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2 Définition et loi d’une v.a. discrète
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6 Lois discrètes usuelles
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Définition d’une variable aléatoire

Pour définir une v.a. discrète, considérons le jeu de Pile ou Face avec une
pièce de monnaie non tronquée où on gagne 1e si Pile apparâıt et on perd
1e sinon. On lance 3 fois la pièce et on note X la quantité représentant
notre gain cumulé à l’issue des 3 lancers. Les valeurs de X dépendent du
résultat des 3 lancers:

1 elle prend la valeur −3 si le résultat ω des 3 lancers est ω = FFF,

2 elle prend la valeur −1 si ω ∈ {FFP,PFF,FPF},
3 elle prend la valeur 1 si ω ∈ {PPF,FPP,PFP},
4 elle prend la valeur 3 si ω = PPP.

Le gain cumulé X est donc une fonction de Ω à val. dans {−3,−1, 1, 3}:

X : Ω → {−3,−1, 1, 3}
ω 7→ X (ω).
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Définition d’une variable aléatoire (v.a)

Une telle fonction définie sur Ω est appelée une variable aléatoire au sens
où ses valeurs prises dépendent du résultat de l’expérience aléatoire
considérée.

Définition. Une variable aléatoire (v.a.) est une fonction définie sur
l’ensemble Ω. Dans ce cours nous considérons des variables aléatoires
réelles, c’est-à-dire, à valeurs dans R.

Exemple. On lance 2 fois une pièce de monnaie équilibrée et on note la
face qui apparâıt après chaque lancer. On suppose que les lancers sont
indépendants. Rappelons que l’univers Ω = {PP,PF,FP,FF}. Soit la
fonction X qui compte le nombre de Pile: on a X : Ω 7→ {0, 1, 2} avec

X (ω) =


0 si ω = FF,
1 si ω ∈ {FP,PF},
2 si ω = PP.

X est une v.a.
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Définition et loi d’une variable aléatoire (v.a.) discrète

On distingue 2 types de variables aléatoires (v.a.): les v.a. discrètes et les
v.a. continues.

Définition On appelle variable aléatoire discrète une v.a. à valeurs dans un
ensemble dénombrable E = {x0, x1, . . . }.
Pour une telle v.a. X on peut s’intéresser à déterminer sa loi de probabilité
qui permet de calculer le degré de vraisemblance associé à chaque valeur
xi prise par X . Si on considère l’exemple introductif, il s’agit de déterminer
les quantités P(X = xi ), pour xi ∈ {−3,−1, 1, 3}.

Définition Soit X une v.a. discrète définie sur Ω et à valeurs dans
E = {x0, x1, x2, . . . }. La loi de probablité de X est définie par la fonction:
p : E 7→ [0, 1] telle que

p(xi ) = P(X = xi ) = P
(
{ω ∈ Ω,X (ω) = xi}

)
, i = 0, 1, 2, . . . .
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Loi d’une variable aléatoire (v.a.) discrète: exemple

Exemple. Reprenons l’exemple introductif et calculons la loi de
probabilité de X . On a

P(X = −3) = P
(
{ω ∈ Ω,X (ω) = −3}

)
= P({FFF}) = 1/8

P(X = −1) = P
(
{ω ∈ Ω,X (ω) = −1}

)
= P({FFP,FPF,PFF}) = 3/8

P(X = +1) = P
(
{ω ∈ Ω,X (ω) = +1}

)
= P({PFP,PPF,FPP}) = 3/8

P(X = +3) = P
(
{ω ∈ Ω,X (ω) = +3}

)
= P({PPP}) = 1/8

Remarque: P(X = −3) +P(X = −1) +P(X = 1) +P(X = 3) = 1. De
façon générale: si X est une variable aléatoire discrète qui prend les valeurs
x0, x1, . . . , alors la fonction PX : E = {x0, x1, . . . } 7→ [0, 1], définie par

PX ({xi}) = p(xi ) = P(X = xi )

est une probabilité sur E . On a en particulier

PX (E ) =
+∞∑
i=0

PX ({xi}) =
+∞∑
i=0

P(X = xi ) = 1. (1)
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Loi d’une variable aléatoire (v.a.) discrète: exemple

Le résultat précédent permet, une fois que la loi de probabilité de X est
donnée, de travailler directement avec la probabilité PX plutôt qu’avec P.

Exemple. Soit λ > 0 et soit X une variable aléatoire à valeurs dans
{0, 1, 2, . . . } telle que

p(i) = PX ({i}) = P(X = i) = c
λi

i !
, c > 0, i = 0, 1, 2, . . .

1 Déterminer la constante de normalisation c pour que PX soit une
probabilité.

2 Calculer P(X = 0) et P(X ≥ 1).

Réponse. 1. On 1 =
∑+∞

i=0 p(i) = c
∑+∞

i=0
λi

i! = c eλ. Donc, c = e−λ. 2.
P(X = 0) = e−λ et P(X ≥ 1) = 1− P(X = 0) = 1− e−λ.
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Fonction de répartition

⋄ Soit l’exemple du jeu de Pile-Face où le gain cumulé X est t.q.

P(X = −3) = 1/8,P(X = −1) = 3/8,P(X = +1) = 3/8, P(X = +3) = 1/8.

⋄ Probabilité de perdre la partie à l’issu des 3 lancers: P(X < 0)?
⋄ X est négatif si et seulement si X = −3 ou X = −1:

{ω ∈ Ω,X (ω) ≤ 0} = {ω ∈ Ω,X (ω) = −1 ou X (ω) = −3}
= {ω ∈ Ω,X (ω) = −1} ∪ {ω ∈ Ω,X (ω) = −3}.

⋄ Par conséquent, on a

P(X ≤ 0) = P(X = −3) + P(X = −1) = 1/2.

⋄ En général, on peut calculer proba. que le gain cumulé X ne dépasse pas
un montant x ∈ R: P(X ≤ x).

⋄ La fonction x 7→ P(X ≤ x) donne la répartition de notre richesse à l’issu
des 3 lancers et est appelée fonction de répartition.
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Fonction de répartition

Définition. Soit X une variable aléatoire (discrète ou continue). Alors, la
fonction

FX : R 7→ [0, 1]

x 7→ FX (x) = P(X ≤ x)

est appelée fonction de répartition de X . On la notera parfois F .

Remarque. Noter que la fonction de répartition est définie sur R. Il ne
faut donc pas oublier de la déterminer pour toute valeur x de R.

Définition. Lorsque X est une variable aléatoire discrète à valeurs dans
{x1, x2, . . .}, la fonction de répartition s’écrit

F (x) =
∑
i :xi≤x

P(X = xi ), ∀x ∈ R. (2)
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Fonction de répartition

Exemple. Reprenons l’exemple introductif où X a pour loi

P(X = −3) = 1/8, P(X = −1) = 3/8, P(X = +1) = 3/8, P(X = +3) = 1/8.

1 Déterminons la fonction de répartition F de X .
2 Représenter la fonction x 7→ F (x).

−5 −4 −3 −2 −1 1 2 3 4 5

−3

−2

−1

1

2

3

4

x

F (x)

Figure: Représentation de la fonction de répartition F (x) définie par (??).
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Fonction de répartition

Proposition

Soit X une v.a. de f.r. F . Soit x , y ∈ R tels que x ≤ y. On a

1 P(X ≤ x) = F (x) et P(X < x) = F (x−).

2 P(X ≥ x) = 1− F (x−) et P(X > x) = 1− F (x).

3 P(X = x) = F (x)− F (x−).

4 P(x ≤ X ≤ y) = P(X ∈ [x , y ]) = F (y)− F (x−).

5 P(x ≤ X < y) = P(X ∈ [x , y [) = F (y−)− F (x−).

6 P(x < X ≤ y) = P(X ∈]x , y ]) = F (y)− F (x).

7 P(x < X < y) = F (y−)− F (x).

Exemple. Soit X une v.a. de fonction de répartition donnée par

FX (x) =


0 si x < −1
1/3 si x ∈ [−1, 0[
1/2 si x ∈ [0, 1[
1 si x ≥ 1.
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Fonction de répartition

1 Déterminer P(X = x), pour tout x ∈ R.
2 Calculer P(X ∈ [0, 1]), P(X ∈]0, 1]), et P(X ∈]− 1, 0[).

Réponse.1. La v.a. X est à valeurs aux points de discontinuité de FX :
X ∈ E = {−1, 0, 1}. Donc, ∀x ̸∈ E , P(X = x) = 0. D’autre part,

P(X = −1) = FX (−1)− FX (−1−) = 1/3− 0 = 1/3

P(X = 0) = FX (0)− FX (0−) = 1/2− 1/3 = 1/6

P(X = 1) = FX (1)− FX (1−) = 1− 1/2 = 1/2.

2. P(X ∈ [0, 1]) = P(X = 0) + P(X = 1) = F (1)− F (0−) = 2/3
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Théorème. Soit X une variable aléatoire discrète de f.r. FX . Alors,

1 Pour tout x ∈ R,
0 ≤ FX (x) ≤ 1.

2 FX est une fonction croissante.

3 FX est une fonction continue à droite. C-à-d, ∀x ∈ R, et pour toute
suite (xn) de nombres décroissante vers x , lim

n→+∞
FX (xn) = FX (x).

4 limx→−∞ FX (x) = 0.

5 limx→+∞ FX (x) = 1.
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1 Définition
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Espérance d’une v.a. discrète: définition

Considérons le problème suivant qui consiste à déterminer le lieu optimal
où une compagnie de transport ferrovière doit implanter une gare entre
deux villes V1 et V2 selon le critère de proximité avec les voyageurs.
• Supposons que la compagnie souhaite implanter une nouvelle gare entre
les deux villes V1 et V2 dont les nombres de voyageurs potentiels sont de n
et m, respectivement.

• Supposons aussi que les voyageurs arrivent à la gare de façon aléatoire et
que chaque voyageur i habite un endroit de coordonnée xi ∈ R2 (par
rapport à un repére quelconque).

• La compagnie souhaite trouver un lieu (le point g⋆ ∈ R2) situé entre les
deux villes (on suppose qu’elle n’a pas de contrainte sur le choix du lieu)
où implanter la gare selon le critère de proximité avec les voyageurs.
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Espérance d’une v.a. discrète: définition

• Autrement dit, elle souhaite trouver un point g⋆ entre les deux villes,
dont la distance moyenne parcourue par l’ensemble des voyageurs au point
g⋆ est la plus petite.

• Si nous notons N = n+m et si, pour tout g ∈ R2, on définit la fonction
ψ par

ψ(g) =
1

N

N∑
i=1

|xi − g |2 , où |z | =
√

z21 + z22 , pour z = (z1, z2) ∈ R2

le point g⋆ doit donc être choisi de sorte que

ψ(g⋆) = min
g∈R2

ψ(g). (3)

• En résolvant le problème d’optimisation (ψ est convexe de dérivée
ψ′(g) = 2

N

∑N
i=1(xi − g)) du membre de droite de (3) on obtient

g⋆ =
1

N

N∑
i=1

xi .
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Espérance d’une v.a. discrète: exemples

• Enfin, si nous considérons une variable aléatoire X à valeurs dans
E = {x1, . . . , xN} de loi de probabilité p(xi ) = PX ({xi}) = 1

N , pour tout
i ∈ {1, . . . ,N}, on veut écrire que

g⋆ =
N∑
i=1

xip(xi ) =
∑
x∈E

xP(X = x) =
∑
ω∈Ω

X (ω)P({ω}) = E(X ),

où E(X ) correspond à l’espérance mathématique de X .

Définition. Soit X une v.a. discrète à valeurs dans E = {x0, x1, . . . } alors

E(X ) =
∑
x∈E

xP(X = x) =
+∞∑
i=0

xiP(X = xi ) =
+∞∑
i=0

xip(xi ).

Exemple. Soit l’exemple du jeu de Pile-Face où le gain X est une v.a.

P(X = −3) = 1/8, P(X = −1) = 3/8, P(X = +1) = 3/8, P(X = +3) = 1/8.

Le gain espéré à l’issu des 3 lancers est :

E(X ) = (−3)×P(X = −3)+(−1)×P(X = −1)+1×P(X = 1)+3×P(X = 3) = 0.
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Théorème de transfert

Exemple. Soit λ > 0 et soit X une variable aléatoire à valeurs dans

{0, 1, 2, . . . } telle que p(i) = P(X = i) = e−λλ
i

i !
, i = 0, 1, 2, . . .

On a E(X ) =
∑∞

i=0 ip(i) =
∑∞

i=0 ie
−λ λi

i! .

Reprenons l’exemple du jeu de Pile-Face où le gain cumulé X a pour loi

P(X = −3) = 1/8, P(X = −1) = 3/8, P(X = +1) = 3/8, P(X = +3) = 1/8.

Comment calculer E(X 2) (ou E(f (X ))) en utilisant la loi de X? Par le
Théorème de transfert !

Théorème. Soit X une variable aléatoire discrète à valeurs dans
E = {x1, x2, . . .}. Alors, pour tout fonction réelle f on a

E(f (X )) =
∑
x∈E

f (x)P(X = x) =
+∞∑
i=1

f (xi )P(X = xi ).
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Théorème de transfert: exemple

Exemple. Reprenons l’exemple du jeu de Pile-Face où le gain cumulé X
a pour loi

P(X = −3) = 1/8, P(X = −1) = 3/8, P(X = +1) = 3/8, P(X = +3) = 1/8.

On a E(X 2) = (−3)2 × P(X = −3) + (−1)2 × P(X = −1) + 12 × P(X =

1) + 32 × P(X = 3) = 9/8 + 3/8 + 3/8 + 9/8 = 3.

Exemple. Soit λ > 0 et soit X une variable aléatoire à valeurs dans

{0, 1, 2, . . . } telle que p(i) = P(X = i) = e−λλ
i

i !
, i = 0, 1, 2, . . .
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2 Définition et loi d’une v.a. discrète
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6 Lois discrètes usuelles
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Variance d’une v.a. discrète: Définition

• On veut comparer les performances en Maths de 2 classes de
Terminale C1 et C2, de n et m élèves, resp. Soit {x1, . . . , xn} les n
notes de la classe C1 et {y1, . . . , ym} celle de la classe C2.

• Soit X et Y 2 v.a. à val. dans {x1, . . . , xn} et {y1, . . . , ym}, avec
P(X = xi ) = 1/n, ∀i et P(Y = yj) = 1/m, ∀j .

• Une façon de comparer les 2 classes est de comparer leurs moyennes
empiriques qui correspondent aux espérances de X et Y . Supposons
maintenant que les moyennes des 2 classes sont toutes égales à m̄xy .

• La classe la plus performante est celle dont les notes sont réparties de
façon plus homogène, c’est-à-dire, dont l’écart entre les notes est plus
petit.

• Plusieurs façons de mesurer ces écarts. On utilise la distance
quadratique moyenne entre les notes et la moyenne.
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Définition

• 
x1 − m̄xy

x2 − m̄xy
...

...
xn − m̄xy

 et


y1 − m̄xy

y2 − m̄xy
...

...
ym − m̄xy

 .
• On a donc,

e1 =
1

n

n∑
i=1

(xi − m̄xy )
2 = E

[
(X − E(X ))2

]
et e2 =

1

m

m∑
j=1

(yj − m̄xy )
2 = E

[
(Y − E(Y ))2.

]
• La classe C1 est plus performante en Maths que la classe C2 si
e1 < e2. Cet écart (au carré) à la moyenne introduite précédemment
correspond à la notion de variance que nous définissons de façon plus
générale dans ce qui suit.
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Définition

Définition. Soit X une v.a. Alors la variance de X , notée Var(X ), est
définie par

Var(X ) = E
(
X − E(X )

)2
= E(X 2)−

(
E(X )

)2
.

On appelle écart-type de X et on note σX la racine carrée de la variance:

σX =
√
Var(X ). (4)

Exemple Reprenons l’exemple du jeu de Pile-Face et calculer Var(X ): le
gain cumulé X a pour loi

P(X=−3)=1/8, P(X=−1)=3/8, P(X=+1)=3/8, P(X=+3)=1/8.

Exemple. Soit λ > 0 et soit X une v.a. à val. dans {0, 1, . . . } tq

P(X = k) = e−λλ
k

k!
, k = 0, 1, . . .

Calculer la variance de X .
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Quelques propriétés de l’espérance et de la variance

Voici quelques propriétés de l’espérance et de la variance.

Proposition

1 Pour toute v.a. constante X : X (ω) = c , ∀ω ∈ Ω, on a E(X ) = c

2 (Linéarité) E(aX + bY ) = aE(X ) + bE(Y ).

3 (Positivité) si X ≤ Y alors E(X ) ≤ E(Y ).

4 Pour toute v.a. X on a Var(X ) ≥ 0 et Var(c) = 0 pour tout réel c.

5 Soit X une v.a. Alors, ∀a, b ∈ R, Var(aX + b) = a2Var(X ).

Remarque. Attention: Var(X + Y ) n’est pas forcément égale à
Var(X ) +Var(Y ). Mais ce sera le cas si X et Y sont indépendantes.
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Lois usuelles: Bernouilli

▷ Loi de Bernoulli. Expérience à 2 issues: succès de proba. d’apparition p,
échec, de proba. d’apparition q = 1− p. Si X ∼ Bern(p), alors

P(X = 1) = p; P(X = 0) = 1− p,

et on a
E(X ) = p, Var(X ) = p(1− p).

Exemple. On csd l’expérience de lancer de dé équilibré. Soit X la v.a.
qui vaut 1 lorsque la face 6 apparâıt et 0 lorsque la face 6 n’apparâıt pas.
Déterminer la loi de X .

Réponse. Soit E l’événement que la face 6 apparâıt. Il est clair que

P(E ) =
1

6
et P(E c) =

5

6
.

Donc P(X = 1) = P(E ) = 1/6 et P(X = 0) = P(E c) = 5/6. D’où la v.a.
X suit la loi de Bernouilli de paramètre 1/6.
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Lois usuelles: loi binomiale

Loi binomiale. C’est la loi du nombre de succès à l’issue de n épreuves ind.
de Bernoulli de paramètre p. Si X ∼ B(n, p),

P(X = k) = C k
n p

k(1− p)n−k , k = 0, . . . , n.

Une v.a. X ∼ B(n, p) peut être représentée par

X =
n∑

i=1

Xi

où les Xi , i = 1, . . . , n, sont de v.a. indépendantes, de loi de Bernoulli de
paramètre p. Donc,

E(X ) = np, Var(X ) = np(1− p).

Exemple. On lance 10 fois, une pièce de monnaie équilibrée. Soit X la
v.a. qui compte de nombre de Pile. Alors X ∼ B(10, 1/2).
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Lois discrètes

P(X = x)

0 1 2 3 4 5 6 7 8 9 10 x

0.25

0.21

0.12

0.04

Figure: Loi binomiale de paramètre n = 10 et p = 1/2.
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Lois discrètes: loi de Poisson

Loi de Poisson. Elle modélise les résultats d’expériences aléatoires dans
lesquelles on compte le nombre d’événements qui se produisent pour une
unité de temps ou de volume donnée, à un taux moyen fixé. Si λ désigne
le nombre moyen d’occurrences par unité de temps ou de volume fixée, X
suit une loi de Poisson de paramètre λ si sa loi est déterminée par

P(X = k) = e−λλ
k

k!
, k = 0, 1, 2, . . .

C’est la proba. qu’il se produise k occurrences pour l’unité de temps ou de
volume donnée. On a

E(X ) = λ, Var(X ) = λ.

La loi de Poisson peut être vue comme une approximation de la loi
binomiale de paramètres n et p lorsque p ≤ 0.1 et n ≥ 40 ou lorsque
np < 5.
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Lois discrètes: loi de Poisson

P(X = k)

0 1 2 3 4 5 6 . . . k

0.14

0.27

0.18

0.09
...

Figure: Loi de Poisson de paramètre λ = 2.
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Lois discrètes: loi géométrique

Loi géométrique. On renouvelle une épreuve de Bern(p), de façon ind.,
jusqu’à l’obtention du premier succès. La v.a. X donnant le rang du
premier succès suit une loi géométrique de paramètre de succès p. Si
X ∼ G(p),

P(X = k) = (1− p)k−1p, k = 1, 2, . . .

On a

E(X ) =
1

p
et Var(X ) =

1− p

p2
.

Exemple. On lance (de façon indépendante) un dé équilibré de façon
répétée jusqu’à l’apparition de 6. Soit X la v.a. qui donne le rang du
lancer auquel apparâıt 6 pour la première fois. Alors

X ∼ G(1/6).
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Lois discrètes: loi géométrique

P(X = k)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 . . . k

1
6

5
36

...

Figure: Loi géometrique de paramètre de succès p = 1/6.
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