Année 2019-2020 ENSIIE 3A

Longitudinal data analysis: examen

Course materials are allowed

Exercice 1

In a study of time to first opening of an account on a social media, 5032 children were asked "when did open your first account on a social media?"

- Some do not have an account.
- Some answers were "I have an account but I cannot remember when I opened it".
- Some remembered when they first opened their account.

Which observations are left-censored, which are right-censored?

Exercice 2

Let T the time of interest has a probability density function given by

$$x\lambda^2 \exp(-\lambda x)$$
 for all $x > 0$ where $\lambda > 0$

ans C a censoring time with exponential distribution $\mathcal{E}(\theta)$ ($\theta > 0$) and assume that T and C are independent. Define $\left(T^C = T \wedge C, \delta = \mathbbm{1}_{T \leq C}\right)$

- 1. Compute $\mathbb{P}(\delta = 1)$.
- 2. Compute $\mathbb{E}(T^C)$.
- 3. Check that $\mathbb{E}(T) \geq \mathbb{E}(T^C)$.
- 4. Let $(T_1^C, \delta_1), \ldots, (T_n^C, \delta_n)$ be an i.i.d. sample in this model. Compute the maximum likelihood estimator of θ .

Exercice 3

In the Stanford Heart Transplant data (Kalbfleisch and Prentice 2011), survival of patients on the waiting list for the Stanford heart transplant program were recorded along with the variables

- fustat: dead or alive
- surgery: prior bypass surgery
- age: age (in years)

- futime: follow-up time
- wait.time: time before transplant
- transplant: transplant indicator
- accept.yr: acceptance into program .
- 1. Which variables are time-dependent?
- 2. Explain which transformation has to be applied to the data on patient 4. The initial data are

##		fustat	surgery	age	futime	wait.time	transplant	accept.yr
##	1	1	0	30.84463	49	NA	0	1967
##	2	1	0	51.83573	5	NA	0	1968
##	3	1	0	54.29706	15	0	1	1968
##	4	1	0	40.26283	38	35	1	1968
##	5	1	0	20.78576	17	NA	0	1968
##	6	1	0	54.59548	2	NA	0	1968

- 3. Which of these two Cox models is correct? Would you conclude that the transplant has an influence on the risk of death?
 - Model 1

```
## coxph(formula = Surv(futime, fustat) ~ surgery + transplant +
       age, data = jasa)
##
##
##
                 coef exp(coef) se(coef)
                                              Z
## age
               0.0589
                          1.0607
                                   0.0150 3.91 9.1e-05
              -0.4190
                          0.6577
                                   0.3712 - 1.13
## surgery
## transplant -1.7171
                          0.1796
                                   0.2785 -6.16 7.1e-10
```

• Model 2

```
## coxph(formula = Surv(start, stop, event) ~ age + surgery +
        transplant, data = jasa1)
##
##
##
                 coef exp(coef) se(coef)
                                              Z
               0.0306
                         1.0310
                                   0.0139
                                           2.20 0.028
## age
                         0.4615
## surgery
              -0.7733
                                   0.3597 - 2.15 0.032
## transplant 0.0141
                         1.0142
                                  0.3082 0.05 0.964
```

References

[KP11] John D Kalbfleisch and Ross L Prentice. The statistical analysis of failure time data. Vol. 360. John Wiley & Sons, 2011.