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MOtlvation Motivation, Supervised

vs Unsupervised
Learning

e Marketing: finding groups of customers with similar behavior
given a large database of customer data containing their
properties and past buying records;

@ Biology: classification of plants and animals given their
features;

o Libraries: book ordering;
@ Insurance: identifying groups of motor insurance policy
holders with a high average claim cost; identifying frauds;

e City-planning: identifying groups of houses according to their
house type, value and geographical location;

@ Internet: document classification; clustering weblog data to
discover groups of similar access patterns.



M a rketl n g Motivation, Supervised

vs Unsupervised
Learning

@ Data: Base of customer data containing their properties and
past buying records

@ Goal: Use the customers similarities to find groups.

o Two directions:

e Visualization: propose a representation of the customers so
that the groups are visible
e Clustering: propose an explicit grouping of the customers

Source: Unknown



Dimension Reduction

@ How to view a high-dimensional dataset?
@ High-dimension: dimension larger than 2!

@ Projection in a 2D space.

Motivation, Supervised
vs Unsupervised
Learning

Source: F. Belardi
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A definition by Tom Mitchell

(http://www.cs.cmu.edu/~tom/)

A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if
its performance at tasks in T, as measured by P, improves with
experience E.

Source: Unknown


http://www.cs.cmu.edu/~tom/

Supervised Learning wetwation,supees

vs Unsupervised
Learning

Experience, Task and Performance measure

e Training data: D = {(Xy, Y1),...,(X,,, Ya)} (iid. ~P)
@ Predictor: f : X — ) measurable

@ Cost/Loss function: ¢(f(X),Y) measure how well f(X)
predicts Y
o Risk:
R(F) =E [((Y, F(X))] = Ex [Ey)x [(Y, F(X))]]

e Often ((f(X),Y) = [[f(X) = Y|? or {(f(X), Y) =1y ¢(x)

Learn a rule to construct a classifier f € F from the training

o~

data D, s.t. the risk R(f) is small on average or with high
probability with respect to D,,.




UnSU pel’Vised Learnlng Motivation, Supervised

vs Unsupervised
Learning

Experience, Task and Performance measure

e Training data: D= {Xq,...,X,} (iid. ~P)
e Task: 777

@ Performance measure: 777

@ No obvious task definition!

Tasks for this lecture

@ Dimension reduction: construct a map of the data in a low
dimensional space without distorting it too much.

@ Clustering (or unsupervised classification): construct a
grouping of the data in homogeneous classes.




DlmenSIOn Red UCtIOﬂ Motivation, Supervised X

vs Unsupervised s
Learning

e Training data: D= {X,,...,X,} € X" (iid. ~P)
@ Space X of possibly high dimension.

Dimension Reduction Map

o Construct a map ¢ from the space X into a space X’ of
smaller dimension:
o X - X
X &(X)

@ Map can be defined only on the dataset.

Motivations

@ Visualization of the data

@ Dimension reduction before further processing




D | menSIOn Red UCtIOﬂ Motivation, Supervised

vs Unsupervised
Learning

@ Need to control the distortion between D and
®(D) = {P(Xy1),. .., P(X,)}

Distortion(s)

@ Reconstruction error:

o Construct ® from X’ to X

o Control the error between X and its reconstruction ®(®(X))
@ Relationship preservation:

o Compute a relation X; and X; and a relation between ®(X;)
and ®(X;)
o Control the difference between those two relations.

@ Leads to different constructions....



Cl USteri n g Motivation, Supervised

vs Unsupervised
Learning

Training data: D= {X,...,X,} € X" (iid. ~P)
Latent groups?

Construct a map f from D to {1,..., K} where K is a
number of classes to be fixed:
Fi Xk

Similar to classification except:

e no ground truth (no given labels)
o label only elements of the dataset!

Motivations

@ Interpretation of the groups

@ Use of the groups in further processing




Cl USteri n g Motivation, Supervised

vs Unsupervised
Learning

Need to define the quality of the cluster.

No obvious measure!

Clustering quality

Inner homogeneity: samples in the same group should be
similar.

Outer inhomogeneity: samples in two different groups should
be different.

Several possible definitions of similar and different.
Often based on the distance between the samples.

Example based on the euclidean distance:

e Inner homogeneity = intra class variance,
e Outer inhomogeneity = inter class variance.

Beware: choice of the number of cluster K often complex!



O Utl | ne Dimension Reduction X

© Dimension Reduction
@ Dimensionality Curse, Inertia and PCA
@ Reconstruction Error
@ Relationship Preservation
@ Word and Word Vectors



D | menSIOn Red UCtlon Dimension Reduction X

e Training data: D ={X;,...,X,} € X" (i.id. ~P)
@ Space X of possibly high dimension.

Dimension Reduction Map

@ Construct a map ¢ from the space X into a space X’ of
smaller dimension:
o: X=X
X &(X)

Criterion
@ Reconstruction error

@ Relationship preservation



O Utl | ne Dimension Reduction X

© Dimension Reduction
@ Dimensionality Curse, Inertia and PCA



DlmenSIOnallty CUI’SG Dimension Reduction X

High Dimension Geometry Curse

@ Folks theorem: In high dimension, everyone is alone.

@ Theorem: If X;,..., X, in the hypercube of dimension d such
that their coordinates are i.i.d then

I
demw&—&m—ww&—&m%w+0( %j

d
max |X; - Xl o flogn
min [ X; — X; |l d |

@ When d is large, all the points are almost equidistant...

@ Nearest neighbors are meaningless!



I nel’tla Dimension Reduction X
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@ 2 times the mean squared distance to the mean = Mean
squared distance between individual

@ Heuristic: a good representation is a representation with a
large inertia

@ Large dispersion ~ Large average separation!



Inertia and Projection Dimenson Rt

e What if we replace X by its projection X = P(X — m)+ m?

Two views on inertia

@ Inertia:
~ 1 - 5
/:;ZHK:’—”’H
i=1
1 _
= 5 I - X
ij
@ Inertia:

~ 1. -
T=1-23" X - Xl
i=1

: .
. 222 (1X; = X112 = 1X; = X;11?)

e Four different way to obtain a large inertial!



FII’St Component Of the PCA Dimension Reduction X

@ 1D case: X = m+a' (X —m)a with |ja|| =1

~ 12
| t':/——fE Xi—m)(X;—m
@ Inertia - a' (X )(X; ) a

Principal Component Analysis : optimization of the projection

e Maximization of | = = Z a —m)(X;—m) a=a"%a
1 n
with ¥ = — Z(K,— — m)(X; —m)" the empirical covariance
n
i=1
matrix.
@ Explicit optimal choice given by the eigenvector of the largest
eigenvalue of ¥.

Source: E. Matzner-Lgber



PCA Dimension Reduction
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Principal Component Analysis : optimization of the projection

@ Explicit optimal solution obtain by the projection on the
eigenvectors of the largest eigenvalues of X.

@ Projected inertia given by the sum of those eigenvalues.

@ Often fast decay of the eigenvalues: some dimensions are
much more important than other.

@ Not exactly the curse of dimensionality setting...

@ Yet a lot of small dimension can drive the distance!

Source: E. Matzner-Lgber



PCA and Distances

e

Individu 2

Dimension Reduction X

Close projection doesn’'t mean close individuals!

@ Same projections but different situations.

@ Quality of the projection measured by the angle!

Source: E. Matzner-Lgber




O Utl | ne Dimension Reduction X

© Dimension Reduction

@ Reconstruction Error



ReCOnStrUCtIOH EFI'OI’ ApprOaCh Dimension Reduction X

@ Construct a map ¢ from the space X into a space X’ of
smaller dimension:
o X - X
X = d(X)
o Construct ® from X’ to X

o Control the error between X and its reconstruction ®(d(X))

4

@ Canonical example for X € R?: find ¢ and ®ina parametric
family that minimize

%Z 1X; — D(D(X,))]?
i=1



PrlnCIPal Component AnaIySIS Dimension Reduction X

X e RY and &' =R?
o Affine model X ~ m~+ ¢, X' v with (V) an
orthonormal family.

@ Equivalent to:
Od(X)=V (X—m) and OX)=m+ VX
@ Reconstruction error criterion:

1 n
N Z 1X; = (m+ W (X; — m)|?
i—1

o Explicit solution: m is the empirical mean and V is any
orthonormal basis of the space spanned by the d’ first
eigenvectors (the one with largest eigenvalues) of the
empirical covariance matrix 1 37 (X; — m)(X; — m)".



PrlnCIPal Component AnalySIS Dimension Reduction X

PCA Algorithm

o Compute the empirical mean m = % 1 X;

@ Compute the empirical covariance matrix
% i1 (X; — m)(X; — m)T-

e Compute the d’ first eigenvectors of this matrix:
v, v

o Set d(X) = V(X —m)

o Complexity: O(n(d + d?) + d'd?)
@ Interpretation:
o ®(X) = V(X — m): coordinates in the restricted space.
o V(): influence of each original coordinates in the ith new one.
@ Scaling: This method is not invariant to a scaling of the
variables! It is custom to normalize the variables (at least
within groups) before applying PCA.



Multiple Factor Analysis Dimension Reduction X
o PCA assumes X —RIl 7

@ How to deal with categorical values?

@ MFA = PCA with clever coding strategy for categorical values.

Categorical value code for a single variable

o Classical redundant dummy coding:
Xe{l,...,V} P(X) = (1x=1,...,1x=v) "
e Compute the mean (i.e. the empirical proportions):

P=1%7,P(X)

@ Renormalize P(X) by 1/4/(V —1)P

P(X) — P"(X)

]-X—V) —> 7]-&:1 —IK:V
- Jv-—1)P J(v-1)Py

e \? type distance!

(]'K:l’ A




M u |tip|e FaCtor AnalySIS Dimension Reduction X

o PCA becomes the minimization of
*ZIIP (m+ WT(P(X;) = m))|®

’ 2
[1x= = (' + 7 VOT(P(X,) = ) V()|

(V-1)P,

*ZZ

i=1v=1
@ Interpretation:
om =P
o ®(X)= VT(P'X — m): coordinates in the restricted space.
o V() can be interpreted s as a probability profile.
o Complexity: O(n(V + V?) + d'V?)

@ Link with Correspondence Analysis (CA)



M u |ti ple FaCtor AnalySIS Dimension Reduction X

MFA Algorithm

@ Redundant dummy coding of each categorical variable.
@ Renormalization of each block of dummy variable.
@ Classical PCA algorithm on the resulting variables

e Interpretation as a reconstruction error with a rescaled />
metric.
@ Interpretation:
o ®(X) = VT(P"(X)— m): coordinates in the restricted space.
o V(). influence of each modality/variable in the ith new
coordinates.
@ Scaling: This method is not invariant to a scaling of the
continuous variables! It is custom to normalize the variables
(at least within groups) before applying PCA.



Non Llnear PCA Dimension Reduction X

PCA Model

o PCA: Linear model assumption

X ~ m—l—ZX’(/ Vv =m+ vX’
=1
@ with
o V() orthonormal
o X") without constrains.

@ Two directions of extension:

o Other constrains on V' (or the coordinates in the restricted
space): ICA, NMF, Dictionary approach
e PCA on a non linear image of X: kernel-PCA

@ Much more complex algorithm!



Non Llnear PCA Dimension Reduction X

ICA (Independent Component Analysis)

@ Linear model assumption

X ~ m—l—ZX’(/ v =m+ vX
=1

o V) without constrains.

o X"") independent

@ with

NMF (Non Negative Matrix Factorization)

o (Linear) Model assumption

d
X~m+ ZK’(’) v = my vX

@ with

o V() non negative
o X" non negative.

N,




Non Llnear PCA Dimension Reduction X

@ (Linear) Model assumption

d/

X=m+ > X0V = mi vx
=1

o V() without constrains

o X' sparse (with a lot of 0)

@ with

v

kernel PCA

@ Linear model assumption

@ with

o V() orthonormal
o X without constrains.

d/
V(X —m) =Y xOvh = vy
=1




Llnk Wlth SVD Dimension Reduction ><

@ Linear model assumption
X ~ m—i—ZX’ v =m+ vX’

@ Vector rewriting
XT ~ mT + X/T VT

Matrix Rewriting and Low Rank Factorization

@ Matrix rewriting
Kl—r o mT XllT V_l_

2

(d’xd)

Kn‘l' o mT KH/T
(nxd) (nxd")
@ Low rank matrix factorization! (Truncated SVD solution...)

V.




SVD Dimension Reduction X

SVD Decomposition

@ Any matrix n X d matrix A can de decomposed as

VT

(dxd)

(nxd)

(nxd) (nxn)
with U and V two orthononormal matrices and ¥ a diagonal

matrix with decreasing values.




SVD Dimension Reduction X

Low Rank Approximation

@ The best low rank approximation or rank r is obtained by
restriction of the matrices to the first r dimensions:

ool V'
A ~| U, (rxr) (rxd)

(nxd) (nxr)
for both the operator norm and the Frobenius norm!

o PCA: Frobenius norm, d = r and
Kl—r o mT KIIT
r

oA, e us.,, Viev

T T T
Kn —m Kn



AUtO Encoder Dimension Reduction X

Deep Auto Encoder

@ Construct a map ® with a NN from the space X into a space
X' of smaller dimension:
o X - X
X = &(X)
Construct ® with a NN from X’ to X
Control the error between X and its reconstruction ®(d(X)):

,172_": 1X; — B(D(X,))|]?

Optimization by gradient descent.

NN can be replaced by another parametric function...



O utl | ne Dimension Reduction X

© Dimension Reduction

@ Relationship Preservation



PaII’WISG Relathn Dimension Reduction X

o Different point of view!
@ Focus on pairwise relation R(X;, X;).

Distance Preservation

o Construct a map @ from the space X into a space X’ of
smaller dimension:
o X - X
X—=o(X) =X

h that
° sHen e R(X;, X;) ~ R(X), X))

@ Most classical version (MDS):
o Scalar product relation: R(X;,X;) = (X; — m)T(Kj —m)
e Linear mapping X' = &(X) = V(X — m).
e Euclidean scalar product matching:
1 n n T - 2
S| = m) - m) - (X)X
i=1 j=1
@ & often defined only on D...



MUltiDlmenSIOnal Scaling Dimension Reduction X

Match the scalar products:

1 n n
n 22 2} (X = m)(X; = m) = XX
I=1 j=

2

@ Linear method: X' = UT(K — m) with U orthonormal

@ Beware: X can be unknown, only the scalar products are
required!

e Resulting criterion: minimization in U'(X; — m) of

Il Ko T T T 2
S| = m)T (X = m) = (X, = m) TOUT (X; - m)|
i=1j=1

without knowing explicitly X...

@ Explicit solution obtained through the eigendecomposition of
the know Gram matrix (X; — m)T(KJ- — m) by keeping only
the d’ largest eigenvalues.



MUltlDlmenS|ona| Scallng Dimension Reduction X

@ In this case, MDS yields the same result than the PCA (but
with different inputs, distance between observation vs
correlations)!

e Explanation: Same SVD problem up to a transposition:

o MDS . .
I .
) Xy~ Xy UU X,

X<

e PCA o o
XXny ~U'X(nXny U
e Complexity: PCA O((n + d’)d?) vs MDS O((d + d')n?)...



Genera I |Zed M DS Dimension Reduction X

@ Preserving the scalar products amounts to preserve the
euclidean distance.

o Easier generalization if we work in term of distance!

Generalized MDS

o Generalized MDS:
e Distance relation: R(K,,KJ) = d(&i,gj)
o Linear mapping X' = ®(X) = V(X — m).
e Euclidean matching:

1 n n
7 2 21X, X)) = (X X))

i=1 j=1

@ Strong connection (but no equivalence) with MDS when
d(x.y) =[x = y|*!

e Minimization: Simple gradient descent can be used (can be
stuck in local minima).



ISOMAP omarin et Y

e MDS: equivalent to PCA (but more expensive) if
d(x,y) =[x = y|I*!

@ ISOMAP: use a localized distance instead to limit the
influence of very far point.

ISOMAP

@ For each point X, define a neighborhood N/ (either by a
distance or a number of points) and let

- {+oo if X; ¢ N

|X; — X[ otherwise
@ Compute the shortest path distance for each pair.
@ Use the MDS algorithm with this distance

dO (Kh KJ




Ra ndOm P I'O_]eCtlon Dimension Reduction X

Random Projection Heuristic

@ Draw at random d’ unit vector (direction) U;.
e Use X' = UT(X— m) with m = % 1 X;

o Property: If X lives in a space of dimension d”, then, as soon
as, d’' ~ d"log(d"),

d
1X; = XlI* ~ 51X = X1

@ Do not really use the data!



Loca”y I_Ineal’ Embeddlng Dimension Reduction X

LLE Heuristic

@ For each point X;, define a neighborhood N; (either by a
distance or a number of points).

@ Compute some weights W;; such that
Wiy =0 if X; ¢ N;
X;~ 30 WigX;
J
@ Find some Kﬁ- in a space X’ of smaller dimension such that

Xj~ D WiXj
j

@ LLE: use a least square metric for the fits.



t-Stochastic Neighbor Embedding Dimenson Rt

SNE heuristic

@ From X; € X, construct a set of conditional probability:
e—IIK,-—KJ-IIQ/Zf,2

P";:

J Piji =0

s & K2

e Find X/ in RY such that the set of conditional probability:
o~ IXi=X;|?/207
Qi =

Qi =0

— || Xi= X112 2
e & X2

is close from P.

o t-SNE: use a Student-t term (1 + [|X} — X}[|*)~* for X;
L . . Pji

@ Minimize the Kullback-Leibler divergence (Z Pjji log 0
ij ali

a simple gradient descent (can be stuck in local minima).

) by

e Parameters o; such that H(P;) = — > 7 P;;log Pj; = cst.



UMAP

Dimension Reduction X

@ Topological Data Analysis inspired.

Uniform Manifold Approximation and Projection

@ Define a notion of asymetric scaled local proximity between
neighbors:

e Compute the k-neighborhood of X, its diameter o; and the
distance p; between X; and its nearest neighbor.

o Define X))
e \N\EpZ2)) TP/ for X. in the k-neighborhood
wilX, X;) = {0 otheiri/vise :
@ Symmetrize into a fuzzy nearest neighbor criterion
w(Xj, X;) = wi(X;, X;) + w;(Xj, Xi) — wi(X;, Xj)w; (X, X5)
@ Determine the points X’ in a low dimensional space such that

W(K,‘a&j) (1 - W(Kivéj))
; w(X;, X;) log <w’(X§,XJ’-)> + (1 - w(X;, X)) log <(1 —w (X, X))

v

@ Can be performed by local gradient descent.



G ra p h based Dimension Reduction X

Graph heuristic

@ Construct a graph with weighted edges w; ; measuring the
proximity of X; and Kj (w;j large if close and 0 if there is no
information).

e Find the points X} € RY minimizing

11 n n 5
;;ZZ W/JHK: —KJH

i=1 j=1

@ Need of a constraint on the size of X/...

@ Explicit solution through linear algebra: d’ eigenvectors with
smallest eigenvalues of the Laplacian of the graph D — W,
where D is a diagonal matrix with D; ; = ZJ- w; ;.

@ Variation on the definition of the Laplacian...



O Utl | ne Dimension Reduction X

© Dimension Reduction

@ Word and Word Vectors



WOI'CI VeCtOI'S Dimension Reduction X

o5 +heiress
'

+countess

/" dichess

ozt i [t empres

Word Embedding

@ Map from the set of words to RY.
@ Each word is associated to a vector.

@ Hope that the relationship between two vectors is related to
the relationship between the corresponding words!

Source: nlp.stanford.edu



WOI'CI And ConteXt Dimension Reduction X

Look ! single ’wordHand ‘ lits | context

@ ldea: characterize a word w through its relation with its
context c...

o Probabilistic description:
e Joint distribution: f(w,c) =P (w,c)
o Conditional distribution(s): f(w,c) =P (w|c) or
f(w,c) =P (c|w).
e Pointwise mutual information:
f(w,c) =P (w,c) /(P (w)P(c))
@ Word w characterized by the vector C,, = (f(w, c)). or
Cu = (I0g f(w, C))..

@ In practice, C is replaced by an estimate on large corpus.
@ Very high dimensional model!



A (Naive) SVD Approach Dimenson Rt

Seof| Ve
C ~ | U, | (rxr) (rxnc)

(nwxne) (nwxr)

Truncated SVD Approach

@ Approximate the code matrix C using the truncated SVD
decomposition (best low rank approximation).

@ Use as a code
! (e
CW _ Uf,WZr,r

with a € [0,1].

@ Variation possible on C.

@ State of the art results but computationally intensive...



A LeaSt Square Appl’OaCh Dimension Reduction X

@ All the previous models corresponds to
—logP (w, ) ~ CyCl + vy + fBc

GloVe (Global Vectors)

@ Enforce such a fit through a (weighted) least square
formulation

Zh ) ||—logP (w, c) — (CxCé/-i-Ozw—Fﬂc)Hz

with h a increasing weight.

@ Minimization by alternating least square...

@ Much more efficient than SVD.



A Learnlng ApprOaCh Dimension Reduction X

Supervised Learning Formulation

@ Couples (w, c) are positive examples.

e Artificially generate negative examples (w’, ¢’) (for instance
by copying ¢ and generating w’ independently of c.)

@ Model the probability of being positive given (w,c) as a
(simple) function of the codes C/, and C/

@ Word2vec: logistic modeling
C/t C//
etw'e

P(1|W7C):m

@ State of the art and efficient computation.
@ Similar to a factorization of — log(P (w, c) /(P (w)P (c)))!



Outline

© Clustering
@ Partition Based

@ Model Based

@ Density Based

o Agglomerative Clustering
@ Other Approaches

@ Scalability

Clustering



Clustering Clustering

e Training data: D ={X,...,X,} € X" (i.id. ~P)
@ Latent groups?

Clustering

e Construct a map f from D to {1,..., K} where K is a
number of classes to be fixed:
fr X, ki

4

@ Interpretation of the groups

@ Use of the groups in further processing

@ Several strategies possible!

@ Can use dimension reduction as a preprocessing.



Outline

© Clustering
@ Partition Based

Clustering



Partition based Clustering

Partition Heuristic

o Clustering is defined by a partition in K classes...

@ that minimizes a homogeneity criterion.

v

o Cluster k defined by a center pu.

@ Each sample is associated to the closest center.

n
@ Centers defined as the minimizer of Z mkin 1X; — g2
i=1

N,

@ lterative scheme (Loyd):

Start by a (pseudo) random choice for the centers pix
Assign each samples to its nearby center

Replace the center of a cluster by the mean on its assigned
samples.

o Repeat the last two steps until convergence.



Clustering

Partition based X

K-means, step 0 - 4
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Partltlon based Clustering

@ Other schemes:
e McQueen: modify the mean each time a sample is assigned to
a new cluster.
e Hartigan: modify the mean by removing the considered
sample, assign it to the nearby center and recompute the new
mean after assignment.

@ A good initialization is crucial!

e Initialize by samples.

o k-Mean-++: try to take them as separated as possible.

e No guarantee to converge to a global optimum: repeat and
keep the best result!

e Complexity : O(n x K x T) where T is the number of step in
the algorithm.



Partltlon based Clustering X

@ k-Medoid: use a sample as a center
e PAM: for a given cluster, use the sample that minimizes the
intra distance (sum of the squared distance to the other points)
e Approximate medoid: for a given cluster, assign the point that
is the closest to the mean.
o Complexity:
o PAM: O(n? x T) in the worst case!
e Approximate medoid: O(n x K x T) where T is the number
of step in the algorithm.

@ Remark: Any distance can be used...



Outline

© Clustering

@ Model Based

Clustering



Model Based

Clustering X

Model Heuristic

@ Use a generative model of the data:
K

P(X) =) mPe, (X|k)
where 7y are proportions aniii]%’g (X|k) are parametric
probability models.
o Estimate those parameters (often by a ML principle).
@ Assign each observations to the class maximizing the a
posteriori probability (obtained by Bayes formula)
7P (X|K)

Si=1 TPy (X|K')

@ Link with Generative model in supervised classification!



Model Based Clustering X

Responsibilities
?’— o
‘ (
00 02 04 06 08 10 00 02 04 06 08 10

Responsibilities

L

A two class example

o A mixture m1f(X) + mfi(X)
e and the posterior probability m;f(X)/(m1f(X) + mafh(X))

o Natural class assignment!




Model Based Clostering X

Sub-population estimation

o A mixture m1f1(X) + mafi(X)
e Two populations with a parametric distribution f;.

e Most classical choice: Gaussian distribution

Gaussian Setting

e X;,...,X, independent

o X; ~ N(u1,0%) with probability 71 or X; ~ N (2, 03) with
probability

o We don't know the parameters pu;, o;, m;.

e We don't know from which distribution each X; has been drawn.

<




Model Based Clustering
Maximum Likelihood

o Density: m®(X, 1, 03) + m®(X, 2, 03)

o log-likelihood:
9) = Z |Og (7Tl¢(&h M1, O'%) + 772(1)(&[) M2, U%))
i=1

e No straightforward way to optimize the parameters!

v

What if algorithm

e Assume we know from which distribution each sample has been
sampled: Z; = 1 if from f; and Z; = 0 otherwise.

° Iog-likelihood
ZZIog O(X;, p11,07) + (1 — Z) log &(X;, 12, 03)

e Easy optimization

o but the Z; are unknown...




Model Based Clustering

What if algorithm

e Assume we know from which distribution each sample has been
sampled: Z; = 1 if from f; and Z; = 0 otherwise.

° Iog—likelihood
ZZ |Og (D fﬂﬂlval) ( 7Zi)|0g¢(éi7,uf2ao—§)

e Easy optimization

o but the Z; are unknown...

V.

Bootstrapping Idea

Replace Z; by its expectaion given the current estimate.

E[Z] =P (Z = 1|0) (A posteriori probability)

e and iterate...

Can be proved to be good idea!




Model Based Clustering

EM Algorithm

o (Random) initialization: p?, o9, 70.

it
o Repeat:
o Expectation (Current a posteriori probability):

T o(X,, ut, (1))

E Z,' :P Z,:]_ ¢ =
21 =P (2 =10) = S G + (X, 1, (@)

o Maximization of

> E:[Z]log &(X;, pa,0%) + Ee [1 - Z]log &(X;, 2, 73)

i=1

t+1 F+1
I o

to obtain uf™, ¢,




Model Based Clustering X

@ Large choice of parametric models.

Gaussian Mixture Model

o Use
Py, (XIK) ~ N (s T)

with NV(u, X) the Gaussian law of mean x and covariance
matrix >_.

e Efficient optimization algorithm available (EM)

@ Often some constrain on the covariance matrices: identical,
with a similar structure...

@ Strong connection with K-means when the covariance
matrices are assumed to be the same multiple of the identity.



Model Based Clustering

Probabilistic latent semantic analysis (PLSA)

@ Documents described by their word counts w
@ Model:

K
P(w) =) P (k)Py, (w|k)
k=1

with k the (hidden) topic, E;(k) a topic probability and
P (w|k) a multinomial law for a given topic.
o Clustering according to

P (kjw) = 2 Fq, (1)
S B ()P (wik)

@ Same idea than GMM!

@ Bayesian variant called LDA.



Model Based Clustering X

Parametric Density Estimation Principle

@ Assign a probability of membership.

@ Lots of theoretical studies...

@ Model selection principle can be used to select K the number
of class:

e AIC / BIC /MDL penalization
e Cross Validation is also possible!

e Complexity: O(nx K x T)
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@ Density Based

Clustering



(Non Parametric) Density Based Clustering X

Density Heuristic

@ Cluster are connected dense zone separated by low density
zone.

Not all points belong to a cluster.

@ Basic bricks:
e Estimate the density.
e Find points with high densities.
e Gather those points according to the density

@ Density estimation:
o Classical kernel density estimate...
o Gathering:

e Link points of high density and use the resulted component.
e Move them toward top of density hill by following the gradient
and gather all the points arriving at the same summit.



(Non Parametric) Density Based Clusteing

@ Examples:
e DBSCAN: link point of high densities using a very simple
kernel.
e PdfCLuster: find connected zone of high density.
e Mean-shift: move points toward top of density hill following an
evolving kernel density estimate.
e Complexity: O(n? x T) in the worst case.

@ Can be reduced to O(nlog(n)T) if samples can be encoded in
a tree structure (n-body problem type approximation).
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o Agglomerative Clustering

Clustering



Agglomerative Clustering Clustering X

Agglomerative Clustering Heuristic

Start with very small clusters (a sample by cluster?)

Sequential merging of the most similar clusters...

according to some greedy criterion A.

Generates a hierarchy of clustering instead of a single one.
Need to select the number of cluster afterwards.

Several choice for the merging criterion...

Examples:
e Minimum Linkage: merge the closest cluster in term of the
usual distance
e Ward's criterion: merge the two clusters yielding the less inner
inertia loss (k-means criterion)



Agglomerative Clustering Clustering X

Algorithm

e Start with (C,-(O)) = ({X;}) the collection of all singletons.

@ At step s, we have n — s clusters (Cfs)):
e Find the two most similar clusters according to a criterion A:
(i,i") = argmin A(CJ(S),C},S))
G4")

o Merge C® and () into ™)
o Keep the n — s — 2 other clusters Cf{fﬂ) = C,-(/S,)

Repeat until there is only one cluster.

Complexity: O(n®) in general.
Can be reduced to O(n?)

e if only a bounded number of merging is possible for a given
cluster,

e for the most classical distances by maintaining a nearest
neighbors list.



Agglomerative Clustering Clustering

C Cl
1 C G,

Merging criterion based on the distance between points

@ Minimum linkage:
A(Ci, ;) = min min d(X;, X;)
@ Maximum linkage:
A(CC) = e max d 0, X)

i

@ Average linkage:

ANy, ) =

ICilIC;l

o Clustering based on the proximity...

Source: E. Matzner-Lber



Agglomerative Clustering Clustering

Merging criterion based on the inertia (distance to the mean)

@ Ward's criterion:

A(C,‘,Cj): Z (d2( n,UCUC) d2(£i7ﬂci))

XCEC;
= Z ( Ja,LLCUC) dZ(KJ‘?,U’Cj))
X; €C;
@ If d is the euclidean distance:

(C,,C) | IHC|

I dP (e, e
|C|+‘C| (IUCMIU'CI)

@ Same criterion than in the k-means algorithm but greedy
optimization.
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Clustering



Grid

based Clustering

Split the space in pieces

Group those of high density according to their proximity

Similar to density based estimate (with partition based initial
clustering)

Space splitting can be fixed or adaptive to the data.
Examples:
o STING (Statistical Information Grid): Hierarchical tree
construction plus DBSCAN type algorithm
o AMR (Adaptive Mesh Refinement): Adaptive tree refinement

plus k-means type assignment from high density leaves.
e CLIQUE: Tensorial grid and 1D detection.

Linked to Divisive clustering (DIANA)



Othel’S Clustering

Graph based

Spectral clustering: dimension reduction + k-means.

@ Message passing: iterative local algorithm.

Graph cut: min/max flow.

Kohonen Map,
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Scalablllty Clustering

Large dataset issue

@ When n is large, a O(n“log n) with & > 1 is not acceptable!

@ How to deal with such a situation?

e Beware: Computing all the pairwise distance requires O(n?)
operations!

@ Sampling

@ Online processing
e Simplification

@ Parallelization




Sampllng Clustering X

Sampling heuristic

@ Use only a subsample to construct the clustering.
@ Assign the other points to the constructed clusters afterwards.
@ Requires a clustering method that can assign new points
(partition, model...)
@ Often repetition and choice of the best clustering
@ Example:
o CLARA: K-medoid with sampling and repetition
@ Two step algorithm:

o Generate a large number n’ of clusters using a fast algorithm
(with n" < n)
o Cluster the clusters with a more accurate algorithm.



Onllne Clustering X

Online heuristic

@ Modify the current clusters according to the value of a single
observation.

@ Requires compactly described clusters.
@ Examples:
e Add to an existing cluster (and modify it) if it is close enough

and create a new cluster otherwise (k-means without
reassignment)

e Stochastic descent gradient (GMM)
@ May leads to far from optimal clustering.



Slmpllflcathn Clustering X

Simplification heuristic

@ Simplify the algorithm to be more efficient at the cost of some
precision.

@ Algorithm dependent!
@ Examples:
o Replace groups of observation (preliminary cluster) by the
(approximate) statistics.

e Approximate the distances by cheaper ones.
e Use n-body type techniques.



Para”ellzation Clustering X

Parallelization heuristic
@ Split the computation on several computers.

@ Algorithm dependent!

@ Examples:
e Distance computation in k-means, parameter gradient in
model based clustering
o Grid density estimation, Space splitting strategies
@ Classical batch sampling not easy to perform as partitions are
not easily merged...
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Generative Adversial
Network



Generative Modeling and Density
Estimation

Generative Adversial
Network

Generative Model

@ Probabilistic model of the world.

o Allow to generate samples that mimics X.

o Classical approaches are based on likelihood:
e Parametric model,
e Bayesian model.

Generative Algorithm
o Computational probabilistic model of the world.

@ Allow to generate samples G(Z) that mimic X from
e a randomness source Z,
e a computable function G.

@ No explicit form of the likelihood!

N,

@ How to learn G?



A Clever ldea
G(Z) ~

@ From estimation to...

X7

Generative Adversial
Network



A Clever ldea ﬁeneraiive Adversial
O(G(Z)) ~ D(X)?

@ From estimation to... discrimination

Discriminator (Goodfellow 14)

o Let

(X, ) = (X,1) with probability 1/2
- (G(Z),0) with probability 1/2
@ Can we guess from X whether it comes from X or G(Z)?

@ Discriminator loss = Classifier loss:
L(D, G) =1/2Ex [~ log D(X)] + 1/2E¢(z) [ log(1 — D(G(Z2)))]

V.

@ One can learn a discriminator from the data for a fixed G.

@ The ideal generator is such that this problem is hard!

A\,




A Clever |dea Generative Adversial

Network

Best Discriminator

@ Bayes Discriminator D*:

') = (¥ = 1) = — Y250
- T 1/2fx(X) + 1/2fg2)(X)

o Optimal loss:
fx(X)

L(D*, G) =1/2Ex [— log1/2 + —log

fo(G)

+1/2E¢g [— log1/2+ —log 1/2x(G) + 1/2f¢(G)

= —1/2KL(fx,1/2fx + 1/2fG(Z))
= —JKLy5(fx, fo(z)) + log 2
@ Adversarial minimization:
argmax mDin L(D, G) = argmin JKLy /5(fx, f(z))
G G o

1/2fx(X) + 1/2f(z)(X)

|

|




Generatlve Adversal’lal Network Generative Adversial

Network

G* = argmin max |1/2Bx [log D(X)] + 1/2E(z) [log(1 — D(G(2)))]|

Generative Adversarial Network

@ Replace the set of all possible G and D by a set of parametric
functions, for instance some deep neural networks

Replace the expectations by some empirical means.

Alternate a maximization on D and a minimization on G.

Z is often U[—1,1] or N(0,1).

Not that easy to train:

hard to achieve Nash equilibrium (no guaranteed convergence)
mode collapse (restart required)

support issue of KL like divergence (add noise)

adding feature matching helps!



GAN and f‘d |Ve rgence Generative Adversial

Network

D¢(P, Q) :/f <58> q(x)
= supTEx~p [T(X)] — Ec~q [f*(T(G))]

f-divergence and dual representation

@ Defines a divergence for any convex f.

@ Dual representation with *(x) = sup,(x, u) — f(u)

mén supExp [T(X)] —Ez [f*(T(G(Z))]
T

@ Replace the set of all possible G and T by a set of parametric
functions, for instance some deep neural networks

@ Replace the expectations by some empirical means.

@ Alternate a maximization on D and a minimization on G.




Classical GAN and f-GAN Generative Adversial

Network

JKL(P, Q) = suprExp [T(X)] — Ecq[—log(2 — exp T(G))]

Classical GAN as a -GAN

o JKL-divergence is a f divergence with
f(u) = —(u+1)log 15* + ulog u.
o Parameterize T by log2 — log(1 4+ e~ ') so that
JKL(P, Q) =supEx.p [Iog2 — log(1 + e—T’)}
T

—E¢0 [Iog(2 -2/(1+ e_T/)]
=2log2 + e Ex~p {Iog(l/(l + e—T/))}
+ Eg0 [|Og(1 — 1/(1 aF eiTl))}

@ GAN formulation up to the parameterization of T:
min max Ex [log(1/(1 + e9))

+Eg(z) |log(1 — 1/(1 + =T (C(@)))]




GA N an d WaSSG rStel n Generative Adversial X

Network L
W(P,Q) = gﬂy;,f@ E(p,q)~e [llp = all]

— = supy,<xExp [F(X)] - Ecg [F(G)]

K
m(;n sup Exp[f(X)] —Ez[f(G(Z))]
[Ifll.<1

Replace the set of all possible G and f by a set of parametric
functions, for instance some deep neural networks

Replace the expectations by some empirical means.

Alternate a maximization on D and a minimization on G.

@ Constrain on the Lipschitz norm is the most complex part:
e clip on the network weights
e or penalization of the gradient norm
@ Rk: More a case of integral probability metric than optimal
transport...



G A N Generative Adversial X

Network

Generative Adversarial
Network

Real
Samples

Generative Adversial Network

@ Clever idea combined with state of the art NN architecture.

@ Impressive results!

@ Can it be used to perform clustering in the latent space?
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