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Chapter 1

Dynamical systems and models in Life
Science

In this first part, we focus on dynamical systems, which is a term embedding in particular the
systems of ordinary differential equations (ODE or differential systems) and discrete dynamics.
Differential systems write :

ẋ =
dx

dt
= f(x, t), x ∈ U, t ∈ I,

where U is an open subset of Rn, I an interval of R and f : U × I → Rn is smooth in a sense
to be specified according to the context. Discrete dynamics are systems of the form :

x(k+1) = ψ(x(k), k), x ∈ U, k ∈ Z,

where U ⊂ Rn and ψ : U → U . A link exists between these two types of dynamical systems
that we will explain and use in this course.

The universality of the dynamical phenomenons emerging in Physics, Biology, Ecology,
Economics, and many other application domains underlies the power of such formalism for
aggregating the knowledge, analyzing the dynamical behaviors of the systems, predicting these
behaviors according to the parameters. In this course, we introduce the classical results of
qualitative analysis of dynamical systems and illustrate their application to models in Life
Science.

1.1 Fundamental Theorems

This section is a reminder of known results on existence and unicity of the solution of diffe-
rential equations, boundedness of positive solutions (Gronwall Lemma), smooth dependency
of the solution on the initial conditions and the parameters.

Theorem 1. (Cauchy-Lipschitz)
We consider the following differential system

ẋ = f(x, t) (1.1)

where f is continuous on the open set Ω = U × I, I interval of R, U ⊂ Rn. Consider x0 ∈ U
and t0 ∈ I.
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6 CHAPTER 1. DYNAMICAL SYSTEMS AND MODELS IN LIFE SCIENCE

Local result : If f is locally Lipschitz with respect to x, there exists a unique maximal
solution x(t) of (1.1) such that x(t0) = x0. Its definition interval is open.
Global result : If f is K-Lipschitz with respect to x uniformly with t on [t0− a, t0 + a] ⊂ I,
there exists a unique solution x(t) of (1.1) such that x(t0) = x0 defined on [t0− c, t0 + c] with
c < min(a, 1/K).

Remark 1. For sake of simplicity, in this course, we assume that the function f defining
the differential systems of type (1.1) satisfies a Lipschitz condition with respect to the space
variable globally on an open domain U that we do not specify. Hence, we consider the context
of the global Cauchy-Lipschitz theorem, which ensures the existence of a unique solution of
the Cauchy problem:

ẋ = f(x, t), (1.2)
x(t0) = x0, (1.3)

Lemma 1. (Gronwall)
Let ϕ denote a continuous non negative function defined on [t0, t0 +T ]. We assume that there
exist real constants a, b, c with a > 0 such that, for any t ∈ [t0, t0 + T ],

ϕ(t) ≤ a
∫ t

t0

ϕ(s)ds+ b(t− t0) + c.

then for any t ∈ [t0, t0 + T ],

ϕ(t) ≤
(
b

a
+ c

)
ea(t−t0) − b

a
.

In the context of modeling, we often consider a dynamics depending on one or several
parameters. One of the main aims of the qualitative analysis is to explain the dependency
of the dynamics structure (in particular, the solutions of (1.1)) according to the parameter
values. The following theorem concern the regularity of a solution according to the initial
condition and the system parameters.

Theorem 2. Consider the following dynamical system depending of parameters

ẋ = f(x, t, λ), (1.4)

where f is K-Lipschitz on U w.r.t x uniformly according to λ ∈ Rp and t ∈ [t0 − T, t0 + T ].
Then, for any x0 ∈ U , there exists a unique maximal solution φ(t0,x0)(t) de (1.4) such that
φ(t0,x0)(t0) = x0, defined on the maximal interval I(t0,x0) = (α(t0, x0, λ), β(t0, x0, λ)).
Moreover,

∀t ∈ I(t0,x0)∩I(t0,y0), |φ(t0,x0)(t)− φ(t0,y0)(t)| ≤ eK|t−t0||x0 − y0|.
This theorem states that the solution depends continuously on the initial condition. By

applying this result to the system

ẋ = f(x, t, λ), (1.5)
λ̇ = 0, (1.6)

we immediately obtain that the solution depends continuously on the parameter λ as well.

Remark 2. The continuous dependency with respect to t0 results directly from the formal
(implicit) integral satisfied by the solution. More generally, if we assume that the function f
is differentiable, then the solution depends on (t0, x0) in a differentiable way.
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1.2 Flow, phase portrait, orbit

Definition 1. Let U denote an open subset of Rn. A Ck vector field on U is a Ck map

X : x = (x1, ...xn) 7→ (f1(x), ..., fn(x)) (1.7)

defined on U . With such a vector field is associated the differential system

{ẋi = fi(x1, ..., xn)|i ∈ {1, ..., n}} ⇐⇒ ẋ = X(x). (1.8)

which is said “autonomous”. It is a particular case of differential system (1.1) where f does
not depend on time.
The open set U is called the phase space of the vector field (and of the associated differential
system).
Generally, we call differentiable vector field any Ck vector field with k ≥ 1.

From theorem 1, for any x0 ∈ U , there exists a unique maximal solution x(t) of the Cauchy
problem {

ẋ = X(x),
x(0) = x0.

(1.9)

Note that, in this context, any initial condition x(t0) = x0 can be turned into x(0) = x0 by a
trivial translation of the time variable.

Definition 2. Given a value t, the flow at time t of the vector field X is the map φt : x0 7→ x(t)
associating with an initial condition x0 the value at the time t of the maximal solution x(t)
du problème de Cauchy (1.9).
The flow of the vector field X is the map φ associating with (t, x0) the value at the time t of
the maximal solution x(t) du problème de Cauchy (1.9):

(t, x0) 7→ φ(t, x0) = φt(x0) = x(t).

If φ is defined for any t ∈ R and any x0 ∈ U , then the flow is said “complete”.

Definition 3. The orbit (or integral curve) Γ of the vector field X containing x0 is the
differentiable curve constituted by the points x(t) ∈ U given by the solution of (1.8) with
initial condition x0. This curve is oriented by the time t. At each point x(t), its tangent is the
straight line passing through x(t) directed by the vector X(x(t)). Sometimes, we distinguish
the positive orbit Γ+ = {x(t), t ≥ 0} from the negative orbit Γ− = {x(t), t ≤ 0}.

Corollary 1. The orbit of the vector field X form a partition of the phase space U called the
phase portrait.

This corollary is a direct consequence of the unicity of the solution of a well-posed Cauchy
problem and, therefore, of the Cauchy-Lipschitz theorem.

The qualitative analysis aims at studying the geometric structure (essentially
the dynamical invariant) of the phase portrait and deducing the properties of the
solutions from this underlying organization.
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Definition 4. A singular point (or equilibrium) of the vector field X = (fi)
n
i=1 is a point

p ∈ U where all the components of the vector field vanish:

∀i ∈ J1, nK, fi(p) = 0 ⇐⇒ X(p) = 0Rn .

A regular point is a non singular point.

Definition 5. Let X denote a differentiable vector field defined on an open subset U of Rn.
Let A denote an open subset of Rn−1. A local transverse section of X is a differentiable map
g : A→ U such that, at any point a ∈ A, Dg(a)(Rn−1)

⊕
X(g(a)) = Rn. The image Σ = g(A)

benefits from the induced topology. By abuse of language, if g : A→ Σ is an homeomorphism,
we will refer to Σ as a transverse section of X.

Definition 6. Two vector fields X and Y are topologically equivalent if there exists an homeo-
morphism h mapping the orbits of X onto the orbits of Y and preserving their orientation by
the time variable. Hence, if X is defined on U and if we note φ(t, x) and ψ(t, x) the flows of
X and Y respectively, then

∀x ∈ U, ∀δ > 0, ∃ε > 0, ∀t ∈]0, δ[, ∃t′ ∈]0, ε[, h(φ(t, x)) = ψ(t′, h(x))

Definition 7. Two vector fields X and Y are conjugated by a diffeomorphism (resp. topo-
logically conjugated) if there exists a diffeomorphism h (resp. homeomorphism) mapping the
X orbits onto the Y orbits and preserving their orientation by the time variable. Hence :

h(φ(t, x)) = ψ(t, h(x)).

Remark 3. If the diffeomorphism h is defined on the same open domain U asX, the conjugacy
by h corresponds to a global change of variable. Note that this result remains true for a chosen
local domain, corresponding to a local change of variable.

Theorem 3. (Rectification of the flow)
Let X denote a Ck vector field defined on the open subset U of Rn, p a regular point of X,
g : A→ Σ a local transverse section of X such as g(0) = p. There exists a neighborhood V of
p and a Ck diffeomorphism h : V → (−ε,+ε)×B where B is an open ball of Rn−1 centered at
the origin, such that

i) h(Σ ∩ V ) = {0} ×B

ii) h conjugates X|V and the constant vector field

Y : (−ε,+ε)×B → Rn, Y = (1, 0, 0, ..., 0) ∈ Rn.

Corollary 2. Let Σ denote a local transverse section of a Ck vector field X and p ∈ Σ. There
exists εp > 0, a neighborhood V of p and a map τ ∈ Ck(V,R) such that

i) τ(V ∩ Σ) = 0,

ii) For any q ∈ V , the integral curve φ(t, q) of X|V exists for any value t ∈ (−εp + τ(q), εp +
τ(q)),

iii) q ∈ Σ if and only if τ(q) = 0.
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Definition 8. Let X denote a vector field defined on the open subset U of Rn. Let Γ denote
the orbit of X containing x0. It is parameterized by a maximal solution x(t) of the associated
Cauchy problem: Γ = {x(t)|t ∈ (α, β)}.

• If β = +∞, the ω-limit set of Γ (or equivalently of x0) is defined by

ω(x0) = {q ∈ U | ∃(tn) ∈ RN, (tn)→ +∞ et (x(tn))→ q}.

• If α = −∞, the α-limit set of Γ (or equivalently of x0) is defined by

α(x0) = {q ∈ U | ∃(tn) ∈ RN, (tn)→ −∞ et (x(tn))→ q}.

All the points of an orbit have the same α-limit and ω-limit.

In the following theorem, one can replace ω-limit by α-limit with obvious changes.

Theorem 4. Let X denote a Ck vector field defined on an open subset U and p ∈ U . We
assume that the positive half-orbit Γ+(p) = {φ(t, p)|t ≥ 0} is included in a compact setK ⊂ U .
Then ω(p) is non empty, compact connected, and invariant under the flow.

Definition 9. A periodic orbit of a vector field X is an orbit {x(t)| t ∈ R} that contains no
singular point of X and such as there exists T > 0, called period, satisfying

∀t ∈ R, x(t+ T ) = x(t). (1.10)

Such an orbit Γ containing a point x0 is therefore entirely defined by

Γ = φ[0,T [(x0) = {φt(x0)|t ∈ [0, T [} = {x(t)| t ∈ [0, T [}.

A limit cycle is an isolated periodic periodic.

The minimal period of a periodic orbit is the smallest positive real number T satisfying
condition (1.10). Without any further specification, the period of an orbit will refer to its
minimal period and “a T -periodic orbit” will refer to an orbit of minimal period T .

Theorem 5. Let Γ = φ[0,T ](x0) denote a T -periodic orbit of a Ck vector field X. Consider
ε > 0 and let Σε denote the part of the hyperplane Σ orthogonal to Γ at x0 defined by:

Σε = {x|(x− x0).f(x0) = 0 et |x− x0| < ε}.

We assume ε small enough such that Σε ∩ Γ = {x0}. Then, there exists δ > 0 and a unique
map x 7→ τ(x) of class Ck defined on the part of Σ defined by

Σδ = {x|(x− x0).f(x0) = 0 et |x− x0| < δ}

such as
φτ(x)(x) ∈ Σε.

Map τ is called the “map of first return time” of X on Σ.
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Definition 10. The Ck map
Π : x 7→ Π(x) = φτ(x)(x),

is called “first return map” or Poincaré application associated with the periodic orbit Γ.

Using the first return map Π, we reduce the study of a n dimensional differential system
in the neighborhood of a periodic orbit to the study of the discrete system x(k+1) = Π(x(k))
defined from Σ of dimension n− 1 into itself. More generally, a first return map defined on a
transverse section to a flow can be defined in certain cases even if no periodic orbit exists and
the same reduction to a discrete system can be performed.

Definition 11. A fixed point of the map F is a point x such that F (x) = x. It corresponds
to a T -periodic orbit of the flow of X. More generally, a periodic point of period n is a fixed
point of the iterate Fn :

Fn(x) = x,

that is not a fixed point of Fm for m < n.

1.3 ODE Models in Life Science

The universality of the dynamical system formalism allows us to develop models in a vast panel
of applicative contexts. In particular, when the time variations of variables under identified
dynamical laws carry the essential properties of a system, the development of models becomes
a powerful tool for representing these underlying mechanisms. In the following, we introduce
some historical models, still used nowadays, in population dynamics, neuroscience, climatology.
In particular, we focus on the paradigms leading to the building of these models, the illustration
of the complexity of the behaviors they can reproduce despite their compact writing, the
interpretation of the model behaviors using the notions reminded in the preceding section.

1.3.1 Population dynamics (Lotka-Volterra, May-Kolmogorov, response func-
tions)

Modèle de Lotka-Volterra

In 1925-26, Alfred Lotka and Vito Volterra have independently proposed a simple system for
studying population dynamics. The Lotka-Volterra model describe the interactions between a
population of preys and a population of predators: the state variable are x, the representation
of number of preys, and y, the representation of the number of predators. We assume that,
without any predator, the prey population grows exponentially with an exponent a > 0 and,
without any prey, the predator population decreases exponentially with an exponent −c < 0.
When the two populations coexist, we assume that the prey population decreases and the
predator population increases linearly according to xy with constant factors −b < 0 et d > 0
respectively. Hence, one obtains the following system:

ẋ = x(a− by), (1.11)
ẏ = y(−c+ dx). (1.12)
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Figure 1.1: Example of a phase portrait (left panel) and x and y signals generated along
the orbits (right panels) of the Lotka-Volterra model. All the orbits of the positive quadrant
R∗+ × R∗+ are periodic.

Kolmogorov system and May model

Andrei Kolmogorov has generalized the formalism introduced by Lotka and Volterra by intro-
ducing the following class of systems:

ẋ = xf(x, y), (1.13)
ẏ = yg(x, y), (1.14)

with the following conditions on f and g functions assumed to be at least C1:

∂f

∂y
< 0,

∂g

∂y
< 0,

∂f

∂x
< 0 pour x grand ,

∂g

∂x
> 0. (1.15)

These conditions appear when one include natural conditions on the dynamical interactions
between populations. Indeed, the two first conditions result from the hypothesis that the
growth rates of each populations decreases when the predator population increases. The two
last conditions are sufficient to ensure the existence and unicity of an equilibrium corresponding
to a coexistence of both populations, i.e. a singular point of the dynamics lying in {x > 0, y >
0} (the verification of this property is left as an exercise).

One of the most classical example of a Kolmogoroff type model has been introduced by
Robert May in 1972. It is obtained from the Lotka-Volterra model by replacing the exponential
growth of the prey without predator by a logistic growth (involving an asymptotic saturation)
and by introducing a saturation effect in the predation efficiency. This model writes

ẋ = ax(1− x)− b xy

A+ y
, (1.16)

ẏ = −cy + d
xy

A+ y
. (1.17)
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Response functions of Holling type and trophic chains

The type of coupling between the dynamics of x (prey) and y (predator) embeds intrinsic
properties of the trophic links between the populations (functional response). Crawford S.
Holling (1959) has performed a general classification of the functional response types, i.e. the
variations of the number of preys consumed by the predator population according to the prey
density :

• Type I response: linear function of the
prey density up to a saturation value
above which the number of preys con-
sumed remains constant.

• Type II response: consumption rate reg-
ularly decreasing according to the den-
sity of preys (Arthropodes).

• Type III response: sigmoidal variation
of the consumption rate (vertebrates,
parasites).

Note that the functional response is also associated to a numerical response (variation of
the predator density according to the density of preys). The whole predation phenomenon is
therefore a combination of the functional and numerical responses

One can use the same approach for generalizing the models to trophic chains by considering

• a complex trophic tree, i.e. various populations of preys, consumed by different popula-
tions of predators, that can also be predated by other species (super-predators), etc.;

• different types of growth, functional and numerical responses for coupling the dynamics
of the variables representing the populations.

Complex dynamical behaviors already emerge for a limited number of populations. In the
following section, we introduce an example of prey-predator-superpredator model (“tritrophic”)
and the generated behaviors for various values of one parameter.

Tritrophic model

We consider a generalization of May’s model by introducing a super-predator. Note X, Y ,
Z the representation of the preys, predators and super-predators respectively. We consider a
logistic growth of the prey population resulting from the following equation

ṙ = αr(K − r). (1.18)

The non negative solution of this equation asymptotically converge to K when t → +∞.
We consider response function of Holling type II between prey and predator population on
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one hand, and between super-predators and predators on the other hand. One obtains the
following dynamics

Ẋ = X

(
R

(
1− X

K

)
− P1Y

S1 +X

)
(1.19)

Ẏ = Y

(
E1

P1X

S1 +X
−D1 −

P2Z

S2 + Y

)
(1.20)

Ż = Z

(
E2

P2Y

S2 + Y
−D2

)
(1.21)

where the positive parameters represent :

Pj : the maximal predation rates,
Sj : the half saturation constant of the response functions,
Dj : the death rates,
Ej : the predation efficiencies.

1.3.2 A few models in Neuroscience : Integrate-and-Fire, Hodgkin-Huxley,
Fitzhugh-Nagumo

Several modeling approaches have been introduced and used since the beginning of the XXth
century for tackling the tremendously complex, yet very exciting, problem of neuronal commu-
nication. We only introduce here a few physiological notions, deliberately simplified for sake
of clarity. Moreover, we only describe a few models among the most revolutionary and best
fitting the formalism studied in this course. Numerous other approaches and theories have
been and are still currently developed. We invite the students interested in this thematics to
enlarge their knowledge by reading the references given at the end of this course.

A very short introduction to neuronal electrophysiology

Neurons are cells characterized by two essential physiological properties : excitability, i.e. the
ability to respond to stimuli and to convert them into neuronal impulses, and the conductivity,
i.e. the ability to convey and transmit the impulses. At rest, there exists a negative difference
in electric potentials (polarization) between the intracellular and extracellular faces of the
neuron membrane, which envelops the cell body (soma), the axon and the dendrites. This
resting membrane potential results from a difference in the ionic concentrations due to a
selective permeability of the membrane according to the ion type.

The neuronal information is conveyed through instantaneous and localized changes in the
membrane permeability, resulting in short-lasting events, called action potentials (see Figure
below), in the electrical membrane potential which rapidly rises and falls, following a consistent
trajectory. Action potentials are generated by special types of voltage-gated ion channels
embedded in a cell’s plasma membrane.

These channels are shut when the membrane potential is near the resting potential of the
cell, but they rapidly begin to open if the membrane potential increases to a precisely defined
threshold value. When the channels open (in response to depolarization in transmembrane
voltage), they allow an inward flow of sodium ions, which changes the electrochemical gradient,
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which in turn produces a further rise in the membrane potential. This then causes more
channels to open, producing a greater electric current across the cell membrane, and so on.

H

The process proceeds explosively until all of the available ion channels are open, resulting
in a large upswing in the membrane potential. The rapid influx of sodium ions causes the
polarity of the plasma membrane to reverse, and the ion channels then rapidly inactivate. As
the sodium channels close, sodium ions can no longer enter the neuron, and then they are ac-
tively transported back out of the plasma membrane. Potassium channels are then activated,
and there is an outward current of potassium ions, returning the electrochemical gradient to
the resting state. After an action potential has occurred, there is a transient negative shift,
called the afterhyperpolarization or refractory period, due to additional potassium currents.
This mechanism prevents an action potential from traveling back the way it just came. (voir
Figure ci-contre).

Records of the instantaneous potential difference of a neuron has been since 1930s using
microelectrodes. The modeling of the action potential generation, already undergone at the
beginning of the XXth century with the Integrate-and-Fire models, has been based on experi-
ences for including a biophysical interpretation of the model parameters. Hence, quantitative
knowledge from experiences have been used for deriving the dynamics : this approach was
introduced by Hodgkin and Huxley.

Integrate-and-Fire model

Historically, the first attempt for modeling the action potential has been performed by Louis
Lapicque who built the Integrate-and-Fire model. It is inspired by a simple electric circuit
formed by a capacity C and a resistance R in series, with an additional leak term and a reset
mechanism when the potential V reaches a threshold Vth. Under an input current I(t), the
potential V is driven by the following differential equation :

CV̇ = I(t)− 1

R
V.
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If the input current is too weak, i.e.

I(t) < Ith = Vth/R,

the solution remains under the threshold Vth.
Otherwise, there exists a time t∗ such that
v(t∗) = Vth, and one applies the reset mech-
anism v(t∗) = V0. For a constant input I(t)
(autonomous system) strong enough, one ob-
tains a burst of action potentials.

This approach is essentially phenomenological : the dynamics is not based on mechanistic
lows underlying the living system and none of the parameters can be interpreted as a biophys-
ical entity. Yet, extensions of this approach have been intensively used for building versatile
models that can generate the entire panel of behaviors expected from the Physiology. In
particular, the bi-dimensional non linear IF model introduced by Eugene Izhikevic has been
proven able to reproduce regular spiking, fast spiking, bursting, Mixed-Mode Oscillations,
Mixed-Mode Bursting Oscillations, etc.

L’approche de Hodgkin et Huxley

In 1952, Hodgkin and Huxley have founded the mechanistic approach called “conductance-
based” approach, by introducing the currents through the neural membrane induced by the
ionic dynamics, sodium Na+ (responsible for the depolarization) and potassium K+ (respon-
sible for the repolarization). We introduce this approach, that has been intensively used
afterwards for perfecting the models.

Note I the total membrane current, Cm the capacity of the membrane by surface unit,
V the difference between the membrane potential and its equilibrium value, INa the sodium
current and IK the potassium current. As for the Integrate-and-Fire model, the Hodgkin-
Huxley model involves a leak current If . One obtains

CmV̇ = I − INa − IK − If , (1.22)

with

INa = gNa(V − VNa), (1.23)
IK = gK(V − VK), (1.24)
If = gf (V − Vf ), (1.25)

and VNa, VK , Vf are the resting potentials (or inverse potentials) and gNa, gK , gf , are the
conductances of the membrane for each ion type. This mechanistic approach is completed by
experimental observations based on patch-clamp technics: VNa, VK , Vf , gf are assumed to be
constant, gNa and gK vary with time and V :

gNa = gNam
3h, (1.26)

gK = gKn
4, (1.27)
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where n(t) is called the potassium activation function, m(t) the activation function and h(t)
measures the sodium current inactivation. These functions are solutions of :

ṁ = αm(V )(1−m)− βm(V )m, (1.28)
ṅ = αn(V )(1− n)− βn(V )n, (1.29)
ḣ = αh(V )(1− h)− βh(V )h. (1.30)

The mechanistic approach (and therefore the biophysical interpretation of the parameters)
are limited to this level since Hodgkin and Huxley fit the functions α and β with experimental
results and introduce phenomenologically:

αm(V ) = 0.1 25−V
exp( 25−V

10
)−1

, αn(V ) = 0.01 10−V
exp( 10−V

10
)−1

, αh(V ) = 0.07 exp(−V20 ),

βm(V ) = 4 exp(−V18 ), βn(V ) = 0.125 exp(−V80 ), βh(V ) = 1
exp( 30−V

10
)+1

.

with gNa = 120, gK = 36, gL = 0.3 and the equilibrium potentials VNa = 115, VK = −12,
Vf = 10.6.

A first success of this approach is to predict the shape of the action potential from expe-
rimental data and propose a mechanism for its generation. If the potential V is slightly higher
than the equilibrium value under the influence of a current applied to the axon, it comes
back to the equilibrium. If the external stimulus is stronger than a certain threshold, the
sodium activation m contributes to raise the potential up to a maximum, then both potassium
activation h and sodium deactivation n are turned on and participate in bringing the potential
under its equilibrium state. Below this value, n decreases and the potential comes back to the
resting state value, allowing the process to repeat.

FitzHugh-Nagumo model

The FitzHugh-Nagumo model is a simplification of the Hodgkin-Huxley system and can be
considered as a paragon of excitable systems. It writes

εẋ = −y + 4x− x3 + I, (1.31)
ẏ = a0x+ a1y + a2. (1.32)

where a0 > 0, ε > 0 and a1 > 0 are assumed to be small. From the qualitative analysis
viewpoint, the cubic curve y = −x3 + 4x can be replaced by any other S-shaped curve, i.e.
admitting a local minimum x− and a local maximum x+ respectively. This curve can thus be
split into three branches : left branch (x < x−), middle branch (x ∈ [x−, x+]) and left branch
(x > x+).

Assume that the parameter values are chosen such that three singular points exist (inter-
section points of the cubic y = −x3 + 4x + I with a0x + a1y + a2 = 0) : for a1 small, one
lies high on the left branch, the other one lies low on the right branch, the third one can
belong to any of the three branches. For I below a certain threshold Ith, all orbits converge
asymptotically towards this latter point. For values of I larger than Ith, all the orbits admit
the same periodic orbit (limit cycle) as ω-limit.
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1.3.3 Climatology (Lorenz and deterministic chaos)

Mathematically, the coupling of the atmosphere with the ocean is described by a system
of partial derivative equations of Navier-Stokes type.This system was too complex to solve
numerically for the first computers. Edward Lorenz built then a very simplified model from
these equations for studying a particular physical situation : the Rayleigh-Bénard convection
phenomenon. He designed a differential system with only three degrees of freedom, much
simpler to simulate numerically than the original equations:

ẋ = σ(y − x), (1.33)
ẏ = ρx− y − xz, (1.34)
ż = xy − βz. (1.35)

where σ, ρ, β are positive parameters. Variable x represents the intensity of the convection
motion, y the temperature difference between ascending and descending air currents, et z the
gap between the vertical temperature function and a linear function. Parameter σ, called
Prandtl number, is the ratio between the cinematic viscosity and the thermal diffusivity.
Parameter ρ characterizes the heat transfer inside the fluid.

Using numerical simulation, Lorenz discovered
the chaotic property (in a deterministic sense)
of the meteorological systems. Moreover, he
highlighted the existence of ω- and α-limits
with complex structure, known as strange at-
tractors : one obtains in the phase space the
well-known Lorenz “butterfly” illustrated on
the right.

x
y

z
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Chapter 2

Theory of stability

In this chapter, we focus on the different notions of stability emerging from the qualitative
analysis of dynamical systems.

2.1 Structural stability of a vector field

Let M denote a compact submanifold of Rn. Given a norm ||.|| on Rn, we define the following
norm of a C1 vector field on M

||X||CV = sup
x∈M
||X(x)||+ sup

x∈M
|DX(x)|.

Definition 12. A vector field X ∈ C1(M) is structurally stable if there exists ε such that any
Y ∈ C1(M) satisfying

||X − Y ||1 < ε,

is topologically conjugated to X.

The structural stability means that the topological properties of a vector field are preserved
under small deformations of the vector field.

2.2 Asymptotic stability of linear systems

We consider the linear differential system ẋ = A.x, for x ∈ Rn defined by the matrix A ∈
Mn(R).

Note λj = aj + ibj , j ∈ {1, ..., n} the eigenvalues of A and wj = uj + ivj associated
eigenvectors. We can sort the eigenvalues such that the k first are real (and consequently the
k first eigenvectors are real) and that the vectors (u1, ..., uk, uk+1, vk+1, ...um, vm) form a basis
of Rn with n = 2m− k.

We note Es, Eu, Ec the stable, unstable and center subspaces defined as follows :

• Es, the stable space generated by the vectors uj , vj such that aj < 0,

• Eu, the unstable space generated by the vectors uj , vj such that aj > 0,

• Ec, the center space generated by the vectors uj , vj such that aj = 0.

19
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Theorem 6. The space Rn is decomposed as a direct sum

Rn = Es
⊕

Eu
⊕

Ec

of subspaces invariant under the flow t 7→ exp(tA) of the linear system.

For the stable and unstable spaces, the following theorem applies.

Theorem 7. The following properties are equivalent:

i) all the eigenvalues of A have strictly negative real parts,

ii) ∃M > 0, ∃c > 0, ∀x0 ∈ Rn, ∀t ∈ R, | exp(tA).x0| ≤M |x0| exp(−ct).

iii) ∀x0 ∈ Rn, lim
t→+∞

exp(tA).x0 = 0.

Hence, we notice that, if all the eigenvalues of A have strictly negative real parts, the
ω-limit of any orbit of the linear system is 0 (i.e. the unique singular point of the linear vector
field). In the following section, we generalize this notion of stability for singular points of non
linear systems as well as for their orbits.

2.3 Stability of a solution, Poincaré-Lyapunov theorem

Definition 13. A solution x(t) of a differential system ẋ = f(x, t) is said stable if, for any
ε > 0, there exists δ > 0 such that, for any solution y(t)

||(x− y)(t0)|| ≤ δ =⇒ ∀t ≥ t0, ||(x− y)(t)|| ≤ ε

If, moreover, ||y − x|| → 0 when t→ +∞, the solution is said asymptotically stable.

Remark 4. Warning : the notion of instability often refers to the non-stability, i.e. if the
properties of the above definition are not satisfied. We will refer to the notions obtained
by changing t ≥ t0 and t → +∞ by t ≤ t0 and t → −∞ respectively as “stability (resp.
asymptotic stability) for the inverse flow”, i.e. by changing the time orientation.

Remark 5. Since a singular point of a vector field is a particular orbit of an autonomous
differential system, the notions of stability and asymptotic stability can be applied.

Theorem 8. (Poincaré-Lyapunov)
We consider the differential system ẋ = Ax + h(x, t) where A ∈ Mn(R), h is continuous in
the domain D = {(x, t)|||x|| ≤ ρ, t ≥ 0} where ρ > 0 and satisfies

||h(x, t)||
||x|| → 0 when ||x|| → 0 uniformly w.r.t. t ≥ 0.

If all the eigenvalues of A have strictly negative real parts, then the solution x = 0 is asymp-
totically stable.

Note : The proof (in french) can be found in Appendix A.1.
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Remark 6. Reciprocally, if the matrix A has at least one eigenvalue with a positive real part,
then x = 0 is an unstable solution of the system.

Definition 14. A linear system with coefficients depending on time, i.e.

ẏ = A(t)y,

is said reducible (or A(t) is said reducible) in the sense of Lyapunov if there exists a change
of function y = Q(t)x where Q(t) is a differentiable and invertible matrix such that

sup
t
||Q(t)|| < +∞, sup

t
||Q−1(t)|| < +∞,

which transforms the system into
ẋ = Bx,

where B is a constant matrix

We can obviously generalize the Poincaré-Lyapunov theorem to reducible systems.

2.4 Lyapunov function

Theorem 9. Let f = (fi)
n
i=1 denote a differentiable vector field on an open subset U of Rn

associated with the autonomous system

ẋ = f(x)

Let φ(t, x) denote the associated flow and x0 ∈ U a singular point of f . We assume that there
exists a function G ∈ C1(V,R) where V is a neighborhood of x0, such that

G(x0) = 0, (2.1)
∀x 6= x0, G(x) > 0, (2.2)

∀x ∈ V, d(G ◦ φ)

dt |t=0
(x) = DG(x).f(x) =

n∑
i=1

fi(x)
∂G

∂xi
(x) ≤ 0. (2.3)

Then the singular point x0 is stable. If, moreover,

∀x ∈ V \{x0},
d(G ◦ φ)

dt |t=0
(x) < 0.

then the singular point x0 is asymptotically stable.

Remark 7. The function defined in the above theorem

d(G ◦ φ)

dt |t=0
(x) = DG(x).f(x)

is the derivative of the functionG along the flow of the vector fiel or, equivalently, the derivative
along the orbits of the system.

Definition 15. A function G satisfying the hypotheses (2.1)-(2.2)-(2.3) is called a Lyapunov
function of the vector field.
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We now focus on the specific case of planar dynamics. We consider a C2 planar vector field
associated with a differential system

ẋ = f(x, y), (2.4)
ẏ = g(x, y). (2.5)

where f and g are C2 on an open subset U ⊂ R2.

Definition 16. A first integral of the differential system (2.4)-(2.5) is a differentiable function
(x, y) 7→ H(x, y) such that:

f(x, y)
∂H

∂x
+ g(x, y)

∂H

∂y
= 0.

If such a function exists, system (2.4)-(2.5) is said conservative. Otherwise, it is called dissi-
pative.

Remark 8. Function H can be interpreted as an energy function of the system, as a Lya-
punov function. The terminology “conservative system” is inspired by the property of energy
conservation along each orbit of the system.

Proposition 1. A conservative planar system that is non trivial, i.e. H is non constant
according to its first and second variable, admits a continuum of periodic orbits.

Definition 17. The system (2.4)-(2.5) is hamiltonian if there exists a function (x, y) 7→
H(x, y) such that, for any (x, y),

f(x, y) =
∂H

∂y
et g(x, y) = −∂H

∂x
.

Function H is therefore a first integral and the system is conservative.

2.5 Classification of singular points and invariant manifolds

We consider a differentiable vector field f = (fi)
n
i=1 defined on an open subset U of Rn

associated with an autonomous differential system

ẋ = f(x) = f(x1, ..., xn) (2.6)

Let x̄ ∈ U denote a singular point (f(x̄) = 0). We note Jf (x̄) the jacobian matrix associated
with f evaluated at the point x̄ :

Jf (x̄) =

(
∂fi
∂xj

(x̄)

)
(i,j)∈{1,...,n}2

.

Using a Taylor development of f in the neighborhood of x̄, we can write system (2.6), after
the change of variable x↔ x− x̄, as follows:

ẋ = Jf (x̄).x+ h(x)

where h is a continuous function such as h(x) = O(||x||2). Hence, near the singular point x̄, we
associate with the vector field f a linear vector field ẋ = Jf (x̄).x called the linearized vector
field. We classify the singular points of the non linear differentiable vector fields according to
the properties of the linearized vector field.
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Definition 18. A singular point x̄ of a vector field X is hyperbolic if all the eigenvalues of
JX(x̄) have a non zero real part.

Remark 9. The translation of x̄ to the origin allows us to consider that the singular point is
the origin, which we will do in the following without loss of generality.

As for the singular point 0 of a linear differential system, there exist stable, unstable and
center invariant manifolds associated with each singular point of a non linear system. The
following theorem state the existence and the properties of the stable and unstable mani-
folds associated with a hyperbolic singular point and their link with the stable and unstable
subspaces of the linearized system.

Theorem 10. Consider a C1 vector field, φ(t, x) its flow, and the associated system ẋ = f(x)
defined on an open subset of Rn containing 0. We assume that 0 is a hyperbolic singular point
and, thus, that the jacobian matrix Jf (0) admits

• k eigenvalues (λi)
k
i=1 with strictly negative real part,

• n− k eigenvalues (λi)
n
i=k+1 with strictly positive real part.

We note Es and Eu the stable and unstable subspaces of the linearized system ẋ = Jf (0).x.
There exists a differentiable manifold Ws of dimension k, tangent to Es at 0, invariant under
the flot φ and such that

∀x0 ∈ Ws, lim
t→+∞

φ(t, x0) = 0.

Similarly, there exists a differentiable manifold Wu of dimension n − k, tangent to Eu at 0,
invariant under the flow φ and such that

∀x0 ∈ Wu, lim
t→−∞

φ(t, x0) = 0.

Note : The proof (in french) can be found in Appendix A.2.

Example : planar dynamics. If a vector field admits a singular point (x̄, ȳ) and if the
associated jacobian matrix at this point has real eigenvalues λ < 0 and µ > 0, the stable and
unstable manifold of this point are differentiable curves containing (x̄, ȳ). They are tangent to
the stable and unstable subspaces of the linearized vector field respectively, that are generated
by an eigenvector of the jacobian matrix associated with λ and µ respectively. In that case,
the singular point is called a saddle and the stable and unstable manifolds are called the
separatrices of the saddle. We will describe the exhaustive classification of the singular points
of a planar vector field in a subsequent section.

Definition 19. Consider a saddle singular point of a given planar vector field. If the invariant
manifolds intersect at other points than the saddle, the saddle is called an homoclinic point.
In that case, the common part of the stable and unstable manifolds is called an homoclinic
connection.
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Theorem 11. Hartman-Grobman theorem
Consider a C1 vector field defined on a neighborhood U of 0 in Rn associated with the
differential system

ẋ = f(x).

We assume that 0 is a hyperbolic singular point and note Jf (0) the jacobian matrix evaluated
at 0. There exists a homeomorphism h : U → U such that h(0) = 0 and

h ◦ φt(x) = etJf (0) ◦ h(x).

If the vector field is C2, h can be chosen such that it is a C1-diffeomorphism.

The vector field is thus topologically conjugated (resp. C1 conjugated) in the neighborhood
of 0 with the linearized vector field. The proof of this result can be found in [Hartman, 1982].

The conjugacy results near non hyperbolic singular points need other informations than
the linear approximation. However the existence of the center manifold associated with the
center subspace of the linear system is stated by the following result.

Theorem 12. Existence of a center manifold
Consider a Ck vector field defined on the neighborhood of the origin 0 ∈ Rn associated with

ẋ = C.x+ F (x, y, z), (2.7)
ẏ = P.y +G(x, y, z), (2.8)
ż = Q.z +H(x, y, z), (2.9)

where x ∈ Rr, y ∈ Rp, z ∈ Rq, p+ q + r = n,

C ∈Mr (R) and its eigenvalues have 0 real parts,
P ∈Mp (R) and its eigenvalues have strictly negative real parts,
Q ∈Mq (R) and its eigenvalues have strictly positive real parts.

Then, there exists a Ck−1 submanifold Wc of dimension r, invariant under the flot, tangent to
the subspace y = z = 0. Such a manifold is called a center manifold.

Remark 10. On the contrary of the stable and unstable manifolds, a center manifold is not
uniquely defined. If f is C∞ then, for any r ∈ N, there exists a Cr center manifold.

Theorem 13. Restriction to a center manifold
Under the hypotheses of the above theorem, there exists a neighborhood of Wc and a local
Ck conjugacy on this neighborhood between the vector field and its restriction to the center
manifold.

Practically, we search for a center manifold as the solution of a system of two equations :

y = h1(x), z = h2(x).

Differentiating these equations, the invariance of Wc under the flow implies

ẏ = Dh1(x).ẋ, ż = Dh2(x).ẋ.
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Hence one obtains the two equations for (h1, h2) :

Dh1(x)[C.x+ F (x, h1(x), h2(x))]− P.h1(x)−G(x, h1(x), h2(x)) = 0, (2.10)
Dh2(x)[C.x+ F (x, h1(x), h2(x))]−Q.h2(x)−H(x, h1(x), h2(x)) = 0. (2.11)

The solution is not unique in general, which is consistent with the above remark. Given a
solution (h1, h2) of system (2.10)-(2.11), the qualitative local behavior of the vector field is
therefore described by the following theorem.

Theorem 14. Under the hypotheses of the above theorems, we consider a solution (h1, h2) de
(2.10)-(2.11). Then, in the neighborhood of the singular point, the vector field is topologically
conjugated with

ẋ = C.x+ F (x, h1(x), h2(x)),

ẏ = P.y,

ż = Q.z.

2.6 Planar dynamics and Poincaré-Bendixson theorem

In this section, we focus on any C2 planar vector field associated with a differential system

ẋ = f(x, y), (2.12)
ẏ = g(x, y). (2.13)

where f and g are C2 on an open subset U ⊂ R2.
We restrict the study to the classification of the singular point of a non linear system using

the local C1 conjugacy of the flow with a linear system. Concerning the hyperbolic points, this
linear system is the linearized system (defined by the jacobian matrix evaluated at the singular
point) if the vector field is smooth enough (at least C2), which we assume in the following.
Results under weaker hypotheses exist and can be found, for instance, in [Wiggins, 1990].

Definition 20. Consider a hyperbolic singular point of the differential system (2.12)-(2.13).
Note λ and µ the (complex) eigenvalues of the jacobian matrix associated with the vector field
evaluated at this point. Thus, <(λ) 6= 0 and <(µ) 6= 0. The following table

• defines the terminology used for describing the nature of the singular point according
to λ and µ (the column entries distinguish between the real and complex cases, the raw
entries distinguish the cases according to the number of eigenvalues with strictly negative
real parts),

• specifies the dimension of the stable and unstable manifolds of the singular point,

• illustrates the local phase portrait in the neighborhood of the singular point (purple
point) : blue orbits belong to Ws, red orbits belong to Wu, black orbits complete the
phase portrait, the arrows indicate the sense to the flow.
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Hyperbolic points λ, µ ∈ R λ = µ ∈ C\R

<(λ) < 0,<(µ) < 0
stable

dim(Ws) = 2
dim(Wu) = 0 Attractive node Attractive focus

<(λ) > 0,<(µ) > 0
unstable

dim(Ws) = 0
dim(Wu) = 2 Repulsive node Repulsive focus

Impossible !
<(λ) < 0,<(µ) > 0

unstable
dim(Ws) = 1
dim(Wu) = 1 Saddle

For non hyperbolic singular points, there is no general result of conjugacy with the lin-
earized flow. Hence, the classification can not be based on the eigenvalues of the jacobian
matrix since the local phase portrait depends on higher degree terms of functions f and g
developments. However, certain cases are known and defined as follows. For each type, we
give an instance of vector field for which the origin is a non hyperbolic singular point of this
type.

Definition 21. A sector in R2 is hyperbolic (resp. parabolic, elliptic) if it is topologically
conjugated with the sector shown in panel (a) (resp. (b), (c)) of the figure below.

(a) (b) (c)

Definition 22. An isolated singular point p of (2.12)-(2.13) is called

• a center if there exists a pointed neighborhood of p such that any orbit in this neighbor-
hood is periodic and surrounds p ;

• a center-focus, if there exists a sequence of close orbits (Γn) such that:

1. for any n, Γn surrounds Γn+1,

2. (Γn)n → {p},
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3. any orbit between Γn and Γn+1 spirals and reaches asymptotically Γn and Γn+1 for
t→ ±∞ respectively;

• an elliptic point if, locally around p, the vector field admits an elliptic sector;

• a saddle-node if, locally around p, the phase portrait is split into a hyperbolic sector and
a parabolic sector;

• a cusp if, locally around p, the phase portrait is split into two and only two hyperbolic
sectors.

The following table gives simple examples of planar vector fields for which the origin is an
isolated and non hyperbolic singular point of a particular type mentioned above. The example
of a center-focus is written in polar coordinates for sake of compactness.

p.s. à secteur elliptiquecentre centre-foyer col-noeud cusp

ẋ = y ρ̇ =
∞∏
i=1

(ρ− ri) ẋ = y ẋ = x2 ẋ = y

ẏ = −x θ̇ = 1 ẏ = −x3 + 4xy ẏ = y ẏ = x2

(ri) strictly
decreasing towards 0

Theorem 15. (Poincaré-Bendixson)
Let X denote a C1 vector field in an open subset U ∈ R2 associated with

ẋ = f(x, y), (2.14)
ẏ = g(x, y). (2.15)

Let K denote a compact set included in U and γm = {φ(t,m)|t ∈ R} an orbit of X such that
the positive half-orbit γ+

m = (φ(t,m)|t ≥ 0) ⊂ K. Assume that ω(m) contains a finite number
of singular points of X.

i) If ω(m) contains no singular point, then ω(m) is a periodic orbit.

ii) If ω(m) contains both regular and singular points, then ω(m) is formed by singular
points and orbits connecting them. In that case, ω(m) is called a graphic.

iii) If ω(m) contains no regular point, then ω(m) is a singular point.

Note : The proof (in french) can be found in Appendix A.3.

Poincaré-Bendixson Theorem and the classification of the singular points of planar vector
fields are powerful tools for the qualitative analysis of bidimensional models. In the particular
case of hyperbolic structure, the phase portrait can be identified if we can restrict the flow to
an invariant compact set such that the flow points towards its interior on the boundary and if
the singular points are known.
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Chapter 3

Introduction to bifurcation and
singular perturbation theories

3.1 Introduction to bifurcation theory

3.1.1 Bifurcation, unfolding and codimension

The bifurcation theory aims at describing the changes in the phase portrait of a vector field

ẋ = f(x, λ) (3.1)

where f is assumed to be at least C2 w.r.t. x and λ ∈ Rk, when the values of parameter λ
varies.

Definition 23. A value λ0 of λ is called a bifurcation value for system (3.1) if the vector field
f(x, λ0) is not topologically equivalent to f(x, λ) for any λ in the neighborhood of λ0. In this
case, system (3.1) undergoes a bifurcation for λ = λ0.

A bifurcation of a vector field is thus a change in the structure of its phase portrait when
the value of parameter λ (that may be multi-dimensional) passes by the value λ0. This
involves the appearance, the disappearance or the change in the nature of certain dynamical
invariants, in particular singular points or periodic orbits or more complex invariant manifolds.
The bifurcation theory allows us to classify certain changes in the structure. Completing this
theory is still nowadays an open problem since the theory of structural stability itself is not
complete, even for planar dynamics. A large panel of problems linked with this theory are
intensively studied.

Among the general tools developed for understanding the bifurcations, the notions of
unfolding and codimension of a bifurcation are essential.

Definition 24. Let f0(x) denote a C1 vector field. An unfolding of this vector field is a family
of C1 vector fields f(x, λ) (indexed by λ) such that there exists λ0 verifying f(x, λ0) = f0(x).
Such unfolding f(x, λ) is said universal if any unfolding of f0(x) is topologically equivalent to
an unfolding induced by a restriction of f(x, λ).

Definition 25. Assume that (3.1) undergoes a bifurcation for λ = λ0. The codimension of
this bifurcation is the minimal number of parameter involved in a universal unfolding of the

29
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vector field f(x, λ0), i.e. the smallest integer m such that there exists a universal unfolding
g(x, µ), µ ∈ Rm, of f(x, λ0).

In the following, we only present a few classical (and simple) bifurcations and the structure
of the vector fields that undergo such bifurcation.

3.1.2 A few examples of codimension 1 bifurcations

In this section, we describe local codimension 1 bifurcations, “local” meaning that they only
involves a change in a singular point of the bifurcating vector field (number, nature) and,
hence, only affects the structure of the phase portrait locally near a singular point. The table
below illustrates a few bifurcations of such type, a universal unfolding in dimension 1 (resp. 2
in polar coordinate for the Hopf bifurcation) and a scheme of the varying phase portrait w.r.t.
the bifurcation parameter λ near the bifurcation value λ = 0.

The saddle-node and Hopf bifurcations are “generic” (the notion of genericity will be spec-
ified in the following). However, other non generic bifurcations, in particular the transcritical
and pitchfork bifurcations, are also crucial for understanding the phase portrait of models in
Life Science. Therefore, we present them as well.

Saddle-node Transcritical Pitchfork Hopf

ρ̇ = ρ(λ− ρ2)

θ̇ = 1
ẋ = λ− x2 ẋ = λx− x2 ẋ = λx− x3

�

x

�

x

�

x

�

x

y

• Blue lines : locus of the stable singular points ;
• Dashed blue lines : locus of the unstable singular points ;
• Black lines and arrows : orbits and orientation of the flow ;
• Red surface : family of limit cycles.

Saddle-node bifurcation Assume that the vector field (3.1) admits for λ = λ0 a singular
point x0 at which the linearized system admits a single eigenvalue 0. The center manifold
theorem allows us to reduce this type of bifurcation to a dimension 1 problem (i.e. x ∈ R.
More precisely, there exists a two-dimensional center manifold Wc ∈ Rn × R associated with
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the flow of

ẋ = f(x, λ), (3.2)
λ̇ = 0 (3.3)

passing through (x0, λ0) and such that

• the tangent space to Wc at (x0, λ0) is generated by an eigenvector of Dxf(x0, λ0) asso-
ciated with the eigenvalue 0 and a vector that is parallel to the λ axis ;

• the manifold Wc is C1 in the neighborhood of (x0, λ0) ;

• the flow associated with (3.2) is tangent to Wc ;

• there exists a neighborhood U of (x0, λ0) such that all trajectories contained in U for all
time belong to Wc.

By restricting the vector field (3.2)-(3.3) to Wc, one obtains a one-parameter family (in-
dexed by λ) of equations on the curves Wc

λ of Wc obtained when fixing the value of λ. We
can therefore formulate the transversality conditions of the problem (3.2) in one dimension for
obtaining the saddle-node bifurcation. By hypothesis

Dxf(x0, λ0) = 0

and we add the transversality condition

Dλf(x0, λ0) 6= 0.

By the implicit function theorem, the locus of singular points of (3.1) when λ varies around
λ0 is a curve tangent to λ = λ0. The additional transversality condition

D2
xf(x0, λ0)6=0

implies that the curve of singular points has a quadratic tangency with λ = λ0 and, locally, lies
on a single side of this straight line. Such a bifurcation can be interpreted as the disappearance
(or appearance depending on the sense of variation of parameter λ) of two hyperbolic singular
points. The dimension of their stable manifold is p and (p+ 1) respectively and the dimension
of their unstable manifold is (n − p) and (n − p − 1) respectively. At the bifurcation value,
locally, there is only one singular point, non hyperbolic, at which the linearized system admits
a unique eigenvalue with 0 real part (which is thus real and exactly 0).

The two conditions are sufficient to ensure the topological equivalency between the family
of vector fields (3.2) and ẋ = λ− x2. However, the transversality conditions can be expressed
for a n-dimensional system without using the restriction to the center manifold.

Theorem 16. (Sotomayor)
Assume that (3.1) admits a singular point x0 for λ = λ0 (f(x0, λ0) = 0) such that :

(SN1) Dxf(x0, λ0) admits

• 0 as single eigenvalue with an associated eigenvector v,
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• k eigenvalues with strictly negative real parts,
• n− k − 1 eigenvalues with strictly negative real parts.

Note w an eigenvector of the transpose matrix tDxf(x0, λ0) for the eigenvalue 0.

(SN2) twDλf(x0, λ0) 6= 0,

(SN3) tw(D2
xf(x0, λ0)(v, v)) 6= 0.

Then, there exists a differentiable curve of singular points of (3.1) in Rn×R passing through
(x0, λ0) and tangent to the hyperplane Rn×{λ0}. According to the sign of the expressions in
(SN1) and (SN2), in the neighborhood of x0, there is no singular point if λ < λ0 and there
are two singular points if λ > λ0. The two singular points are hyperbolic and admits stable
manifolds of dimension k and k + 1 respectively.

Hence, the vector fields satisfying (SN2)-(SN3) are structures locally as the family ẋ =
λ − x2. This bifurcation is generic in the following sense : any one parameter vector field
admitting, for a bifurcation value, a singular point with a single eigenvalue 0 can be perturbed
into a one parameter vector field undergoing a saddle-node bifurcation. It is the case for the
following transcritical and pitchfork bifurcations (non generic) described below.

Transcritical Bifurcation A transcritical bifurcation corresponds to the crossing phe-
nomenon of two hyperbolic points involving the exchange of their nature. Hence, locally
near (x0, λ0), there exist two differentiable curves C1 et C2 of singular points of (3.1) in Rn×R
such that :

• C1 ∩ C2 = {(x0, λ0)}.

• C1 and C2 are graphs above λ. We note C−1 and C−2 (resp. C+
1 et C+

2 ) the parts of C1

and C2 above λ < 0 (resp. λ > 0).

• C−1 and C+
2 (resp. C+

1 et C−2 ) are formed by points (x, λ) where x is a hyperbolic singular
point for (3.1) with k (resp. k + 1) eigenvalues with negative real parts.

This type of bifurcation occurs for instance when, by construction, a system admits a trivial
solution for any parameter value and from which a bifurcation arises. Hence, the universal
unfolding given in the table at the beginning of the section ẋ = λx − x2 admits the trivial
solution x = 0 corresponding to a singular point for any λ. This locus of singular points
constitutes the curve C1 or the curve C2. For any value of λ 6= 0, there exists another singular
point x = λ. Obviously

• for λ < 0, x = 0 is stable and x = λ is unstable,

• for λ > 0, x = 0 is unstable et x = λ is stable,

More generally, in multidimensional cases, the transcritical bifurcation consists of the crossing
at the bifurcation value λ = λ0 of two hyperbolic singular points (for which the locus w.r.t.
λ near λ0 are differentiable curves) that exchange their nature: the stable manifold of one
singular point wins an additional dimension while the stable manifold of the other one looses
a dimension.
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Application to May’s Model We illustrate two cases of transcritical bifurcation on the
same model. First, we describe the bifurcation in dimension 1 when focusing on the prey
dynamics and considering the density of predators as a parameter. Second, we consider the
whole system in dimension 2 and show that a transcritical bifurcation occurs as well.

The first equation of May’s model drives the dynamics of the prey when the predator y is
considered as a constant parameter. We replace y by a fixed parameter ȳ in (1.16):

ẋ = x

(
a(1− x)− b ȳ

A+ ȳ

)
, (3.4)

where a, b, A > 0.
For any value of ȳ > 0, this equation admits two singular points x = 0 and

xsȳ = 1− bȳ

a(A+ ȳ)
.

Hence, if b > a, for ȳ = ytrans = aA/(b − a) > 0 those two singular points collide (see Figure
3.1.2) and the (one-dimensional) jacobian matrix

J = a(1− 2x)− by

A+ y

evaluated for ȳ = ytrans at x = xsytrans = 0 is 0.

0

ȳ

x

ytrans

{xs
ȳ|ȳ > 0}

ẏ > 0ẏ < 0

One can easily prove that:

• for ȳ > ytrans, 0 is attractive and xsȳ is repulsive,

• for ȳ < ytrans, 0 is repulsive et xsȳ is attractive.

Such uncoupling of the state variable can bring useful information on the complete struc-
ture of the flow. But, of course, one can also consider the whole model and vary a chosen
parameter. We already proved that (1, 0) is a singular point and, if b > a and d > cA, there is
non trivial singular point in the quarter plane {x > 0, y > 0}. It is thus easy to show that, for
d greater than (but close to) cA, the non trivial singular point is an attractive node, and for
d = cA, the system undergoes a transcritical bifurcation : the non trivial and (1, 0) collide. For
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d < cA, the non trivial point belongs to y < 0 and is a saddle while (1, 0) is an attractive node.

This change in the phase portrait is interpreted as a loss of viability of the trophic system:
if the death rate c of the predator is too large (or if its predation efficiency is too weak),
then the predator population tends towards extinction and the prey population reaches its
maximal representation. We can then quantify this natural idea with the line of transcritical
bifurcation in the parameter space (c, d) (the other parameters assumed to be constant) :
crossing transversally this line in the parameter space corresponds to a transcritical bifurcation
of the system. The figure below illustrates the passage through the transcritical bifurcation.

d > cA d = cA d < cA

0
x

y

0

y

0
x

y

x

ẋ = 0 Stable Node

Saddle
Non hyperbolic point

ẏ = 0

Pitchfork Bifurcation A pitchfork bifurcation occurs for system (3.1) if, from a hyperbolic
singular point x0(λ) existing for any λ value near λ0, arise two other singular points of the
same nature for λ > λ0. More precisely, locally near (x0(λ0), λ0), there exist two differentiable
curves C1 = {(x0(λ), λ)|λ in a neighborhood of λ0} and C2 of singular points in Rn×R such
that:

• C1 ∩ C2 = {(x0, λ0)}.
• C1 is a graph above λ and C2 lies in λ ≥ λ0.

• Except x0(λ0) for λ = λ0, for any point (x, λ) of C1 or C2, x is an hyperbolic singular
point for (3.1).

• Depending on the third derivative of the flow w.r.t. x at x0 with λ = λ0,

– for λ < λ0 there exists a unique singular point, which admits k + 1 (resp. k)
eigenvalues with negative real parts and lies on C1,

– for λ > λ0, there exists a singular point lying on C1 admitting k (resp. k +
1) eigenvalues with negative real parts and two singular points lying on C2 and
admitting k + 1 (resp. k) eigenvalues with negative real parts.

The pitchfork bifurcation is then called supercritical (resp. subcritical).
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Hopf Bifurcation

Theorem 17. Consider a one-parameter family of vector fieldsXλ associated with the systems

ẋ = f(x, λ), (3.5)

where f is Ck. Assume that x0 is a singular point of Xλ0 and satisfies the following properties:

(H1) Dxf(x0, λ0) admits a single pair of conjugated purely imaginary eigenvalues µ(λ0) and
¯µ(λ0) and no other eigenvalues with null real part.

Then, in a neighborhood of λ0, there exists a differentiable curve (xsλ, λ) where every xsλ is a
singular point of Xλ and passing through (x0, λ0). In this neighborhood, the eigenvalues of
Dxf(xsλ, λ) vary in a differentiable way with respect to λ. If, moreover,

(H2)
d

dλ
(<(µ(λ)))|λ=λ0

= d 6= 0

the bifurcation is generic and called Hopf bifurcation.There exists a unique center manifold of
dimension 3 of

ẋ = f(x, λ), (3.6)
λ̇ = 0 (3.7)

passing through (x0, λ0) and a C3 change of variable preserving the hyperplanes λ = cste for
which the principal part of the Taylor development at order 3 on the center manifold is given
by

ẋ = dλx− (ω + cλ)y + (ax+ by)(x2 + y2), (3.8)
ẏ = (ω + cλ)x+ dλy + (bx+ ay)(x2 + y2). (3.9)

In polar coordinates, it writes

ρ̇ = (dλ+ aρ2)ρ, (3.10)
θ̇ = ω + cλ+ bρ2. (3.11)

If a 6= 0, there exists a one-parameter family, indexed by λ, of hyperbolic limit cycles of (3.5).
This family of limit cycles defines a surface in the center manifold with a quadratic tangence
with the two-dimensional eigenspace associated with µ(λ0) and ¯µ(λ0). The principal part of
the development at order 2 of this surface coincide with the paraboloïd λ = −aρ2/d. Finally

• If a < 0, the limit cycles are attractive and the Hopf bifurcation is said supercritical;

• If a > 0, the limit cycles are repulsive and the Hopf bifurcation is said subcritical.

The supercritical Hopf bifurcation is then a destabilization of the “attractive focus part”
of a hyperbolic singular point when the pair of complex conjugated eigenvalues associated
with this part crosses the imaginary axis, turning this part into a “repulsive focus part”. This
destabilization gives birth to an attractive limit cycle which persists locally near the bifurcation
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value λ = λ0. Its radius grows as
√
λ− λ0. When the bifurcation is subcritical, the limit cycle

is repulsive with the same properties.
In application to models in Life Science, the Hopf bifurcation indicates, from the singular

point analysis, the birth of a limit cycle and the emergence of oscillatory behaviors. In the
general case, its is hard to characterize the interval of the parameter values for which the
cycle persists, since, far away from the bifurcation value, it depends on the global dynamics.
Nevertheless, it is a generic structure of a transition between a stationary behavior and an
oscillatory behavior.

3.1.3 A few application to models in Life Science

Lorenz model We recall the equations of Lorenz model

ẋ = σ(y − x), (3.12)
ẏ = ρx− y − xz, (3.13)
ż = xy − βz. (3.14)

where the parameters ρ, σ, β are assumed positive. The origin is always a singular point and
the jacobian matrix evaluated at the origin is

J(0) =

−σ σ 0
ρ −1 0
0 0 −β

 (3.15)

For ρ < 1, the origin is an attractive node. For ρ = 1, J(0) admits 0, −β < 0 and
−1− σ < 0 as eigenvalues. For ρ > 1, the origin is a saddle with a one-dimensional unstable
manifold and two non trivial singular points appear:

(x, y, z) =
(
±
√
β(ρ− 1),±

√
β(ρ− 1), ρ− 1

)
that are attractive nodes for

ρ ∈ ]1, ρH[ with ρH = σ
σ + β + 3

σ − β − 1
.

The origin undergoes a pitchfork bifurcation for ρ = 1.
For ρ = ρH, two subcritical Hopf bifurcations occur simultaneously for the non trivial

singular point. Indeed, the two eigenvalues are then

−(σ + β + a) et ± i
√

(2σ(σ + 1)/(σ − β − 1).

Note that a classical hypothesis on Lorenz model is σ > 1 + β.
This bifurcation study introduce the first elements for understanding the phase portrait

of Lorenz model. A geometrical study of the stable and unstable manifolds of the non trivial
singular points and their entertained structure allows describing the emergence of the strange
attractor known as “Lorenz butterfly”.
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FitzHugh-Nagumo system We describe the local bifurcations of the FitzHugh-Nagumo
system when a whose parameter varies. The other parameter values need to be fixed in order
to identify the codimension 1 bifurcations.

For fixing the ideas, we assume I = 0 in the Fitzhugh-Nagumo system which therefore
writes

εẋ = −y + 4x− x3, (3.16)
ẏ = a0x+ a1y + a2. (3.17)

We first focus on the case a0 > 0 and a1 small. One obtains the following sequence of
bifurcation for increasing values of a2 that can easily be calculated :

Bifurcation col-noeud→ Bifurcation de Hopf surcritique

→ Bifurcation de Hopf surcritique inverse→ Bifurcation col-noeud

We can visualize geometrically this sequence of bifurcations by translating the y-nullcline
from the right to the left of the phase space, which corresponds to increasing a2. We detail
this sequence in the following but leave to the reader the (explicit) calculation of the a2 values
for which the bifurcations occur.

For increasing values of a2 from a large negative value, the first saddle-node bifurcation
occurs when the y-nullcline of equation a0x+ a1y + a2 = 0 is tangent to the cubic x-nullcline
y = 4x−x3 for a value x > 0. It implies the birth of two singular points : a saddle and a stable
node. When a2 < 0 keeps increasing, the saddle node gets closer to the local maximum of the
cubic (positive fold) and becomes an attractive focus. For a value of a2 close to the one for
which this focus coincide with the positive fold, a supercritical bifurcation occurs, implying
the birth of an attractive limit cycle and the focus becomes an repulsive focus. The limit
cycle persists until the focus approaches the local minimum of the cubic (negative fold). For
a value of a2 close to the one for which the focus coincide with this local minimum, another
supercritical Hopf bifurcation (called inverse) occurs, the limit cycles disappears and the focus
becomes stable. Finally, when a2 keeps increasing, the focus becomes an attractive node and
disappear afterwards by a saddle-node bifurcation when the y-nullcline is tangent to the cubic
for a negative value of x.

Considering the other parameter values, other bifurcation may appear. For instance, the
limit cycle may disappear through another bifurcation than a Hopf bifurcation. Hence, even
a simple planar system may display a rich panel of behaviors that are structured by the bifur-
cation diagram involving the bifurcations listed above, but also non local ones (see examples
in Appendix A.4 for periodic orbits) and bifurcations of codimension greater than 1 (see an
example in Appendix A.5).
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Appendix A

A.1 Démonstration du théorème de Poincaré-Lyapunov

Theorem 18. (Poincaré-Lyapunov)
We consider the differential system

ẋ = Ax+ h(x, t), (A.1)

where A ∈ Mn(R), h is continuous in the domain D = {(x, t)|||x|| ≤ ρ, t ≥ 0} where ρ > 0
and satisfies

||h(x, t)||
||x|| → 0 when ||x|| → 0 uniformly w.r.t. t ≥ 0.

If all the eigenvalues of A have strictly negative real parts, then the solution x = 0 is asymp-
totically stable.

Proof. Let m = sup
D
||h||, c ∈ Rn such that ||c|| < ρ and d > 0 such that ||c||+ d ≤ ρ. Then

sup
(x,t)∈D

||A.x+ h(x, t)|| ≤ ||A||ρ+m = m′.

From Cauchy-Lipschitz theorem, there exists a unique solution x(t) of (A.1) such that x(0) = c
defined for t ∈ [0, T ] with 0 < T < d

m′ . Moreover, the trajectory x([0, T ]) in included in the
ball ||x|| ≤ ρ.

The solution Y (t) of the linear Cauchy problem

Ẏ = A.Y,

Y (0) = In,

converges to 0 when t→ +∞ and ∫ +∞

0
||Y (t)||dt < +∞.

The solution y(t) of

ẏ = A.y,

y(0) = c,

43
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is precisely y = Y.c. Hence, there exists a depending on A only and that we can assume
greater than 1, such that

||y|| ≤ ||Y ||.||c|| ≤ a||c||.
The solution x(t) satisfies

x(t) = y(t) +

∫ t

0
Y (t− u)h(x(u), u)du.

Let us prove that, if c is small enough, then ∀t ∈ [0, T ], ||x(t)|| < 2a||c||.
We choose

ε <
1

2

(∫ +∞

0
||Y (u)||du

)−1

and η such that
||x|| ≤ η =⇒ ∀u ∈ [0, T ], ||h(x, u)|| ≤ ε||x||.

Then, for any t ∈ [0, T ],

||x(t)|| ≤ ||y(t)||+
∫ t

0
||Y (t− u)||ε||x(u)||du ≤ a||c||+ 1

2
max
t∈[0,T ]

||x(t)||,

thus
1

2
||x(t)|| ≤ a||c||.

By choosing the vector c such that

||c||+ d < ρ, ||c|| < η

2a
, 2a||c||+ d < ρ,

then ||x(T )|| + d < ρ. The solution x(t) can be prolonged for t ∈ [T, 2T ] and satisfies the
same boundary by above. By iterating the process, we prove that x(t) exist for any t > 0 and
satisfies ||x(t)||+ d < ρ, which proves the stability.

Now, we prove the asymptotic stability. Consider λ < 0 greater than any the real part
of any eigenvalue of A. We consider the change of function x(t) = z(t)eλt. From (A.1), z is
solution of

ż = (A− λIn)z + e−λth(zeλt, t).

If ||z|| ≤ η alors ||eλtz|| ≤ η and thus ||e−λth(zeλt, t)|| ≤ e−λtε||zeλt|| = ε||z||. The above proof
of the stability can be applied to z, since all the eigenvalues of A−λI have a strictly negative
real part. Thus, if the norm of z(0) = x(0) is small enough, z remains bounded and x(t)→ 0
when t→ +∞.

A.2 Démonstration de l’existence des variétés stables et insta-
bles

Theorem 19. Consider a C1 vector field, φ(t, x) its flow, and the associated system ẋ = f(x)
defined on an open subset of Rn containing 0. We assume that 0 is a hyperbolic singular point
and, thus, that the jacobian matrix Jf (0) admits
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• k eigenvalues (λi)
k
i=1 with strictly negative real part,

• n− k eigenvalues (λi)
n
i=k+1 with strictly positive real part.

We note Es and Eu the stable and unstable subspaces of the linearized system ẋ = Jf (0).x.
There exists a differentiable manifold Ws of dimension k, tangent to Es at 0, invariant under
the flot φ and such that

∀x0 ∈ Ws, lim
t→+∞

φ(t, x0) = 0.

Similarly, there exists a differentiable manifold Wu of dimension n − k, tangent to Eu at 0,
invariant under the flow φ and such that

∀x0 ∈ Wu, lim
t→−∞

φ(t, x0) = 0.

Proof. Après un changement linéaire de coordonnées, on peut considérer que ẋ = f(x) s’écrit

ẋ = Ax+ h(x), h(x) = 0(||x||2) (A.2)

où A est une matrice diagonale par blocs constituée:

• pour le bloc en haut à gauche de P ∈Mk (R) de valeurs propres (λi)
k
i=1,

• pour le bloc en bas à droite de Q ∈Mn−k (R) de valeurs propres (λi)
n
i=k+1.

Posons
U(t) = (exp(tP ), 0) ∈Mn,1 (R) et V (t) = (0, exp(tQ)) ∈Mn,1 (R).

Soit α tel que ∀j ∈ [[1, k]],<(λj) < −α. Alors il existe des constantes K et σ telles que

∀t ≥ 0, ||U(t)|| < K exp(−(α+ σ)t), (A.3)
∀t ≤ 0, ||V (t)|| < K exp(σt). (A.4)

Considérons à présent l’équation (A.2) sous forme d’équation intégrale dépendant d’un
paramètre a ∈ Rn:

u(t, a) = U(t)a+

∫ t

0
U(t− s)h(u(s, a))ds−

∫ ∞
t

V (t− s)h(u(s, a))ds (A.5)

et montrons que cette équation intégrale admet une solution à l’aide du théorème du point
fixe. Toute solution continue de (A.5) est différentiable et solution du système différentiel
(A.2). De plus,

∀ε > 0, ∃δ > 0, (||x|| ≤ δ et ||y|| ≤ δ =⇒ ||h(x)− h(y)|| ≤ ε||x− y||.

Considérons la suite de fonction t 7→ uj(t, a) définie par :{
u0(t, a) = 0,

uj+1(t, a) = U(t)a+
∫ t

0 U(t− s)h(uj(s, a))ds−
∫∞
t V (t− s)h(uj(s, a))ds.

Montrons par récurrence que si εKσ < 1
4 , alors

|uj(t, a)− uj+1(t, a)| ≤ K|a| exp(−αt)
2j−1

.
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En supposant ce résultat pour j ≤ m, on a

|um+1(t, a)− um(t, a)| ≤
∫ t

0
||U(t− s)||ε|um(s, a)− um−1(s, a)|ds

+

∫ ∞
t
||V (t− s)ε|um(s, a)− um−1(s, a)|ds

≤ ε

∫ t

0
K exp(−(α+ σ)(t− s))K|a| exp(−αs)

2m−1
ds

+ε

∫ ∞
0

K exp(σ(t− s))K|a| exp(−αs)
2m−1

ds

≤ εK2|a| exp(−αt)
σ2m−1

+
εK2|a| exp(−αt)

σ2m−1

≤
(

1

4
+

1

4

)
K|a| exp(−αt)

2m−1
=
K|a| exp(−αt)

2m
.

Cette majoration montre que la suite de fonctions converge uniformément ainsi que ses dérivées
successives et que la fonction limite u(t, a) vérifie

|u(t, a)| ≤ 2K|a| exp(−αt). (A.6)

On peut donc choisir les n− k dernières composantes de a nulles puisqu’elles n’interviennent
pas dans ce qui précède, et on a{

uj(0, a) = aj , pour j ∈ [[1, k]],

uj(0, a) = −[
∫∞

0 V (−s)h(u(s, a1, ..., ak, 0))ds]j , pour j ∈ [[k + 1, n]].

Pour j = [[k + 1, n]], on définit ψj(a1, ..., ak) = uj(0, a1, ..., ak). La variété Ws définie par les
équations

yj = ψj(y1, ..., yk), j ∈ [[k + 1, n]].

vérifie alors les propriétés du théorème puisque si y ∈ Ws, on peut poser y = u(0, a) et alors
y(t) = φt(y) = u(t, a) → 0 quand t → +∞ d’après (A.6). L’estimée ci-dessus conduit à
limt7→∞(y(t)) = 0.

L’existence de la variété instable Wu et ses propriétés sont établies avec les mêmes argu-
ments en changeant t en −t.

A.3 Démonstration du théorème de Poincaré-Bendixson

Theorem 20. (Poincaré-Bendixson)
Let X denote a C1 vector field in an open subset U ∈ R2 associated with

ẋ = f(x, y), (A.7)
ẏ = g(x, y). (A.8)

Let K denote a compact set included in U and γm = {φ(t,m)|t ∈ R} an orbit of X such that
the positive half-orbit γ+

m = (φ(t,m)|t ≥ 0) ⊂ K. Assume that ω(m) contains a finite number
of singular points of X.
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i) If ω(m) contains no singular point, then ω(m) is a periodic orbit.

ii) If ω(m) contains both regular and singular points, then ω(m) is formed by singular
points and orbits connecting them. In that case, ω(m) is called a graphic.

iii) If ω(m) contains no regular point, then ω(m) is a singular point.

Pour démontrer ce résultat, nous utilisons 4 lemmes.

Lemma 2. Soit Σ une section transverse au flot associé à X, γ = {φ(t, q), t ∈ R} une orbite
de X et p ∈ Σ ∩ ω(γ). Il existe une suite φ(τn, q) de points de Σ telle que

p = lim
n→+∞

φ(τn, q).

Proof. Soit V un voisinage ouvert de p pour lequel l’application de premier retour sur Σ
associé à X soit bien définie sur V ∩ Σ et τ : V → R l’application temps de premier retour.
Comme p ∈ ω(γ), il existe une suite (tn)→ +∞ telle que (φ(tn, q))→ p. A partir d’un certain
rang, φ(tn, q) ∈ V . Posons

τn = tn + τ(φ(tn, q)).

On a alors
φ(τn, q) = φ(τ(φ(tn, q)), φ(tn, q)) ∈ Σ,

De plus, comme τ est continue,

lim
n→+∞

φ(τn, q) = φ(τ(φ(tn, q)), φ(tn, q)) = φ(0, p) = p,

Toute section transverse à un champ de vecteurs du plan est, à l’évidence, difféomorphe à
un intervalle. Il existe donc un ordre naturel sur les points les points de cette section.

Lemma 3. Soit Σ une section transverse à X. Une orbite positive γ+(p) = {φ(t, p), t ≥ 0}
de X intersecte Σ en une suite monotone (pi)i∈N.

Proof. Posons D = {t ≥ 0, φ(t, p) ∈ Σ}. La section Σ étant transverse au flot, D est un
ensemble discret que l’on peut donc ordonner. Ainsi D = {ti|i ∈ N} avec t0 = 0 et (ti)i∈N une
suite strictement croissante. On définit la suite (pi)i∈N par pi+1 = φ(ti, p) pour tout i ∈ N.
Alors, si p1 = p2, l’orbite est périodique et pi = p, pour tout i.

Supposons p1 < p2 sans perte de généralité. La section Σ étant connexe et transverse
au flot associé à X différentiable, le champ est orienté dans le même sens tout le long de
Σ, i.e. en tout point de la même face de Σ vers l’autre. On considère la courbe de Jordan
formée de l’arc p1p2 de Σ (qui est orientée) et la trajectoire le long du flot reliant p1 et p2,
i.e. {φ(t, p), 0 ≤ t ≤ t1}. D’après le théorème de Jordan, cette courbe a un intérieur et un
extérieur. L’orbite γ entre dans l’intérieur du domaine par le segment p1p2 et ne peut sortir
du domaine par la suite. Il s’ensuit que p1 < p2 < p3. On termine la démonstration par une
récurrence évidente.

Lemma 4. Soit Σ une section transverse à X et p ∈ U . L’ensemble ω(p) contient au plus un
point dans Σ.
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Proof. D’après les résultats précédents, un point de Σ∩ω(p) est la limite d’une suite de points
de l’orbite appartenant à Σ et la suite des points d’intersection de Σ avec l’orbite positive est
monotone. Elle est donc nécessairement convergente et toute sous-suite ne peut converger que
vers un seul point qui est la limite de la suite.

Lemma 5. Soit p ∈ U tel que la demi-orbite positive γ+(p) est contenue dans un compact
K. Soit γ une orbite de X contenue dans ω(p). Si ω(γ) contient des points réguliers, alors γ
est une orbite fermée et ω(p) = γ.

Proof. Soit q ∈ ω(γ) un point régulier. Soit Σ une section transverse au flot qui contient q.
Il existe une suite tn → ∞ telle que γ(tn) ∈ Σ. Comme γ(tn) ∈ ω(p), la suite se réduit à un
point d’après le lemme précédent, ce qui montre que l’orbite γ est périodique.

Montrons à présent γ = ω(p). Comme ω(p) est connexe et γ est fermée, il suffit de
montrer que γ est ouvert dans ω(p). Soit p ∈ γ. Soient Vp le voisinage et Σp la section
transverse pour lesquels l’applications de premier retour sur Σp est bien définie. On a bien sûr
(Vp ∩ γ) ⊂ (Vp ∩ ω(p)). Montrons l’inclusion inverse par l’absurde. Supposons qu’il existe un
point q′ ∈ Vp ∩ ω(p) qui n’appartient pas à γ. Puisque ω(p) est invariant par le flot, il existe
t ∈ R tel que φ(t, q′) ∈ ω(p) ∩ Σp et φ(t, q′) 6= p. Ainsi il existe deux points distincts de ω(p)
dans Σp ce qui est en contradiction avec le lemme précédent. Ainsi Vp ∩ γ = Vp ∩ ω(p). Soit
l’ouvert U =

⋃
p∈γ

Vp qui vérifie U ∩ ω(p) = U ∩ γ = γ. On a donc γ est ouvert dans ω(p).

Démonstration du théorème de Poincaré-Bendixson.

i) Supposons que tous les points de ω(p) sont réguliers et soit q ∈ ω(p). L’orbite γq est
contenue dans ω(p). Comme ω(p) est compact, ω(γq) est non vide. Ainsi ω(p) = γq est une
orbite périodique.

ii) Supposons que ω(p) contient des points réguliers et des points singuliers. Soit une orbite
γ ⊂ ω(p) non réduite à un point singulier. D’après le lemme précédent, ω(γ) et α(γ) ne
peuvent pas contenir de points réguliers, ils sont connexes et il existe un nombre fini de points
singuliers dans ω(p). Il en résulte que ce sont des points singuliers.

iii) Supposons que tous les points de ω(p) sont singuliers. Le même raisonnement qu’au ii)
montre que ω(p) est réduit à un point singulier.
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A.4 Quelques exemples de bifurcations d’orbites périodiques

Nous donnons dans cette section deux exemples de bifurcations d’orbites périodiques d’un
système dynamique. Les lecteurs intéressés pourront trouver une présentation plus détaillée
dans les références données à la fin de ce cours, en particulier dans [Guckenheimer-Holmes,
1983].

La bifurcation pli de cycles limites Considérons le système écrit en coordonnées polaires
et dépendant du paramètre λ:

ρ̇ = λ+ (ρ− 1)2 (A.9)
θ̇ = 1 (A.10)

Pour λ < 0, ce système admet deux cycles limites ρ = 1±
√
−λ, l’un étant attractif et l’autre

répulsif, coïncidant quand λ = 0. Pour λ > 0, il n’y a pas de cycles limite. Cette bifurcation
(globale puisqu’elle ne peut être caractérisée dans un voisinage d’un point) consistant en la
coïncidence et la disparition de deux cycles limites est appelée une bifurcation pli de cycles
limites. Elle peut être étudiée en considérant les points fixes de l’application de premier retour
Π0 bien définie pour λ = 0 sur un voisinage du cycle limite ρ = 1. Cette application peut alors
être plongée dans une famille à un paramètre d’application de premier retour Πλ au voisinage
de λ = 0. Quand λ < 0, on voit apparaître deux points fixes de Πλ correspondant aux cycles
limites du système (A.9), l’un stable, l’autre instable, alors que pour λ > 0, Πλ n’admet aucun
point fixe.

A l’instar de la bifurcation pli de points singuliers, des conditions de transversalité sont
nécessaires pour assurer la non-dégénérescence de cette bifurcation dans le cas général et
assurer l’émergence des deux cycles limites d’un côté de la valeur de bifurcation.

La bifurcation homocline dans le plan Soit une famille de champs de vecteurs du plan
indexée par un paramètre µ:

ẋ = f(x, y, µ)

ẏ = g(x, y, µ)

Supposons que l’origine est un col pour µ voisin de 0 et que, pour µ = 0, il existe une orbite
homocline de l’origine. On désigne par λ(µ) et γ(µ), γ(µ) < 0 < λ(µ), les valeurs propres de
la jacobienne évaluée à l’origine. Le théorème de linéarisation permet d’obtenir un système de
coordonnées de classe C1 dans lequel le flot est linéaire :

ẋ = λ(µ)x

ẏ = γ(µ)y.

Soit Σ = {(x, y) ∈ U | y = h} et Σ1 = {(x, y) ∈ U | x = h} deux sections transverses du flot
définies sur un voisinage de l’origine U suffisamment petit pour que le nouveau système de
coordonnées soit défini sur U . Le flot induit une application T0 : Σ→ Σ1:

T0(x, h) =

(
h

h
(
x
h

)− γ(µ)
λ(µ)

)
.
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et une application T1 : Σ1 → Σ

T1(h, y) =

(
a(µ)µ+ b(µ)y +O(y2)

h

)
,

où a(0) > 0 et b(0) > 0.
En composant T1 et T0, on obtient une application de premier retour T : Σ→ Σ, T (x, h) =

(T1 ◦ T0)(x, h) bien définie pour µ assez petit et x > 0. Pour x < 0, la trajectoire s’échappe et
ne revient pas sur Σ. On a ainsi :

T (x, h) =

(
a(µ)µ+ b(µ)h

(
x
h

)− γ(µ)
λ(µ) +O

(
x−2 γ

λ

)
h

)
.

Le nombre δ = −γ(0)/λ(0) est appelé l’indice du col. Alors, si δ > 1 et µ > 0, l’application
de premier retour présente un unique point fixe dans un voisinage de x = 0, dans x > 0, de la
forme

x = a(0)µ+O(µδ).

Ainsi quand µ varie et traverse 0, un unique cycle limite émerge de la connexion homocline.
Cette bifurcation est appelée une bifurcation homocline.

A.5 Une bifurcation de codimension 2 : Bogdanov-Takens.

Une bifurcation de Bogdanov-Takens est une bifurcation de codimension 2 qui consiste en
l’occurrence simultané pour un même point singulier d’une bifurcation pli et d’une bifurcation
de Hopf. Considérons la famille de champ de vecteurs dépendant de deux paramètres a et b

ẋ = y

ẏ = a+ by + x2 + xy.

Les points singuliers sont donnés par :

x = x+ =
√
−a, y = 0,

et
x = x− = −

√
−a, y = 0.

Si a < 0, il y a donc deux points singuliers ; sur l’axe a = 0, il existe un unique point singulier;
si a > 0, il n’y a aucun point singulier. La jacobienne au voisinage du point singulier (x, 0)
est donné par (

0 1
2x b+ x

)
Les valeurs propres λ−1 , λ

−
2 et λ+

1 , λ
+
2 correspondant aux deux points singuliers vérifient :

λ2 − (b+ x)λ− 2x = 0.

Le point (x+, 0) est donc un col et le point (x−, 0), un noeud ou un foyer. Ce dernier point est
stable si b −√−a < 0 et instable si b −√−a > 0. L’axe a = 0 correspond à une bifurcation
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pli. On peut vérifier que le changement de stabilité du point (x−, 0) le long de la branche de
parabole b =

√−a correspond à une bifurcation de Hopf sous-critique. Il apparaît donc en
dessous de la parabole un cycle limite instable.

Nous décrivons par la suite la bifurcation responsable de la disparition de ce cycle limite
qui nécessite un changement de variables dépendant d’un paramètre ε

t = ετ, x = ε2u, y = ε3v, a = ε4α, b = ε2β.

On aboutit alors au système

u̇ = v,

v̇ = α+ u2 + ε(βv + uv).

Pour ε = 0, ce système est hamiltonien et admet la fonction d’énergie :

H =
1

2
v2 − αu− u3

3
.

Notons que ce système hamiltonien présente une connexion homocline γ0 contenue dans la
courbe H = 2/3. On fixe α et on cherche les valeurs de β pour lesquelles, lorsque ε est petit,
la connexion homocline persiste. On doit donc considérer la fonction

M(β) =

∫
γ0

(βv + uv)dv.

Le calcul de cette fonction se ramène à des intégrales elliptiques (voir [Guckenheimer-Holmes,
1983]) et conduit au fait queM(β) s’annule pour β = 5/7. En revenant aux paramètres initiaux
(a, b), on peut achever l’analyse de la bifurcation en ajoutant l’arc de parabole a = −49

25b
2 en

dessous de l’arc de parabole de la bifurcation de Hopf et qui donne une approximation de la
courbe le long de laquelle le cycle limite instable disparaît par bifurcation homocline. Cette
bifurcation de Bogdanov-Takens est dite souscritique.

4.4. UNE BIFURCATION DE CODIMENSION 2 : BOGDANOV-TAKENS. 43

Une analyse analogue du système

ẋ = y

ẏ = a + bx + x2 + xy.

montre l’existence d’une courbe de bifurcation pli (T� et T+ les deux branches de la courbe),
un demi-axe le long duquel il y a une bifurcation de Hopf surcritique (H) et une courbe de
bifurcations homoclines (P ) faisant disparaître le cycle limite stable né de la bifurcation de
Hopf. On obtient alors la partition de l’espace des paramètres représenté dans la figure suivante
avec les notations introduites ci-dessus.
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un demi-axe le long duquel il y a une bifurcation de Hopf surcritique (H) et une courbe de
bifurcations homoclines (P ) faisant disparaître le cycle limite stable né de la bifurcation de
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avec les notations introduites ci-dessus.
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Une analyse analogue du système

ẋ = y

ẏ = a+ bx+ x2 + xy.

montre l’existence d’une courbe de bifurcations pli (T− et T+ les deux branches de la courbe),
un demi-axe le long duquel se produisent des bifurcations de Hopf surcritiques (H) et une
courbe de bifurcations homoclines (P ) faisant disparaître le cycle limite stable né de la bifur-
cation de Hopf. On obtient alors la partition de l’espace des paramètres représentée dans la
figure suivante avec les notations introduites ci-dessus.
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