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Mathematical context

Slow-fast (SF) systems
— f(U, v? 8)7

v = egg(u,v, &),

e ) < ¢ << 1: time scale separation parameter (fixed small);
e u € R": fast variables; u: fast dynamics;

e v € R": slow variables; v slow dynamics;

e f and g assumed to be smooth.

While (u,v) lies in a O(e) neighborhood of { f = 0}, both » and
v evolve slowly (O(¢e) speed). Otherwise, u is fast (O(1) speed).
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Example: FitzHugh-Nagumo (FHN) T
Y

e black: nullclines;
e blue: limit cycle;
e simple arrow: slow motion;
e double arrow: fast motion;

e pink: O(g) neighborhood
containing the slow motions.

Efficient adapti\7e time step for numerical simulations:
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Network of N SF oscillators driven by global variables

fi(X,0,¢), .
v]—eg];](X g, €), } j €L N]

= h(X,0,¢).

where u; € R™,v; € R", 0 € RY, X = (uj;05) e, N]-

(fj:9;) : RPN S RE 5 [0, 9] — R™ x R™
b RN S RO 510, 0] — RY

Global variable o can display slow and fast motions too.

Biological application

Intracellular calcium oscillations in GhRH neurons

Neuronal population located in the hypothalamus and responsi-
ble for the pulsatile secretion of GhRH (Gonadotropin Releasing
Hormone) which drives the endocrine control of the reproduc-
tive function in mammals.

Pulsatile oscillations of intracellular calcium level [1] :

e Proper amplitude and pulse frequency in each cell resulting
In asynchrony between cells;

e Recurrent synchronization episodes with regular frequency.

Mathematical model (see [2]) Population of N cells.
For each cell (5 € [1, N]), model based on FHN:

e Fast variable z; : electrical activity;

e Slow variable y; : ionic activity;

e Slow variable Ca;: intracellular calcium level

—driven by a thresholded action of z,
—acting as a feedback on the x; dynamics.

Global variable o representing the state of the network:
e increases very slowly during the asynchronous phase,
e 0 > oo,y — change in the z; dynamics : synchronization.

e quickly decreases when the mean calcium level < Ca >
among cells is above a threshold.

Tj = —yj +4z; - -7{? — ¢ra(Cay),
y] — 5kj (ZU] + a1y, +ag — ¢Syn<0)) ) )€ [[17 N]] (2)
Caj = € (drise(7j) — voa(Caj — Capyg)) » |
¢ =edo — (0 — 00)ps (< Ca > —C’adesyn) .

BEO_ (o) = L
Ca + C(CLO7 Syl 1+ GXp<—,0s,yn(0' — 0'011))7

A 1
T+ owl—pcae —zon) 2 = T exp(opou)

Pran(Ca) =

Drise(T) =

Cell-dependent k; values:
e Variability in calcium oscillations among cells ;
e Asynchrony between synchronization episodes.
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Individual calcium time series generated by model (2) with 50 cells.
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Solutions x; of (2) with N = 200 and k; between 0.6 and 1.4.
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Solutions of (2) with N = 30 and number of cells in fast motion over time.
Goal Simulation and analysis of complex behaviors produced
by networks of type (1). For the example model (2):

e Impact of the parameter value distribution;

e Partial recruitment of neurons for synchronization episodes;
e Doublet of synchronization episodes (see figure below).
Need for a fast and accurate simulation tool.

Numerical simulation

Challenges for simulation

e Large scale problem: (m + n)N + g coupled equations;
e Non-linear dynamics: complex local behaviors;

e Time-step selection: error vs. cpu time.

Classical choices for the adaptive time step based on the global
vector field are inefficient since cells are not synchronlzed

Matlab ode 45 solution with more stringent tolerances (Rel. 107°, Abs. 10712)

Strategy: taking into account the time scale separation in
each cell dynamics.

e Use chosen (elementary) schemes on two time grids:

—the coarse time grid associated with slow motions,
—the fine time grid associated with fast motions;

e Choose the refinement factor according to the time scale se-
paration for optimizing the adaptive scheme order.

e At each integration time step, discriminate the cells in slow
and fast motions from the fast dynamics evaluation.

Splitting

Preservation of the elementary scheme order
From [3], given a vector field V = A + ¢B and the associated
differential operator Ly, = L4 + L.pg.

Order 1 integrators: AB = ¢%Laedles,  BA = e0lenedla,
Order 2 integrators (splitting):
SABA = 6gLA65LsBegLA, SBAB = eslenedlagslen

Higher orders obtained with more alternations of L 4 and L. .

Adaptive algorithms for the numerical simulation /s
of slow-tfast oscillator networks 5
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Slow-fast splitting At a given point (X,5) of system (1)
phase space, using the evaluations of f;(X,c,¢) , we distin-
guish the N cells in slow motion and the Ny cells in fast mo-
tions:

e Xt :(m+mn)N; variables (u;,v;) of cells in fast motion,
e X5 : (m+n)Ns variables (u;,v;) of cells in slow motion,
With these new variables, system (1) writes:

Associated differential operator: L = Ffaixf + Fynlr + H
Decomposition of the vector field at (X, ) and splitting:
oif o is slow, i.e. H(X,5) = O(e):

. 0 0 0

oif o is fast,i.e. H(X,5) = O(1):
0 0 0
SABA wit A i 8Xf+ 5 X,

Note: the splitting depends on which cells are in slow and fast
motions at a given point.

Adaptive scheme

One step algorithm To optimize the performances of the
slow-fast splitting algorithm applied to model (2), we use RK4 on
the coarse grid and RK2 on the fine grid as elementary scheme.

Data: At, p= [\%W, X" on

Evaluation of f;(X", 0", ) and h(X", 0" ¢)

Identify if o Is in slow or fast motion

Distinguish cells in slow and fast motion (X" and X}Z)

if o is slow then

Update o and slow cells: 1 x RK4 with 5

Update fast cells: p x RK2 with % (slow cells fixed)

Update o and slow cells: 1 x RK4 with 5
else

Update ¢ and fast cells: p x RK2 with %;f (slow cells fixed)
Update slow cells: 1 x RK4 with At

Update o and fast cells: p x RK2 with %

(slow cells fixed)

end

Result: Xn+1 (X}”H—l Xn+1) On+1

Consistency and performance Model (2), N =20, £ = 0.01.

Errors versus coarse time step At (logarithmic scales).
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Errors (logarithmic scale) versus CPU time.
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