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Comparing survival distributions



The pharmacoSmoking dataset
autoplot(survfit(Surv(ttr,relapse)~grp, data = pharmacoSmoking))
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Construction of the log-rank test (1)

We consider

▶ two durations
▶ T1, with survival function F̄1 and
▶ T2, with survival function F̄2 and

▶ possibly censored by C1 and C2, independent of T1 and T2
▶ and that we have access to 2 groups of realizations

▶ n1 i.i.d. copies of (TC
1 = min(T1, C1), δ1 = 1T1≤C1 ) and

▶ n2 i.i.d. copies of (TC
2 = min(T2, C2), δ2 = 1T2≤C2 ):

{(tC
1,1, δ1,1), . . . , (tC

1,n1 , δ1,n1 )} and {(tC
2,1, δ2,1), . . . , (tC

2,n2 , δ2,n2 )}

## id ttr relapse grp ## id ttr relapse grp
## 3 39 5 1 combination ## 1 21 182 0 patchOnly
## 4 80 16 1 combination ## 2 113 14 1 patchOnly
## 5 87 0 1 combination ## 7 16 14 1 patchOnly



Construction of the log-rank test (2)

Let τ1 < τ2 < . . . < τD be the distinct times of event and, for each k = 1, . . . , D

At risk at τk Dead at τk At risk at τk+1
Group 1 Y1,k d1,k Y1,k − d1,k
Group 2 Y2,k d2,k Y2,k − d2,k

Total Yk dk Yk − dk

Suppose that H0 : F̄1 = F̄2 holds, then the probability of observing d1,k deaths
in group 1 at time τk is given by(

dk
d1,k

) (
Yk − dk

Y1,k − d1,k

)
(

Yk
Y1,k

)



Construction of the log-rank test (3)

This defines a hypergeometric distribution with mean

Ek = Y1,k
Yk

dk

and variance
Vk = Y1,kY2,kdk(Yk − dk)

Y2
k(Yk − d1)

.



The log-rank test

Now, it suffices to compare the observed number of deaths in group 1 to the
expected one for each disctinct times d1,k − Ek and divide by the total variance∑D

k=1 d1,k − Ek√∑D
k=1 Vk

The log-rank test
Under assumption H0 : F̄1 = F̄2, when n1 and n2 tend to infinity(∑D

k=1 d1,k − Ek√∑D
k=1 Vk

)2 L→ χ2(1).

Remark: this is equivalent to the Cochran-Mantel-Haenzel test for testing the
independence of two factors.



Example on the pharmocoSmoking dataset

survdiff(Surv(ttr,relapse)~grp, data = pharmacoSmoking)

## Call:
## survdiff(formula = Surv(ttr, relapse) ~ grp, data = pharmacoSmoking)
##
## N Observed Expected (O-E)^2/E (O-E)^2/V
## grp=combination 61 37 49.9 3.36 8.03
## grp=patchOnly 64 52 39.1 4.29 8.03
##
## Chisq= 8 on 1 degrees of freedom, p= 0.00461



Generalizations of the log-rank test

A generalization of the log-rank test has been proposed in Harrington and
Fleming 1982, it introduces weights:∑D

k=1 ωk(d1,k − Ek)√∑D
k=1 ω2

kVk

of the form

▶ ωk = Yk for an equivalent of the Mann-Withney-Wilcoxon test.
▶ ωk = ̂̄Fρ

(τk) for the G-rho family of Harrington and Fleming 1982 (coded
in function survdiff)

The idea is to give more weight to times points where there is the most data.



Tests for more than two samples

Now, suppose that they are L subgroups for which we want to test whether
F̄1 = . . . = F̄L. For example, this is the case where there are more than 2
possible treatments. For each subgroup l, define

El,k = Yl,k
Yk

dk and

Σ̂ =
(

Vl1,l2
k = Yl1,k

Yk
dk

(
1l1=l2 − Yl2,k

Yk

)Yk − dk
Yk − 1

)
.

The k-sample log-rank test
Under assumption H0 : F̄1 = . . . = F̄L, when n1, . . . , nL tend to infinity∑D

k=1 d1,k − E1,k
. . .∑D

k=1 dL,k − EL,k

⊤

Σ̂−1

∑D
k=1 d1,k − E1,k

. . .∑D
k=1 dL,k − EL,k

 L→ χ2(L − 1).



Coalition data King et al. 1990
This dataset contains survival data on government coalitions in parliamentary
democracies for the period 1945-1987.
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Coalition data King et al. 1990

survdiff(Surv(duration,rep(1,n))~country, data=coalition)

## N Observed Expected (O-E)^2/E (O-E)^2/V
## country=belgium 30 30 24.68 1.14911 1.34631
## country=canada 16 16 31.94 7.95299 11.07080
## country=denmark 24 24 24.37 0.00554 0.00643
## country=finland 31 31 21.73 3.95077 4.54284
## country=france 29 29 7.10 67.48666 75.15721
## country=iceland 17 17 23.66 1.87235 2.18122
## country=ireland 15 15 24.66 3.78615 4.45779
## country=israel 24 24 17.77 2.18045 2.46753
## country=italy 41 41 20.67 19.98748 23.32714
## country=netherlands 17 17 22.26 1.24259 1.44947
## country=norway 20 20 24.62 0.86860 1.00660
## country=spain 3 3 4.21 0.34671 0.37127
## country=sweden 20 20 25.51 1.18965 1.39553
## country=uk 17 17 30.82 6.19431 7.82142
##
## Chisq= 142 on 13 degrees of freedom, p= 0



Semi-parametric proportional hazard model



Covariates in the pharmocoSmoking dataset

head(pharmacoSmoking)

## id ttr relapse grp age gender race employment yearsSmoking
## 1 21 182 0 patchOnly 36 Male white ft 26
## 2 113 14 1 patchOnly 41 Male white other 27
## 3 39 5 1 combination 25 Female white other 12
## 4 80 16 1 combination 54 Male white ft 39

## levelSmoking ageGroup2 ageGroup4 priorAttempts longestNoSmoke
## 1 heavy 21-49 35-49 0 0
## 2 heavy 21-49 35-49 3 90
## 3 heavy 21-49 21-34 3 21
## 4 heavy 50+ 50-64 0 0

We observe for each i = 1, . . . , n

(TC
i , δi) AND X⊤

i ∈ Rp (here p = 11)



The proportional hazards model or Cox 1972 model (2)

The proportional hazards model
Let λ(t|X) be the hazard rate at time t for an individual with covariates
X = (X1, . . . , Xp) (vector of size 1 × p). In the proportional hazards model, this
hazard rate takes the form

λ(t|X) = λ⋆
0 (t) exp

(
Xβ⋆)

= λ⋆
0 (t) exp

( p∑
j=1

Xjβ⋆
j
)

where
▶ λ⋆

0 is an unknown function, called “baseline hazard rate” (or “baseline
intensity function”)

▶ β⋆ is an unknown vector of regression parameters in Rp.



The proportional hazards model or Cox 1972 model (2)

Key relation of the Cox model
Let i1 and i2 be two individuals with covariates Xi1 and Xi2 respectively, then

λ(t|Xi1 )
λ(t|Xi2 ) =

λ⋆
0 (t) exp

(
Xi1 β⋆

)
λ⋆

0 (t) exp
(
Xi2 β⋆

) = exp
(

(Xi1 − Xi2 )β⋆
)



Hazard ratio

Let us assume that Xi1 and Xi2 only differ on the jth covariate (Xk
i1 = Xk

i2 for
k ̸= j and Xj

i1 ̸= Xj
i2 . In this case,

λ(t|Xi1 )
λ(t|Xi2 ) = exp

(
(Xi1 − Xi2 )β⋆

)
= exp

(
(Xj

i1 − Xj
i2 )β⋆

k

)
.

Now suppose that the jth covariate encodes a treatment. For example,
individual i1 has recived a treatment Xj

i1 = 1 and i2 did not Xj
i2 = 0, then

λ(t|Xi1 )
λ(t|Xi2 ) = exp

(
β⋆

k
)
.

The value exp
(
β⋆

k
)

is also called the relative risk.



Cox model with treatment groups in the pharmocoSmoking dataset

summary(coxph(Surv(ttr,relapse)~grp, data = pharmacoSmoking))

## Call:
## coxph(formula = Surv(ttr, relapse) ~ grp, data = pharmacoSmoking)
##
## n= 125, number of events= 89
##
## coef exp(coef) se(coef) z Pr(>|z|)
## grppatchOnly 0.6050 1.8313 0.2161 2.8 0.00511 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## grppatchOnly 1.831 0.5461 1.199 2.797



Hazard ratio
For the jth covariate, the value exp(β⋆

k ) is called the hazard ratio. When
▶ Xj

i1 = Xj
i2 + 1

▶ and other things being equal, (Xk
i1 = Xk

i2 for k ̸= j )
it equals

λ(t|Xi1 )
λ(t|Xi2 ) = exp

(
(Xi1 − Xi2 )β⋆

)
= exp

(
(Xj

i1 − Xj
i2 )β⋆

j

)
= exp(β⋆

k )

It is interpreted as the constant by which the hazard function is multiplied
when Xj increases of 1 unit.



Cox model with treatment groups and age in the pharmocoSmoking dataset

summary(coxph(Surv(ttr,relapse) ~ grp + age , data = pharmacoSmoking))

## Call:
## coxph(formula = Surv(ttr, relapse) ~ grp + age,
##^^I^^I^^I^^I^^I^^Idata = pharmacoSmoking)
##
## n= 125, number of events= 89
##
## coef exp(coef) se(coef) z Pr(>|z|)
## grppatchOnly 0.558663 1.748334 0.216674 2.578 0.00993 **
## age -0.023018 0.977245 0.009605 -2.397 0.01655 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## grppatchOnly 1.7483 0.572 1.143 2.6734
## age 0.9772 1.023 0.959 0.9958



Derivation of the partial likelihood (1)

We just saw estimates of the true regression parameter β⋆, we now describe
how they are derived.

Let us come back to the likelihood for n independent individuals, independently
right-censored data. We observe

(TC
1 , δ1, X1), (TC

2 , δ2, X2), . . . , (TC
n , δn, Xn).

The likelihood is proportional to:
n∏

i=1

f(TC
i )δi F̄(TC

i )1−δi =
n∏

i=1

( f(TC
i )

F̄(TC
i )

)δi
F̄(TC

i ) =
n∏

i=1

λ(TC
i |Xi)δi F̄(TC

i )

=
n∏

i=1

(
λ0(TC

i ) exp
(
Xiβ

))δi
exp

(
− Λ0(TC

i ) exp
(
Xiβ

))
.



Derivation of the partial likelihood (2)

To find the maximum likelihood estimator, we start by optimizing with respect
to each λ̂0(TC

i ) at a fixed value of β. To that end, notice that
n∑

i=1

Λ̂0(TC
i ) exp

(
Xiβ

)
=

n∑
i=1

λ̂0(TC
i )

∑
j:TC

j ≥TC
i

exp
(
Xjβ

)
(when Λ̂ is a step function) which gives

λ̂0(TC
i , β) = δi∑

j:TC
j ≥TC

i
exp

(
Xjβ

) .



Derivation of the partial likelihood (3)

Notice that
n∑

i=1

λ̂0(TC
i )

∑
j:TC

j ≥TC
i

exp
(
Xjβ

)
=

n∑
i=1

δi

replace then λ0 by λ̂0 in the equation above:
n∏

i=1

(
λ0(TC

i |Xi) exp
(
Xiβ

))δi
exp

(
−

n∑
i=1

λ0(TC
i )

∑
j:TC

j ≥TC
i

exp
(
Xjβ

))

=
n∏

i=1

(
δi∑

j:TC
j ≥TC

i
exp

(
Xjβ

) exp
(
Xiβ

))δi
exp(

n∑
i=1

δi)

with the convention 00 = 1.



Derivation of the partial likelihood (4)

The Cox partial likelihood
The Cox partial likelihood is defined as

Lpartial(β) =
n∏

i=1

( exp
(
Xiβ)

)∑
j:TC

j ≥TC
i

exp
(
Xjβ

))δi
. (1)

The maximum estimator of β⋆ is defined as

β̂ = argminβ∈Rp Lpartial(β).



Prediction via the Breslow estimator

Recall that F̄∗(t|Xi) = exp
(

−
∫ t

0 λ⋆
0 (s) exp(Xiβ

⋆)ds
)
.

The Breslow estimator
Once β̂ computed, the Breslow estimator of Λ⋆

0 (t) is defined as

Λ̂0(t) =
∑

i:TC
i ≤t

δi∑
j:TC

j ≥TC
i

exp
(
Xjβ̂

) .

All this can be defined (with few differences) in the case where T has a discrete
distribution. Methods to handle such ties include Breslow’s and Efron’s
methods (see Klein and Moeschberger 2005 page 259 for more details).



Asymptotic distributions

Let In(β) be the information matrix associated with the Cox partial likelihood
defined in Equation (1) (you can compute it, it is ugly...).

Asymptotic distributions of β̂

As n tends to infty

In(β̂)−1/2(β̂ − β⋆) L→ N (0, 1).

Asymptotic distributions of the likelihood ratio
As n tends to infty

−2
(

log Lpartial(β̂) − log Lpartial(β⋆)
)

L→ χ2(p).



Univariate Wald tests

Let σ̂2
j be the jth diagonal element of In(β̂).

The univariate Wald test for β⋆
j = 0

To test H0 : β⋆
j = 0 at level α, use the Wald test statistic

β̂2
j

σ̂2
j

and reject H0 when it is greater than qχ2(1)(1 − α).



Univariate Wald tests in the pharmocoSmoking dataset

summary(coxph(Surv(ttr,relapse) ~ grp + age , data = pharmacoSmoking))

## Call:
## coxph(formula = Surv(ttr, relapse) ~ grp + age,
##^^I^^I^^I^^I^^I^^Idata = pharmacoSmoking)
##
## n= 125, number of events= 89
##
## coef exp(coef) se(coef) z Pr(>|z|)
## grppatchOnly 0.558663 1.748334 0.216674 2.578 0.00993 **
## age -0.023018 0.977245 0.009605 -2.397 0.01655 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## grppatchOnly 1.7483 0.572 1.143 2.6734
## age 0.9772 1.023 0.959 0.9958



Tests for β⋆ = 0

Wald test
We known that, as n tends to infty

In(β̂)−1/2(β̂ − β⋆) L→ N (0, 1),

it implies that (
β̂ − β⋆)⊤In(β̂)−1(β̂ − β⋆) L→ χ2(p).

To test H0 : β⋆
1 = . . . = β⋆

p = 0 at level α, use the Wald test statistic

β̂⊤In(β̂)−1β̂

and reject H0 when it is greater than qχ2(p)(1 − α).

Likelihood ratio test
To test H0 : β⋆

1 = . . . = β⋆
p = 0 at level α, use the likelihood ratio test statistic

−2
(

log Lpartial(β̂) − log Lpartial(0)
)

and reject H0 when it is greater than qχ2(p)(1 − α).



Tests in the pharmocoSmoking dataset
summary(coxph(Surv(ttr,relapse) ~ grp + age , data = pharmacoSmoking))

## Call:
## coxph(formula = Surv(ttr, relapse) ~ grp + age, data = pharmacoSmoking)
##
## n= 125, number of events= 89
##
## coef exp(coef) se(coef) z Pr(>|z|)
## grppatchOnly 0.558663 1.748334 0.216674 2.578 0.00993 **
## age -0.023018 0.977245 0.009605 -2.397 0.01655 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## grppatchOnly 1.7483 0.572 1.143 2.6734
## age 0.9772 1.023 0.959 0.9958
##
## Concordance= 0.625 (se = 0.034 )
## Rsquare= 0.105 (max possible= 0.998 )
## Likelihood ratio test= 13.82 on 2 df, p=0.0009956
## Wald test = 13.48 on 2 df, p=0.001183
## Score (logrank) test = 13.74 on 2 df, p=0.00104



Concordance index

Concordance index
A common concordance measure that does not depend on time is the C-index
(see Harrell, Lee, and Mark 1996) defined by

CHarrell = P[Mi > Mj|Ti < Tj],

with i ̸= j two independent patients, and Mi = Xiβ̂ and Mj = Xjβ̂ are the
marker value in a given Cox model. In Heagerty and Zheng 2005, is proposed
an estimation of the CHarrell in the Cox model and under censoring.
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