Année 2018-2019 M1 MINT

Modélisation statistique : TP 1

Nous allons étudier les données "Vulnerability" (Patt et al., PNAS - 2009). La question est la suivante : les pays les moins développés sont-ils plus vulnérables aux changements climatiques ? Les auteurs ont voulu expliquer ln_death_risk, log du risque mortel dû aux évènement climatiques en fonction

- du log du nombre d'évènements climatiques ln_death_risk
- du log de la fertilité ln_fertility
- de l'indice de développement humain hdi (United Nations)
- du log de la population ln_pop

Ils concluent que le développement socio-économique a un lien sur la fragilité aux événements climatiques, et ce lien pourrait se révéler dans le deuxième quart du 21ième siècle.

1. Avant de commencer,

- (a) lancer Rstudio
- (b) récupérer le fichier notebook_TP1.Rmd et les données "vulnerabilty" sur ma page web.
- (c) créer un répertoire dans vos documents pour ce TP, y mettre tous les fichiers associés. N'oubliez pas de conserver tous vos fichiers.
- (d) charger et installer le package tidyverse
- (e) changer l'option du chunck pour que le code précédent n'apparaissent pas sur la preview.

2. Chargement des données et visualisation

- (a) Charger les données dans R. Vérifier le type de chaque variable.
- (b) Faire un scatterplot. Repérer graphiquement (prendre des notes)
 - i. les variables linéairement liées à ln death risk,
 - ii. les éventuelles variables à transformer (lien non-linéaire)
 - iii. les éventuelles corrélations linéaires entre variables explicatives.

3. Modèle linéaire simple

- (a) Faire un premier modèle linéaire fit_univ avec seulement la variable ln_events. Etudier le summarv
- (b) Que contient l'objet fit_univ?
- (c) Que vaut $\hat{\beta}$?
- (d) Représenter graphiquement la droite estimée et les données brutes. Que pensez vous de ce modèle ?
- (e) Peut-on accepter le test de $\mathcal{H}_0: \beta_1 = 0$? Qu'est ce que ça signifie ?

(f) Que valent le R^2 et le R^2 ajusté?

 $NB : On définit le <math>\mathbb{R}^2$ par

$$0 \le R^2 = \frac{\|X\hat{\beta} - \bar{Y}\mathbf{1}\|^2}{\|Y - \bar{Y}\mathbf{1}\|^2} = 1 - \frac{\|Y - X\hat{\beta}\|^2}{\|Y - \bar{Y}\mathbf{1}\|^2} \le 1$$

et le \mathbb{R}^2 ajusté du nombre de paramètres par

$$R_{Adj}^2 = 1 - \frac{(n-1)(1-R^2)}{(n-p-1)} \le 1$$

Attention à la dimension p+1: c'est le nombre de variables explicatives p+1 pour le coefficient constant (associé à $(1,\ldots,1)$).

(g) Pour un nouvel individu, on a observé ln_events = 3.4. Quelle est votre prédiction pour son ln_death_risk (fonction predict)? Quel est l'intervalle de confiance pour votre prédiction?

4. Modèle linéaire multiple

- (a) Faire un second modèle linéaire avec tous les variables explicatives, faire l'analyse du summary.
- (b) Comparer le R^2 et le R^2 ajusté à ceux du premier modèle.
- (c) Via un test de Fisher comparer ce nouveau modèle au précédent. Lequel préférez-vous ?
- (d) Essayer d'ajouter la variable hdi², comparer au modèle précédent. Quel modèle préférezvous ?

5. Sélection de modèle

- (a) Faire une sélection de modèle via l'AIC puis le BIC (fonction step) et interpréter le modèle final.
- (b) Comparer les R^2 , R^2 ajusté et AIC des différents modèles (null, univarié, multivarié complet, multivarié après sélection).

1 Observations isolées et aberrantes, leviers et résidus

- (a) Simulation dans un modèle linéaire gaussien
 - i. Simuler n=20 observations suivant le modèle linéaire gaussien

$$Y_i = 2 + 4X_i + \epsilon_i$$

avec $X_i = i$ et $\epsilon_i \sim \mathcal{N}(0, \sigma^2 = 2)$. Construire un jeu de données data avec ces deux variables.

- ii. Représenter les points (X_i,Y_i) . Estimer un modèle linéaire pour la régression de Y sur X
- iii. Faire les diagnostics pour rechercher des observations influentes ou aberrantes.
- (b) La 20ième observation du modèle précédent devient maintenant isolée : $X_{20} = 30$.
 - i. Simuler Y_{20} dans le modèle précédent, i.e. en posant $Y_{20} = 2 + 4X_i + \epsilon_{20}$.

- ii. Représenter les points (X_i, Y_i) .
- iii. Faire les diagnostics pour rechercher des observations influentes ou aberrantes.
- (c) La 20ième observation du modèle précédent devient maintenant aberrante : $X_{20}=20$ mais $Y_{20}=2+4X_i+\epsilon_{20}-10$.
 - i. Simuler Y_{20} comme indiqué.
 - ii. Représenter les points (X_i, Y_i) .
 - iii. Faire les diagnostics pour rechercher des observations influentes ou aberrantes.
- (d) La 20ième observation du modèle précédent devient maintenant à la fois isolée et aberrante.
 - i. Simuler Y_{20} comme indiqué.
 - ii. Représenter les points (X_i, Y_i) .
 - iii. Faire les diagnostics pour rechercher des observations influentes ou aberrantes.

2 Jeu de données Vulnerability : diagnostics sur les observations et les variables

Nous allons analyser continuer notre analyse du jeu de données "Vulnerability" (Patt et al., PNAS - 2009).

Repartir du modèle avec toutes les variables

```
fit = lm( ln_death_risk ~ ln_urb + ln_events + ln_fert + hdi + ln_pop , data = vul)
```

- (a) Faire, pour chaque variable explicative, un graphique pour vérifier le lien liénaire avec ln_death_risk.
- (b) Faire les diagnostics de corrélation entre variables explicatives. Enlever des variables pour obtenir une matrice X bien conditionnée.
- (c) Faire une recherche d'individus aberrants et influents (attention à ne pas enlever trop d'individus !!).
- (d) Faire les diagnostics sur les résidus.