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A geometric mechanism for MM(B)O

Nonlinear integrate-and-fire neuron models

Reset mechanism:{
dv
dt = F (v)− w + I
dw
dt = a(bv − w)

v(t) −−−→
t→t∗

∞ =⇒
{
v(t∗) = vr

w(t∗) = γ w(t∗−) + d

• a, b, I ∈ R: parameters of the vector field (I is the input current received
by the neuron);

• F ∈ C3(R): strictly convex, limv→−∞ F ′(v) < 0, limv→∞ F ′(v) = ∞ and
limv→∞ F (v)/v2+ε ≥ α.; in the simulations we consider the so-called quartic
model with model F (v) = v4 + 2cv (with c = 0.1)

• d > 0, γ ∈ (0, 1]: parameters connected with the reset mechanism

The model can display complex dynamics including Mixed-Mode
Oscillations and Mixed-Mode Bursting Oscillations (MM(B)O)
that are sequences of spikes interspersed by small subthreshold
oscillations.
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The reset line intersects the stable manifold separating regions corresponding to a specific

number of small oscillations (from 0 to 3.5). Parameters: quartic model with a = 0.1, b = 1,

I = 0.175; initial conditions v = 0.012 and w chosen within the different intervals

Adaptation map
A spike train for a spiking solution (V (t; vr, w),W (t; vr, w)) starting
with (vr, w) at t0 can be recovered via the sequence {wn}n∈N of
the values of the adaptation variable exactly after the moment of
the n-th spike, i.e. if {tn}n∈N is the sequence of spike times for
this solution, then

wn := w(tn) = γw(t−n ) + d.

Definition: Adaptation map

The adaptation map Φ associates to a value of the adaptation
variable w the value of the adaptation variable after reset:

Φ(w) := γW (t∗; vr, w) + d,

Since wn = Φn(t0), the spike train can be qualitatively described
via the dynamics of Φ, with fixed points of Φ corresponding to
tonic, regular spiking and periodic orbits to bursts.
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1 • (wi)i=1···p - intersections of the reset line
{v = vr} with SMSFP

• p1- the index such that (wi)i≤p1 are below the
v-nullcline and (wi)i>p1 are above

• (Ii)i=0···p+1 - intervals with endpoints wi

• α, β - the value of w after a spike for an ini-
tial condition on the upper and, respectively,
lower branch of UMSFP

Theorem. The adaptation map has the following properties:
1. in any given interval Ii with i ∈ {1 · · · p+ 1}, the map is increas-

ing for w < w∗ and decreasing for w > w∗

2. at the boundaries of the definition domain D, {wi; i = 1 · · · p},
the map has well-defined and distinct left and right limits:limw→w−i Φ(w) = α, limw→w+

i
Φ(w) = β, i ≤ p1

limw→w−j Φ(w) = β, limw→w+
j

Φ(w) = α, j > p1

3. the derivative Φ′(w) diverges at the discontinuity points:{
limw→w±i Φ′(w) =∞ i ≤ p1

limw→w±i Φ′(w) = −∞ i > p1

4. for w < min{ d
1−γ , w1, w

∗∗} we have Φ(w) ≥ γw + d > w

Mathematical context: Rotation Theory

Assume that the line v = vr has two intersections with SMSFP:
w1 and w2, with w1 < w2. We distinguish the following cases:

I. β < w1 < α < w2 II. α < w∗ < w2 III. Φ(β) ≥ β
IV.a Φ(α) ≤ Φ(β) IV.b Φ(α) > Φ(β)
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Parameter values: a = 0.1, b = 1, I = −3(a/4)(4/3)(2a− 1) + 0.1 ≈ 0.1175 and vr = 0.1158.

Non-overlapping case: I., II., III. and IV.a

Φ : [β, α] → [β, α] can be seen as a degree-one circle map with
discontinuity at w1. By Ψ : R→ R denote the lift of Φ.

Definition: Rotation number

%(Ψ, w) := lim
n→∞

Ψn(w)− w
n(α− β)

In the non-overlapping case the rotation number is well-defined
and does not depend on w (cf.[2],[4]).
• % = 0 mod 1 =⇒ tonic, regular spiking (for every initial condi-

tion w0 ∈ [β, α] \ {w1})
• % = p/q ∈ Q \ Z =⇒ MMBO (with periodicity of interspike-

intervals and interspersing oscillations)
• % ∈ R \Q =⇒ no periodic orbits and we observe chaos.
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Parameter values: vr = 0.1 and γ = 0.05. Top: d = 0.08; rotation number % = 0.

Bottom: d = 0.08657; rotation number % = p/q

Proposition. Let a, b, vr, I, γ be fixed and consider d ∈ [λ1, λ2].
Then the mapping % : d 7→ %d is continuous and if additionally
for every d ∈ [λ1, λ2] the adaptation map Φd satisfies Φd(βλ1) >
Φd(αλ2), then % : d 7→ %d behaves like a Devil’s staircase.
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Parameter values: vr = 0.1, γ = 0.05

Overlapping case: I., III. and IV.b

Definition: Rotation interval [a(Ψ), b(Ψ)]

a(Ψ) := inf
w

lim inf
n→∞

Ψn(w)− w
n(α− β)

, b(Ψ) := sup
w

lim sup
n→∞

Ψn(w)− w
n(α− β)

The analysis of Φ can be made via the results on old heavy maps
([3]) and with the use of enveloping maps Ψl and Ψr which pro-
vide the effective formula for the rotation interval.

Ψl(w) := inf{Ψ(z) : z ≥ w}
Ψr(w) := sup{Ψ(z) : z ≤ w}

a(Ψ) = %(Ψl)

b(Ψ) = %(Ψr)
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The nontrivial rotation interval corresponds to complex dynamics.
In particular for every p/q ∈ (a(Ψ), b(Ψ)), there is a periodic orbit
with period q.

Theorem [Condition for orbits of all periods]. Existence of a
fixed point wf ∈ (β, w1) and a periodic orbit with period q > 1
implies existence of periodic orbits with arbitrary periods q̃ > q
and with MMBO. The same holds if wf ∈ (w1, α) provided that the
q-periodic orbit is not of the type q/q (i.e. it admits points to the
left and to the right of w1).
In particular, whenever there is a fixed point wf ∈ (β, α) and a
periodic orbit of the type 1/2, then there are periodic orbits of all
periods, exhibiting MMBO.

Proposition. Suppose that for the fixed parameters vR, a, b, γ
and I and d ∈ [λ1, λ2] the maps Φd are in the overlapping regime.
Then the maps d 7→ a(Ψd) and d 7→ b(Ψd), assigning to d the
endpoints of the rotation interval of Φd, are continuous.

Moreover, in general we can
expect that the maps d 7→ a(Ψd)

and d 7→ b(Ψd) will also behave
like a Devil’s staircase.
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Parameter values: vr = 0.1, γ = 0.05

Conclusions and perspectives
We are able to predict the output properties using geometrical
analysis
In the overlapping and non-overlapping cases existing mathe-
matical tools of rotation theory provide complete description of
the dynamics of Φ

In the remaining cases (e.g. of both positive and negative
jumps) one can obtain weaker results on the dynamics of Φ;
in particular the rotation interval computed via the enveloping
maps Ψl and Ψr gives the upper-estimate for the possible types
p/q of periodic orbits
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For multiple discontinuity points the dynamics is even more
complex and harder to be completely classified. However,
some rigorous results can be obtained via the theory of piece-
wise continuous piece-wise monotone maps.
Consider forcing of the IF system through variable I. A simple
starting point is a square signal for I(t): the performed analysis
can be generalized using a stroboscopic map.
Tackle the problematic of 3D vector field appearing with two re-
covery variables. In this case we have Φ : R2→ R2. The gene-
ral mechanism for generating MMBO is the same, yet leading
to richer behaviors due to the geometric structure of the flow.
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