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Motivation, Supervised
vs Unsupervised
Learning

Motivation

Marketing: finding groups of customers with similar behavior
given a large database of customer data containing their
properties and past buying records;
Biology: classification of plants and animals given their
features;
Libraries: book ordering;
Insurance: identifying groups of motor insurance policy
holders with a high average claim cost; identifying frauds;
City-planning: identifying groups of houses according to their
house type, value and geographical location;
Internet: document classification; clustering weblog data to
discover groups of similar access patterns.
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Data: Base of customer data containing their properties and
past buying records
Goal: Use the customers similarities to find groups.
Two directions:

Visualization: propose a representation of the customers so
that the groups are visible
Clustering: propose an explicit grouping of the customers
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How to view a high-dimensional dataset?
High-dimension: dimension larger than 2!
Projection in a 2D space.
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A definition by Tom Mitchell
(http://www.cs.cmu.edu/~tom/)
A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if
its performance at tasks in T, as measured by P, improves with
experience E.

http://www.cs.cmu.edu/~tom/
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Supervised Learning

Experience, Task and Performance measure
Training data : D = {(X 1, Y1), . . . , (Xn, Yn)} (i.i.d. ≥ P)
Predictor: f : X æ Y measurable
Cost/Loss function: ¸(f (X ), Y ) measure how well f (X )
predicts Y
Risk:

R(f ) = E [¸(Y , f (X ))] = EX
Ë
EY |X [¸(Y , f (X ))]

È

Often ¸(f (X ), Y ) = Îf (X ) ≠ Y Î2 or ¸(f (X ), Y ) = 1Y ”=f (X)

Goal
Learn a rule to construct a classifier ‚f œ F from the training
data Dn s.t. the risk R(‚f ) is small on average or with high
probability with respect to Dn.



Motivation, Supervised
vs Unsupervised
Learning

Unsupervised Learning

Experience, Task and Performance measure
Training data : D = {X 1, . . . , Xn} (i.i.d. ≥ P)
Task: ???
Performance measure: ???

No obvious task definition!

Tasks for this lecture
Dimension reduction: construct a map of the data in a low
dimensional space without distorting it too much.
Clustering (or unsupervised classification): construct a
grouping of the data in homogeneous classes.
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Dimension Reduction

Training data : D = {X 1, . . . , Xn} œ X n (i.i.d. ≥ P)
Space X of possibly high dimension.

Dimension Reduction Map
Construct a map � from the space X into a space X Õ of
smaller dimension:

� : X æ X Õ

X ‘æ �(X )

Map can be defined only on the dataset.

Motivations
Visualization of the data
Dimension reduction before further processing
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Dimension Reduction

Need to control the distortion between D and
�(D) = {�(X 1), . . . , �(Xn)}

Distortion(s)
Reconstruction error:

Construct Â� from X Õ to X
Control the error between X and its reconstruction Â�(�(X ))

Relationship preservation:
Compute a relation X i and X j and a relation between �(X i)
and �(X j)
Control the di�erence between those two relations.

Leads to di�erent constructions....



Motivation, Supervised
vs Unsupervised
Learning

Clustering

Training data : D = {X 1, . . . , Xn} œ X n (i.i.d. ≥ P)
Latent groups?

Clustering
Construct a map f from D to {1, . . . , K} where K is a
number of classes to be fixed:

f : X i ‘æ ki

Similar to classification except:
no ground truth (no given labels)
label only elements of the dataset!

Motivations
Interpretation of the groups
Use of the groups in further processing



Motivation, Supervised
vs Unsupervised
Learning

Clustering

Need to define the quality of the cluster.
No obvious measure!

Clustering quality
Inner homogeneity: samples in the same group should be
similar.
Outer inhomogeneity: samples in two di�erent groups should
be di�erent.

Several possible definitions of similar and di�erent.
Often based on the distance between the samples.
Example based on the euclidean distance:

Inner homogeneity = intra class variance,
Outer inhomogeneity = inter class variance.

Beware: choice of the number of cluster K often complex!
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Dimension ReductionDimension Reduction

Training data : D = {X 1, . . . , Xn} œ X n (i.i.d. ≥ P)
Space X of possibly high dimension.

Dimension Reduction Map
Construct a map � from the space X into a space X Õ of
smaller dimension:

� : X æ X Õ

X ‘æ �(X )

Criterion
Reconstruction error
Relationship preservation
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Dimension ReductionDimensionality Curse

High Dimension Geometry Curse
Folks theorem: In high dimension, everyone is alone.
Theorem: If X 1, . . . , Xn in the hypercube of dimension d such
that their coordinates are i.i.d then

d≠1/p
1
max ÎX i ≠ X jÎp ≠ min ÎX i ≠ X jÎp

2
= 0 + O

Q

a
Û

log n
d

R

b

max ÎX i ≠ X jÎp
min ÎX i ≠ X jÎp

= 1 + O

Q

a
Û

log n
d

R

b .

When d is large, all the points are almost equidistant...
Nearest neighbors are meaningless!



Dimension ReductionInertia

X 1, . . . , Xn œ Rd

m = 1
n

qn
i=1 X i

Two views on inertia
Inertia:

I = 1
n

nÿ

i=1
ÎX i ≠ mÎ2

= 1
2n2

ÿ

i ,j
ÎX i ≠ X jÎ2

2 times the mean squared distance to the mean = Mean
squared distance between individual

Heuristic: a good representation is a representation with a
large inertia
Large dispersion ≥ Large average separation!



Dimension ReductionInertia and Projection

What if we replace X by its projection ÂX = P(X ≠ m) + m?

Two views on inertia
Inertia:

ÂI = 1
n

nÿ

i=1
ÎÊX i ≠ mÎ2

= 1
2n2

ÿ

i ,j
ÎÊX i ≠ ÊX jÎ2

Inertia:
ÂI = I ≠ 1

n

nÿ

i=1
ÎÊX i ≠ X iÎ2

= I ≠ 1
2n2

ÿ

i ,j

1
ÎX i ≠ X jÎ2 ≠ ÎÊX i ≠ ÊX jÎ2

2

Four di�erent way to obtain a large inertia!



Dimension ReductionFirst Component of the PCA
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1D case: ÂX = m + a€(X ≠ m)a with ÎaÎ = 1

Inertia: ÂI = 1
n

nÿ

i=1
a€(X i ≠ m)(X i ≠ m)€a

Principal Component Analysis : optimization of the projection

Maximization of ÂI = 1
n

nÿ

i=1
a€(X i ≠ m)(X i ≠ m)€a = a€�a

with � = 1
n

nÿ

i=1
(X i ≠ m)(X i ≠ m)€ the empirical covariance

matrix.
Explicit optimal choice given by the eigenvector of the largest
eigenvalue of �.



Dimension ReductionPCA
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Principal Component Analysis : optimization of the projection
Explicit optimal solution obtain by the projection on the
eigenvectors of the largest eigenvalues of �.
Projected inertia given by the sum of those eigenvalues.

Often fast decay of the eigenvalues: some dimensions are
much more important than other.
Not exactly the curse of dimensionality setting...
Yet a lot of small dimension can drive the distance!



Dimension ReductionPCA and Distances

Individu 1

Individu 2
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Close projection doesn’t mean close individuals!
Same projections but di�erent situations.
Quality of the projection measured by the angle!
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Dimension ReductionReconstruction Error Approach

Goal
Construct a map � from the space X into a space X Õ of
smaller dimension:

� : X æ X Õ

X ‘æ �(X )
Construct Â� from X Õ to X
Control the error between X and its reconstruction Â�(�(X ))

Canonical example for X œ Rd : find � and Â� in a parametric
family that minimize

1
n

nÿ

i=1
ÎX i ≠ Â�(�(X i))Î2



Dimension ReductionPrincipal Component Analysis

X œ Rd and X Õ = Rd Õ

A�ne model X ≥ m +
qd Õ

l=1 X Õ(l)V (l) with (V (l)) an
orthonormal family.
Equivalent to:

�(X ) = V €(X ≠ m) and Â�(X Õ) = m + V X Õ

Reconstruction error criterion:
1
n

nÿ

i=1
ÎX i ≠ (m + VV €(X i ≠ m)Î2

Explicit solution: m is the empirical mean and V is any
orthonormal basis of the space spanned by the d Õ first
eigenvectors (the one with largest eigenvalues) of the
empirical covariance matrix 1

n
qn

i=1(X i ≠ m)(X i ≠ m)€.



Dimension ReductionPrincipal Component Analysis

PCA Algorithm
Compute the empirical mean m = 1

n
qn

i=1 X i
Compute the empirical covariance matrix
1
n

qn
i=1(X i ≠ m)(X i ≠ m)€.

Compute the d Õ first eigenvectors of this matrix:
V (1), . . . , V (d Õ)

Set �(X ) = V €(X ≠ m)

Complexity: O(n(d + d2) + d Õd2)
Interpretation:

�(X ) = V €(X ≠ m): coordinates in the restricted space.
V (i): influence of each original coordinates in the ith new one.

Scaling: This method is not invariant to a scaling of the
variables! It is custom to normalize the variables (at least
within groups) before applying PCA.



Dimension ReductionMultiple Factor Analysis
PCA assumes X = Rd !
How to deal with categorical values?
MFA = PCA with clever coding strategy for categorical values.

Categorical value code for a single variable
Classical redundant dummy coding:

X œ {1, . . . , V } ‘æ P(X ) =
!
1X=1, . . . , 1X=V

"€

Compute the mean (i.e. the empirical proportions):
P = 1

n
qn

i=1 P(X i)

Renormalize P(X ) by 1/
Ò

(V ≠ 1)P:
P(X ) ‘æ Pr (X )

!
1X=1, . . . 1X=V

"
‘æ

Q

a 1X=1Ò
(V ≠ 1)P1

, . . . ,
1X=VÒ

(V ≠ 1)PV

R

b

‰2 type distance!



Dimension ReductionMultiple Factor Analysis

PCA becomes the minimization of
1
n

nÿ

i=1
ÎPr (X i) ≠ (m + VV €(Pr (X i) ≠ m))Î2

= 1
n

nÿ

i=1

Vÿ

v=1

---1Xi =v ≠ (mÕ +
qd Õ

l=1 V (l)€(P(X i) ≠ mÕ)V (l ,v))
---
2

(V ≠ 1)Pv

Interpretation:
mÕ = P
�(X ) = V €(P r X ≠ m): coordinates in the restricted space.
V (l) can be interpreted s as a probability profile.

Complexity: O(n(V + V 2) + d ÕV 2)
Link with Correspondence Analysis (CA)



Dimension ReductionMultiple Factor Analysis

MFA Algorithm
Redundant dummy coding of each categorical variable.
Renormalization of each block of dummy variable.
Classical PCA algorithm on the resulting variables

Interpretation as a reconstruction error with a rescaled/‰2

metric.
Interpretation:

�(X ) = V €(P r (X ) ≠ m): coordinates in the restricted space.
V (l): influence of each modality/variable in the ith new
coordinates.

Scaling: This method is not invariant to a scaling of the
continuous variables! It is custom to normalize the variables
(at least within groups) before applying PCA.



Dimension ReductionNon Linear PCA

PCA Model
PCA: Linear model assumption

X ƒ m +
d Õÿ

l=1
X Õ,(l)V (l) = m + V X Õ

with
V (l) orthonormal
X Õ,(l) without constrains.

Two directions of extension:
Other constrains on V (or the coordinates in the restricted
space): ICA, NMF, Dictionary approach
PCA on a non linear image of X : kernel-PCA

Much more complex algorithm!



Dimension ReductionNon Linear PCA

ICA (Independent Component Analysis)
Linear model assumption

X ƒ m +
d Õÿ

l=1
X Õ,(l)V (l) = m + V X Õ

with
V (l) without constrains.
X Õ,(l) independent

NMF (Non Negative Matrix Factorization)
(Linear) Model assumption

X ƒ m +
d Õÿ

l=1
X Õ,(l)V (l) = m + V X Õ

with
V (l) non negative
X Õ,(l) non negative.



Dimension ReductionNon Linear PCA

Dictionary
(Linear) Model assumption

X ƒ m +
d Õÿ

l=1
X Õ,(l)V (l) = m + V X Õ

with
V (l) without constrains
X Õ sparse (with a lot of 0)

kernel PCA
Linear model assumption

�(X ≠ m) ƒ
d Õÿ

l=1
X Õ,(l)V (l) = V X Õ

with
V (l) orthonormal
X Õ

l without constrains.



Dimension ReductionLink with SVD

Linear model assumption:

X ƒ m +
d Õÿ

l=1
X Õ,(l)V (l) = m + V X Õ

Vector rewriting
X€ ƒ m€ + X Õ€V €

Matrix Rewriting and Low Rank Factorization
Matrix rewriting

X 1
€ ≠ m€

...

...
Xn

€ ≠ m€

(n◊d)

ƒ

X 1
Õ€

...

...
Xn

Õ€

(n◊d Õ)

V€

(d Õ◊d)

Low rank matrix factorization! (Truncated SVD solution...)



Dimension ReductionSVD

SVD Decomposition
Any matrix n ◊ d matrix A can de decomposed as

A

(n◊d)

= U

(n◊n)

�

(n◊d)

V€

(d◊d)

with U and V two orthononormal matrices and � a diagonal
matrix with decreasing values.



Dimension ReductionSVD

Low Rank Approximation
The best low rank approximation or rank r is obtained by
restriction of the matrices to the first r dimensions:

A

(n◊d)

ƒ Ur

(n◊r)

�r ,r

(r◊r)

Vr
€

(r◊d)

for both the operator norm and the Frobenius norm!
PCA: Frobenius norm, d Õ = r andQ

ccccca

X 1
€ ≠ m€

...

...
Xn

€ ≠ m€

R

dddddb
¡ A,

Q

ccccca

X 1
Õ€

...

...
Xn

Õ€

R

dddddb
¡ Ur�r ,r , V€ ¡ V€

r



Dimension ReductionAuto Encoder

Deep Auto Encoder
Construct a map � with a NN from the space X into a space
X Õ of smaller dimension:

� : X æ X Õ

X ‘æ �(X )
Construct Â� with a NN from X Õ to X
Control the error between X and its reconstruction Â�(�(X )):

1
n

nÿ

i=1
ÎX i ≠ Â�(�(X i))Î2

Optimization by gradient descent.
NN can be replaced by another parametric function...
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Dimension ReductionPairwise Relation
Di�erent point of view!
Focus on pairwise relation R(X i , X j).

Distance Preservation
Construct a map � from the space X into a space X Õ of
smaller dimension:

� : X æ X Õ

X ‘æ �(X ) = X Õ

such that
R(X i , X j) ≥ RÕ(X Õ

i , X Õ
j)

Most classical version (MDS):
Scalar product relation: R(X i , X j) = (X i ≠ m)€(X j ≠ m)
Linear mapping X Õ = �(X ) = V €(X ≠ m).
Euclidean scalar product matching:

1
n2

nÿ

i=1

nÿ

j=1

---(X i ≠ m)€(X j ≠ m) ≠ (X Õ
i)

€X Õ
j

---
2

� often defined only on D...



Dimension ReductionMultiDimensional Scaling

MDS Heuristic
Match the scalar products:

1
n2

nÿ

i=1

nÿ

j=1

---(X i ≠ m)€(X j ≠ m) ≠ X i
Õ€X Õ

j
---
2

Linear method: X Õ = U€(X ≠ m) with U orthonormal

Beware: X can be unknown, only the scalar products are
required!
Resulting criterion: minimization in U€(X i ≠ m) of

1
n2

nÿ

i=1

nÿ

j=1

---(X i ≠ m)€(X j ≠ m) ≠ (X i ≠ m)€UU€(X j ≠ m)
---
2

without knowing explicitly X ...
Explicit solution obtained through the eigendecomposition of
the know Gram matrix (X i ≠ m)€(X j ≠ m) by keeping only
the d Õ largest eigenvalues.



Dimension ReductionMultiDimensional Scaling

In this case, MDS yields the same result than the PCA (but
with di�erent inputs, distance between observation vs
correlations)!
Explanation: Same SVD problem up to a transposition:

MDS
X (n)

€X (n) ≥ X (n)
€UU€X (n)

PCA
X (n)X (n)

€ ≥ U€X (n)X (n)
€U

Complexity: PCA O((n + d Õ)d2) vs MDS O((d + d Õ)n2)...



Dimension ReductionGeneralized MDS

Preserving the scalar products amounts to preserve the
euclidean distance.
Easier generalization if we work in term of distance!

Generalized MDS
Generalized MDS:

Distance relation: R(X i , X j) = d(X i , X j)
Linear mapping X Õ = �(X ) = V €(X ≠ m).
Euclidean matching:

1
n2

nÿ

i=1

nÿ

j=1

--d(X i , X j) ≠ d Õ(X Õ
i , X Õ

j)
--2

Strong connection (but no equivalence) with MDS when
d(x , y) = Îx ≠ yÎ2!
Minimization: Simple gradient descent can be used (can be
stuck in local minima).



Dimension ReductionISOMAP

MDS: equivalent to PCA (but more expensive) if
d(x , y) = Îx ≠ yÎ2!
ISOMAP: use a localized distance instead to limit the
influence of very far point.

ISOMAP
For each point X i , define a neighborhood Ni (either by a
distance or a number of points) and let

d0(X i , X j) =
I

+Œ if X j /œ Ni
ÎX i ≠ X jÎ2 otherwise

Compute the shortest path distance for each pair.
Use the MDS algorithm with this distance



Dimension ReductionRandom Projection

Random Projection Heuristic
Draw at random d Õ unit vector (direction) Ui .
Use X Õ = U€(X ≠ m) with m = 1

n
qn

i=1 X i

Property: If X lives in a space of dimension d ÕÕ, then, as soon
as, d Õ ≥ d ÕÕ log(d ÕÕ),

ÎX i ≠ X jÎ2 ≥ d
d Õ ÎX Õ

i ≠ X Õ
jÎ2

Do not really use the data!



Dimension ReductionLocally Linear Embedding

LLE Heuristic
For each point X i , define a neighborhood Ni (either by a
distance or a number of points).
Compute some weights Wi ,j such that

Wi ,j = 0 if X j /œ Ni

X i ≥
ÿ

j
Wi ,jX j

Find some X Õ
i in a space X Õ of smaller dimension such that

X Õ
i ≥

ÿ

j
Wi ,jX Õ

j

LLE: use a least square metric for the fits.



Dimension Reductiont-Stochastic Neighbor Embedding

SNE heuristic
From X i œ X , construct a set of conditional probability:

Pj|i = e≠ÎXi ≠Xj Î2/2‡2
i

q
k ”=i e≠ÎXi ≠Xj Î2/2‡2

i
Pi |i = 0

Find X Õ
i in Rd Õ such that the set of conditional probability:

Qj|i = e≠ÎX Õ
i ≠X Õ

j Î2/2‡2
i

q
k ”=i e≠ÎX Õ

i ≠X Õ
j Î2/2‡2

i
Qi |i = 0

is close from P.

t-SNE: use a Student-t term (1 + ÎX Õ
i ≠ X Õ

jÎ2)≠1 for X Õ
i

Minimize the Kullback-Leibler divergence (
ÿ

i ,j
Pj|i log

Pj|i
Qj|i

) by

a simple gradient descent (can be stuck in local minima).
Parameters ‡i such that H(Pi) = ≠

qn
j=1 Pj|i log Pj|i = cst.



Dimension ReductionUMAP
Topological Data Analysis inspired.

Uniform Manifold Approximation and Projection
Define a notion of asymetric scaled local proximity between
neighbors:

Compute the k-neighborhood of X i , its diameter ‡i and the
distance fli between X i and its nearest neighbor.
Define

wi(X i , X j) =
I

e≠(d(Xi ,Xj )≠fli )/‡i for X j in the k-neighborhood
0 otherwise

Symmetrize into a fuzzy nearest neighbor criterion
w(X i , X j) = wi(X i , X j) + wj(X j , X i) ≠ wi(X i , X j)wj(X j , X i)
Determine the points X Õ

i in a low dimensional space such that
ÿ

i ”=j
w(X i , X j) log

A
w(X i , X j)
w Õ(X Õ

i , X Õ
j)

B
+ (1 ≠ w(X i , X j)) log

A
(1 ≠ w(X i , X j))
(1 ≠ w Õ(X Õ

i , X Õ
j))

B

Can be performed by local gradient descent.



Dimension ReductionGraph based

Graph heuristic
Construct a graph with weighted edges wi ,j measuring the
proximity of X i and X j (wi ,j large if close and 0 if there is no
information).
Find the points X Õ

i œ Rd Õ minimizing
1
n

1
n

nÿ

i=1

nÿ

j=1
wi ,jÎX Õ

i ≠ X Õ
jÎ2

Need of a constraint on the size of X Õ
i ...

Explicit solution through linear algebra: d Õ eigenvectors with
smallest eigenvalues of the Laplacian of the graph D ≠ W ,
where D is a diagonal matrix with Di ,i =

q
j wi ,j .

Variation on the definition of the Laplacian...
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Dimension ReductionWord Vectors

So
ur

ce
:

nl
p.

st
an

fo
rd

.e
du

Word Embedding
Map from the set of words to Rd .
Each word is associated to a vector.
Hope that the relationship between two vectors is related to
the relationship between the corresponding words!



Dimension ReductionWord And Context

Look ! A single word and its context

Word and Context
Idea: characterize a word w through its relation with its
context c ...
Probabilistic description:

Joint distribution: f (w , c) = P (w , c)
Conditional distribution(s): f (w , c) = P (w |c) or
f (w , c) = P (c |w).
Pointwise mutual information:
f (w , c) = P (w , c) /(P (w)P (c))

Word w characterized by the vector Cw = (f (w , c))c or
Cw = (log f (w , c))c .

In practice, C is replaced by an estimate on large corpus.
Very high dimensional model!



Dimension ReductionA (Naive) SVD Approach

C

(nw ◊nc)

ƒ Ur

(nw ◊r)

�r ,r

(r◊r)

Vr
€

(r◊nc)

Truncated SVD Approach
Approximate the code matrix C using the truncated SVD
decomposition (best low rank approximation).
Use as a code

C Õ
w = Ur ,w �–

r ,r
with – œ [0, 1].

Variation possible on C .
State of the art results but computationally intensive...



Dimension ReductionA Least Square Approach

All the previous models corresponds to
≠logP (w , c) ≥ C Õt

w C ÕÕ
c + –w + —c

GloVe (Global Vectors)
Enforce such a fit through a (weighted) least square
formulation:ÿ

w ,c
h(P (w , c))

..≠logP (w , c) ≠
!
C Õt

w C ÕÕ
c + –w + —c

"..2

with h a increasing weight.
Minimization by alternating least square...

Much more e�cient than SVD.



Dimension ReductionA Learning Approach

Supervised Learning Formulation
Couples (w , c) are positive examples.
Artificially generate negative examples (w Õ, c Õ) (for instance
by copying c and generating w Õ independently of c .)
Model the probability of being positive given (w , c) as a
(simple) function of the codes C Õ

w and C ÕÕ
c

Word2vec: logistic modeling

P (1|w , c) = eC Õt
W C ÕÕ

c

1 + eC Õt
W C ÕÕc

State of the art and e�cient computation.
Similar to a factorization of ≠ log(P (w , c) /(P (w)P (c)))!
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ClusteringClustering

Training data : D = {X 1, . . . , Xn} œ X n (i.i.d. ≥ P)
Latent groups?

Clustering
Construct a map f from D to {1, . . . , K} where K is a
number of classes to be fixed:

f : X i ‘æ ki

Motivations
Interpretation of the groups
Use of the groups in further processing

Several strategies possible!
Can use dimension reduction as a preprocessing.
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ClusteringPartition based

Partition Heuristic
Clustering is defined by a partition in K classes...
that minimizes a homogeneity criterion.

K- Means
Cluster k defined by a center µk .
Each sample is associated to the closest center.

Centers defined as the minimizer of
nÿ

i=1
min

k
ÎX i ≠ µkÎ2

Iterative scheme (Loyd):
Start by a (pseudo) random choice for the centers µk
Assign each samples to its nearby center
Replace the center of a cluster by the mean on its assigned
samples.
Repeat the last two steps until convergence.



ClusteringPartition based



ClusteringPartition based

Other schemes:
McQueen: modify the mean each time a sample is assigned to
a new cluster.
Hartigan: modify the mean by removing the considered
sample, assign it to the nearby center and recompute the new
mean after assignment.

A good initialization is crucial!
Initialize by samples.
k-Mean++: try to take them as separated as possible.
No guarantee to converge to a global optimum: repeat and
keep the best result!

Complexity : O(n ◊ K ◊ T ) where T is the number of step in
the algorithm.



ClusteringPartition based

k-Medoid: use a sample as a center
PAM: for a given cluster, use the sample that minimizes the
intra distance (sum of the squared distance to the other points)
Approximate medoid: for a given cluster, assign the point that
is the closest to the mean.

Complexity:
PAM: O(n2 ◊ T ) in the worst case!
Approximate medoid: O(n ◊ K ◊ T ) where T is the number
of step in the algorithm.

Remark: Any distance can be used...
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ClusteringModel Based

Model Heuristic
Use a generative model of the data:

P (X ) =
Kÿ

k=1
fikP◊k (X |k)

where fik are proportions and P◊ (X |k) are parametric
probability models.
Estimate those parameters (often by a ML principle).
Assign each observations to the class maximizing the a
posteriori probability (obtained by Bayes formula)

„fikP‚◊k
(X |k)

qK
kÕ=1 „fikÕP„◊kÕ

(X |k Õ)

Link with Generative model in supervised classification!



ClusteringModel Based

A two class example
A mixture fi1f1(X ) + fi2f2(X )

and the posterior probability fii fi(X )/(fi1f1(X ) + fi2f2(X ))

Natural class assignment!



ClusteringModel Based

Sub-population estimation
A mixture fi1f1(X ) + fi2f2(X )

Two populations with a parametric distribution fi .

Most classical choice: Gaussian distribution

Gaussian Setting
X 1, . . . , X n independent

X i ≥ N (µ1, ‡2
1) with probability fi1 or X i ≥ N (µ2, ‡2

2) with
probability fi2

We don’t know the parameters µi , ‡i , fii .

We don’t know from which distribution each X i has been drawn.



ClusteringModel Based
Maximum Likelihood

Density: fi1�(X , µ1, ‡2
1) + fi2�(X , µ2, ‡2

2)

log-likelihood:
L(◊) =

nÿ

i=1
log

!
fi1�(X i , µ1, ‡2

1) + fi2�(X i , µ2, ‡2
2)

"

No straightforward way to optimize the parameters!

What if algorithm
Assume we know from which distribution each sample has been
sampled: Zi = 1 if from f1 and Zi = 0 otherwise.

log-likelihood:
nÿ

i=1
Zi log �(X i , µ1, ‡2

1) + (1 ≠ Zi) log �(X i , µ2, ‡2
2)

Easy optimization

but the Zi are unknown...



ClusteringModel Based

What if algorithm
Assume we know from which distribution each sample has been
sampled: Zi = 1 if from f1 and Zi = 0 otherwise.

log-likelihood:
nÿ

i=1
Zi log �(X i , µ1, ‡2

1) + (1 ≠ Zi) log �(X i , µ2, ‡2
2)

Easy optimization

but the Zi are unknown...

Bootstrapping Idea
Replace Zi by its expectaion given the current estimate.

E [Zi ] = P (Zi = 1|◊) (A posteriori probability)

and iterate...

Can be proved to be good idea!



ClusteringModel Based

EM Algorithm
(Random) initialization: µ0

i , ‡0
i , fi0

i .
Repeat:

Expectation (Current a posteriori probability):

Et [Zi ] = P
!
Zi = 1|◊t" = fit

1�(X i , µt
1, (‡t

1)2)
fit

1�(X i , µt
1, (‡t

1)2) + fit
2�(X i , µt

2, (‡t
2)2)

Maximization of
nÿ

i=1

Et [Zi ] log �(X i , µ1, ‡2
1) + Et [1 ≠ Zi ] log �(X i , µ2, ‡2

2)

to obtain µt+1
i , ‡t+1

i , fit+1
i .



ClusteringModel Based

Large choice of parametric models.

Gaussian Mixture Model
Use

P◊k

1
X̨ |k

2
≥ N (µk , �k)

with N (µ, �) the Gaussian law of mean µ and covariance
matrix �.

E�cient optimization algorithm available (EM)
Often some constrain on the covariance matrices: identical,
with a similar structure...
Strong connection with K -means when the covariance
matrices are assumed to be the same multiple of the identity.



ClusteringModel Based

Probabilistic latent semantic analysis (PLSA)
Documents described by their word counts w
Model:

P (w) =
Kÿ

k=1
P (k)P◊k (w |k)

with k the (hidden) topic, P (k) a topic probability and
P (w |k) a multinomial law for a given topic.
Clustering according to

P (k|w) =
[P (k)P‚◊k

(w |k)
q

kÕ \P (k Õ)P„◊kÕ
(w |k Õ)

Same idea than GMM!
Bayesian variant called LDA.



ClusteringModel Based

Parametric Density Estimation Principle
Assign a probability of membership.
Lots of theoretical studies...
Model selection principle can be used to select K the number
of class:

AIC / BIC /MDL penalization
Cross Validation is also possible!

Complexity: O(n ◊ K ◊ T )
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Clustering(Non Parametric) Density Based

Density Heuristic
Cluster are connected dense zone separated by low density
zone.
Not all points belong to a cluster.

Basic bricks:
Estimate the density.
Find points with high densities.
Gather those points according to the density

Density estimation:
Classical kernel density estimate...

Gathering:
Link points of high density and use the resulted component.
Move them toward top of density hill by following the gradient
and gather all the points arriving at the same summit.



Clustering(Non Parametric) Density Based
Concepts

2 paramètres:
! Eps: rayon maximum de voisinage

! MinPts: nb minimum de pts pour que V(p) soit un voisinage de taille Eps du pts p

Exemple avec MinPts = 4 et Eps = 1cm

x
y objet de coeur car V(y) existe (au moins MinPts objets dans le voisinage

de y de rayon Eps)x

y

de y de rayon Eps)

x objet de bord (d’une classe) car V(x) n’existe pas (moins de MinPts dans
son voisinnage de rayon eps)

x est directement densité atteignable depuis y car V(y) existe et x  
appartient à V(y); y n’est pas directement atteignable depuis x car V(x) 
n’existe pas

Concepts
x est densité-atteignable depuis y s’il existe une chaîne de points (de 

longueur quelconque) partant de y et allant jusqu’à x et telle que le 
point pi+1 est densité atteignable depuis pi. 

p1 appartient à V(y), p2 appartient à V(p1),  x appartient à V(p2)

x
p2

X et y sont densité-connectés s’il existe un point z tel que x soit atteignable
depuis z et y soit atteignable depuis z (sur ce schéma, on voit que sans 

x

p1y

le point)

Une classe C doit vérifier les 2 conditions suivantes :

1) Si un point x appartient à C alors tout point atteignable depuis x 
appartient à C. 

2) Tous les points d’une classe sont densité-connectés. 

Les points pleins appartiennent à une même classe, les points vides a une
autre classe. Le point z appartient à deux classes. Par convention, on 
l’affecte à la première classe à laquelle il est affecté.

x

y

z

Concepts
x est densité-atteignable depuis y s’il existe une chaîne de points (de 

longueur quelconque) partant de y et allant jusqu’à x et telle que le 
point pi+1 est densité atteignable depuis pi. 

p1 appartient à V(y), p2 appartient à V(p1),  x appartient à V(p2)

x
p2

X et y sont densité-connectés s’il existe un point z tel que x soit atteignable
depuis z et y soit atteignable depuis z (sur ce schéma, on voit que sans 

x

p1y

le point)

Une classe C doit vérifier les 2 conditions suivantes :

1) Si un point x appartient à C alors tout point atteignable depuis x 
appartient à C. 

2) Tous les points d’une classe sont densité-connectés. 

Les points pleins appartiennent à une même classe, les points vides a une
autre classe. Le point z appartient à deux classes. Par convention, on 
l’affecte à la première classe à laquelle il est affecté.

x

y

z

Examples:
DBSCAN: link point of high densities using a very simple
kernel.
PdfCLuster: find connected zone of high density.
Mean-shift: move points toward top of density hill following an
evolving kernel density estimate.

Complexity: O(n2 ◊ T ) in the worst case.
Can be reduced to O(n log(n)T ) if samples can be encoded in
a tree structure (n-body problem type approximation).
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ClusteringAgglomerative Clustering

Agglomerative Clustering Heuristic
Start with very small clusters (a sample by cluster?)
Sequential merging of the most similar clusters...
according to some greedy criterion �.

Generates a hierarchy of clustering instead of a single one.
Need to select the number of cluster afterwards.
Several choice for the merging criterion...
Examples:

Minimum Linkage: merge the closest cluster in term of the
usual distance
Ward’s criterion: merge the two clusters yielding the less inner
inertia loss (k-means criterion)



ClusteringAgglomerative Clustering

Algorithm
Start with (C(0)

i ) = ({X i}) the collection of all singletons.
At step s, we have n ≠ s clusters (C(s)

i ):
Find the two most similar clusters according to a criterion �:

(i , i Õ) = argmin
(j,jÕ)

�(C(s)
j , C(s)

jÕ )

Merge C(s)
i and C(s)

iÕ into C(s+1)
i

Keep the n ≠ s ≠ 2 other clusters C(s+1)
iÕÕ = C(s)

iÕÕ

Repeat until there is only one cluster.

Complexity: O(n3) in general.
Can be reduced to O(n2)

if only a bounded number of merging is possible for a given
cluster,
for the most classical distances by maintaining a nearest
neighbors list.



ClusteringAgglomerative Clustering

2
C1

C C
2

C
1

Merging criterion based on the distance between points
Minimum linkage:

�(Ci , Cj) = min
Xi œCi

min
XœCj

d(X i , X j)

Maximum linkage:
�(Ci , Cj) = max

Xi œCi
max
XœCj

d(X i , X j)

Average linkage:
�(Ci , Cj) = 1

|Ci ||Cj |
ÿ

Xi œCi

ÿ

XœCj

d(X i , X j)

Clustering based on the proximity...
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ClusteringAgglomerative Clustering

Merging criterion based on the inertia (distance to the mean)
Ward’s criterion:

�(Ci , Cj) =
ÿ

Xi œCi

1
d2(X i , µCi fiCj ) ≠ d2(X i , µCi )

2

+
ÿ

Xj œCj

1
d2(X j , µCi fiCj ) ≠ d2(X j , µCj )

2

If d is the euclidean distance:
�(Ci , Cj) = 2|Ci ||Cj |

|Ci | + |Cj |
d2(µCi , µCj )

Same criterion than in the k-means algorithm but greedy
optimization.
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ClusteringGrid based

Grid heuristic
Split the space in pieces
Group those of high density according to their proximity

Similar to density based estimate (with partition based initial
clustering)
Space splitting can be fixed or adaptive to the data.
Examples:

STING (Statistical Information Grid): Hierarchical tree
construction plus DBSCAN type algorithm
AMR (Adaptive Mesh Refinement): Adaptive tree refinement
plus k-means type assignment from high density leaves.
CLIQUE: Tensorial grid and 1D detection.

Linked to Divisive clustering (DIANA)



ClusteringOthers

Graph based
Spectral clustering: dimension reduction + k-means.
Message passing: iterative local algorithm.
Graph cut: min/max flow.

Kohonen Map,
...
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ClusteringScalability

Large dataset issue
When n is large, a O(n– log n) with – > 1 is not acceptable!
How to deal with such a situation?

Beware: Computing all the pairwise distance requires O(n2)
operations!

Ideas
Sampling
Online processing
Simplification
Parallelization



ClusteringSampling

Sampling heuristic
Use only a subsample to construct the clustering.
Assign the other points to the constructed clusters afterwards.

Requires a clustering method that can assign new points
(partition, model...)
Often repetition and choice of the best clustering
Example:

CLARA: K-medoid with sampling and repetition
Two step algorithm:

Generate a large number nÕ of clusters using a fast algorithm
(with nÕ π n)
Cluster the clusters with a more accurate algorithm.



ClusteringOnline

Online heuristic
Modify the current clusters according to the value of a single
observation.

Requires compactly described clusters.
Examples:

Add to an existing cluster (and modify it) if it is close enough
and create a new cluster otherwise (k-means without
reassignment)
Stochastic descent gradient (GMM)

May leads to far from optimal clustering.



ClusteringSimplification

Simplification heuristic
Simplify the algorithm to be more e�cient at the cost of some
precision.

Algorithm dependent!
Examples:

Replace groups of observation (preliminary cluster) by the
(approximate) statistics.
Approximate the distances by cheaper ones.
Use n-body type techniques.



ClusteringParallelization

Parallelization heuristic
Split the computation on several computers.

Algorithm dependent!
Examples:

Distance computation in k-means, parameter gradient in
model based clustering
Grid density estimation, Space splitting strategies

Classical batch sampling not easy to perform as partitions are
not easily merged...
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Generative Adversial
Network

Generative Modeling and Density
Estimation

Generative Model
Probabilistic model of the world.
Allow to generate samples that mimics X .
Classical approaches are based on likelihood:

Parametric model,
Bayesian model.

Generative Algorithm
Computational probabilistic model of the world.
Allow to generate samples G(Z ) that mimic X from

a randomness source Z ,
a computable function G .

No explicit form of the likelihood!

How to learn G?



Generative Adversial
Network

A Clever Idea

�(

G(Z )

)

≥

�(

X

)

?

From estimation to...

discrimination

Discriminator (Goodfellow 14)
Let

(X̃ , Y ) =
I

(X , 1) with probability 1/2
(G(Z ), 0) with probability 1/2

Can we guess from X̃ whether it comes from X or G(Z )?
Discriminator loss = Classifier loss:

L(D, G) = 1/2EX [≠ log D(X )] + 1/2EG(Z) [≠ log(1 ≠ D(G(Z )))]

Heuristic
One can learn a discriminator from the data for a fixed G .
The ideal generator is such that this problem is hard!



Generative Adversial
Network

A Clever Idea
�(G(Z )) ≥ �(X )?

From estimation to... discrimination

Discriminator (Goodfellow 14)
Let

(X̃ , Y ) =
I

(X , 1) with probability 1/2
(G(Z ), 0) with probability 1/2

Can we guess from X̃ whether it comes from X or G(Z )?
Discriminator loss = Classifier loss:

L(D, G) = 1/2EX [≠ log D(X )] + 1/2EG(Z) [≠ log(1 ≠ D(G(Z )))]

Heuristic
One can learn a discriminator from the data for a fixed G .
The ideal generator is such that this problem is hard!



Generative Adversial
Network

A Clever Idea
Best Discriminator

Bayes Discriminator Dú:

Dú(X̃ ) = P
1
Y = 1|X̃

2
=

1/2fX (X̃ )
1/2fX (X̃ ) + 1/2fG(Z)(X̃ )

Optimal loss:

L(Dú, G) = 1/2EX

C

≠ log 1/2 + ≠ log
fX (X )

1/2fX (X ) + 1/2fG(Z)(X )

D

+ 1/2EG

C

≠ log 1/2 + ≠ log fG(G)
1/2fX (G) + 1/2fG(G)

D

= ≠1/2KL(fX , 1/2fX + 1/2fG(Z))
≠ 1/2KL(fG(Z), 1/2fX + 1/2fG(Z)) + log 2

= ≠JKL1/2(fX , fG(Z)) + log 2
Adversarial minimization:

argmax
G

min
D

L(D, G) = argmin
G

JKL1/2(fX , fG(Z))



Generative Adversial
Network

Generative Adversarial Network

Gú = argmin
G

max
D

Ë
1/2EX [log D(X )] + 1/2EG(Z) [log(1 ≠ D(G(Z )))]

È

Generative Adversarial Network
Replace the set of all possible G and D by a set of parametric
functions, for instance some deep neural networks
Replace the expectations by some empirical means.
Alternate a maximization on D and a minimization on G .

Z is often U [≠1, 1] or N (0, 1).
Not that easy to train:

hard to achieve Nash equilibrium (no guaranteed convergence)
mode collapse (restart required)
support issue of KL like divergence (add noise)
adding feature matching helps!



Generative Adversial
Network

GAN and f -divergence

Df (P, Q) =
⁄

f
3p(x)

q(x)

4
q(x)

= supTEX≥P [T (X )] ≠ EG≥Q [f ú(T (G))]

f -divergence and dual representation
Defines a divergence for any convex f .
Dual representation with f ú(x) = supuÈx , uÍ ≠ f (u)

min
G

sup
T

EX≥P [T (X )] ≠ EZ [f ú(T (G(Z ))]

f -GAN
Replace the set of all possible G and T by a set of parametric
functions, for instance some deep neural networks
Replace the expectations by some empirical means.
Alternate a maximization on D and a minimization on G .



Generative Adversial
Network

Classical GAN and f -GAN
JKL(P, Q) = supTEX≥P [T (X )] ≠ EG≥Q [≠ log(2 ≠ expT (G))]
Classical GAN as a f -GAN

JKL-divergence is a f divergence with
f (u) = ≠(u + 1) log 1+u

2 + u log u.
Parameterize T by log 2 ≠ log(1 + e≠T Õ) so that
JKL(P, Q) = sup

T Õ
EX≥P

Ë
log 2 ≠ log(1 + e≠T Õ)

È

≠ EG≥Q
Ë
log(2 ≠ 2/(1 + e≠T Õ)

È

= 2 log 2 + sup
T Õ

EX≥P
Ë
log(1/(1 + e≠T Õ))

È

+ EG≥Q
Ë
log(1 ≠ 1/(1 + e≠T Õ))

È

GAN formulation up to the parameterization of T :
min

G
max

T Õ
EX

Ë
log(1/(1 + e≠T Õ(X)))

È

+ EG(Z)
Ë
log(1 ≠ 1/(1 + e≠T Õ(G(Z))))

È



Generative Adversial
Network

GAN and Wasserstein
W (P, Q) = inf

›fi(P,Q)
E(p,q)≥› [Îp ≠ qÎ]

= 1
K supÎf ÎLÆKEX≥P [f (X )] ≠ EG≥Q [f (G))]

min
G

sup
Îf ÎLÆ1

EX≥P [f (X )] ≠ EZ [f (G(Z ))]

WGAN
Replace the set of all possible G and f by a set of parametric
functions, for instance some deep neural networks
Replace the expectations by some empirical means.
Alternate a maximization on D and a minimization on G .

Constrain on the Lipschitz norm is the most complex part:
clip on the network weights
or penalization of the gradient norm

Rk: More a case of integral probability metric than optimal
transport...



Generative Adversial
Network

GAN

Generative Adversial Network
Clever idea combined with state of the art NN architecture.
Impressive results!

Can it be used to perform clustering in the latent space?
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