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Abstract

Thresholding is one of the most widely used image segmentation operations; one appli-
cation is foreground-background separation. Multilevel thresholding is the extension to
segmentation into more than two classes. In order to find the thresholds, which separate
the classes, the histogram of the image is analyzed. In most cases, the optimal thresholds
are found by the minimazing or maximazing an objective function, which depends on the
positions of the thresholds. We identify a class of objective functions for which the opti-
mal thresholds can be found using algorithms with low time complexities. We also show,
that two well known objective functions are members of this class. By implementing the
algorithms and comparing their execution times, we can make a quantitative statement
about their performance.
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1 Introduction

Thresholding is a very low-level image segmentation technique. It is widely used as a
preliminary step, to separate object(s) and background. The principal idea is, that the
intensity values of object pixels and the background pixels differ, such that object and
background can be separated by selecting an appropriate threshold. In Multilevel Image
Thresholding more than one thresholds are set, which segments the image into several
classes.

Figure 2.1 shows one example, where a medical image is segmented into three classes, by
setting two thresholds t1 and t2. The representation of the segmented image is depending
on the application, and is not part of this thesis. In this example all pixels with intensity
level lower or equal to t1, belong to class one and are represented by the value 0. Pixels
in class two (t1 < g ≤ t2), are represented with the mean intensity of class two, and pixels
in class three are shown with intensity value 255.
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Figure 1.1: Original image, histogram and segmented image.

In the last three decades numerous methods have been proposed, which set the thresh-
olds according to a certain criterion, an overview can be found in [1]. In this thesis, generic
algorithms are studied, which can be employed to find the optimal thresholds efficiently.
Just thresholding techniques, which employ the gray scale histogram to find the optimal
thresholds, are taken into account. As a result, two classes of objective functions are
identified. For the first class, an efficient dynamic programming (DP) algorithm can be
used for finding the thresholds, whereas for the second class a combination of dynamic pro-
gramming and fast matrix searching can be employed. Furthermore, it is shown that some
well known thresholding techniques are members of these classes. To verify the efficiency
of the algorithms, runtime measurements of ANSI C implementations are presented. As
an independent topic, the problem about how many classes are present in an image, and
how to automatically find this number, is addressed.

This thesis is organized as follows: In Chapter 2, the main problem of multilevel image
thresholding is identified in a general matter. For objective functions with a certain
structure, a dynamic programming approach is presented in Chapter 3. Furthermore, it
is shown in Chapter 4, that if the objective function has useful mathematical properties,
sophisticated and efficient matrix searching techniques can be used to further improve
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1 Introduction

the speedup achieved with dynamic programming. In Chapter 5 it is shown, that for
some of the known thresholding methods surveyed in [1], the presented algorithms can
be employed. Some details of the C implementations are discussed in Chapter 6, and
a quantitative statement about their performance is made in Chapter 7. The problem
of the automatic determination of the best number of classes is addressed in Chapter 8.
Conclusions are drawn in Chapter 9.
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2 Problem Formulation

In this chapter the main problems of multilevel thresholding are identified. Further, a
unified notation is introduced which is used throughout this thesis.

The pixels of a observed image are represented in L gray levels g from 1 . . . L. Multilevel
image thresholding is the task of separating the pixels of the image in M classes C1 . . . CM ,
by setting the thresholds t1 . . . tM−1. Therefore C1 contains all pixels with gray levels

t1 t2 tM−1

g

tM = Lt0 = 0

CMC2C1

Figure 2.1: Separation of gray levels into classes.

t0 < g ≤ t1, class C2 all pixels in the range t1 < g ≤ t2 and so on. Note that the highest
gray level g = L is always in class CM . The thresholds t0 and tM are not evaluated, they
are defined to be 0 and L, respectively.

For the placement of the thresholds most of the thresholding algorithms employ the
histogram h(g). The histogram is a statistic of the image and h(i) shows the occurrence of
gray level i, where

∑L
i=1 h(i) = N and N is the number of image pixels. The normalized

histogram p(i) can be considered as the probability mass function of the gray levels present
in the image.

p(i) = h(i)/N ,
L∑

i=1

p(i) = 1. (2.1)

For all classes, statistical properties such as the probability of the class (referred as the
class weight), the mean or the variance of the class can be calculated as follows.

class weight : wk =
∑
i∈Ck

p(i),

w(tk−1, tk] =
tk∑

i=tk−1+1

p(i). (2.2)

class mean : µk =
∑
i∈Ck

p(i) · i/wk,

µ(tk−1, tk] =
tk∑

i=tk−1+1

p(i) · i/wk. (2.3)

3



2 Problem Formulation

class variance : σ2
k =

∑
i∈Ck

p(i) · (i− µk)2/wk,

σ2(tk−1, tk] =
tk∑

i=tk−1+1

p(i) · (i− µk)2/wk. (2.4)

In this thesis both, the class notation (e.g. wk) and the interval notation (e.g. w(tk−1, tk])
are used, depending on which one suits better.

Thresholding methods, which just analyze the histogram, are usually very simple and
efficient and are therefore suitable for the use in real time systems. More sophisticated
methods, which also consider spatial information, are not discussed in this thesis. Fur-
thermore, just methods which find the thresholds by minimizing or maximizing a certain
criterion are analyzed. This criterion is referred to as objective function.

2.1 Objective Function

The objective function is the central part of the thresholding methods considered in this
thesis. The value of the objective function dependens on the positions of the thresholds.
The the optimal thresholds are found, by either minimizing or maximizing the objec-
tive function. Therefore, all methods discussed further on find the optimal thresholds as
follows:

[t∗1, t
∗
2, . . . , t

∗
M−1] = arg min

0<t1<...<tM−1<L
{JM,L(t1, . . . , tM−1)} , (2.5)

or
[t∗1, t

∗
2, . . . , t

∗
M−1] = arg max

0<t1<...<tM−1<L
{JM,L(t1, . . . , tM−1)} , (2.6)

where JM,L(t1, . . . , tM−1) is the objective functions.

2.2 Exhaustive Search

For a given number of classes M , the main task in multilevel thresholding is to find the
positions of the M−1 thresholds, which minimize or maximize the objective function. The
obvious and straightforward solution to this problem is to calculate the objective function
of every possible placement of the thresholds and take the positions for which the objective
function is optimal. This approach is called exhaustive search and encounters the problem
of trying every possible placement of thresholds within given boundaries, which is knows
as a combination problem. Equation (2.7) gives the number of ways of picking k unordered
outcomes from n possibilities, also known as binomial coefficient.

The Figure 2.2 shows an example for the case, where the number of gray levels is L = 5
and the number of classes is M = 3. In this example M − 1 = 2 thresholds have to be
set. With the restriction that the last gray level has to be in CM , the thresholds can only
be placed in the interval [1 . . . 4]. In this simple example the objective function has to be
calculated

(
L−1
M−1

)
= 6 times. But for more realistic examples, where an image has L = 256

gray levels and the number of classes is M = 5, the number of times the objective function
has to be calculated is

(
255
4

)
= 172′061′505. For real time implementations the exhaustive

search is therefore not a solution and faster algorithms, which find the optimal thresholds
without checking every possible placement, are needed.

4



2.2 Exhaustive Search

1:
2:
3:
4:
5:
6:

2 3 4 510

t2:
t1:

g

Figure 2.2: Example for threshold
placement.

Combination: (
n

k

)
=

n!
k!(n− k)!

(2.7)

⇒
(

L− 1
M − 1

)
=
(

4
2

)
=

4 · 3 · 2 · 1
2 · 1 · 2 · 1

= 6

Dynamic programming (DP), a well known technique for solving such problems, is
introduced in the next section.
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3 Dynamic Programming Approach

Dynamic programming (DP) is a well known and generic technique for solving optimiza-
tion problems, where the term ”programming” in this context does not refer to writing
computer code. Dynamic programming breaks the problem into subproblems, finds the
solution to each subproblem, and obtains the overall solution by combining the solutions
of the subproblems. More informations about dynamic programming can be found in [2].

For a class of objective functions with a certain structure, an efficient DP algorithm,
known as the shortest path algorithm, can be employed to find the optimal thresholds
with O(ML2) time complexity. In this chapter, the required structure is presented and
the algorithm is explained. Later in this chapter, the time complexity of this DP algorithm
is derived. In order to reduce redundancy, the derivations are just shown for the case where
the objective functions is maximized. Since an objective fuction which is minimized can
be converted in one which is maximized by simply setting a negative sign, it is obvious,
that the following algorithms can be used for both cases.

The shortest path algorithm can be employed, if the objective function JM,L(t1, . . . , tM−1)
has one of the following two structures:

JM,L(t1, . . . , tM−1) =
M∑

k=1

`(tk−1, tk], 1 ≤ t1 < t2 < . . . < tM−1 < L, (3.1)

JM,L(t1, . . . , tM−1) =
M∏

k=1

`′(tk−1, tk], `′(tk−1, tk] ≥ 0, (3.2)

1 ≤ t1 < t2 < . . . < tM−1 < L.

where `(p, q] and `′(p, q] are called class cost (also called edge cost). A requirement is,
that the class cost just depends on its borders, namely p and q (examples can be see
in (5.3)(5.25)(5.27)(5.40)). In fact, only problems of the form (3.1) can be solved, but
if the class costs `′(p, q] are constrained to be positive, a problem of form (3.3) can be
transformed into one of form (3.1), as shown below.

arg max
{
J ′

M,L(t1, . . . , tM−1)
}

= arg max

{
M∏

k=1

`′(tk−1, tk]

}

= arg max

{
log

(
M∑

k=1

`′(tk−1, tk]

)}
= arg max

{
M∑

k=1

log
(
`′(tk−1, tk]

)}

= arg max

{
M∑

k=1

`′′(tk−1, tk]

}
. (3.3)

In the next few steps it is shown, that the thresholds for an objective function like (3.1)
can be found using a DP algorithm. First a partial sum, up to gray level l for the first m
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3 Dynamic Programming Approach

classes, is defined as

Jm(l) =
m∑

k=1

`(tk−1, tk] , 1 ≤ t1 < t2 < . . . < tm−1 < l. (3.4)

For every gray level l, a subproblem can be defined as finding the optimal thresholds
which partition the interval [1, l] into m classes. The objective function of the subproblem
is given by

J∗
m(l) = max

1≤t1<...<tm−1<l
{Jm(l)} . (3.5)

By setting m = M and l = L, this equation maximizes the overall problem and is equal
to (3.1). By rewriting the objective function for the subproblems, the following recursion
is obtained.

J∗
m(l) = max

1≤t1<...<tm−1<l

{
m∑

k=1

`(tk−1, tk]

}

J∗
m(l) = max

1≤t1<...<tm−1<l

{
m−1∑
k=1

`(tk−1, tk] + `(tm−1, l]

}
J∗

m(l) = max
1≤t1<...<tm−1<l

{
J∗

m−1(tm−1) + `(tm−1, l]
}

(3.6)

It is obvious to see, that if the thresholds of the subproblem J∗
m−1(tm−1) are not set

optimal and therefore are not maximizing the subproblem, that with these nonoptimal
thresholds the objective function can never be maximal. This means, that only if the
thresholds of the subproblems are set optimally, they can be part of the optimal solution
of the total problem. For m = 1, the above sum of class costs cannot be taken apart
anymore. Therefore, the recursive optimal cost with abort criterion is rewritten as

J∗
m(l) =

{
max1≤t1<...<tm−1<l

{
J∗

m−1(tm−1) + `(tm−1, l]
}

, if m > 1,

`(0, l], if m = 1.
(3.7)

This equation states, that if the interval is not separated (just one class, m = 1) the optimal
costs are the class costs `(0, l], but if the interval is separated (m > 1), the optimal cost
is the combination of optimal cost for m − 1 classes up to level tm−1 plus `(0, l], which
contributes the highest value. This idea can be visualized using a trellis structure, which
is explained in the next section.

3.1 Trellis Structure

The trellis structure clarifies the task of finding the thresholds and gives a good under-
standing how the algorithm is implemented. The goal is to find the path connecting start
and end which maximizes (3.7) for m = M and l = L. The x-axis represents the gray
levels l from 0 . . . L. Note that the zero value is just a placeholder for the start node. The
y-axis shows the stage (m) of the algorithm. At stage m, the interval [1, l] is divided into
m classes by setting m− 1 thresholds. The gray dots are called nodes and are represented
by trellis(m, l). Because of the constraint that at stage m, m − 1 thresholds have to be
set, and the thresholds can not be at the same position, the nodes exist just in a rhom-
boid. Every node in the trellis consists of two components, a value trellis(m, l).L∗ and a

8



3.2 Time Complexity

1 2 876543

t1 t3t2

C1 C2 C3 C4

4

2

1

3

start

end

0

1 L

stage m

gray level
l

J∗2 (2) J∗2 (3) J∗2 (4) J∗2 (5) J∗2 (6)

J∗3 (4) J∗3 (5) J∗3 (6) J∗3 (7)J∗3 (3)

J∗4 (8)

J∗1 (1) J∗1 (2) J∗1 (3) J∗1 (4) J∗1 (5)

Figure 3.1: Trellis structure.

backpointer trellis(m, l).pos∗. The value stores the optimal partial sum up to this node,
where the backpointer shows the position of the best node to come from.

The search for the best thresholds is processed as follows: At every node, the best node
to come from and the resulting optimal cost is evaluated. The best path is stored in the
node by setting the backpointer and setting the value of the node to the optimal cost
so far. In the first stage (m = 1) the optimal cost at every node trellis(1, l) is just the
class cost `(0, l] (see (3.7)) and the backpointer points to the start node. At every node in
stages 1 < m < M , the algorithm picks the path coming from nodes, which are one stage
below and to the left of the current node, which contributes the highest cost. At the first
node (leftmost) there is only one path possible, at the second node two paths have to be
compared, at the third three and so on (possiple paths to each node are indicated as light
gray lines). At stage m = M only the optimal path to the end node has to be found. The
optimal path through the structure and therefore the best set of thresholds can simply be
found, by following the backpointers (backtracking) from end node, where the arrowheads
indicate the positions of the thresholds.

The pseudocode in Algorithm 1 explains this process. The search is processed in four
main parts. In the first step, the trellis is initialized at stage = 1. In the second step, the
nodes in stages 1 < m < M are processed, and in the third step, the optimal path to the
end node is evaluated. At the end, backtracking is used to find the thresholds.

For the search of the best path FINDOPTPATH(m, l) is called, which is explained in the
pseudocode of Algorithm 2. For every node trellis(m, l), FINDOPTPATH(m, l) checks
every possible node to come from, and returns the optimal cost plus the best position to
set the threshold, for this node.

3.2 Time Complexity

For the calculation of the timecomplexity, it is assumed that the sum J∗
m(tm)+`(tm, l] can

be calculated in O(1) time. This is the case for all of the thresholding methods mentioned

9



3 Dynamic Programming Approach

Algorithm 1 DPSEARCH()
1: −−− Stage 1
2: for l ⇐ 1 to L−M + 1 do
3: trellis(1, l).J∗ ⇐ `(0, l]
4: trellis(1, l).pos∗ ⇐ 0
5: end for
6: −−− Stage 2 . . .M − 1
7: for m ⇐ 2 to M − 1 do
8: for l ⇐ m to L−M + m do
9: (Jmax, pos) ⇐ FINDOPTPATH(m, l)

10: trellis(m, l).J∗ ⇐ Jmax

11: trellis(m, l).pos∗ ⇐ pos
12: end for
13: end for
14: −−− Stage M
15: (Jmax, pos) ⇐ FINDOPTPATH(M,L)
16: trellis(M,L).J∗ ⇐ Jmax

17: trellis(M,L).pos∗ ⇐ pos
18: −−− Backtracking
19: l ⇐ L
20: for m ⇐ M to 2 do
21: tm−1 = l ⇐ trellis(m, l).pos∗

22: end for

Algorithm 2 FINDOPTPATH(m, l)
1: Jmax ⇐ −∞
2: for i ⇐ m− 1 to l − 1 do
3: Jtemp ⇐ trellis(m− 1, i).J∗ + `(i, l]
4: if Jtemp > Jmax then
5: Jmax ⇐ Jtemp

6: pos ⇐ i
7: end if
8: end for
9: return (Jmax, pos)

in this thesis. Therefore, the time complexity of the DP algorithm is directly proportional
to the number of times the above mentioned sum is calculated. Hence, the time complexity
is nr ·O(1), where nr is:

nr = 2(L−M + 1) + (M − 2) ·
L−M+1∑

i=1

i

= 2(L−M + 1) + (M − 2) · 1
2
(L−M + 1)(L−M + 2)

= 2M +
7
2
ML +

1
2
ML2 − 5

2
M2 −M2L +

1
2
M3 − L− L2. (3.8)

Since it is assumed that L >> M , 1
2ML2 is the determining factor in (3.8) and the time

complexity becomes O(ML2).

10



4 Improving the Dynamic Programming
Approach

In the last chapter, a dynamic programming solution for the multilevel thresholding prob-
lem was shown. In this chapter, a method to reduce the time complexity of the dynamic
programming algorithm is presented. Unlike the dynamic programming solution, which is
applicable for many objective functions, the method introduced here can only be used if
the objective function has certain properties. This kind of speedup for dynamic program-
ming algorithms has been proposed for several problems ([3] [4] [5] [6] to cite only some
which are relevant for our work) and is therefore not new. The main contribution of our
work is the identification of a class of objective functions for which this method can be
used. This class of objective functions is presented at the end of the chapter, after the
improvement of the dynamic programming algorithm has been explained.

4.1 Definition of the Search Matrix

The DP algorithm employs a trellis structure which was explained in the last chapter.
The algorithm proceeds from the bottom of the trellis to the top. For the nodes in the
stages 2 . . .M − 1, the algorithm always compares paths emerging from nodes one stage
lower and to the left of the current node. The problem of finding the optimal paths to all
the nodes in one stage in the trellis is equivalent to the problem of finding the row wise
maxima in a lower triangular matrix. This is ilustated in Figure 4.1.

2 4 7 9 14

2 3 4 5 6 7 81

7

2 -∞

8

9 11

9

6

12

7

1 2 3 4 5

3

4

5

6

-∞ -∞ -∞
-∞-∞

-∞ -∞
-∞

from

to

2

-∞3 4

7 5

14 8

end
stage m

start
gray level
l

1

2

3

4

Figure 4.1: Equivalence to matrix search problem.

For the leftmost node, there is only one possible path, for the one right to it there are
two and so on. In the search matrix, the cost of the paths up to all the nodes in one stage
in the trellis are treated as matrix elements, where the column indicates where the path
comes from and the row where the paths goes to, respectively. The elements in the upper
triangular region of the matrix are defined to be −∞, since there are no paths coming
from nodes to the right or directly below the current node. The size of the search matrix

11



4 Improving the Dynamic Programming Approach

is (L−M + 1)× (L−M + 1), the matrix itself is defined as follows:

M(r, c) =

{
−∞, if c > r,

J∗
m−1(c + m− 2) + `(c + m− 2, r + m− 1], if c ≤ r.

(4.1)

where m denotes the stage in the trellis and r and c the row and column index, respectively.
It is obvious, that searching the row maxima in the lower triangular part of the matrix
requires O(L2) time, this leads to the O(ML2) time complexity of the DP algorithm.

4.2 Quadrangle Inequality and Special Matrix Properties

It has already been shown, that the task of finding the optimal paths from the nodes in
one class of the trellis to the nodes in next class is equal to finding the row wise maxima
in a matrix. In this section, a property of the class cost `(p, q] is introduced which leads
to a search matrix with special properties. It will be shown in the next section, that the
task of finding the row wise maxima in such a matrix is computionally less involved than
finding the row wise maxima in a matrix without these properties. The property of the
class cost which is introduced here is called convex quadrangle inequality (convex QI) and
is defined as follows:

Definition 1. The class cost `(p, q] is said to fulfill the convex quadrangle inequality
if the following is always true:

`(a, u] + `(b, v] ≥ `(a, v] + `(b, u], 1 ≤ a < b < u < v ≤ L. (4.2)

Figure 4.2 illustartes the intervals over which the class costs are calculated.

1 Lb

`(a, u]

`(b, v]

`(b, u]

u v

`(a, v]

a

Figure 4.2: Class costs of overlapping intervals.

The previously defined search matrix at a stage m in the trellis, has a sum of the optimal
cost up to a previous node and the class cost in each element. Now, take four elements
from the lower triangular region of the matrix with rows 1 ≤ r1 < r2 ≤ L −M + 1 and
columns 1 ≤ c1 < c2 ≤ r1, build the sums of the top left and the lower right and the top
right and the lower left element:

M(r1, c1) + M(r2, c2) R M(r1, c2) + M(r2, c1). (4.3)

since J∗
m−1(c1 + m − 2) and J∗

m−1(c2 + m − 2) are summands in both sums, they can be
subtracted from both sides and the relation becomes:

`(c1+m−2, r1+m−1]+`(c2+s−2, r2+m−1] R `(c2+m−2, r1+m−1]+`(c1+m−2, r2+m−1].
(4.4)

The intervals over which the class costs are calculated are shown in Figure 4.3. If we know,
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r2 + m− 1c2 + m− 2 r1 + m− 1c1 + m− 2

Figure 4.3: Intervals of the class costs in the matrix.

that `(p, q] fulfills the convex QI this means:

M(r1, c1) + M(r2, c2) ≥ M(r1, c2) + M(r2, c1). (4.5)

A matrix which has this property is known as an inverse Monge matrix:

Definition 2. The real m × n matrix M is called an inverse Monge matrix if M
satisfies the inverse Monge property:

M(i1, k1) + M(i2, k2) ≥ M(i1, k2) + M(i2, k1), 1 ≤ i1 < i2 ≤ m, 1 ≤ k1 < k2 ≤ n.
(4.6)

i1

i2

k1 k2

Figure 4.4: The inverse Monge property.

In Figure 4.4, an inverse Monge matrix is ilustrated. The the sum of the top left and
the lower right element is always bigger than the sum of the lower left and the top right
element. The elements in the upper triangular region of the search matrix were defined
to be −∞, since we want to find the row maxima. This definition is also needed for
the search matrix to become inverse Monge. Monge matrices are named after the French
engineer and mathematician Gaspard Monge (1746-l818) who discovered them. They arise
in many optimization problems. An exstensive overview over Monge properties and their
applications to optimization problems can be found in [7]. A property of inverse Monge
matrices which is used extensively in this thesis, is the fact that inverse Monge matrices
are always totally monotone:

Definition 3. The real m× n matrix M is totally monotone if

M(i1, k1) < M(i1, k2) =⇒ M(i2, k1) < M(i2, k2), 1 ≤ i1 < i2 ≤ m, 1 ≤ k1 < k2 ≤ n.
(4.7)

Proof. Assume that matrix M is an inverse Monge matrix:

M(i1, k1) + M(i2, k2) ≥ M(i1, k2) + M(i2, k1), 1 ≤ i1 < i2 ≤ m, 1 ≤ k1 < k2 ≤ n.
(4.8)
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4 Improving the Dynamic Programming Approach

now assume M(i1, k1) < M(i1, k2), because the matrix is Monge, we can make the follow-
ing reasoning:

M(i1, k1) < M(i1, k2)
M(i1, k1) < M(i1, k2) ≤ M(i1, k1) + M(i2, k2)−M(i2, k1)
M(i1, k1) < M(i1, k1) + M(i2, k2)−M(i2, k1)
M(i2, k1) < M(i2, k2) (4.9)

which means that the matrix is totally monotone.

Totally monotone matrices are also monotone. Which means, that the row wise maxima
in the matrix form a descending staircase.

Definition 4. The real m× n matrix M is monotone if

cmax(i1) ≤ cmax(i2), 1 ≤ i1 < i2 ≤ m. (4.10)

where cmax(i) denotes the column index of the leftmost element conatining the maximum
value of row i.

Proof. Assume the matrix M is totally monotone and cmax(i1) > cmax(i2) for some 1 ≤
i1 < i2 ≤ m, which means the matrix is not monotone. From the definition of a totally
monotone matrix, we know:

M(i1, cmax(i2)) < M(i1, cmax(i1)) =⇒ M(i2, cmax(i2)) < M(i2, cmax(i1)), (4.11)

which contradicts the fact that cmax(i2) is the position of maximum in row i2.



5 4 1 3 3 2 1
6 8 2 1 0 3 2
5 7 6 2 1 0 3
2 4 5 2 2 1 0
7 1 0 8 1 2 3
2 1 7 8 9 1 2
5 2 1 7 8 1 9





5 2 1 2 3 1 2
2 6 3 4 5 2 4
3 4 5 6 7 1 6
2 3 4 5 6 2 5
5 6 8 9 10 13 15
3 5 7 11 15 16 20
1 2 5 6 9 10 11



Figure 4.5: A monotone and a totally monotone 7× 7 matrix.

It is obvious, that knowledge about the monotonicity of the search matrix can be used
to speedup the task of finding the row wise maxima. Two algorithms which solve this task
efficiently are introduced in the next section.

4.3 Matrix Searching

Two efficient algorithms for finding the row wise maxima in monotone and totally mono-
tone matrices are explained in this section. The first algorithm exploits only the mono-
tonicity of the matrix, while the second algorithms requires a totally monotone matrix and
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4.3 Matrix Searching

achieves an even lower time complexity. Both algorithms work with a implicitly defined
matrix, which means a matrix entry is unknown until it is accessed by the algorithm.
This is important, because the matrix searching algorithms are later used to reduce the
time complexity of the dynamic programming algorithm. If the algorithm calculated every
entry of the matrix, it would do the same amount of work as the normal search for the
shortest path used in the dynamic programming algorithm and therefore not reduce the
time complexity.

4.3.1 Divide-and-Conquer Algorithm for Monotone Matrices

The divide-and-conquer algorithm exploits the fact, that the row maxima in a monotone
matrix build a staircase. First, it finds the maximum in the middle row of the matrix and
is then executed recursively on two submatrices. The recursion stops when the matrix has
only one row left. The pseudocode of Algorithm 3 explains the operation of the algorithm.

Algorithm 3 DIVCONQ(M)
1: [m,n] ⇐ size of M (rows, columns)
2: j ⇐ position leftmost maximum in row dm/2e of M
3: store the position of the maximum
4: if m = 1 then
5: return
6: else
7: if dm/2e 6= 1 then
8: A ⇐ submatrix with rows 1 to dm/2e − 1 and columns 1 to j of M
9: DIVCONQ(A)

10: end if
11: B ⇐ submatrix with rows dm/2e+ 1 to m and columns j to n of M
12: DIVCONQ(B)
13: end if

4.3.1.1 Time Complexity

For the calculation of the time complexity, it is assumed that a matrix entry can be evalu-
ated in O(1) time. The time complexity of the algorithm is therefore directly proportional
to the number of matrix entries that have to be evaluated until all the row maxima have
been found. The algorithm is executed on a m×n matrix, for every recursion, the number
of rows in the matrix is divided by two, which means that the maximal recursion depth
is proportional to log2(m). Searching the middle row for the maximum takes O(n) time.
In order to find the worst case time complexity, it is assumed that the maxima lie along
the diagonal of the matrix. The time needed to find all the row maxima in the matrix, is
expressed in (4.12).

T (m,n) =

{
O(n), if m = 1,

2T (m/2, n/2) + O(n), if m > 1.
(4.12)

By introducing the constant time c needed to evaluate a matrix entry, this can be written
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4 Improving the Dynamic Programming Approach

as:

T (m,n) =

{
cn, if m = 1,

2T (m/2, n/2) + cn, if m > 1.
(4.13)

The solution to this recurrence can be found by using the recursion tree method [2], in
Figure 4.6 the recursion tree for this algorithm is shown.
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Figure 4.6: Recursion tree of the divide & conquer algorithm.

With help of the recursion tree, it is easy to see that the sum over all the nodes in a
level is always cn. Since the tree has log2(m) levels, the total sum becomes cn log2(m),
which means that the time complexity of the algorithm is O(n log m).

4.3.2 SMAWK Algorithm for Totally Monotone Matrices

The SMAWK algorithm [3] is named after its inventors Shor, Moran, Aggarwal, Wilbe and
Klawe. Unlike the divide-and-conquer algorithm, the SMAWK algorithm does not work
when the matrix is only monotone, it requires a totally monotone matrix. By exploiting not
only the monotonicity, but the total monotonicity of the matrix, the SMAWK algorithm
finds the row maxima of a m× n matrix (m ≤ n) in O(n) time, compared to O(n log m)
time required by the divide-and-conquer algorithm. In this section, the functionality of
the SMAWK algorithm is explained and the time complexity is derived. A more detailed
explanation of the algorithm can be found in the original publication by Aggarwal et al.
[3] and in [6].

Like the divide-and-conquer algorithm, the SMAWK algorithm searches the matrix
recursively. The pseudocode in Algorithm 4 shows the structure of the algorithm. The
core of the algorithm is the REDUCE function, which transforms the problem of finding
the row wise maxima in an m×n (m ≤ n) matrix, in the problem of finding the row wise
maxima in a m×m matrix by deleting n−m columns from the matrix. After the matrix
has been reduced to an m ×m matrix, the search algorithm is executed recursively on a
matrix which contains only the even-numbered rows of the reduced matrix. The recursion
stops, when REDUCE returns an 1 × 1 matrix, which is an element containing a row
maximum. After that, the function MFILL finds the maxima in the odd-numbered rows
of the matrix. Since the positions of the maxima in the even-numbered rows are already
known from the recursive call of SMAWK, MFILL can find the maxima very efficiently.
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4.3 Matrix Searching

The functions REDUCE and MFILL are explained next and the time complexities of
these functions are analyzed. At the end of this section, the overall time complexity of
the algorithm is derived.

Algorithm 4 SMAWK(M)
1: A ⇐ REDUCE(M)
2: if A is size 1× 1 then
3: store the position of A in M
4: return
5: end if
6: B ⇐ matrix with only the even-numbered rows of A
7: SMAWK(B) {recursive call}
8: MFILL(A,B) {find the maxima in the odd rows of A}

As mentioned before, the REDUCE function plays a keyrole in the SMAWK algorithm.
It deletes n−m columns, which contain no row maxima, from the matrix. When REDUCE
is executed on an m × n matrix, it can delete the columns in O(n) time. The REDUCE
function contains a case statement inside a while loop. The function returns when the
matrix is square. In Algorithm 5, the structure of REDUCE is shown.

Algorithm 5 REDUCE(M)
1: A ⇐ M k ⇐ 1
2: p ⇐ number of rows of A
3: while A has more columns than rows do
4: case
5: A(k, k) ≥ A(k, k + 1) and k < p : {case a}
6: k ⇐ k + 1
7: A(k, k) ≥ A(k, k + 1) and k = p : {case b}
8: Delete column k + 1 of A
9: A(k, k) < A(k, k + 1) : {case c}

10: Delete column k of A
11: if k > 1 then
12: k ⇐ k − 1
13: end if
14: end case
15: end while

Index k is used to access the matrix elements. Depending on the result of the comparison
between A(k, k) and A(k, k + 1) and on the position in the matrix (index k) one of three
possible branches is executed. If A(k, k) ≥ A(k, k + 1) and k < p (branch a), the index
k is simply increased, which means no maxima are in the elements of column k + 1, rows
1 . . . k. The second branch (branch b) is the same as the first branch but the algorithm
compares elements in the last row of the matrix. Since no maxima can be in rows 1 . . .m
of column k+1, column k+1 can be deleted from the matrix. After deleting a column, the
columns to the right of the deleted column are renumbered. In the third branch (branch
c), column k is directly deleted and k is decreased. The proof, that the REDUCE function
deletes only columns which contain no row maxima, is rather long and is not given here, it
can be found in [3]. Since the renumbering of the columns makes it difficult to understand
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4 Improving the Dynamic Programming Approach

the algorithm, the progress of the algorithm is illustrated in Figure 4.7. The algorithm
compares elements which are shown in bold face, before an element is calculated the first
time, it is shown in gray. Positions without a maximum have a gray background.
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Figure 4.7: Operation of the REDUCE function.

It is shown in [3], that the REDUCE function reduces a m × n matrix to a m × m
matrix in O(n) time. For a better understanding, the proof is repeated here. The case
statement in the while loop has three branches (a, b and c). Let the numbers a, b and c
denote, respectively, the number of times the first, second and third branch is executed.
Since columns are only deleted in the second and in the third branch and n−m columns
must be deleted, we know b + c = n−m. Furthermore, we know that the index k is only
increased in the first branch and only decreased in the third branch. Since the index k
always remains in the range 1 . . .m, we know a − c ≤ m − 1. The total number of times
the while loop is executed can be denoted by t, which is t = a + b + c. Since every time
the while loop is executed two matrix entries have to be evaluated, the time complexity of
the algorithm is directly proportional to t. It is again assumed, that a matrix entry can
be evaluated in O(1) time. An upper bound for t is shown in (4.14).

t = a + b + c ≤ n−m + a ≤ n−m + m− 1 + c ≤ 2n−m− 1. (4.14)

Since n ≥ m and the evaluation of a matrix entry requires O(1) time, this means
REDUCE has a time complexity of O(n).

After REDUCE returns a 1 × 1 matrix, the recursion stops and MFILL is executed.
Since SMAWK has been recursively executed on a matrix with only the even-numbered
rows, the positions of the maxima in the even-numbered rows are already known. The
task of MFILL is to find the maxima in the odd-numbered rows. Since the maxima form
a staircase in the matrix, REDUCE searches only the columns between the positions of
the maxima in the row above and below the odd-numbered row. Algorithm 6 shows how
MFILL finds the maxima in the odd-numbered rows.

The function MFILL always searches the maxima in matrix which has been reduced to
a square matrix. The size of the matrix is therefore m × m. Since MFILL only has to
evaluate one matrix element for each column, the time complexity is O(m).

Figure 4.8 shows the operation of the SMAWK algorithm. The initial call is on a 7× 7
matrix, which means no columns are deleted by the REDUCE function. The first recursive
call is on a 3× 7 matrix with only the even numbered columns of the initial matrix. After
REDUCE has deleted four columns from the matrix this matrix is becomes square. The
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4.3 Matrix Searching

Algorithm 6 MFILL(A,B)
1: [m,n] ⇐ size of A (rows, columns)
2: mpos(2, 4, · · · , 2bm/2c) ⇐ positions of the maxima in the even-numbered rows of A
3: mpos(0) ⇐ 1 mpos(m + 1) ⇐ n
4: for i ⇐ 1 to dm/2e do
5: row ⇐ 2i− 1
6: max ⇐ −∞
7: for col = mpos(row − 1) to mpos(row + 1) do
8: if A(row, col) > max then
9: max = A(row, col)

10: mpos(row) = col
11: end if
12: end for
13: end for

second time SMAWK is executed recursively, the matrix has the size 1 × 3, REDUCE
deletes two columns and the matrix becomes 1 × 1. At this point the recursion stops.
Note, that the element of the last matrix is the maximum in the fourth row of the initial
matrix. After the last recursive call of SMAWK returns, MFILL finds the maxima in the
odd numbered rows of the 3 × 3 matrix. From the second recursive call of SMAWK, the
position of the maximum in the row number two is already known (black border) and
MFILL has only to search the elements which lie in a staircase (gray background). After
MFILL has found all the maxima in the odd-numbered rows, the first recursive call of
SMAWK returns. In the initial call, MFILL finds again the maxima in the odd-numbered
rows, the elements which are searched are indicated by the gray background. After this,
all the row wise maxima of the maxtrix have been found. Note, that the elements which
are shaded gray have newer been evaluated during the search for the row wise maxima.
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Figure 4.8: Operation of the SMAWK algorithm.
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4.3.2.1 Time Complexity

The time complexities of the subroutines of the SMAWK algorithm have already been
analyzed. When the algorithm is executed on a m×n (m ≤ n) matrix, REDUCE requires
O(n) time and MFILL O(m) time. Since the number of rows is always divided by two,
the recursion depth is proportional to log2(m). The overall time complexity is given by
the recurrence in (4.15).

T (m,n) =

{
O(n), if m = 1,

T (m/2,m) + O(m) + O(n), if m > 1.
(4.15)

By assigning the time constants c1, c2 and c3, this becomes

T (m,n) =

{
c1n, if m = 1,

T (m/2,m) + c2m + c3n, if m > 1.
(4.16)

The time c3n only appears in the first call of the algorithm, in the recursive calls only
the number of rows m of the initial matrix appears. The sum over the first call and all
recursions therefore becomes

T (m,n) = 2c1 + c2m + c3n +
blog2(m)c∑

i=1

c2
m

2i
+ c3

m

2i−1

= 2c1 + c2m + c3n +
blog2(m)c∑

i=1

c4
m

2i

< 2c1 + c2m + c3n + c5m < c6m + c3n = O(n), (4.17)

which shows, that the algorithm has a time complexity of O(n), since n ≥ m. Unlike
the divide-and-conquer, which calls itself two times and therefore creates a recursion tree
in which each level has two times as many nodes as the level above (see Figure 4.6),
the SMAWK algorithm calls itself only one time and only has one node per level of the
recursion tree.

4.4 Combining DP and Matrix Searching

In order to reduce the time complexity of the dynamic programming algorithm introduced
in Chapter 3, the matrix searching algorithms are combined with the DP algorithm. Like
the normal DP algorithm, the algorithm first calculates the paths to the nodes in the first
stage of the trellis, since there are L−M +1 nodes and L >> M , this requires O(L) time.
After this, the matrix searching algorithm is executed at the stages 2 . . .M − 1, which
means the matrix searching algorithm is executed M − 2 times. Every time the matrix
searching algorithm needs the value of a matrix element, (4.1) is used to calculate its value.
In other words, the matrix is defined implicitly and is never calculated and stored in the
memory. The values of the row wise maxima found by the matrix searching algorithm are
stored in the nodes of the stage where the matrix search is conducted. From the column
indices of the maxima, the backpointers are set to point to the correct nodes in the stage
below. Finding the optimal path to the end node in the last stage of the trellis, again
requires O(L) time.
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Depending on the matrix searching algorithm used, either divide-and-conquer or SMAWK,
different time complexities are achieved. Since the matrix has a size of (L − M + 1) ×
(L−M + 1), and the search is performed M − 2 times, the overall time complexity of the
thresholding algorithm becomes O(ML log L) when the divide-and-conquer algorithm is
used to find the maxima and O(ML) when the SMAWK algorithm is used. Compared to
the O(ML2) time complexity of the normal DP algorithm, the time complexities of these
algorithms are significantly lower. As will be shown later, the reduced time complexity
leads to shorter execution times and allows finding the optimal thresholds for pictures
with more than 256 gray levels in reasonable time.

4.5 A Class of Objective Functions which fulfill the QI

Earlier in this chapter, it is shown that if the class cost `(p, q] fulfill the convex quadrangle
inequality, efficient algorithms can be employed to find the optimal thresholds. In this
section, a generalized form of the class cost is presented, which always fulfills the convex
quadrangle inequality and can be calculated in O(1) time. The optimal thresholds, which
maximize an objective function with class costs of this form, can therefore be found in
O(ML) time.

Theorem 1. A class cost `(p, q] of the form

`(p, q] = w(p, q] · f
(∑

p<i≤q p(i) · γ(i)
w(p, q]

)
, w(p, q] =

q∑
i=p+1

p(i), (4.18)

where w(p, q] is the class weight (probability of the class), f(x) is a convex function on the
interval [γ(1), γ(L)] and the function γ(x) is either monotone increasing or decreasing on
the interval [1, L], fulfills the convex quadrangle inequality.

The definition of a convex function and the proof of Theorem 1, are following.

Definition 5. A function f(x) is convex on an interval [p, q] if for any two points x1

and x2 in [p, q] and any λ where 0 < λ < 1,

f [λx1 + (1− λ)x2)] ≤ λf(x1) + (1− λ)f(x2) (4.19)

In Theorem 1 the statement is made, that the function γ(x) can be either a monotone
increasing or decreasing function. The following proof follows closely the one made to
prove Theorem 3.6 in [8]. In our proof, it is assumed that γ(x) is a monotone increasing
function on the interval [1, L]. The proof for monotone decreasing functions is similar and
not shown here.

Proof. Every monotone increasing function γ(x) on the interval [p, q] maps values a < b <
u < v to values γ(a) < γ(b) < γ(u) < γ(v), as shown in Figure 4.10. The order of the
elements remains the same.

The following expression, which is a part of (4.18), can be regarded as the mean calcu-
lated over the interval (γ(p), γ(q)].∑

p<i≤q p(i) · γ(i)
w(p, q]

= µγ(q, p]. (4.20)
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Figure 4.9: Example for a convex function, f(x) = x log2(x) is convex on the interval
(0,∞].
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x is monotone increasing on the interval [0,∞].

Since the mean µ(p, q] is monotone nondecreasing in p and q and we know that the order
of the elements is not changed by the mapping, also µγ(q, p] is monotone nondecreasing
in p and q. Therefore we have

µγA ≤ {µγC , µγD} ≤ µγB, (4.21)

where A,B,C,D A are used to simplify the notation and are defined as shown in Figure
4.10. We can write µγC and µγD as linear combinations of µγA and µγB, as

µγC = αµγA + (1− α)µγB ⇐ α =
µγB − µγC

µγB − µγA
, (1− α) =

µγC − µγA

µγB − µγA
, (4.22)

µγD = βµγA + (1− β)µγB ⇐ β =
µγB − µγD

µγB − µγA
, (1− β) =

µγD − µγA

µγB − µγA
. (4.23)

22



4.5 A Class of Objective Functions which fulfill the QI

The goal is to show that `(a, u] + `(b, v] ≥ `(a, v] + `(b, u]. Therefore, we want to show
that

`A + `B − `C − `D ≥ 0. (4.24)

From (4.18), we obtain

`A + `B − `C − `D = wA · f(µγA) + wB · f(µγB)
− wC · f(µγC)− wD · f(µγD). (4.25)

By replacing f(µγC) and f(µγD) by their upper bounds as shown in Figure 4.10, we have

`A + `B − `C − `D ≥ wA · f(µγA) + wB · f(µγB)
− wC · [αf(µγA) + (1− α)f(µγB)]
− wD · [βf(µγA) + (1− β)f(µγB)]

= [wA − αwC − βwD] · f(µγA)
+ [wB − (1− α)wC − (1− β)wD] · f(µγB). (4.26)

Below it is derived, that [wA − αwC − βwD] = 0.

wA − αwC − βwD

= wA −
µγB − µγC

µγB − µγA
wC −

µγC − µγA

µγB − µγA
wD

=
1

µγB − µγA

[
wA(µγB − µγA)− wC(µγB − µγC)− wD(µγB − µγD)

]
=

1
µγB − µγA

[
wA

(
NB

wB
− NA

wA

)
− wC

(
NB

wB
− NC

wC

)
− wD

(
NB

wB
− ND

wD

)]
=

1
(µγB − µγA)wB

[
wANB − wBNA − wCNB + wBNC − wDNB + wBND

]
, (4.27)

where N(p, q] =
∑

p<i≤q p(i) · γ(i).

1 Lb u v② ③a ①

Figure 4.11: Intervals: ① = (a, b], ② = (b, u], ③ = (u, v].

With writing w(p, q] and N(p, q] as partial sums over intervals shown in Figure 4.11,
(4.27) becomes

wA − αwC − βwD

=
1

(µγB − µγA)wB

[
(w① + w②)(N② + N③)− (w② + w③)(N① + N②)− w②(N② + N③)

+ (w② + w③)N② − (w① + w② + w③)(N② + N③) + (w② + w③)(N① + N② + N③)
]

= 0. (4.28)

In a similar way it can be shown that [wB − (1 − α)wC − (1 − β)wD] = 0. This proves
Theorem 1.
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4 Improving the Dynamic Programming Approach

Theorem 2. A class cost `(p, q] of the form (4.18) can be calculated in O(1) time after a
preprocessing step which requires O(L) time.

Proof. The preprocessing step calculates two arrays, W (i) and N(i), they are defined
recursively as

N(i) =

{
p(1) · γ(1), if i = 1,

N(i− 1) + p(i) · γ(i), if 2 ≤ i ≤ L,
(4.29)

W (i) =

{
p(1), if i = 1,

W (i− 1) + p(i), if 2 ≤ i ≤ L.
(4.30)

Since both arrays are L elements long, calculating and storing their values requires O(L)
time. After the arrays have been precalculated, the class cost `(p, q] can be calculated as
follows:

`(p, q] = [W (q)−W (p)] · f
(

N(q)−N(p)
W (q)−W (p)

)
. (4.31)

When it is assumed that the time needed to calculate the value of the convex function
f(x) does not depend on x, as it is the case for most functions, (4.31) can be calculated
by performing only lookup arithmetic operations. Therefore, the time needed to calculate
`(p, q] does not depend on the values of p and q, which proves that it can be calculated in
O(1) time.
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5 Efficient Algorithms For Known
Thresholding Methods

So far, algorithms based on dynamic programming and matrix searching for multilevel
thresholding have been introduced. In addition, a class of objective functions, for which
the optimal thresholds can be found in O(ML) time, has been identified. However, specific
objective functions, which have been proposed in the literature for multilevel thresholding,
have not yet been discussed. In this chapter, four different thresholding methods and their
objective functions are reviewed. The optimal thresholds for all these methods can be
found by the dynamic programming algorithm with O(ML2) time complexity. For some
methods, also the faster algorithms, which combine dynamic programming and matrix
searching, can be employed.

The knowledge, that dynamic programming can be used to find the optimal thresholds,
is not new for all methods shown. Our contribution in this chapter is, that we propose
the use of the dynamic programming algorithm for maximum entropy thresholding [9].
We also show, that the optimal thresholds for the method proposed by N. Otsu [10] can
be found in O(ML) time. Finally, we extend the minimum cross entropy method [11] to
multiple thresholds and propose the use of an algorithm which finds the optimal thresholds
in O(ML) time.

5.1 Maximum Entropy Thresholding

Maximum entropy thresholding refers to a class of thresholding methods which try to
maximize the sum of the entropies of the classes and therefore their information content.
A well known maximum entropy method is the one proposed by Kapur et al. [9]. For
multiple classes, the optimal thresholds are found by maximizing the following objective
function:

JM,L(t1, . . . , tM−1) =
M∑

k=1

tk∑
i=tk−1+1

p(i)
w(tk−1, tk]

log
(

p(i)
w(tk−1, tk]

)
. (5.1)

Obviously, an exhaustive search can be used to find the optimal thresholds. However,
due to the high time complexity this is not desireable. Several iterative methods have
been proposed which find the thresholds faster. In [12] using an iterative algorithm based
on ICM (iterated conditional modes) is proposed. The proposed algorithm has a time
complexity of O(ML2). A problem with iterative algorithms is, that they are not always
guaranteed to find the optimal thresholds. Also, the exact number of iterations needed
until good thresholds are found and therefore the execution time of the algorithm depends
on the structure of the histogram. We propose, that the optimal thresholds which maxi-
mize (5.1), can be found in O(ML2) time by using the dynamic programming algorithm
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5 Efficient Algorithms For Known Thresholding Methods

introduced in Chapter 3. For this, (5.1) is rewritten with class costs:

JM,L(t1, . . . , tM−1) =
M∑

k=1

`(tk−1, tk]. (5.2)

Where the class cost `(p, q] is defined as

`(p, q] = −
q∑

i=p+1

p(i)
w(p, q]

log
(

p(i)
w(p, q]

)
. (5.3)

Note, the cost of class Ck depends only on its borders, which means on tk−1 and tk.
Therefore, the dynamic programming algorithm can be employed for finding the optimal
thresholds. The time complexity of the dynamic programming algorithm only is O(ML2),
if the class cost `(p, q] can be computed in O(1) time. This is possible by introducing a
preprocessing step similar to the one explained in Section 4.5.

For the preprocessing step, (5.3) is rewritten as

`(p, q] =
q∑

i=p+1

p(i)
w(p, q]

log(w(p, q])−
q∑

i=p+1

p(i)
w(p, q]

log(p(i))

=
log(w(p, q])

w(p, q]
·

q∑
i=p+1

p(i)− 1
w(p, q]

·
q∑

i=p+1

p(i) · log(p(i))

= log(w(p, q])− 1
w(p, q]

·
q∑

i=p+1

p(i) · log(p(i)). (5.4)

Two arrays, both with length L, can be calculated in O(L) time:

H(i) =

{
p(1) · log(p(1)), if i = 1,

H(i− 1) + p(i) · log(p(i)), if 2 ≤ i ≤ L.
(5.5)

W (i) =

{
p(1), if i = 1,

W (i− 1) + p(i), if 2 ≤ i ≤ L.
(5.6)

After the all values of N(i) and W (i) have been precalculated, the class cost `(p, q] can
be calculated in O(1) time:

`(p, q] = log(W (q)−W (p))− H(q)−H(p)
W (q)−W (p)

. (5.7)

Therefore, it is possible to find the optimal thresholds in O(ML2) time. If the dynamic
programming algorithm or the algorithm proposed in [12] finds the thresholds faster is not
clear. However, our algorithm has the same time complexity and is guaranteed to find the
optimal thresholds.

5.2 Otsu’s Thresholding Criterion

Because of simplicity and robustness the method proposed in 1979 by N. Otsu [10] is
widely used and referenced in numerous papers on image thresholding. In the original
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5.2 Otsu’s Thresholding Criterion

paper, the problem is first shown for two classes (one threshold) and later extended to a
problem with multiple thresholds. The chosen notation is similar to the one Otsu used,
but adapted to better suite the multilevel thresholding case.

For the two class case the optimal threshold according to Otsu, is the threshold, which
minimizes the sum of the weighted class variances. Otsu calls this sum within-class vari-
ance, and defines it as

σ2
W = w1σ

2
1 + w2σ

2
2. (5.8)

The criterion tries to separate the pixels, such that the classes are homogeneous in them-
selves. Since a measure of group homogeneity is the variance, the Otsu criterion follows
consequently. Therefore, the optimal threshold is the one, for which the within-class vari-
ance is minimal.

In order to find the optimal threshold, instead of minimizing the within-class variance,
the between-class variance can be maximized. The between class variance is defined as
follows:

σ2
B = w1(µ1 − µT )2 + w1(µ2 − µT )2 , µT =

L∑
i=1

p(i) · i, (5.9)

where µT is the total mean calculated over all gray levels. This follows from the fact, that
the sum of the within-class variance and the between-class variance is equal to the total
variance σ2

T , which is independent of the threshold and therefore constant.

σ2
W + σ2

B = σ2
T = constant , σ2

T =
L∑

i=1

p(i) · (i− µT )2. (5.10)

Proof. The variance can be rewritten as

σ2
T =

t∑
i=1

p(i) · (i− µ1 + µ1 − µT )2 +
L∑

i=t+1

p(i) · (i− µ2 + µ2 − µT )2

=
t∑

i=1

p(i) ·
[
(i− µ1)2 + 2(i− µ1)(µ1 − µT ) + (µ1 − µT )2

]
+

L∑
i=t+1

p(i) ·
[
(i− µ2)2 + 2(i− µ2)(µ2 − µT ) + (µ2 − µT )2

]
. (5.11)

Since

t∑
i=1

p(i) · (i− µ1) =
t∑

i=1

p(i) · i− µ1 ·
t∑

i=1

p(i) = 0,

⇒
t∑

i=1

p(i) · 2(i− µ1)(µ1 − µT ) = 0,

⇒
L∑

i=t+1

p(i) · 2(i− µ2)(µ2 − µT ) = 0, (5.12)
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5 Efficient Algorithms For Known Thresholding Methods

we can rewrite σ2
T as

σ2
T =

t∑
i=1

p(i) · (i− µ1)2 + w1(µ1 − µT )2

+
L∑

i=t+1

p(i) · (i− µ2)2 + w2(µ2 − µT )2

=
[
w1σ

2
1 + w2σ

2
2

]
+
[
w1(µ1 − µT )2 + w2(µ2 − µT )2

]
= σ2

W + σ2
B. (5.13)

Extended to multilevel thresholding, the within-class variance and the between-class
variance can be written as follows.
within-class variance:

σ2
W =

M∑
k=1

wkσ
2
k. (5.14)

between-class variance:

σ2
B =

M∑
k=1

wk(µk − µT )2. (5.15)

The equation (5.10) still holds for more than one threshold. So the task of finding the
optimal set of thresholds [t∗1, t

∗
2, . . . , t

∗
M−1] is either to find the thresholds, which minimize

the within-class variance, or to find the ones, which maximize the between-class variance.
The result is the same.

[t∗1, t
∗
2, . . . , t

∗
M−1] = arg min{σ2

W } = arg max{σ2
B}. (5.16)

In this case, σ2
W and σ2

B represent two different objective functions as defined in Section
2.1. If the within-class variance is rewritten with the interval notation as introduced in
Chapters 2, we have

σ2
W =

M∑
k=1

w(tk−1, tk]σ2(tk−1, tk] , (5.17)

It is easy to see, that the within-class variance defined by Otsu, has the structure defined
in (3.1). Therefore, the DP algorithm can be employed to find the optimal thresholds, as
proposed by N. Otsu in [13].

A problem equivalent to finding the optimal threshold for the Otsu criterion, as written
in (5.17), is encountered in optimal scalar quantizer design. A scalar quantizer, partitions
the dynamic range of an input signal into K intervals, where a representative is assigned
to each interval. An optimal scalar quantizer, as defined by J. Max [14], minimizes the
expected mean square quantization error. The amplitude density function of a digital
input signal, can be represented by a histogram of N points. An optimal scalar quantizer
minimizes the following objective function:

E(q) =
K∑

j=1

qj∑
i=qj−1+1

P (xi) · (xi − rj)2. (5.18)
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5.2 Otsu’s Thresholding Criterion

where rj is the representative of interval j. For minimal mean square quantization error,
the representative rj has to be the mean of the corresponding interval:

rj = µ(qj−1, qj ]. (5.19)

Therefore, an optimal scalar quantizer minimizes E(q) subject to

1 ≤ q1 < q2 < . . . < qK−1 < M. (5.20)

Note, that this is exactly the same, as finding the optimal thresholds for the Otsu criterion,
where xi = i. This is easy to see, if the variance σ2(tk−1, tk] in (5.17) is replaced by its
definition.

σ2
W =

M∑
k=1

w(tk−1, tk]

∑
tk−1<i≤tk

p(i) · (i− µ(tk−1, tk])2

w(tk−1, tk]
, (5.21)

1 ≤ t1 < t2 < . . . < tM−1 < L.

For optimal scalar quantization, X. Wu showed in [4] and [5], that the optimal quan-
tizer q can be found in O(KN log N) and O(KN) time, by using the algorithms pre-
sented in Chapter 4. Therefore, also for the Otsu criterion the thresholds can be found in
O(ML log L) and O(ML) time, respectively.

This statement can also be drawn, by showing that the objective function for the Otsu
criterion has the structure shown in Theorem 1.

In [15] it has been shown, that the between-class variance criterion can be modified, such
that the objective function can be calculated more efficiently. The modified between-class
variance can be written as

σ2
B =

M∑
k=1

wk(µk − µT )2

=
M∑

k=1

wk(µ2
k − 2µkµT + µ2

T )

=
M∑

k=1

wkµ
2
k − 2µT

M∑
k=1

wkµk + µ2
T

M∑
k=1

wk

=
M∑

k=1

wkµ
2
k − µ2

T , (5.22)

because
M∑

k=1

wkµk = µT and
M∑

k=1

wk = 1. (5.23)

For the search of the optimal thresholds, the total variance µ2
T in (5.22) can be omitted.

Therefore, the objective function for the modified Otsu criterion is defined as

JM,L(t1, . . . , tM−1) =
M∑

k=1

w(tk−1, tk] · (µ(tk−1, tk])2, (5.24)

Therefore, the class cost `(p, q] are given by

`(p, q] = w(p, q] · (µ(p, q])2. (5.25)
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5 Efficient Algorithms For Known Thresholding Methods

Since, f(x) = x2 is convex, and γ(i) = i is monotone increasing, the class cost of the
Otsu criterion always fulfills the convex quadrangle inequality, as shown in Section 4.5.
Therefore, the optimal thresholds can be found in O(ML log L) and O(ML) time.

It is interesting, that even though N. Otsu proposed a dynamic programming algorithm
with a time complexity O(ML2) [13] for his method and the connection to scalar quan-
tization has been realized [16], no optimal algorithms with lower time complexities have
been proposed so far.

5.3 Kittler and Illingworth’s Thresholding Criterion

The Kittler and Illingworth thresholding method [17], assumes that the populations in
the histogram are distributed normally, with distinct means and variances. The proposed
method optimizes a criterion related to the average pixel classification error rate [18]. The
criterion for multilevel thresholding, which has to be minimized is given as

J(t1, . . . , tM−1) =
M∑

k=1

wk · log
(

σk

wk

)
. (5.26)

Written with the interval notation, the class cost `(p, q] for this criterion is consequently
given by

`(p, q] = w(p, q] · log
(

σ(p, q]
w(p, q]

)
. (5.27)

The objective function has obviously the form shown in (3.1). Therefore, the DP algorithm
presented in Chapter 3 can be employed to find the optimal thresholds in O(ML2) time,
as shown in [18].

The criterion shown in (5.26) reflects indirectly the overlap between the Gaussian models
as shown in Figure 5.1. Every class of pixels is represented as a Gaussian model with the
mean µk and the variance σk. The optimal thresholds are the ones which minimize the
overlap between these models.

50 100 150 200 256 50 100 150 200 256
0 g m

overlap

tt

Figure 5.1: Simple example with two classes, for a good and a bad threshold.

5.4 Minimum Cross Entropy Thresholding

The idea behind the minimum cross entropy method proposed by C. Li and C. Lee [11] is
to minimize the cross entropy between the image and the segmented version. The method
has only been proposed for one threshold, but the extension to multiple thresholds is
straightforward, as will be shown later. First, the method is explained for one threshold,
as in the original paper, and then extended to multiple thresholds.

30



5.4 Minimum Cross Entropy Thresholding

The optimal threshold for the minimum cross entropy method minimizes the following
objective function:

η(t) =
∑
fj<t

fi log
(

fj

r1

)
+
∑
fj≥t

fj log
(

fj

r2

)
, (5.28)

where fj is the gray level value of pixel j and rn is its representative in the binarized
image. Note, that the objective function is calculated over the whole image, not only
over the histogram. The objective function 5.28 can be seen as the Kullback-Leibler (KL)
distance between two distributions. The first distribution contains the gray level values of
the pixels in the image and the second distribution the gray level values of the pixels of the
binarized image. The number of values of both distributions is the same as the number of
pixels in the image. In order to have a binarized image which has the same total intensity
as the original image, the reconstruction values are restricted by the following constraints:∑

fj<t

fj =
∑
fj<t

r1, (5.29)

∑
fj≥t

fi =
∑
fj<t

r2. (5.30)

The constraints can be met, if the reconstruction values are set to the mean gray level
value of the corresponding class:

r1 = µ1, (5.31)
r2 = µ2. (5.32)

In (5.28), the pixel with gray level value fj is encountered h(fj) times in the sum, where
h(fj) denotes histogram value for a pixel with the gray level value fj . Therefore, the
redundant summations can be grouped together by employing the histogram of the image:

η(t) =
i=t−1∑
i=1

h(i) · i · log
(

i

µ1(t)

)
+

i=L∑
i=t

h(i) · i · log
(

i

µ2(t)

)
. (5.33)

In the notation used in [11], the first class contains the pixels with gray level value 1 . . . t−1
and the second class the pixels with the gray level values t . . . L. For the rest of this section,
this definition is modified to the one used throughout the rest of this thesis, as defined in
Chapter 2.

The extension of (5.33) to more than one threshold is straightforward:

ηM,L(t1, . . . , tM−1) =
M∑

k=1

tk∑
i=tk−1+1

h(i) · i · log
(

i

µ(tk−1, tk]

)
. (5.34)

The optimal thresholds are found by minimizing (5.34):

[t∗1, t
∗
2, . . . , t

∗
M−1] = arg min

0<t1<...<tM−1<L
{ηM,L(t1, . . . , tM−1)} . (5.35)

This objective function can be further simplified:

ηM,L(t1, . . . , tM−1) =
M∑

k=1

tk∑
i=tk−1+1

h(i) · i · log(i) −
M∑

k=1

tk∑
i=tk−1+1

h(i) · i · log
(
µ(tk−1, tk]

)
.

(5.36)
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5 Efficient Algorithms For Known Thresholding Methods

Note, that the value of the first sum does not depend on the positions of the thresholds.
Therefore, the first sum can be left out of the calculation. By not calculating the first sum
and using the normalized histogram p(i) instead of the histogram h(i) a new objective
function is found:

JM,L(t1, . . . , tM−1) =
M∑

k=1

tk∑
i=tk−1+1

p(i) · i · log
(
µ(tk−1, tk]

)
. (5.37)

Maximizing this objective function results in the same thresholds as minimizing (5.34):

arg min
0<t1<...<tM−1<L

{ηM,L(t1, . . . , tM−1)} = arg max
0<t1<...<tM−1<L

{JM,L(t1, . . . , tM−1)} . (5.38)

Obviously, the objective function (5.37) can be written with class costs, where the class
cost is defined as:

`(p, q] =
q∑

i=p+1

p(i) · i · log
(
µ(p, q]

)
. (5.39)

The factor log(µ(p, q]) is constant for fixed p and q. Therefore, it can be taken out of the
sum:

`(p, q] = log
(
µ(p, q]

)
·

q∑
i=p+1

p(i) · i. (5.40)

Note, that
∑q

i=p+1 p(i) · i = w(p, q] · µ(p, q], where w(p, q] is the weight of the class. By
using this, the class cost can be written as

`(p, q] = w(p, q] · µ(p, q] · log
(
µ(p, q]

)
. (5.41)

Note, that µ(p, q] is the mean calculated over the interval (p, q], which is defined as

µ(p, q] =

∑q
i=p+1] p(i) · i

w(p, q]
. (5.42)

Since the function f(x) = x log(x) is convex on the interval (0,∞] and γ(i) = i is monotone
increasing, the class cost has the form defined in (4.18). This means, the class cost
fulfills the convex quadrangle inequality and it can be calculated in O(1) time after a
preprocessing step. Therefore, the optimal thresholds for the method proposed in [11],
which has been extended to multiple thresholds in this thesis, can be found in O(ML) time
by using the algorithm combining dynamic programming and SMAWK matrix searching.
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6 Implementations for the Otsu criterion

In order to find out how the time complexities of the algorithms affect their execution time,
the thresholding algorithms introduced in this thesis are implemented. Since it is one of
the most prominent thresholding methods and its class cost fulfills the convex quadrangle
inequality, the objective function of the Otsu method is used for the implementations.
All algorithms return the same optimal thresholds, therefore only the execution time
and the memory required can be used for a performance comparison. Consequently, the
implementation of the algorithms must be as efficient as possible. This is achieved by using
ANSI C for the implementations and allowing no dynamic memory allocations during the
execution of the algorithms. Of course, it would be possible to further reduce the execution
times of the algorithms by implementing them using assembly. But since the algorithms
are rather complex and the overhead incurred by using ANSI C is about the same for all
implementations, this has not been attempted. The divide-and-conquer and the SMAWK
algorithms are recursive. A problem with recursive algorithms is, that a lot of memory is
needed to pass the function arguments and save the return addresses, if more memory is
needed than available, a stack overflow occurs. This is avoided by using global variables
whenever possible. Like this, the functions have fewer arguments and therefore require less
memory on the stack. A drawback of using global variables is, that the implementations
are not thread safe, which means they cannot be used by concurrent threads. Since the
code of the implementations is quite long, it is not included in the thesis. In this chapter
only the important concepts of the implementations are explained. For a full reference, the
actual ANSI C code, which is availale on the internet and on the CD, should be consulted.
The notation used in this chapter is the same as used in the rest of this thesis. In order
to avoid confusion, the gray levels of an image are still defined to go from 1 to L, even
though for the actual implementations 0 to L− 1 is used, as this corresponds directly to
the values of the pixels in a gray scale image.

As shown before, the optimal thresholds for the Otsu method can be found by maxi-
mizing the following objective function:

JM,L(t1, . . . , tM−1) =
M∑

k=1

w(tk−1, tk] · (µ(tk−1, tk])2. (6.1)

For the calculation of the time complexities, it was always assumed that the class cost
can be calculated in O(1) time. This can be achieved by performing a preprocessing
step. The preprocessing step is the same as shown in Section 4.5, for completeness it is
repeated here and applied to the Otsu method. The preprocessing step is the same for all
implementations. By further simplifying (6.1), it becomes:

JM,L(t1, . . . , tM−1) =
M∑

k=1

(
∑tk

i=tk−1+1 p(i) · i)2

w(tk−1, tk]
. (6.2)

Now, two arrays, N(i) and W (i) are introduced. Both are L elements long and are defined

33



6 Implementations for the Otsu criterion

as follows:

N(i) =

{
p(1), if i = 1,

N(i− 1) + p(i) · i, if 2 ≤ i ≤ L.
(6.3)

W (i) =

{
p(1), if i = 1,

W (i− 1) + p(i), if 2 ≤ i ≤ L.
(6.4)

Obviously, filling in the values of N(i) and W (i) can be done in O(L) time. After this, the
class cost `(p, q] can be calculated in O(1) time by performing some lookup and arithmetic
operations:

`(p, q] =
(N(q)−N(p))2

W (q)−W (p)
. (6.5)

For the case W (q) − W (p) = 0, which means the probability of the class is zero and a
division zero would occur if the value was calculated directly, `(p, q] is set to zero. This
preprocessing step is essentially the same as the one advocated in [15], although in [15]
the authors go one step further and build a lookup table for every possible combination of
p and q (0 ≤ p < q ≤ L). Using this lookup table can increase the speed of an exhaustive
search, as shown in [15], but is not desireable in our case since calculating the entries of
the table requires O(L2) time and the amount of memory needed for the table is O(L2).

6.1 Normal Dynamic Programming Algorithm

The implementation of the normal dynamic programming algorithm follows closely the
pseudocode of Algorithm 1 in Section 3.1. To improve the performance of the algorithm,
the code of the function FINDOPTPATH of Algorithm 1 is directly included in the al-
gorithm, which means the algorithm consists of only one function and no overhead is
incurred by function calls. For the trellis structure, a two dimensional array is used, each
element consists of a pointer, which is used as back pointer, and a floating point number
to store the value of the objective function. The array used for the trellis is shown in
Figure 6.1. As shown in Figure 6.1, there are nodes which are never processed and could

double objF
NODE* pBack

m = 1
m = 2
m = 3
m = 4

1 . . .gray level: L− 1

trellis[i]

struct NODE:

Figure 6.1: Array used to store the trellis structure.

therefore be omitted to save memory, but in order to keep the conversion from the gray
level value to array indices simple, the array contains more elements than needed by the
algorithm. Like this, the index of the second dimension of the array corresponds directly
to the gray level value. The memory needed for the trellis is (M − 1)× (L− 1) elements
instead of (M −1)× (L−M +1) elements. The number of additional elements is therefore
M2 − 3M + 2. Since M is small compared to L, the memory overhead is not significant.
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6.2 DP Combined with Divide-and-Conquer Matrix Searching

6.2 DP Combined with Divide-and-Conquer Matrix Searching

The algorithm, which combines dynamic programming and divide-and-conquer matrix
searching, uses the same trellis structure as the normal dynamic programming algorithm.
The functionality of the matrix search function is essentially the same as the one of Algo-
rithm 3. Passing the submatrix to the recursive call is accomplished by using the indices
of the upper left and lower right corners of the submatrix as function arguments:
void matrixSearch(int lCornerY , int lCornerX , int rCornerY , int rCornerX );

A global parameter is needed to indicate the stage of the trellis, where the matrix search
is conducted. It is used inside the function to calculate the trellis indices from the matrix
coordinates. In order to further decrease the execution time of the algorithm, the fact
that the matrix is lower triangular is exploited. This is done by modifying the search for
the maximum in the middle row of the matrix (line 2 in Algorithm 3) to consider only
columns c ≤ r, where c denotes the column and r the row index, respectively.

6.3 DP Combined with SMAWK Matrix Searching

Like the implementation using the divide-and-conquer algorithm, this implementation
employs the same array to store the trellis as the normal dynamic programming algorithm.
As shown in Section 4.3.2, the SMAWK algorithm can delete columns from the matrix
and uses local matrix coordinates throughout the recursions to access the matrix elements.
This properties of the algorithm make it difficult to write an efficient implementation
using a low-level language such as ANSI C. In fact, only implementations using high-level
languages like Java or Python are found on the internet. An other point to consider is, that
no dynamic memory allocation is allowed during the runtime of the algorithm, because
allocating memory is usually slow and the required time unpredictable. For the ANSI
C implementation of the SMAWK algorithm, small changes to the original algorithm
introduced in [6] prove to be very helpful. In [6], the authors advocate the use of a
linked list, called predecessor array, to delete columns from the matrix. The function
REDUCE is modified to work with this linked list and it is shown, that using the modified
function leads to an algorithm which has the same time complexity as the original SMAWK
algorithm. In our implementation, the REDUCE function is very similar to the function
NEW-REDUCE of [6]. Each element of the linked list consists of a integer variable and a
pointer. The integer variable is used to store the global column number and the pointer
indicates the previous column. The structure of the linked list before and after REDUCE
has been executed, is shown in Figure 6.2. The rightmost element of the linked list is a
dummy element, it is used by the REDUCE function. The leftmost column is indicated
by a pointer which is pointing to null. Note, that the elements are stored in an array and
therefore are arranged next to each other in memory. This is needed because the list is
sometimes accessed like an array. As said before, no dynamic memory allocation is allowed
during the execution of the algorithm. Since a linked list is needed at each level of the
recursion, memory for multiple lists must be allocated. In order to avoid multiple memory
allocations, the memory for all lists together is allocated before the algorithm starts. The
total number of elements needed for searching an m× n matrix is given by (6.6).

Nelements = n + 1 +
blog2(m)c−1∑

i=0

⌊m

2i

⌋
+ 1. (6.6)
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Figure 6.2: Linked list before and after REDUCE.

Therefore, the elements of all lists together are located in one array, which is Nelements

long. The first n + 1 elements are used for the initial call, the next m + 1 for the first
recursive call, the next bm/2c+ 1 for the second recursive call and so on. The structure of
this list is illustrated in Figure 6.3. This linked list is a central part of the implementation

m + 1 m/4 + 1n + 1 m/2 + 1

: dummy element

Figure 6.3: All linked list for a 8× 10 matrix.

and is used by all functions of the SMAWK algorithm. The prototypes for the SMAWK,
REDUCE and MFILL function used in the implementation are the following:
void smawk(int m, int n, int rowM , int rowO , struct EL* myMatr , struct EL* lstMatr );

struct EL* reduce(int m, int n, int rowM , int rowO , EL* myMatr );

void mfill(int m, int rowM , int rowO , struct EL* redMatr );

The parameters m and n indicate the number of rows and the number columns of the matrix,
respectively. The elements of the linked lists are of type struct EL. The parameter myMatr
points to the leftmost element of the linked list for the current call of the smawk function.
In the initial call of the smawk function, the leftmost n + 1 elements of the linked list
are initialized, the column numbers are set to 1 . . . n and the pointers point to the next
element to the left, as shown in Figure 6.2. For the recursive calls, the parameter lstMatr
is used, it points to the rightmost element of the linked list one recursion level above.
The linked list of the recursion level above is traversed by following the pointers and the
column numbers are copied into the linked list of the current call. At the same time, the
pointers of the linked list are initialized to point to the next element to the left (or to
null if it is the leftmost element). Since the elements are located next to each other in
memory, the linked list can be accessed like an array and initializing the list from right
to left without following the pointers, is possible. Indicating whether the call of smawk is
recursive or not, is accomplished by setting lstMatr to null in the initial call. After the
linked list has been initialized, reduce is executed, it also has a parameter myMatr, which
points to the leftmost element of the current linked list. It deletes n −m elements from
the linked list and returns a pointer to the rightmost element, this pointer is later used for
the recursive call of smawk and for mfill. After the last recursive call of smawk returns,
mfill is executed. Since the pointers of the linked list point to the element to the left of
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6.3 DP Combined with SMAWK Matrix Searching

the current element, searching the the matrix form the top left to the lower right corner,
like in the original algorithm, would mean all the pointers in the linked list had to be
reversed. In order to decrease the execution time, the function mfill is modified to search
the matrix from the lower right to the top left corner. Therefore, reversing the pointers is
not necessary. Every time the algorithm finds a maximum, it stores the column index in
an array, which is m elements long (where m is the number of rows of the initial matrix),
sets the correct backpointer in the trellis and updates the value of the objective function
of the corresponding node. Knowing which node is affected in the trellis is accomplished
by knowing the current stage, which is a global variable, and the global row and column
indices. The linked list is used for the column indices, for the row indices the parameters
rowM and rowO are used. Their names stand for row multiplier and row offset, respectively.
The row indices in the implementation go from 0 to m− 1 instead of 1 to m, but the rows
with index 1, 3, 5.. are considered as even-numbered. For the initial call, rowM is one and
rowO is zero. For the recursive call of smawk, the current row multiplier is multiplied by
two and the the row offest is set to rowM + rowO. The recursive call of smawk is given by
the following code:
smawk(m/2,m,2*rowM ,rowM+rowO ,myMatr + n + 1 , redMatr );

Where redMatr is the pointer returned by reduce. By using the row offset and row
multiplier, passing only the even-numbered rows is straightforward because the global row
number rglob can be directly calculated from the local row number rloc, as shown in (6.7).

rglob = rloc · rowM + rowO (6.7)

The global row number is calculated every time the algorithm needs to access an element
of the matrix.
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7 Execution Time Measurements

In this thesis, three different algorithms for efficient multilevel thresholding have been
introduced. Their time complexities of O(ML2), O(ML log L) and O(ML) give an upper
bound for the execution time of the algorithms. It is clear, that the algorithm which
combines dynamic programming and the SMAWK matrix searching algorithm and has
a time complexity of O(ML) outperforms the other algorithms if L is sufficiently high.
However, from the time complexity alone it is not possible to say which algorithm is the
fastest for a certain combination of M and L because the constant factors are unknown.
In practice, overhead is incurred by operations such as managing the linked list of the
SMAWK algorithm or recursive function calls. Therefore, a theoretical derivation of the
actual execution time is very involved and is is difficult to verify the correctness of the
result. Instead of trying to calculate the execution times, the implementations for the Otsu
criterion are used for performance measurements. Throughout the rest of this chapter,
the measurement setup is explained and the results of the measurements are discussed.

7.1 Measurement Setup

When comparing the execution times of the different algorithms, accurate time measure-
ments are crucial. In order to reach a high accuracy, the algorithms are not executed
from Matlab (as a mex file) but are included in a standalone application. The application
can be run from the command prompt and program options are used to specify which
algorithm is used, the file to load the histogram from, and the number of classes. Af-
ter the algorithm has found the thresholds, the application returns the time which was
needed to find the thresholds. Highly accurate time measurements are obtained by run-
ning the application with real time priority and disabling paging of the memory pages of
the application. The application is run with real time priority by setting the scheduler
to round robin scheduling and giving it the highest possible priority (90). Like this, the
application is never preempted by another process and the time measured is the actual
time needed to find the thresholds. Disabling paging of the memory pages is achieved by
locking the pages with the mlockall command. The time measurements is started, after
all the memory needed by the algorithm has been allocated. At this point, the histogram
has already been loaded and the next task is the preprocessing step described in the last
chapter. As soon as the algorithm has found all the theresholds, the time measurement is
stopped. A Dell Dimension 9100 PC with an Intel Pentium 4 2.8GHz, dual core processor
and 2GByte RAM is used for the measurements. The operating system is Linux (Knoppix
4.02, Kernel 2.6.12).

The histogram of the Lenna1 image (converted to gray scale), and the Fishing Boat2 are
used for the measurements. Since both images only contain 256 gray levels, the histograms
are successively interpolated to 512, 1024, 2048,..,220 gray levels. The following equation

1http://sipi.usc.edu/database/misc/4.2.04.tiff
2http://sipi.usc.edu/database/misc/boat.512.tiff
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7 Execution Time Measurements

is used for one interpolation step:

hnew(g) =


hold

(
g + 1

2

)
, if g is odd,

1
2
hold

(g

2

)
+

1
2
hold

(g

2
+ 1
)

, if g is even and g < Lnew,

hold(Lold), if g = Lnew.

(7.1)

Matlab is used to interpolate the histograms. The interpolated histogarms are normalized
(
∑

h(g) = 1) and stored as binary files. The data type used is double (64bit floating point),
this data type is also used for all floating point operations in the implementations of the
thresholding algorithms. As a third type of histograms, randomly generated histograms
are used. The random histograms are generated using the rand command of Matlab. They
have the same sizes as the other histograms and are also normalized and stored as binary
files.

All the execution time measurements are executed by a shell script, which runs the
thresholding application with the necessary options (algorithm, histogram file, number of
classes) and stores the results as text files. The results are evaluated by reading the text
files into Matlab.

7.2 Discussion of the Measured Execution Times

From the measured execution times, statements about which is the fasttest algorithm for
given combinations of M and L can be made. In the first part of this section, it is shown
which algorithm is the most efficient when the thresholds are calculated for images with
a small number of gray levels. The execution times for higher numbers of gray levels are
discussed in the next part. For some algorithms, the amount of work and therefore their
execution time also depends histogram, this effect is shown at the end of this section.

7.2.1 Execution Times for Small Numbers of Gray Levels

The number of gray levels of a normal gray scale image is 256. Therefore, it can be
expected that the multilevel thresholding algorithms are mainly used for such images.
The execution times of the three different algorithms is shown in Figure 7.1. Obviously,
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Figure 7.1: Runtimes of the algorithms for L = 256 (histogram: Lenna).

all algorithms are several orders of magnitude faster than an exhaustive search [15], when
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7.2 Discussion of the Measured Execution Times

used for more than two classes. For two classes, the algorithms calculate the value of
the objective function for every possible position of the threshold and therefore perform
an exhaustive search. It can also be seen from Figure 7.1, that the execution time of all
algorithms is proportional to the number of classes. The two algorithms which combine
dynamic programming and matrix searching are both about ten times faster than the
normal dynamic programming algorithm. The lowest execution times are achieved by
the algorithm combining dynamic programming and divide-and-conquer matrix searching,
even though it has a higher time complexity than the algorithm which employs SMAWK.
An explanation for this may be the overhead incurred by the complex implementation of
the SMAWK algorithm. Therefore, for images with only 256 gray levels, the algorithm
which uses divide-and-conquer matrix searching is the best choice.

When the number of gray levels is increased, the low time complexity of the SMAWK
algorithm causes the algorithm, which employs this matrix searching technique, to become
the fastest. This effect can be observed in Figure 7.2. The number of gray levels where
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Figure 7.2: Execution times for L = 256 . . . 2048, M = 5 (histogram: Lenna).

using SMAWK instead of divide-and-conquer matrix searching becomes advantageous lies
somewhere between 512 and 1024. Since the precise number highly depends on the effi-
ciency of the implementations, on the number of classes, and on the histogram it is not
shown here. In general, it can be said that the thresholding algorithm which employs
SMAWK matrix searching should be used for images with more than 1024 gray levels.
Using this algorithm for images with fewer gray levels results in slightly higher execution
times than when the combination of dynamic programming and divide-and-conquer ma-
trix searching is employed. Since the execution time difference is very small, using the
algorithm which employs SMAWK matrix searching is also a viable choice for images with
fewer gray levels.

7.2.2 Execution Times for Higher Numbers of Gray Levels

For some applications, gray scale images with more than 256 gray levels are common.
Computer tomography, where images with 14bits per pixel are typical, is an example for
such an application. Employing the normal dynamic programming algorithm to find the
optimal thresholds in an image with such a high number of gray levels results in very
high execution times, as shown in Figure 7.3. The L2 factor in the time complexity of the
normal dynamic programming algorithm becomes clearly visible. When this algorithms is
used to segment an image with 216 gray levels into five classes, the execution time is about
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Figure 7.3: Execution times for L = 28 . . . 216, M = 5 (histogram: Lenna).

217s, while the execution times of the other algorithms are still below 1s. Because of the
quadratic factor, the normal dynamic programming algorithm is very slow for images with
high numbers of gray levels and one of the other algorithms should be used.

The execution times of the algorithms which combine dynamic programming and matrix
searching is shown in Figure 7.4, where the histograms are segmented into 5 classes. It
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Figure 7.4: Execution times for L = 28 . . . 220, M = 5 (histogram: Lenna).

can be seen, that the execution time of the algorithm combining dynamic programming
and divide-and-conquer matrix searching grows fatser than linear, this is caused by the
the L log L factor in the time complexity of the algorithm. The execution time of the
algorithm which employs SMAWK increases linear with the number of gray levels as
expected from the O(ML) time complexity. Note, that this algorithm only requires about
1.5s to find the optimal thresholds for 220 gray levels and 5 classes. In contrast, the normal
dynamic programming algorithm would require about one hour to find the thresholds
(extrapolated from L = 216 and M = 5). Using an exhaustive search to find the thresholds
becomes literally impossible for such a high number of gray levels and 5 classes, because
the objective function had to be calculated

(
220−1

4

)
= 5.0 · 1022 times. Even very fast

computer, which is able to calculate and compare the objective function in 1ns, would still
require more than one million years to find the thresholds.
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7.2 Discussion of the Measured Execution Times

7.2.3 Relation between the Histogram and the Execution Time

So far, only interpolated versions of the histogram of the Lenna image have been used
for the execution time measurements. By using histograms with the same shape, the
matrices which are searched by the matrix searching algorithms always have a similar
structure. Therefore, it can be expected that the execution time only depends on the size
of the matrix, which means on the number of classes and the number of gray levels. The
structure of the matrix only has an influence on the execution times of the algorithms
which employ divide-and-conquer or SMAWK matrix searching. The amount of work
performed by the normal dynamic programming algorithm or an exhaustive search does
not depend on the histogram and therefore only on L and M . The histograms used for the
runtime measurements are shown in Figure 7.5. The random histograms contain random
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Figure 7.5: Normalized histograms of the Lenna and the Fishing Boat image.

numbers and therefore less structure than the other histograms. From Figure 7.6, it can
be seen that the execution time of the normal dynamic programming algorithm does not
depend on the structure of the histogram, as expected. The amount of work performed

0.0 · 100

5.0 · 101

1.0 · 102

1.5 · 102

2.0 · 102

2.5 · 102

21621521421321228

ex
ec

ut
io

n
ti

m
e

[s
]

gray levels L

h: Lenna
h: Fishing Boat

h: Random

Figure 7.6: Execution times, normal DP algorithm (M = 5).

by the efficient matrix searching algorithms depends on the structure of the matrix. In
Figure 7.7, the execution times of the algorithm which combines dynamic programming
and divide-and-conquer matrix searching are shown. Note, that the algorithm has the
highest execution times when random histograms are used. An explanation for this is
that the matrices have less structure and this causes more work for the algorithm. Even
though the matrix is still totally monotone. The influence of the histogram structure
becomes more significant when the algorithm, which combines dynamic programming and
SMAWK matrix searching, is used, as shown in Figure 7.8. This can be explained by the
fact, that the structure of the matrix is more exploited by the SMAWK algorithm than by
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Figure 7.7: Execution times, DP combined with divide-and-conquer algorithm (M = 5).

the divide-and-conquer algorithm. In conclusion, it can be said that the structure of the
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Figure 7.8: Execution times, DP combined with SMAWK algorithm (M = 5).

histogram has only a small influence on the execution times of the algorithms. The time
required when a random histogram is used, is likely to be close to the worst case execution
time. Therefore, this time should be considered when the algorithms are used in a real
time system.
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8 Automatic Determination of the Best
Number of Classes

This chapter treats the independent topic about how to find out, how many classes are
present in an image. This is a nontrivial problem, and to find a reasonable solution
could be investigated in a separate project. One question every method, which tries to
automatically determine the number of classes, has to face is: What is considered as a
”good” number of classes? For histograms, which consist of well separated populations
(bimodal, multimodal), the right number of classes is obviously the number of distinct
modes, but what is a the right number of classes for a histogram with no distinct modes?
There is no general answer to this question and depending on the application, the ”good”
number of classes may differ.

The hypothesis is, that by employing a trellis structure as shown in Figure 8.1 and
observing the costs in the last column, one could find a reasonable number of classes.
The collection of the costs in the last column is named end cost function EF(m). The
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Figure 8.1: Extended trellis structure.

assumption is, that the end cost function shows a significant change at the good number
of classes. This idea is investigated for four thresholding criteria Otsu, Kapur, Li and
Kittler. We can show, that if the objective function introduced by Kittler and Illingworth
is used, the end cost function EF(m) gives useful information about the number of classes
present in an image.

In Section 8.1, the end cost functions for the different criteria are compared. Fur-
thermore, it is shown, that the end cost function for the Kittler criterion contains more
information than the end cost function from the other criteria, and reasons are discussed.
For the Kittler criterion, two methods to automatically find the best number of classes
are presented and their performance is compared.
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8 Automatic Determination of the Best Number of Classes

8.1 Observed Methods

The end cost functions for the Otsu, Kapur, Li and the Kittler criterion have been eval-
uated for several histograms, including real image histograms as well as generated his-
tograms, composed of Gaussian distributions. Two of the images used are shown in Figure
8.2, and their histograms are presented in Figure 8.3A)1 and 8.3B)1.

Figure 8.2: Test images: a) blood cell image, b) muscle fibres.

In Figure 8.3, the different end cost functions are plotted. It can be observed that for
Kittler, Otsu and Li the end cost funcitons usually show some distinct corners. Together
with the results for other histograms, it can be seen that the Kittler end cost function
(KEF) is a better indicator, than the end cost functions for Otsu and Li. For Kapur, no
useful relation between end cost function and a good number of classes can be observed. A
know drawback of the Otsu method is, that it works poorly for the case, when the number
of pixels in the populations are extremely different. On the other hand, the method
by Kittler selects reasonable thresholds even when variances or sizes of the populations
are different [18]. Furthermore, the Kittler method is considered as the best performing
thresholding algorithm in survey [1], where it outperforms all other methods including the
Otsu, Kapur and Li method.

8.2 Two Methods to find the Number of Classes

In order to find the best number of classes from the Kittler end cost function (KEF), two
methods are investigated. Following, both methods are explained an their performance is
shown.

8.2.1 Method 1: Second Derivative

This method exploits the fact, that the Kittler end cost function usually indicates a good
number of classes with a distinct corner. The corner can be located by taking the second
derivative of the end cost function. Therefore, the number of classes can be found as

NoC = arg max
m

(
d2KEF(m)

dx2

)
+ 1, (8.1)

1Source: http://cclcm.ccf.org/vm/

46



8.2 Two Methods to find the Number of Classes

0

0.016

50 100 150 200 250

7.05

7.3

1 2 3 4 5 6 7 8 9 10

11200

12800

1 2 3 4 5 6 7 8 9 10

-35

0

1 2 3 4 5 6 7 8 9 10

0

7

1 2 3 4 5 6 7 8 9 10

C)

0

0.012

50 100 150 200 250

7.5

8.5

1 2 3 4 5 6 7 8 9 10

16500

21500

1 2 3 4 5 6 7 8 9 10

-35

-5

1 2 3 4 5 6 7 8 9 10

0

20

1 2 3 4 5 6 7 8 9 10

D)

0

0.04

50 100 150 200 250

5.3

5.9

1 2 3 4 5 6 7 8 9 10

40800

41200

1 2 3 4 5 6 7 8 9 10

-30

0

1 2 3 4 5 6 7 8 9 10

0

0.9

1 2 3 4 5 6 7 8 9 10

0

0.018

50 100 150 200 250

7.34

7.56

1 2 3 4 5 6 7 8 9 10

7600

9800

1 2 3 4 5 6 7 8 9 10

-35

-5

1 2 3 4 5 6 7 8 9 10

0

11

1 2 3 4 5 6 7 8 9 10

B)A)

Kittler

Otsu

Kapur

Li

Figure 8.3: Comparison of the end cost functions for different histograms. A) histogram
of 8.2a), B) histogram of 8.2b).

where arg maxm{} returns the position of the maximal value. The performance of this
method is shown in Figure 8.4, where the gray dashed lines show the thresholds set by the
Kittler algorithm for the determined number of classes.

8.2.2 Method 2: Difference of KEF(m) and FEFα(m)

This method searches for the farthest distance between the Kittler end cost function for a
flat histogram, called FEF, and the KEF for the observed histogram as shown in Figure
8.5. Since the placement of the thresholds for flat histogram is predictable, an equation for
the Kittler end cost function for a flat histgram can be derived. Like this, the KEF for a
flat histogram can be calculated directly. Otherwise, the end costs had to be calculated by
running the Kittler thresholding algorithm and extracting them from the trellis structure
(see Figure 8.1). The FEFα(m) formula is quite complicated, but can be derived as

FEFα(m) = 4
α(m− 1)

L
log
(

L

4

)
+

k(m)
L

log

 1
12(k2(m)− 1)(

k(m)
L

)2

 ,

k(m) = L− 2α(m− 1), (8.2)

where α is a parameter which changes the slope of the function as shown in Figure 8.5.
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Figure 8.4: Performance of the Method 1.
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Figure 8.5: Principle mode of operation of Method 2.

In Figure 8.6 the performance of Method 2 is shown, where the results of two different
slopes α = 1 and α = 7 plotted. For α = 7 this method gives quite satisfying results
throughout the whole test set.

48



8.3 Discusion

0

0.016

50 100 150 200 250

0

0.012

50 100 150 200 250

1.3

1.5

1 2 3 4 5 6 7 8 9 10

0.1

1.1

1 2 3 4 5 6 7 8 9 10

1.3

1.48

1 2 3 4 5 6 7 8 9 10

0.1

1.1

1 2 3 4 5 6 7 8 9 10

0

0.04

50 100 150 200 250

0

0.018

50 100 150 200 250

2.7

3.25

1 2 3 4 5 6 7 8 9 10

1.04

1.24

1 2 3 4 5 6 7 8 9 10

2.7

3.2

1 2 3 4 5 6 7 8 9 10

1.04

1.18

1 2 3 4 5 6 7 8 9 10

histogram FEF1(m)−KEF(m) FEF7(m)−KEF(m)

A)

B)

C)

D)

Figure 8.6: Performance of Method 2.

8.3 Discusion

The determination of a good number of classes is not a trivial task, since even for a
human it is hard to tell how many classes are present in an image when there are no
distinct populations visable in the histogram. Therefore, if the number of classes is found
by analyzing the histogram, it is reasonable to constrain the test set to images, which have
distinct modes in their histograms.

By taking all test results into account, one can observe that the Kittler end cost function
gives the most reliable information about the number of classes. If Method 2 is used as
described in Section 8.2.2 with α from around 5 . . . 10, the determined numbers of classes
are quite satisfying. Compared to Method 1 (see Section 8.2.1), Method 2 does not need
a distinct corner and provides also reasonable results for histograms which are not well
separated. The Method 2 has an other advantage, if an image is thresholded with an
algorithm using Method 2 to automatically find the number of classes, the algorithm can
be stopped as soon as the difference FEFα(m) − KEF(m) decreases. In contrary, for an
algorithm using Method 1, the algorithm has to be run for a maximal number of classes,
followed by the search for the maximum. This is because the second derivative of the end
cost function may have local maxima.

For histograms, where the populations are almost of equal size, also the Otsu and the
Li end cost function could be employed, altough just for histograms with just a few (< 5)
distinct modes. It can be observed, that for artificial histograms with well separated equal
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8 Automatic Determination of the Best Number of Classes

sized Gaussian populations, the corner in the end cost function becomes less distinct as the
number of Gaussian modes increases. This confirms the statement in the original paper
of Otsu [10], that the selected thresholds generally become less meaningful as the number
of classes increases.

For the Kapur criterion, no useful relation between a good number of classes and the
end cost function is seen.
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9 Conclusion

In our thesis, we identify a class of objective functions for which the optimal thresholds can
be found by efficient algorithms. We also show, that the optimal thresholds for the well
known method proposed by N. Otsu [10] can be found by these algorithms. However, this
result is not entirely new, since the method proposed by N. Otsu optimizes an objective
function, which is also encountered in the design of an optimal scalar quantizer. The
efficient algorithm presented in this thesis have already been proposed by X. Wu for the
design of optimal scalar quantizers [5][4]. Also, the connection between the multilevel
thresholding, as proposed by N. Otsu, and scalar quantization has been made before [16].
However, the only optimal and efficient multilevel thresholding algorithm for the Otsu
method proposed so far, is the dynamic programming algorithm by N. Otsu[13], which
has a time complexity of O(ML2). Even though this algorithm is much more efficient
than an exhaustive search, calculating optimal thresholds for images with high numbers
of gray levels takes a long time. With the algorithms presented in this thesis, it is possible
to find the optimal thresholds much faster.

Furthermore, we find that another method, called minimum cross entropy [11], is a
member of the identified class. Therefore, the optimal thresholds for this method can
be found in O(ML) time. For an other method [9], we propose the use of the dynamic
programming algorithm with a time complexity of O(ML2.

By comparing the execution times of actual implementations, we can make quantitative
statements about the efficiency of the algorithms. The measured execution times are
consistent with the theoretically derived time complexities. For the measurements, the
SMAWK algorithm [3] has been implemented using ANSI C. It is an interesting fact, that
the use of the SMAWK algorithm has been proposed for numerous problems, but no signs
of the existence of efficient implementations can be found. Therefore, it is probably the
first time the SMAWK algorithm has been implemented using a low-level language, such
as ANSI C.

A topic, which is treated separately in this thesis, is the question how to determine the
number of classes present in an image. We propose the use of a dynamic programming
algorithm with a special trellis structure, the total cost for different numbers of classes can
be used as an indicator for the best number of classes. The method shows some promising
results. However, the method is not yet very sophisticated.

The question of whether or not the thresholds found by the algorithms are meaningful for
the segmentation of images is not addressed in our thesis. Finding an objective function
which is a member of the identified class and which outperforms current thresholding
methods could be the topic of further research.
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