B6+4α1+2α2

r (Xi∆n)) (20)
If 4α1 ∨ α2 ∨ 4β1 < Kl,

|E (εi,nξi,n | Gni )| ≤ ∆
3
2
nc(B(α1+β1)∨α2

l (Xi∆n) + B(1+α1+β1)∨(2+α2)
r (Xi∆n)) (21)∣∣E (εi,nξ′i+1,n | Gni

)∣∣ ≤ ∆
3
2
n (B(α1+β1)∨α2)

l (Xi∆n) + B(1+α1+β1)∨(2+α2)
r (Xi∆n)). (22)

Futhermore, if k is a real number ≥ 1, then for all i, n (i ≤ n− 1),

E

(∣∣∣∣Ji+1

∆n
− Ji

∆n

∣∣∣∣k | Gni
)
≤ ∆

k
2
n (1 + Bkr (Xi∆n)). (23)

Proof. We integrate, between i∆n and (i+ 1)∆n, the following equality:

Xs+∆n −Xs =
∫ s+∆n

s

(a(Xv)dBv + b(Xv)dv).

Hence, Ji+1 − Ji = Ai +Bi, with

Ai =
∫ (i+1)∆n

i∆n

ds

∫ s+∆n

s

a(Xv)dBv, Bi =
∫ (i+1)∆n

i∆n

ds

∫ s+∆n

s

b(Xv)dv.

Interchanging the order of integrations, we obtain

Ai =
∫ (i+1)∆n

i∆n

a(Xv)(v − i∆n)dBv +
∫ (i+2)∆n

(i+1)∆n

a(Xv)((i+ 2)∆n − v)dBv.

Analogously,

Bi =
∫ (i+1)∆n

i∆n

b(Xv)(v − i∆n)dv +
∫ (i+2)∆n

(i+1)∆n

b(Xv)((i+ 2)∆n − v)dv.

Introducing a(Xi∆n) in Ai yields

Ai = a(Xi∆n)

(∫ (i+1)∆n

i∆n

(v − i∆n)dBv +
∫ (i+2)∆n

(i+1)∆n

((i+ 2)∆n − v)dBv

)
+ ai,n + a′i+1,n

= a(Xi∆n)∆
3
2
n (ξi,n + ξ′i+1,n) + ai,n + a′i+1,n
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with

ai,n =
∫ (i+1)∆n

i∆n

(v − i∆n)(a(Xv)− a(Xi∆n))dBv (24)

a′i,n =
∫ (i+2)∆n

(i+1)∆n

((i+ 2)∆n − v)(a(Xv)− a(Xi∆n))dBv. (25)

Analogously, introducing b( Ji∆n
) in Bi yields

Bi = b

(
Ji
∆n

)(∫ (i+1)∆n

i∆n

(v − i∆n)dv +
∫ (i+2)∆n

(i+1)∆n

((i+ 2)∆n − v)dv

)
+ bi,n + b′i+1,n

= b

(
Ji
∆n

)
∆2
n + bi,n + b′i+1,n

with

bi,n =
∫ (i+1)∆n

i∆n

(v − i∆n)
(
b(Xv)− b

(
Ji
∆n

))
dv (26)

b′i,n =
∫ (i+2)∆n

(i+1)∆n

((i+ 2)∆n − v)
(
b(Xv)− b

(
Ji
∆n

))
dv. (27)

Therefore, we get the expansion

Ji+1

∆n
− Ji

∆n
− b

(
Ji
∆n

)
∆n = a(Xi∆n)(ξi,n + ξ′i+1,n)∆

1
2
n + εi,n

with

εi,n =
ai,n
∆n

+
a′i+1,n

∆n
+
bi,n
∆n

+
b′i+1,n

∆n
· (28)

• Let us prove (18). By (26), we have

E

(
bi,n
∆n
| Gni

)
=

1
∆n

∫ i∆n+∆n

i∆n

(v − i∆n)E (b(Xv)− b(Ji) | Gni ) dv.

Since we know by Ito’s formula, Assumptions (A3) and (A2), that

sup
v∈[i∆n, (i+1)∆n]

|E (b(Xv)− b(Xi∆n) | Gni )| ≤ ∆nc(Bβ1∨β2
l (Xi∆n) + B(1+β1)∨(2+β2)

r (Xi∆n))

an application of Taylor’s formula and Proposition 2.2, yields∣∣∣∣E (b( Ji
∆n

)
− b(Xi∆n) | Gni

)∣∣∣∣ ≤ ∆nc(Bβ1∨β2
l (Xi∆n) + B(1+β1)∨(2+β2)

r (Xi∆n)).

Hence

sup
v∈[i∆n, (i+1)∆n]

∣∣∣∣E (b(Xv)− b
(
Ji
∆n

)
| Gni

)∣∣∣∣ ≤ ∆nc(Bβ1∨β2
l (Xi∆n) + B(1+β1)∨(2+β2)

r (Xi∆n)).
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Hence ∣∣∣∣E (bi,n∆n
| Gni

)∣∣∣∣ ≤ ∆2
nc(Bβ1∨β2

l (Xi∆n) + B(1+β1)∨(2+β2)
r (Xi∆n)).

In a similar way, we bound
∣∣∣E ( b′i+1,n

∆n
| Gni

)∣∣∣ (see (27)).

Now (see (24, 25)), E (ai,n | Gni ) = E
(
a′i+1,n | Gni

)
= 0, so (18) is proved.

• We now prove (19) and (20).

Using the Cauchy-Schwarz inequality it is enough to show (20).
By (A2), we write (see (26, 27)):∣∣∣∣bi,n∆n

∣∣∣∣ ≤ ∆n2c sup
s∈[i∆n,i∆n+∆n]

(1 + Br(Xs)),
∣∣∣∣b′i+1,n

∆n

∣∣∣∣ ≤ ∆n2c sup
s∈[i∆n+∆n,i∆n+2∆n]

(1 + Br(Xs)).

Using Assumption (A3), we get

E

(∣∣∣∣bi,n∆n

∣∣∣∣4 +
∣∣∣∣b′i+1,n

∆n

∣∣∣∣4 | Gni
)
≤ ∆4

nc(1 + B4
r(Xi∆n)).

To end the proof, we have to bound E
(∣∣∣ai,n∆n

∣∣∣4 | Gni ). Using the Burkholder-Davis-Gundy inequality we obtain:

E

(∣∣∣∣ai,n∆n

∣∣∣∣4 | Gni
)

=
c

∆4
n

E

(∫ i∆n+∆n

i∆n

(a(Xv)− a(Xi∆n))2(v − i∆)2dv

)2

| Gni

 . (29)

But using the Ito formula, and Assumption (A2) we can write: (a(Xv)− a(Xi∆n))2 = Mv +Av, where

Mv = 2
∫ v

i∆n

ψi,n(s)dBs, with ψi,n(s) = (a(Xs)− a(Xi∆n))a′(Xs)a(Xs) (30)

and:

sup
v∈[i∆n, (i+1)∆n]

|Av| ≤ c∆n sup
s∈[i∆n, (i+1)∆n]

(B2α1∨α2
r (Xs) + B(2+2α1)∨(3+α2)

l (Xs)). (31)

So, replacing in (29), after some easy computations, and applying (A3) to the right hand side of (31), we get

E

(∣∣∣∣ai,n∆n

∣∣∣∣4 | Gni
)
≤ 2

∆4
n

E
(
γ2
i,n | Gni

)
+ ∆4

n(B4α1∨2α2
l (Xi∆n) +B6+4α1+2α2

r Xi∆n))

with γi,n =
∫ (i+1)∆n

i∆n
Mv(v − i∆n)2dv (see (30)).

It remains to bound E
(
γ2
i,n | Gni

)
. Using the Fubini theorem, we have

γi,n =
∫ (i+1)∆n

i∆n

ψi,n(s)

(∫ i∆n+∆n

s

(v − i∆n)2dv

)
dBs.
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Hence,

E
(
γ2
i,n | Gni

)
≤
∫ (i+1)∆n

i∆n

E
(
ψ2
i,n(s) | Gni

)
∆6
nds. (32)

But by the Cauchy-Schwarz inequality,

E
(
ψ2
i,n(s) | Gni

)
≤ E

(
(a(Xs)− a(Xi∆n))4 | Gni

) 1
2 E

(
a′4(Xs)a4(Xs) | Gni

) 1
2 .

Then using (A2, A3) and Proposition A of the Appendix, we obtain for s ∈ [i∆n, (i+ 1)∆n]:

E
(
ψ2
i,n(s) | Gni

)
≤ ∆nc(B4α1

l (Xi∆n) + B4+2α1
r (Xi∆n)).

Replacing the last inequality in (32), we get E
(
γ2
i,n | Gni

)
≤ ∆8

nc(B4α1
l (Xi∆n) + B4+2α1

r ). We obtain a similar

bound for E
(∣∣∣a′i+1,n

∆n

∣∣∣4 | Gni ), and hence (20) is proved.

• To show (21, 22), it is enough to obtain the following inequalities (recall (28)):

|E (ai,nξi,n | Gni )| ≤ ∆
5
2
nc(Bα1∨α2

l (Xi∆n) + B(1+α1)∨(2+α1)
r (Xi∆n))∣∣E (a′i+1,nξi,n | Gni

)∣∣ = 0

|E (bi,nξi,n | Gni )| ≤ ∆
5
2
nc(Bα1+β1

l (Xi∆n) + B1+α1+β1
r (Xi∆n))∣∣E (b′i+1,nξi,n | Gni

)∣∣ ≤ ∆
5
2
nc(Bα1+β1

l (Xi∆n) + B1+α1+β1
r (Xi∆n)).

These inequalities follow from the expressions of ai,n, a′i+1,n, bi,n, b′i+1,n.
• By a straightforward modification of Proposition A, we show that for all k ≥ 0, there exists c such that for

all i, n (i ≤ n− 1),

E

(
sup

s∈[i∆n,(i+2)∆n]

|Xs −Xi∆|k | Gni

)
≤ c(1 + Bkr (Xi∆n)).

This implies (23).

Remark 2.4. 1. In the case where X is a stationary Ornstein-Uhlenbeck process dXt = µXtdt+ σdBt and
for a fixed sampling interval ∆, we have an exact formula, analogous to our expansion (17) (see Gloter [5]).

Ji+1 − eµ∆Ji =
σ

µ

∫ (i+1)∆

i∆

(eµ∆ − eµ((i+1)∆−s))dBs +
σ

µ

∫ (i+2)∆

(i+1)∆

(eµ((i+2)∆−s) − 1)dBs.

Furthermore, in this case, the covariance structure of (Ji) is the one of an ARMA(1,1) process.
2. (Ui)i=0,...,n−1 = (ξi,n + ξ′i+1,n)i=0,...,n−1 is a Gaussian vector with covariance function:

Var Ui = 2
3 , Cov (Ui, Ui+1) = 1

6 and Cov (Ui, Ui+k) = 0 if k ≥ 2.
This is the covariance function of an MA(1) vector. Therefore, through expansion (17) we do not

recover a Markovian property for Ji
∆n

. In the special case where a is constant, the expansion means that
the process ( Ji∆n

) may be approximated by an ARMA(1,1) process.
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3. Statistical applications: Estimation of the diffusion coefficient

For the estimation of the diffusion coefficient, we suppose that the integrated process I is observed on a
time interval with finite length (which we arbitrarily suppose to be equal to 1). So, ∆n = n−1 and Ji = Jni

=
∫ i+1

n
i
n

Xsds.
We recall that, when (X i

n
)i=0,...,n−1 is observed, estimation of the diffusion coefficient is based on the

quadratic variation of X (see Genon-Catalot and Jacod [3]). Hence, in Section 3.1, we study the quadratic
variation of the process (Ji). In Section 3.2, where the coefficient a depends on an unknown parameter σ, we
deduce an estimator of this parameter.

3.1. Approximation of the quadratic variation

We show that we can not replace X i
n

by nJi in the classical approximation of the quadratic variation of X :

n−2∑
i=0

(X i+1
n
−X i

n
)2 n→∞−−−→

∫ 1

0

a2(Xs)ds. (33)

Theorem 3.1. Let (Xt)t∈[0,1] be a diffusion satisfying (A1–A3) with Kl =∞. Furthermore assume that:

(A4) ∀ k ≥ 0, E
(
Bkl (X0)

)
<∞, E

(
Bkr (X0)

)
<∞.

Let f ∈ C1(l, r) be a function with real values and suppose that there exists c ≥ 0 such that

|f(x)|+ |f ′(x)| ≤ c(Bcl (x) + Bcr(x)). (34)

Then,

n−2∑
i=0

(nJi+1 − nJi)2
f(nJi)

n→∞−−−→
P

2
3

∫ 1

0

a2(Xs)f(Xs)ds.

Proof. First, we remark that by Assumptions (A3) and (A4), we have

∀k ≥ 0, sup
t∈[0,1]

E
(
Bkl (Xt)

)
<∞ and sup

t∈[0,1]

E
(
Bkr (Xt)

)
<∞. (35)

By the continuity of a, f and X , 2
3

∑n−2
i=0 a

2(X i
n

)f(X i
n

)n−1 n→∞−−−→
P

2
3

∫ 1

0
a2(Xs)f(Xs)ds. Hence it is enough to

prove:

n−2∑
i=0

{
(nJi+1 − nJi)2

f(nJi)−
2

3n
a2(X i

n
)f(X i

n
)
}

n→∞−−−→
P

0.

For this, we use the expansion (17):

n−2∑
i=0

{
(nJi+1 − nJi)2 f(nJi)−

2
3n
a2(X i

n
)f(X i

n
)
}

= D(1)
n +D(2)

n +D(3)
n +D(4)

n ,
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with:

D(1)
n =

n−2∑
i=0

(nJi+1 − nJi)2(f(nJi)− f(X i
n

))

D(2)
n =

n−2∑
i=0

n−1

{
(ξi,n + ξ′i+1,n)2 − 2

3

}
a2(X i

n
)f(X i

n
)

D(3)
n =

n−2∑
i=0

(b(nJi)n−1 + εi,n)2f(X i
n

)

D(4)
n = 2

n−2∑
i=0

n−
1
2 (ξi,n + ξ′i+1,n)(b(nJi)n−1 + εi,n)a(X i

n
)f(X i

n
).

First, we write f(nJi)−f(X i
n

) = f ′(Ti,n)(nJi−X i
n

), where Ti,n ∈ [nJi, X i
n

]. Using Cauchy-Schwarz’s inequal-
ity (34, A3) and (11) we obtain

E

(∣∣∣f ′(Ti,n)(nJi −X i
n

)
∣∣∣2 | Gni ) ≤ cn−1(Bcl (X i

n
) + Bcr(X i

n
)) with c a positive constant.

Again Cauchy-Schwarz’s inequality, with (23) yields

E
(

(nJi+1 − nJi)2
∣∣∣f(nJi)− f

(
X i

n

)∣∣∣ | Gni ) ≤ cn− 3
2

(
Bcl
(
X i

n

)
+ Bcr

(
i

n

))
·

Hence, by (35),

E
(∣∣∣D(1)

n

∣∣∣) ≤ cn− 1
2 sup
t∈[0,1]

E (Bcl (Xt) + Bcr(Xt)) .

Now, we bound, using (A2, 34, A3) and (19):

E
(

(b(nJi)n−1 + εi,n)2
∣∣∣f (X i

n

)∣∣∣ | Gni ) ≤ cn−2
(
Bcl
(
X i

n

)
+ Bcr

(
X i

n

))
with c a positive constant.

Hence, by (35),

E
(∣∣∣D(3)

n

∣∣∣) ≤ cn−1 sup
t∈[0,1]

E (Bcl (Xt) + Bcr(Xt)) .

We deduce D(3)
n

n→∞−−−→
P

0.

Analogously: E
(∣∣∣D(4)

n

∣∣∣) ≤ cn− 1
2 sup
t∈[0,1]

E (Bcl (Xt) + Bcr(Xt)), with c > 0. Hence D(4)
n

n→∞−−−→
P

0.

Using that, by Lemma 2.1, E
(
(ξi,n + ξ′i+1,n)2 − 2

3 | Gni
)

= 0 and then Cauchy-Schwarz’s inequality we
compute:

E
(
D(2)
n

2
)

=
∑

0≤i,j≤n−2
|i−j|≤1

n−2E

(
a2(Xi∆n)

{
(ξi,n + ξ′i+1,n)2 − 2

3

}2

a2(Xj∆n)
{

(ξj,n + ξ′j+1,n)2 − 2
3

}2
)

≤ cn−1 sup
t∈[0,1]

E(1 + B8
r(Xt))

1
2 .
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Therefore, D(2)
n converges to zero in L2 sense.

Remark 3.2. In particular, for f = 1, we see that if we replace X i
n

by nJi in (33), then we underestimate the
quadratic variation of X by a factor 2

3 .

3.2. Parametric estimation of the diffusion coefficient

We suppose that a(x, σ) is a real function defined on (l, r) × Θ where Θ is a compact interval of R. The

diffusion X satisfies (1) with a(x) = a(x, σ0), where σ0 ∈
◦
Θ. Our goal is to estimate the true value σ0 of

the parameter with the observation (J0, . . . , Jn−1). The function b may be known or unknown and since our
observation of I is restricted to the finite time interval [0, 1], we cannot estimate b (see Genon-Catalot and
Jacod [3]).

We suppose that a(x, θ) is the restriction of a function defined on an open subset O of R2, such that
(l, r)×Θ ⊂ O and ∂i+j

∂ix∂jσa(x, σ) exists and are continuous on O.
We need some assumptions for statistical purposes:

(S1) There exists c such that for all x ∈ (l, r),

sup
σ∈Θ

sup
(i,j)∈{1,2,3}

∣∣∣∣ ∂i+j

∂ix∂jσ
a(x, σ)

∣∣∣∣ ≤ c(Bcl (x) + Bcr(x))

sup
σ∈Θ

∣∣a−1(x, σ)
∣∣ ≤ c(Bcl (x) + Bcr(x)).

Our identification assumption is the following
(S2) For almost all realisation of the path X , if σ 6= σ0 then the two functions on [0, 1] t → a2(Xt, σ) and

t→ a2(Xt, σ0) are not a.e. equal.
Taking into account Theorem 3.1, we modify the contrast based on X i

n
, used for instance in Genon-Catalot

and Jacod [3]. This yields the definition of the following contrast,

Un(σ) =
3
2

n−2∑
i=0

(nJi+1 − nJi)2

a2(nJi, σ)
+ n−1

n−2∑
i=0

log(a2(nJi, σ)). (36)

Let σn = arginfσ∈Θ Un(σ) be the associated minimum contrast estimator.

Theorem 3.3. Assume (A1–A4) with Kl =∞ and (S1, S2), then σn
n→∞−−−→

P
σ0.

Proof. We follow the standard proof of consistency of minimum contrast estimators: we easily check, using
Assumption (S2), that the function σ 7→ K(σ, σ0) :=

∫ 1

0

{
a2(Xs,σ0)
a2(Xs,σ) + log a2(Xs, σ)

}
ds admits a unique mini-

mum for σ = σ0. Hence to show the consistency it suffices to prove

Un(σ) n→∞−−−→ K(σ, σ0) uniformly in σ in probability.

The pointwise convergence in σ is clear by Theorem 3.1, and since we can show, using (11), that
n−1

∑n−2
i=0

{
log(a2(nJi, σ)) − log(a2(X i

n
, σ))

}
n→∞−−−→

P
0.

To get the uniformity, by (S1, 23) and (35), we deduce

E

(
sup
σ∈Θ

∣∣∣∣(nJi+1 − nJi)2 ∂

∂σ
a−2(nJi, σ)

∣∣∣∣) ≤ cn−1.

Hence supn≥0E
(
supσ∈Θ

∣∣ ∂
∂σUn(σ)

∣∣) <∞. Since Θ is compact, this bound is sufficient to imply the uniformity
in the convergence.



218 A. GLOTER

Theorem 3.4. Assume (A1–A4) with Kl =∞ and (S1, S2),then

n
1
2 (σn − σ0) n→∞−−−→

D
S, (37)

where S is a variable defined on an extension of the space (Ω,G1, P ) and such that conditionally on G1, S is

centered Gaussian with variance 9
16

(∫ 1

0

(
∂
∂σ a(Xs,σ0)

a(Xs,σ0)

)2

ds

)−1

.

Proof. By the classical scheme of proof for studying the asymptotic law of contrast based estimators, we see
that it is enough to show the two following properties:

1) The convergence in probability
∫ 1

0
∂2

∂σ2Un(σ0 + (σn − σ0)s)ds n→∞−−−→
P

4
∫ 1

0

(
ȧ(Xs,σ0)
a(Xs,σ0)

)2

ds (where ḟ = ∂
∂σf

for a function f).
2) The stable convergence in law n

1
2 ∂
∂σUn(σ0) n→∞−−−→

D
Z, where Z is a variable defined on an extension of the

space (Ω,G1, P ) and such that conditionally on G1, Z is centered Gaussian with variance 9
∫ 1

0

(
ȧ(Xs,σ0)
a(Xs,σ0)

)2

ds.
By stable convergence, we mean that for any variable Y , G1-measurable, we have convergence in law
(Y, n

1
2 ∂
∂σUn(σ0)) n→∞−−−→

D
(Y,Z). Let us point out that we need this stable convergence since the limit

in 1) is not deterministic and that this difficulty appears as soon as mixed normality is involved (see
Genon-Catalot and Jacod [3] for instance).

We start by proving 2). We compute

∂

∂σ
Un(σ0) = −3

n−2∑
i=0

(nJi+1 − nJi)2 ȧ(nJi, σ0)
a3(nJi, σ0)

+ 2n−1
n−2∑
i=0

ȧ(nJi, σ0)
a(nJi, σ0)

,

and set

Vn = n−1
n−2∑
i=0

{−3(ξi,n + ξ′i+1,n)2 + 2}
ȧ(X i

n
, σ0)

a(X i
n
, σ0)

·

We write

n
1
2

(
∂

∂σ
Un(σ0)− Vn

)
=
n−2∑
i=0

φi,n,

where φi,n =
{

3n−1(ξi,n + ξ′i+1,n)2
ȧ(X i

n
,σ0)

a(X i
n
,σ0) − 3(nJi+1 − nJi)2 ȧ(nJi,σ0)

a3(nJi,σ0)

}
+2n−1

{
ȧ(nJi,σ0)
a(nJi,σ0) −

ȧ(X i
n
,σ0)

a(X i
n
,σ0)

}
is Gni+2-

measurable.
Now, we show after some easy but tedious computations based on Proposition 2.2 and Theorem 2.3 that:

|E (φi,n | Gni )| ≤ cn− 3
2 (Bcl (X i

n
) + Bcr(X i

n
)), E

(
φ2
i,n | Gni

)
≤ cn−2(Bcl (X i

n
) + Bcr(X i

n
)).

These two inequalities implies, with (35), E
((∑n−2

i=0 φi,n
)2
)
≤ cn− 1

2 . Hence it is enough to study the asymp-

totic law of n
1
2Vn.

For this, we reorder terms in Vn to deal with a triangular array of martingale increments and obtain

n
1
2Vn =

n−2∑
i=1

χi,n + oP(1)
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where,

χi,n = n−
1
2

−3
(
ξ2
i,n −

1
3

)
ȧ(X i

n
, σ0)

a(X i
n
, σ0)

− 3
(
ξ′2i,n −

1
3

) ȧ(X i−1
n
, σ0)

a
(
X i−1

n
, σ0

) − 6ξi−1,nξ
′
i,n

ȧ
(
X i−1

n
, σ0

)
a(X i−1

n
, σ0)


and oP(1) stands for −3n−

1
2 (ξ2

0,n − 1
3 ) ȧ(X0,σ0)
a(X0,σ0) − 3n−

1
2

ȧ(Xn−2
n
,σ0)

a(Xn−2
n
,σ0)

{
(ξ′2n−1,n − 1

3 ) + 2ξn−2,nξ
′
n−1,n

}
.

If suffices to prove that
∑n−2
i=1 χi,n converges stably in law to a variable Z, as recalled in 2). For this, we

follow the proof of Genon-Catalot and Jacod [3] (pp. 138–139) (see Jacod [7] Th. 3.2, too): using that the
variable χi,n is Gni+1-measurable, it is sufficient to show the four following properties.

sup
t∈[0,1]

∣∣∣∣∣∣
[(n−2)t]∑
i=1

E (χi,n | Gni )

∣∣∣∣∣∣ n→∞−−−→
P

0 (38)

∀t ∈ [0, 1],
[(n−2)t]∑
i=1

E
(
χ2
i,n | Gni

) n→∞−−−→
P

9
∫ t

0

(
ȧ(Xs, σ0)
a(Xs, σ0)

)2

ds (39)

∀t ∈ [0, 1],
[(n−2)t]∑
i=1

E
(
χ4
i,n | Gni

) n→∞−−−→
P

0 (40)

∀t ∈ [0, 1],
[(n−2)t]∑
i=1

E
(
χi,n(B i+1

n
−B i

n
) | Gni

)
n→∞−−−→

P
0. (41)

The convergence (38) is immediate, since by Lemma 2.1, E (χi,n | Gni ) = 0.
For (39), by Lemma 2.1 again,

E
(
χ2
i,n | Gni

)
= n−1

2

(
ȧ(X i

n
, σ0)

a(X i
n
, σ0)

)2

+ 2

(
ȧ(X i−1

n
, σ0)

a(X i−1
n
, σ0)

)2

+
ȧ(X i

n
, σ0)

a(X i
n
, σ0)

ȧ(X i−1
n
, σ0)

a(X i−1
n
, σ0)

+12

(
ȧ(X i−1

n
, σ0)

a(X i−1
n
, σ0)

)2

ξ2
i−1,n

 ·
Hence, the only difficult part, to establish the convergence (39) is to show

[(n−2)t]∑
i=1

ui,n
n→∞−−−→

P
4
∫ t

0

(
ȧ(Xs, σ0)
a(Xs, σ0)

)2

ds, with ui,n = 12n−1

(
ȧ(X i−1

n
, σ0)

a(X i−1
n
, σ0)

)2

ξ2
i−1,n. (42)

Remarking that ui,n is Gni -measurable and that,

E(ui,n | Gni−1) = 4n−1

(
ȧ(X i−1

n
, σ0)

a(X i−1
n
, σ0)

)2

, E(u2
i,n | Gni−1) = 32n−2

(
ȧ(X i−1

n
, σ0)

a(X i−1
n
, σ0)

)4

,

we use Lemma B of the Appendix and obtain (42).
The convergence (40) is clear since E

(∣∣E (χ4
i,n | Gni

)∣∣) ≤ cn−2.
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Remarking that E
(
ξ′i,n(B i+1

n
−B i

n
) | Gni

)
= 1

2n
− 1

2 , we get

E
(
χi,n(B i+1

n
−B i

n
) | Gni

)
= −3n−1

ȧ(X i−1
n
, σ0)

a(X i−1
n
, σ0)

ξi−1,n.

Since E(ξi−1,n | Gni−1) = 0, an appliciation of Lemma B of the Appendix yields (41).
Hence the property 2) is proved.
Now, we compute the second derivative of Un(σ) (see (36)) and then apply Theorem 3.1 to easily obtain the

convergence, for all σ ∈ Θ, in probability

∂2

∂σ2
Un(σ) n→∞−−−→

P
c(σ, σ0), (43)

with

c(σ, σ0) = −2
∫ 1

0

a2(Xs, σ0)
{
ä(Xs, σ)
a3(Xs, σ)

− 3
ȧ2(Xs, σ)
a4(Xs, σ)

}
ds+ 2

∫ 1

0

{
ä(Xs, σ)
a(Xs, σ)

− ȧ2(Xs, σ)
a2(Xs, σ)

}
ds.

Recalling the consistency of σn, to obtain 1), it is enough to show that the convergence in (43) is uniform with
respect to σ ∈ Θ and that c(σ, σ0) σ→σ0−−−−→

P
4
∫ 1

0
ȧ2(Xs,σ0)
a2(Xs,σ0)ds.

The uniformity in (43) is obtain by an argument similar to the one used in the proof of Theorem 3.3.
By (35), we deduce that almost surely, sups∈[0,1] Bl(Xs) < ∞ and sups∈[0,1] Br(Xs) < ∞. Hence, we can

apply, almost surely, by (S1), the Lebesgue dominated convergence theorem, and obtain the almost sure con-
vergence (and hence the convergence in probability):

c(σ, σ0) σ→σ0−−−−→
P

c(σ0, σ0) = 4
∫ 1

0

ȧ2(Xs, σ0)
a2(Xs, σ0)

ds. (44)

So 1) is proved.

Remark 3.5. 1) In the case of a multiplicative dependence for the parameter, a(x, σ) = σa(x), we have an
explicit expression for our estimator of σ2:

σ2
n =

3
2

n−2∑
i=0

(nJi+1 − nJi)2

a2(nJi)
·

Furthermore, this estimator is asymptotically Gaussian, since, in this case (37) reduces to n
1
2 (σ2

n − σ2
0) n→∞−−−→

N
(
0, 9

4σ
4
0

)
.

2) Recall that an asymptotically efficient estimator based on X i
n

is defined as:

σ∗n = arginf
σ∈Θ

U∗n(σ), with U∗n(σ) =
n−1∑
i=0

(
X i+1

n
−X i

n

)2

a2
(
X i

n
, σ
) + n−1

n−1∑
i=0

log a2
(
X i

n
, σ
)
.

It is known that n
1
2 (σ∗n − σ0) converges in law to S′, where S′ is defined on an extension (Ω,G1, P ) and is,

conditionally on G1, centered Gaussian with variance 1
2

(∫ 1

0

(
∂
∂σ a(Xs,σ0)

a(Xs,σ0)

)2

ds

)−1

(see e.g. Genon-Catalot and

Jacod [3]). Hence, the asymptotic conditional variance of our estimator σn is slightly bigger than the one of σ∗n.
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3) Our identifiability Assumption (S2) is the same one as when (X i
n

)i=0,...,n−1 is observed (see Genon-Catalot
and Jacod [3]).

4) For simplification of the proof of Theorem 3.4 we have supposed that Kl = ∞, but in Section 5 we shall
see that Kl is finite when X is a Cox-Ingersoll-Ross process. In this case, a direct study of the estimator based
on expansions of Section 2 yields the result (see Sect. 5.2.2).

4. Extension

In Sections 2 and 3 we gave results for the process ( J0
∆n
, . . . , Jn−1

∆n
), where Ji

∆n
is the uniform mean, in the

interval [i∆n, (i + 1)∆n] of X . Here, we consider more general means. We suppose that φ is a measurable,
bounded, non-negative function defined on [0, 1], such that

∫ 1

0 φ(s)ds = 1, and we define

Xi(φ) = ∆−1
n

∫ (i+1)∆n

i∆n

Xsφ

(
s− i∆n

∆n

)
ds.

Remark that (Xi(φ))i≥0 may be interpreted as the discrete sampling with step ∆n of the convoluted function
X ? ψ∆n , where ψ∆n(x) = ∆−1

n φ(− x
∆n

).
In this section, we extend results of Sections 2 and 3 to (X i(φ)). We do not give proofs for these results,

since they are analogous to those of Sections 2 and 3.
We define:

ξi,n(φ) =
1

∆
3
2
n

∫ (i+1)∆n

i∆n

∫ s

i∆n

φ

(
v − i∆n

∆n

)
dvdBs for i, n ≥ 0

ξ′i+1,n(φ) =
1

∆
3
2
n

∫ (i+2)∆n

(i+1)∆n

∫ (i+1)∆n

s−∆n

φ

(
v − i∆n

∆n

)
dvdBs for i ≥ −1, n ≥ 0.

Proposition 4.1. Assume (A1–A3) and 2α1 < Kl, then:

Xi(φ)−Xi∆n = a(Xi∆n)∆
1
2
nξ
′
i,n(φ) + ei,n(φ)

where ei,n(φ) satisfies inequalities analogous to (9, 10). Moreover, if k is a real number ≥ 1, for all i, n:

E
(∣∣Xi(φ) −Xi∆n

∣∣k | Gni ) ≤ ∆
k
2
n c(1 + Bkr (Xi∆n)).

Theorem 4.2. Assume (A1–A3). We have

Xi+1(φ) −Xi(φ)− b(Xi(φ))∆n = a(Xi∆n)(ξi,n(φ) + ξ′i+1,n(φ))∆
1
2
n + εi,n(φ)

where εi,n(φ) is Gni+2 measurable and satisfies inequalities analogous to (18–22).

Suppose, now, that ∆n = n−1 and define

v = E((ξi,n(φ))2) =
∫ 1

0

(∫ s

0

φ(u)du
)2

ds

v′ = E((ξ′i,n(φ))2) =
∫ 1

0

(∫ 1

s

φ(u)du
)2

ds

k = E(ξi,n(φ)ξ′i,n(φ)) =
∫ 1

0

(∫ s

0

φ(u)du
∫ 1

s

φ(u)du
)
ds.
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Theorem 4.3. Assume (A1–A4) with Kl =∞ and let f be as in Theorem 3.1. Then,

n−2∑
i=0

(
Xi+1(φ) −Xi(φ)

)2
f(Xi(φ)) n→∞−−−→

P
(v + v′)

∫ 1

0

a2(Xs)f(Xs)ds.

If a depends on a unknown parameter σ, we introduce the contrast

Un(φ, σ) = (v + v′)−1
n−2∑
i=0

(Xi+1(φ) −Xi(φ))2

a2(Xi(φ), σ)
+ n−1

n−2∑
i=0

log(a2(Xi(φ), σ)).

Let σn(φ) = arginfσ∈Θ Un(φ, σ) be the associated minimum contrast estimator.

Theorem 4.4. Assume (A1–A4) with Kl =∞ and (S1, S2),then

n
1
2 (σn(φ) − σ0) n→∞−−−→

D
S(φ),

where S(φ) is a variable defined on an extension of the space (Ω,G1, P ) and such that conditionally on G1, S(φ)

is centered Gaussian with variance
(

1
2 + k2

(v+v′)2

)(∫ 1

0

(
∂
∂σ a(Xs,σ0)

a(Xs,σ0)

)2

ds

)−1

.

5. Examples

5.1. Diffusion on R
Here, (l, r) = (−∞,∞) and we set B−∞(x) = 1, B∞(x) = 1+ |x| (by this choice, we decide, for simplification,

to use the same function, B∞, to bound other functions near the two different bounds −∞, ∞). Let X be the
solution of dXt = a(Xt)dBt + b(Xt)dt, and assume that there exists c such that for all x ∈ R, |a(x)| + |b(x)|
≤ c(1 + |x|); a and b are twice continuously diffentiable and their second derivatives have polynomial growth.

Then, it is immediate to check Assumptions (A1) and (A2). By the following proposition, Assumption (A3)
is satisfied with Kl =∞.

Proposition 5.1. Assume that X is the solution of (5) and that (A1) holds. Furthermore, a and b are supposed
such that for all x ∈ R, |a(x)| + |b(x)| ≤ c(1 + |x|). Then, for all integer k ≥ 1, there exists a constant c(k)
depending only on c and k such that:

E

(
sup

s∈[t,t+1]

|Xs|k | Gt

)
≤ c(k)(1 + |Xt|k). (45)

Proof. We can suppose (by the Hölder inequality) that k ≥ 2. For s ∈ [t, t+ 1] we write:

Xs = Xt +
∫ s

t

a(Xv)dBv +
∫ s

t

b(Xv)dv. (46)

Using the Burkhölder inequality, we get (c(k) may change from a line to another):

E

(
sup
u∈[t,s]

∣∣Xk
u

∣∣ | Gt) ≤ c(k) |Xt|k + c(k)E

((∫ s

t

a2(Xv)dv
) k

2

| Gt

)
+ c(k)E

((∫ s

t

|b| (Xv)dv
)k
| Gt

)
.
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Using that k ≥ 2:

E

(
sup
u∈[t,s]

∣∣Xk
u

∣∣ | Gt) ≤ c(k) |Xt|k + c(k)E
(∫ s

t

|a|k (Xv) + |b|k (Xv)dv | Gt
)
.

Using the bound on |a|+ |b|, and the Fubini theorem:

E

(
sup
u∈[t,s]

∣∣Xk
u

∣∣ | Gt) ≤ c(k) |Xt|k + c(k)
∫ s

t

E
(

(1 + |Xv|k) | Gt
)
dv. (47)

Hence we have, if we set φ(s) = supu∈[t,s]E
(∣∣Xk

u

∣∣ | Gt):
φ(s) ≤ c(k)(1 + |Xt|k) + c(k)

∫ s

t

E
(
|Xv|k) | Gt

)
dv ≤ c(k)(1 + |Xt|k) + c(k)

∫ s

t

φ(v)dv.

By (A1), φ(s) is almost surely finite, and we may apply Gronwall’s Lemma to obtain:

φ(s) ≤ c(1 + |Xt|k)ec(k)(s−t).

Using that s ∈ [t, t+ 1], we deduce:

sup
u∈[t,t+1]

E
(∣∣Xk

u

∣∣ | Gt) ≤ c(k)(1 + |Xt|k).

Reporting the last inequation in (47) gives (45).

As example, we may consider the case of X an Ornstein-Uhlenbeck process solution of dXt = −Xtdt
+σ0dBt, X0 = 0. Results of numerical simulations, given in Table 1, show that our estimator σ2

n performs as
well as the classical estimator, σ2∗

n based on X i
n

(see Rem. 3.5 2)).

Table 1. (Mean; Standard deviation) of the estimator for n = 100 and different values of σ2
0 .

σ2
0 = 0.01 σ2

0 = 0.1 σ2
0 = 1 σ2

0 = 2
σ2
n 0.0094; 0.0014 0.094; 0.013 0.93; 0.15 1.87; 0.27
σ2∗
n 0.0095; 0.0014 0.094; 0.013 0.94; 0.13 1.84; 0.26

5.2. Positive diffusions

In these models l = 0 and r =∞.

5.2.1. Exponential of a diffusion on R
Here (l, r) = (0,∞) and we set B0(x) = 1 + 1

x and B∞(x) = 1 + x2.
We assume that Xt = exp(Zt), where Zt is a diffusion on R defined as the solution of the equation: dZt =

ã(Zt)dBt + b̃(Zt)dt and Z0 = η, is independent of B. Consider the following assumptions.
Functions ã and b̃ are defined on R; ã is bounded; lim supz→∞ b̃(z) < ∞; lim infz→−∞ b̃(z) > −∞; there

exists c such that: for all z ∈ R,
∣∣∣b̃(z)

∣∣∣ ≤ c(1 + |z|); ã and b̃ are twice continuously differentiable; their second

derivatives have polynomial growth and ã′ is bounded.
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Then diffusion X satisfies the stochastic differential equation:

dXt = a(Xt)dBt + b(Xt)dt, (48)

with a(x) = xã(lnx) and b(x) = xb̃(lnx) + 1
2xã

2(lnx). By assumptions, a′ is bounded, so a has linear growth.

Proposition 5.2. The diffusion (Xt) satisfies Assumptions (A1–A3), with Kl =∞.

Proof. (A1) and (A2) are clear. For (A3), we first show the inequality with B∞. Using the Markov property for
X , it suffices to show that, for all k ≥ 0, and Y solution of (48) starting with y0 > 0, there exists c such that:

E

(
sup
t∈[0,1]

Y kt

)
≤ c(1 + yk0 ). (49)

Since ã is bounded and lim supx→∞ b̃(x) <∞ there exists a constant M such that ∀ x > 0, b(x) ≤M(x+1). We
define Ŷ as the strong solution, with the same Brownian motion B, of dŶt = a(Ŷt)dBt +M(Ŷt + 1)dt, Ŷ0 = y0.
Using a comparison theorem (see Revuz-Yor [12], p. 375), we get:

∀t ≥ 0, Yt ≤ Ŷt a.s. (50)

Now, Ŷ solves a stochastic differential equation with coefficients having at most a linear growth, so by
Proposition 5.1:

E

(
sup
s∈[0,1]

∣∣∣Ŷs∣∣∣k) ≤ c(1 + yk0 ). (51)

Then (50) and (51) imply (49), hence we get the first inequality of (A3).
Noticing that 1

X = exp(−Z), and −Z has the same properties as Z, we obtain the second inequality
(with B0) analogously.

Remark 5.3. Hence, our results are valid for the exponantial of a Brownian motion or the exponential of an
Ornstein-Uhlenbeck process.

5.2.2. Cox-Ingersoll-Ross process

Again, here, (l, r) = (0,∞) and we set B0(x) = 1 + 1
x and B∞(x) = 1 + x.

Let X be given by:

dXt = (αXt + β)dt+ σ
√
XtdBt, X0 = η, (52)

with α < 0, σ, β > 0 and η is a positive random variable independent of (Bt), and 2β
σ2 > 1.

Assumptions (A1) and (A2) hold. Combining Propositions 5.1 with the following proposition, we see that (Xt)
satisfies Assumption (A3), for K0 = 2β

σ2 − 1.

Proposition 5.4. Assume that X is the solution of dXt = (αXt + β)dt + σ
√
XtdBt, X0 = η > 0 with α < 0,

β > 0, σ > 0 and 2β
σ2 > 1. Let k ∈ [0, 2β

σ2 − 1), then ∃c such that ∀ t ≥ 0:

E

(
sup

s∈[t,t+1]

(
1
Xs

)k
| Gt

)
≤ c

(
1
Xt

)k
·
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Proof. Using the Markov property, we get for x > 0:

1l{Xt=x}E

(
sup

s∈[t,t+1]

(
1
Xs

)k
| Gt

)
= E

(
sup
s∈[0,1]

(
1
X̃s

)k)
,

where X̃ solves the same stochastic differential equation as X , with the initial condition X̃0 = x.
Now, we use that the process X̃ can be represented as (see Leblanc [9]): X̃s = eαsRτ(s), where (Rs) is

the square of a Bessel process of dimension δ, with δ = 4β
σ2 , starting from X̃0 = x, and τ(s) = σ2

4
e|α|s−1
|α| is a

deterministic change of time.
We deduce that infs∈[0,1] X̃s ≥ eα infs≥0Rs, and hence:

E

(
sup
s∈[0,1]

(
1
X̃s

)k)
≤ e|α|E

(
1

infs≥0Rks

)
·

But we know that, since δ > 2, the law of infs≥0Rs is xU
2
δ−2 where U is uniformly distributed on [0, 1] (see

Revuz-Yor [12], p. 430 Ex. 1.18). So,

E

(
1

infs≥0Rks

)
=

1
xk
E
(
U
−2k
δ−2

)
=

1
xk

∫ 1

0

u
−2k
δ−2 du ≤ c 1

xk

since the integral above is finite for 2k
δ−2 < 1 i.e. for k < δ

2 − 1 = 2β
σ2 − 1.

Since K0 < ∞, we cannot apply results of Section 3. But, here, the estimator is explicit (Rem. 3.5 1)) and
a direct study based on the expansions of Section 2 shows that, if K0 > 4, σ2

n
n→∞−−−→

P
σ2

0 and that if K0 > 6,

n
1
2 (σ2

n − σ2
0) n→∞−−−→

D
N (0, 9

4σ
4
0).

5.2.3. Bilinear diffusion

We set B0(x) = 1 + 1
x and B∞(x) = 1 + x.

We suppose that:

dXt = (αXt + β)dt + σXtdBt, X0 = η, (53)

with α < 0, σ, β > 0 and η is a positive and independent of (Bt).
Using Propositions 5.1 and the following proposition, we get that the diffusion (Xt) satisfies Assumptions (A1–

A3) with Kl =∞.

Proposition 5.5. Assume that X solves the equation

dXt = (αXt + β)dt+ σXtdBt, X0 > 0 (54)

with α < 0, β, σ > 0.
Then ∀k ≥ 0, ∃c such that for all t:

E

(
sup

s∈[t,t+1]

1
Xk
s

| Gt

)
≤ c

(
1 +

1
Xk
t

)
·
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Proof. Again by the Markov property of X , for x > 0,

11{Xt=x}E

(
sup

s∈[t,t+1]

1
Xk
s

| Gt

)
= E

(
sup
s∈[0,1]

1
X̃k
s

)
(55)

where X̃ is the solution of (54) starting with X̃0 = x.
We set Zs = 1

X̃s
, then Z solves dZs = −σZsdBs + {(σ2 − α)Zs − βZ2

s}ds, with Z0 = 1
x . Now, we define Z ′

as the solution: dZ ′s = −σZ ′sdBs + (σ2 − α)Z ′sds, with Z ′0 = 1
x = Z0.

Since β < 0, we can use a comparison theorem (see Revuz-Yor [12], p. 375) to obtain:

∀s, Zs ≤ Z ′s a.s. (56)

We apply Proposition 5.1 to Z ′:

E

(
sup
s∈[0,1]

Z ′s
k

)
≤ c(1 +

∣∣∣Z ′0k∣∣∣) = c

(
1 +

1
xk

)
· (57)

The definition of Z (55, 56) and (57) yield the result.

6. Appendix

Proposition A. Let f ∈ C1(l, r) satisfy:

∃c ∀x ∈ (l, r) |f ′(x)| ≤ c(Bγl (x) + Bγr (x))

then, for all integer k ≥ 1, such that kγ < Kl:

E

(
sup

v∈[i∆n,(i+1)∆n]

|f(Xv)− f(Xi∆n)|k | Gni

)
≤ c∆

k
2
n (Bkγl (Xi∆n) + Bk(1+γ)

r (Xi∆n)). (58)

Proof. We start with f(x) = x. Let

δi,n = sup
v∈[i∆n,(i+1)∆n]

|Xv −Xi∆n | . (59)

Using (46) and the Burkholder inequality, we get:

E (δi,n | Gni ) ≤ cE

(∫ (i+1)∆n

i∆n

a2(Xv)dv

) k
2

| Gni

+ cE

(∫ (i+1)∆n

i∆n

|b| (Xv)dv

)k
| Gni

 .

Hence,

E
(
δki,n | Gni

)
≤ c∆

k
2
nE

(
sup

s∈[i∆n,(i+1)∆n]

|a|k (Xv) | Gni

)
+ c∆k

nE

(
sup

s∈[i∆n,(i+1)∆n]

|b|k (Xv) | Gni

)
.

Using Assumption (A2), we get |a|k + |b|k ≤ cBkr , so Assumption (A3) yields:

E
(
δki,n | Gni

)
≤ c∆

k
2
nBkr (Xi∆n). (60)
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Now for a general f , we set

δi,n(f) = sup
v∈[i∆n,(i+1)∆n]

|f(Xv)− f(Xi∆n)| (61)

and write, using the bound on f ′:

δi,n(f) ≤ c sup
v∈[i∆n,(i+1)∆n]

(Bγl (Xv) + Bγr (Xv))δi,n.

We choose p and q such that 1
p + 1

q = 1 and pkγ < Kl and apply Hölder’s inequality (see (59–61)):

E
(
δi,n(f)k | Gni

)
≤ cE

(
sup

v∈[i∆n,(i+1)∆n]

(Bγkpl (Xs) + Bγkpr (Xs)) | Gni

) 1
p

E
(
δqki,n | Gni

)
.

Now, Assumption (A3) and (60) yield:

E
(
δi,n(f)k | Gni

)
≤ c(Bγkl (Xi∆n) + Bγkr (Xi∆n))(1 + Bkr (Xi∆n)).

So, we have the result.

We recall, the useful lemma which is given in Genon-Catalot and Jacod [3].
Lemme B. Let χni , U be random variables, with χni being Gni -measurable. The following two conditions imply∑n
i=1 χ

n
i

P−→ U :

n∑
i=1

E(χni | Gni−1) P−→ U

n∑
i=1

E((χni )2 | Gni−1) P−→ 0.
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