Scientific programming: R, Rstudio and Rcpp
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Goals of this lab

We will use the twoClass dataset from Applied Predictive Modeling, the book
by Kuhn and Johnson 2013 to illustrate the some classical supervised
classification algorithms.

We will use some advanced R packages:

» the ggplot2 package for the figures and

> the caret package for the learning part. caret that provides an unified
interface to many other packages.

Goals:

> to review your R skills

> to review some classical classification algorithms
> to learn to use Rstudio and Rmarkdown

> to learn to create a R package

» and to use Rcpp to speed up your code.

All the material is on my webpage
http://www.math-evry.cnrs.fr/members/aguilloux/enseignements


http://www.math-evry.cnrs.fr/members/aguilloux/enseignements

The twoClass dataset

This is a synthetic dataset, which can be found in Kuhn and Johnson 2013 (or
more simply in AppliedPredictiveModeling package).
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Classification



Classification = supervised learning with a binary label
Setting

> You have past/historical data, containing data about individuals i = 1,...,n
> You have a features vector x; € RY for each individual i

> For each i, you know if he/she clicked (y; = 1) or not (y; = —1)

We call y; € {—1,1} the label of i

(xi, yi) are i.i.d realizations of (X, Y)

v

v

Aim

> Given a features vector x (with no corresponding label), predict a label
}A/ € {713 1}
» Use data D = {(x1,y1),...,(xn,¥n)} to construct a classifier



Probabilistic / statistical approach

» Model the distribution of Y|X

» Construct estimators p1(x) and p_1(x) of
P)=P(Y =1X=x) and pi(x) =1 - pi(x)
» Given x, classify using

1 ifpx) >t
Y= —1 otherwise

for some threshold t € (0,1)



Bayes formula. We know that
P(X =x|Y =y)P(Y = y)
P(X = x)
PX =Y = y)B(Y =)
2 1 PX=xY =y)P(Y =y)

If we know the distribution of X|Y and the distribution of Y, we know the
distribution of Y|X

py(x) =B(Y = y|X =x) =

Bayes classifier. Classify using Bayes formula, given that:

> We model P(X]|Y)
> We are able to estimate P(X]Y') based on data

Maximum a posteriori. Classify using the discriminant functions
by(x) = logP(X = x|Y = y) + log P(Y = y)

for y = 1,—1 and decide (largest, beyond a threshold, etc.)



Remark.

» Different models on the distribution of X|Y leads to different classifiers
> The simplest one is the Naive Bayes

» Then, the most standard are Linear Discriminant Analysis (LDA) and
Quadratic discriminant Analysis (QDA)



Naive Bayes



Naive Bayes. A crude modeling for P(X|Y): assume features X’ are
independent conditionally on Y:

d
P(X =x|Y =y) = [[P(¥ = ¥|Y =)
j=1
Model the univariate distribution X/|Y: for instance, assume that
P(X’|Y) = Normal(p,, 07 1),
parameters p; , and Uﬁk easily estimated by MLE
> If the feature X’ is discrete, use a Bernoulli or multinomial distribution

> Leads to a classifier which is very easy to compute

> Requires only the computation of some averages (MLE)



Discriminant analysis



Discriminant Analysis. Assume that
B(X|Y = y) = Normal(s,, E,),
where we recall that the density of Normal(y, X) is given by

1
©(2m)4/2/det T

In this case, discriminant functions are

F(x) exp (— 50— ) T x - p)
dy(x) =logP(X = x|Y = y) + logP(Y = y)
= S0 )5 - ) — § In(2n)

— % logdetX, + logP(Y = y)



Estimation. Use “natural” estimators, obtained by maximum likelihood
estimation. Define for y € {—1,1}

Lh={i=1,....,n: yi=y} and n, =]l
MLE estimators are given by

]fD(Y:y): Ty ZXM

n IEIy
X, =— Z — fy)(xi — )
icly,

for y € {—1,1}. These are simply the proportion, sample mean and sample
covariance within each group of labels



Linear Discriminant Analysis (LDA)

> Assumesthat X =X; =%
> All groups have the same correlation structure

> In this case decision function is linear (x, w) > ¢ with
w=3X""(m —p-1)

1 — —
¢ =5 ((, T ) = (p-1, T i)
+1lo (W)
& P(Y = —1|X = x)
Quadratic Discriminant Analysis (QDA)

> Assumes that ¥; # ¥ _;

» Decision function is quadratic



Example: LDA
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Logistic regression



Logistic regression

» By far the most widely used classification algorithm
» We want to explain the label y based on x, we want to “regress” y on x
» Models the distribution of Y|X

For y € {—1,1}, we consider the model
P(Y =1|X =x) = o(x' w+ b)

where w € R? is a vector of model weights and b € R is the intercept, and
1

l1+e2

where o is the sigmoid function o(z) =



Compute w and b as follows:

(W, b) € argmin *Zbg(l—l—e ((Xi7W>+b))

weRI beR

> |t is a convex and smooth problem
» Many ways to find an approximate minimizer

» Convex optimization algorithms (more on that later)

If we introduce the logistic loss function

Uy,y') = log(l+e™)

then

n

(W, b) € argmin 1 z:f(y,-7 (xi, w) + b)

weRd ber 1 5



Other classical loss functions for binary classication

> Hinge loss (SVM), £(y,y') = (L — yy')+
» Quadratic hinge loss (SVM), (y,y’) = (1 — yy')3
» Huber loss {(y,y') = —4yy'l,, o1+ (1 — yy')ilyy'zfl

Loss functions

Hinge
Squared hinge
Logistic

0/1

Huber

loss

» These losses can be understood as a convex approximation of the 0/1 loss
Uy,y')=1y<0



k Nearest-Neighbors



Example: k Nearest-Neighbors (with k = 3) |
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Example: k Nearest-Neighbors (with k = 4) |
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k Nearest-Neighbors

> Neighborhood Vy of x: k closest from x learning samples.

k-NN as local conditional density estimate

~ Zx,evx Liy—i1y
Prl) = =5
» KNN Classifier:
~ +1 if pri(x) > poi(x
Foun(x) = P+1(_) > p-1(x)
—1 otherwise

» Remark: You can also use your favorite kernel estimator...



Metrics



Confusion matrix

Definitions : Confusion matrix

For all individual i = 1,..., n, define Y/ as the prediction (of Yi). The
confusion matrix is defined as
Observed labels

Yi=-1]|VY=1
Predictions Y/ = —1 TN FN
Y =1 FP TP
total N P

where P=POSITIVE, N=NEGATIVE, F=FALSE, T=TRUE.



Metrics from the confusion matrix

Define

> the true positive rate or sensitivity or recall as TP/P

> the false discovery rate as FP/(FP+TP)

> the true negative rate or specificity as TN/N

> the false positive rate as FP/(FP+TN)=FP/N = 1 - specificity

> the precision as
_P
TP + FP

» the accuracy as
TP + TN

P+N
> the False-Discovery-Rate (FDR) as 1—precision.



The ROC curve

To define the predictions (Y{), we consider a 1/2 threshold. Now, let the
threshold varies from 0 to 1.

For each value of the threshold s, compute

> the true positive rate TPR;
> the false-discovery-rate FDR;.

The ROC curve and AUC

The ROC (receiver operating characteristic) curve is define as the curve

{(TPR, FDR;),Vs € [0,1]}.

The AUC is the area under the ROC curve.

A classification rule constructed purely at random has an AUC of around 0.5.



Assigments



Your assigment

Due September 21, 2017

1. Send me a (complete...) html version of the part 1 of the Lab.

2. Send me a zip with your package. It must contain a working example (the
.Rdm and .html files must be included in the zipped folder).

All files and zipped folder must be named after your name. For example, my file
corresponding to the first assignment would be called guilloux_TPpartl.html.



Your homework

If your not familiar with these ML methods, see Friedman, Hastie, and Tibshirani
2001, available on https://web.stanford.edu/ hastie/Papers/ESLII.pdf


https://web.stanford.edu/~hastie/Papers/ESLII.pdf
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