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A geometric mechanism for MM(B)O

Nonlinear integrate-and-fire neuron models

Reset mechanism:

{%F(v)uﬂrl

v(t*) = vy
%—r‘f:a(bv—w) v(t)—>oo:>{

t—t* w(t®) =yw(t™ ) +d
ea, b, I € R: parameters of the vector field (I is the input current received
by the neuron);

o ' ¢ C3(R): strictly convex, lim,,_, F'(v) < 0, lim,_ F'(v) = oo and
lim, o F'(v)/v*™ > «.; in the simulations we consider the so-called quartic
model with model F(v) = v* + 2cv (with ¢ = 0.1)

e d >0, € (0,1]: parameters connected with the reset mechanism

The model can display complex dynamics including Mixed-Mode
Oscillations and Mixed-Mode Bursting Oscillations (MM(B)O)
that are sequences of spikes interspersed by small subthreshold
oscillations.
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The reset line intersects the stable manifold separating regions corresponding to a specific
number of small oscillations (from 0 to 3.5). Parameters: quartic model with a = 0.1, b = 1,

I = 0.175; initial conditions v = 0.012 and w chosen within the different intervals

Adaptation map

A spike train for a spiking solution (V' (¢; v,-, w), W (t; v, w)) starting
with (v, w) at ty can be recovered via the sequence {wy},,cn Of
the values of the adaptation variable exactly after the moment of
the n-th spike, i.e. if {¢,,},,cn IS the sequence of spike times for
this solution, then

wy, = w(ty) = yw(t, ) +d.

Definition: Adaptation map

The adaptation map ¢ associates to a value of the adaptation
variable w the value of the adaptation variable after reset:

O(w) := YW (t*; vy, w) + d,

Since w, = ®"(ty), the spike train can be qualitatively described
via the dynamics of &, with fixed points of ® corresponding to
tonic, regular spiking and periodic orbits to bursts.

Phase Space Adaptation Map
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o (w;)i—1.., - intersections of the reset line
{v =v,} with SMSFP

e p;- the index such that (w;);<,, are below the
v-nullcline and (w;);~,, are above

® (I;)i—..p+1 - intervals with endpoints w;

e «, [ - the value of w after a spike for an ini-
tial condition on the upper and, respectively,
lower branch of UMSFP

-0.5
-1.5

Theorem. The adaptation map has the following properties:

1.in any given interval I, with¢ € {1---p+ 1}, the map is increas-
ing for w < w* and decreasing for w > w*

2. at the boundaries of the definition domain D, {w;;7 = 1---p},
the map has well-defined and distinct left and right limits:

B, < p
o, J>Dp1

= d(w) = a, 0t d(w)

1imw_>wj— d(w) = B, hmw_)w; P (w)

3. the derivative ¢'(w) diverges at the discontinuity points:

{hmw%wzi d(w)=00 i<p

hmw—>w;t CID’(w) = —00 1 >DPq

d

4. for w < min{m, wi, w™™} we have ¢(w) > yw +d > w

Mathematical context: Rotation Theory

Assume that the line v = v, has two intersections with SMSFP:
w1 and woy, with wy < wy. We distinguish the following cases:

. 0 <w; < a<w Il o < wy < wy 1. &(6) > 5

IV.a d(a) < &(5) IV.b &(a) > O(5)
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Parameter values: a = 0.1, b=1, I = —3(a/4)*3(2a — 1) + 0.1 ~ 0.1175 and v, = 0.1158.

Non-overlapping case: L., I, lll. and IV.a

¢ . |8,a] — |B,al can be seen as a degree-one circle map with
discontinuity at w;. By ¥ : R — R denote the lift of .

Definition: Rotation nhumber

T U (w) — w
el w) = I e — B

In the non-overlapping case the rotation number is well-defined
and does not depend on w (cf.[2],[4]).

e o =0 mod 1 = tonic, regular spiking (for every initial condi-
tion wy € [B,a] \ {w1})

oo =p/qg € Q\Z = MMBO (with periodicity of interspike-
intervals and interspersing oscillations)

e o c R\ Q = no periodic orbits and we observe chaos.
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Parameter values: v, = 0.1 and v = 0.05. Top: d = 0.08; rotation number o = 0.

Bottom: d = 0.08657; rotation number o = p/q

Proposition. Let a, b, v, I, v be fixed and consider d € [A{, Aq].
Then the mapping ¢ : d — o, Is continuous and if additionally
for every d € [\, \9] the adaptation map &, satisfies o,4(3),) >
dy(ary,), then o : d — o4 behaves like a Devil's staircase.
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Parameter values: v, = 0.1, v = 0.05

Overlapping case: L, lll. and IV.b

Definition: Rotation interval [a(¥), b(W)]

| U (w) — w
b(W) := sup lim su
(¥) up lim sup = s

U w) —
a(V) := inf lim inf (W) —w

w n—oo n(a— ) 7

The analysis of & can be made via the results on old heavy maps
([3]) and with the use of enveloping maps V¥; and ¥, which pro-
vide the effective formula for the rotation interval.
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The nontrivial rotation interval corresponds to complex dynamics.
In particular for every p/q € (a(V),b(V)), there is a periodic orbit
with period g.

Theorem [Condition for orbits of all periods]. Existence of a
fixed point w; € (8,w;) and a periodic orbit with period ¢ > 1
Implies existence of periodic orbits with arbitrary periods ¢ > ¢
and with MMBO. The same holds if w¢ € (wq, o) provided that the
q-periodic orbit is not of the type ¢/q (i.e. it admits points to the
left and to the right of wy).

In particular, whenever there is a fixed point wy € (8,«) and a
periodic orbit of the type 1/2, then there are periodic orbits of all
periods, exhibiting MMBO.

Proposition. Suppose that for the fixed parameters vp, a, b, v
and [ and d € |\, \9] the maps P, are in the overlapping regime.
Then the maps d — a(V,;) and d — b(V,), assigning to d the
endpoints of the rotation interval of ®,, are continuous.
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Parameter values: v, = 0.1, v = 0.05

Conclusions and perspectives

@ We are able to predict the output properties using geometrical
analysis

@ In the overlapping and non-overlapping cases existing mathe-
matical tools of rotation theory provide complete description of
the dynamics of ¢

@ In the remaining cases (e.g. of both positive and negative
jumps) one can obtain weaker results on the dynamics of &;
In particular the rotation interval computed via the enveloping
maps V; and ¥, gives the upper-estimate for the possible types
p/q of periodic orbits

Phase Space Adaptation Map
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= For multiple discontinuity points the dynamics is even more
complex and harder to be completely classified. However,
some rigorous results can be obtained via the theory of piece-
wise continuous piece-wise monotone maps.

= Consider forcing of the IF system through variable I. A simple
starting point is a square signal for I(¢): the performed analysis
can be generalized using a stroboscopic map.

= Tackle the problematic of 3D vector field appearing with two re-
covery variables. In this case we have @ : R? — R?. The gene-
ral mechanism for generating MMBO is the same, yet leading
to richer behaviors due to the geometric structure of the flow.
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