A geometric mechanism for mixed-mode bursting oscillations in a hybrid neuron model

Laboratoire de
Mathématiques
et Modélisation
Justyna Signerska-Rynkowska

INRIA Paris-Rocquencourt, EPI MYCENAE and Mathematical Neuroscience Lab, CIRB - Collège de France

A geometric mechanism for MM(B)O

Nonlinear integrate-and-fire neuron models
$\left\{\begin{array}{l}\frac{\mathrm{d} v}{}=F(v)-w+I \quad v(t) \xrightarrow{\mathrm{d} t}=\mathrm{Reset} \text { mechanism: } \\ \frac{\mathrm{d} w}{\mathrm{~d} t}=a(b v-w)\end{array} \quad \begin{array}{l}t\left(t^{*}\right.\end{array} \quad\left\{\begin{array}{l}v\left(t^{*}\right)=v_{r} \\ w\left(t^{*}\right)=\gamma w\left(t^{*-}\right)+d\end{array}\right.\right.$

- $a, b, I \in \mathbb{R}$: parameters of the vector field (I is the input current received by the neuron);
- $F \in \mathcal{C}^{3}(\mathbb{R})$: strictly convex, $\lim _{v \rightarrow-\infty} F^{\prime}(v)<0, \lim _{v \rightarrow \infty} F^{\prime}(v)=\infty$ and $\lim _{v \rightarrow \infty} F(v) / v^{2+\varepsilon} \geq \alpha$.; in the simulations we consider the so-called quartic model with model $F(v)=v^{4}+2 c v$ (with $c=0.1$)
- $d>0, \gamma \in(0,1)$: parameters connected with the reset mechanism

The model can display complex dynamics including Mixed-Mode Oscillations and Mixed-Mode Bursting Oscillations (MM(B)O) that are sequences of spikes interspersed by small subthreshold oscillations.

竍 $t=0.175$; initial conditions $v=0.012$ and w chosen within the different intervals

Adaptation map

A spike train for a spiking solution $\left(V\left(t ; v_{r}, w\right), W\left(t ; v_{r}, w\right)\right)$ starting with $\left(v_{r}, w\right)$ at t_{0} can be recovered via the sequence $\left\{w_{n}\right\}_{n \in \mathbb{N}}$ of the values of the adaptation variable exactly after the moment o the n-th spike, i.e. if $\left\{t_{n}\right\}_{n \in \mathbb{N}}$ is the sequence of spike times for this solution, then
$w_{n}:=w\left(t_{n}\right)=\gamma w\left(t_{n}^{-}\right)+d$.

Definition: Adaptation map

The adaptation map Φ associates to a value of the adaptation variable w the value of the adaptation variable after reset:

$$
\Phi(w):=\gamma W\left(t^{*} ; v_{r}, w\right)+d,
$$

Since $w_{n}=\Phi^{n}\left(t_{0}\right)$, the spike train can be qualitatively described via the dynamics of Φ, with fixed points of Φ corresponding to tonic, regular spiking and periodic orbits to bursts.

$-\left(w_{i}\right)_{i 1 . . . p}-$ intersections of the reset line
$\left\{v=v_{\}}\right\}$with SMSFP $\left\{v=v_{r}\right\}$ with SMSFP
p_{1}-the index such that $\left(w_{i}\right)_{i \leq p_{1}}$ are below the
v-nullcline and $\left(w_{i} i_{i>p}\right.$ are above v-nullcline and $\left(w_{i}\right)_{i>p_{1}}$ are above - $\left(I_{i}\right)_{i=0 .-p+1}$ - intervals with endpoints w_{i} - α, β - the value of w after a spike for an initial condition on the upper and, respectively lower branch of UMSFP

Theorem. The adaptation map has the following properties 1. in any given interval I_{i} with $i \in\{1 \cdots p+1\}$, the map is increas ing for $w<w^{*}$ and decreasing for $w>w^{*}$
2. at the boundaries of the definition domain $\mathcal{D},\left\{w_{i} ; i=1 \cdots p\right\}$, the map has well-defined and distinct left and right limits:

$$
\begin{cases}\lim _{w \rightarrow w_{i}^{-}} \Phi(w)=\alpha, \lim _{w \rightarrow w_{i}^{+}} \Phi(w)=\beta, & i \leq p_{1} \\ \lim _{w \rightarrow w_{j}^{-}} \Phi(w)=\beta, \lim _{w \rightarrow w_{j}^{+}} \Phi(w)=\alpha, & j>p_{1}\end{cases}
$$

3. the derivative $\Phi^{\prime}(w)$ diverges at the discontinuity points:

$$
\begin{cases}\lim _{w \rightarrow w_{i}^{ \pm}} \Phi^{\prime}(w)=\infty & i \leq p_{1} \\ \lim _{w \rightarrow w_{i}^{ \pm}} \Phi^{\prime}(w)=-\infty & i>p_{1}\end{cases}
$$

4. for $w<\min \left\{\frac{d}{1-\gamma}, w_{1}, w^{* *}\right\}$ we have $\Phi(w) \geq \gamma w+d>w$

Mathematical context: Rotation Theory
Assume that the line $v=v_{r}$ has two intersections with SMSFP: w_{1} and w_{2}, with $w_{1}<w_{2}$. We distinguish the following cases:
 IV.a $\Phi(\alpha) \leq \Phi(\beta) \quad$ IV.b $\Phi(\alpha)>\Phi(\beta$

Non-overlapping case: I., II., III. and IV.a

$\Phi:[\beta, \alpha] \rightarrow[\beta, \alpha]$ can be seen as a degree-one circle map with discontinuity at w_{1}. By $\Psi: \mathbb{R} \rightarrow \mathbb{R}$ denote the lift of Φ
Definition: Rotation number

$$
\varrho(\Psi, w):=\lim _{n \rightarrow \infty} \frac{\Psi^{n}(w)-w}{n(\alpha-\beta)}
$$

In the non-overlapping case the rotation number is well-defined and does not depend on w (cf.[2],[4])
$\bullet \varrho=0 \bmod 1 \Longrightarrow$ tonic, regular spiking (for every initial condition $\left.w_{0} \in[\beta, \alpha] \backslash\left\{w_{1}\right\}\right)$

- $\varrho=p / q \in \mathbb{Q} \backslash \mathbb{Z} \Longrightarrow$ MMBO (with periodicity of interspikeintervals and interspersing oscillations)
$\bullet \varrho \in \mathbb{R} \backslash \mathbb{Q} \Longrightarrow$ no periodic orbits and we observe chaos

Parameter values: $v_{r}=0.1$ and $\gamma=0.05$. Top: $d=0.08$; rotation number $\rho=0$.
Bottom: $d=0.08657$; rotation number $\rho=p / q$
Proposition. Let a, b, v_{r}, I, γ be fixed and consider $d \in\left[\lambda_{1}, \lambda_{2}\right]$. Then the mapping $\varrho: d \mapsto \varrho_{d}$ is continuous and if additionally for every $d \in\left[\lambda_{1}, \lambda_{2}\right]$ the adaptation map Φ_{d} satisfies $\Phi_{d}\left(\beta_{\lambda_{1}}\right)>$ $\Phi_{d}\left(\alpha_{\lambda_{2}}\right)$, then $\varrho: d \mapsto \varrho_{d}$ behaves like a Devil's staircase.

Overlapping case: I., III. and IV.b
Definition: Rotation interval $[a(\Psi), b(\Psi)]$

$$
a(\Psi):=\inf _{w} \liminf _{n \rightarrow \infty} \frac{\Psi^{n}(w)-w}{n(\alpha-\beta)}, \quad b(\Psi):=\sup _{w} \limsup _{n \rightarrow \infty} \frac{\Psi^{n}(w)-w}{n(\alpha-\beta)}
$$

The analysis of Φ can be made via the results on old heavy maps ([3]) and with the use of enveloping maps Ψ_{l} and Ψ_{r} which provide the effective formula for the rotation interval.
$\Psi_{l}(w):=\inf \{\Psi(z): z \geq w\}$
$\Psi_{r}(w):=\sup \{\Psi(z): z \leq w\}$
$a(\Psi)=\varrho\left(\Psi_{l}\right)$
$b(\Psi)=\varrho\left(\Psi_{r}\right)$

The nontrivial rotation interval corresponds to complex dynamics In particular for every $p / q \in(a(\Psi), b(\Psi))$, there is a periodic orbit with period q.

Theorem [Condition for orbits of all periods]. Existence of a fixed point $w_{f} \in\left(\beta, w_{1}\right)$ and a periodic orbit with period $q>1$ implies existence of periodic orbits with arbitrary periods $\tilde{q}>q$ and with MMBO. The same holds if $w_{f} \in\left(w_{1}, \alpha\right)$ provided that the q-periodic orbit is not of the type q / q (i.e. it admits points to the left and to the right of w_{1}).
In particular, whenever there is a fixed point $w_{f} \in(\beta, \alpha)$ and a periodic orbit of the type $1 / 2$, then there are periodic orbits of all periods, exhibiting MMBO.

Proposition. Suppose that for the fixed parameters v_{R}, a, b, γ and I and $d \in\left[\lambda_{1}, \lambda_{2}\right]$ the maps Φ_{d} are in the overlapping regime Then the maps $d \mapsto a\left(\Psi_{d}\right)$ and $d \mapsto b\left(\Psi_{d}\right)$, assigning to d the endpoints of the rotation interval of Φ_{d}, are continuous.

Moreover, in general we can expect that the maps $d \mapsto a\left(\Psi_{d}\right)$ and $d \mapsto b\left(\Psi_{d}\right)$ will also behave like a Devil's staircase

Conclusions and perspectives

- We are able to predict the output properties using geometrical analysis
- In the overlapping and non-overlapping cases existing mathematical tools of rotation theory provide complete description of the dynamics of Φ
- In the remaining cases (e.g. of both positive and negative jumps) one can obtain weaker results on the dynamics of Φ in particular the rotation interval computed via the enveloping maps Ψ_{l} and Ψ_{r} gives the upper-estimate for the possible types p / q of periodic orbits

\Rightarrow For multiple discontinuity points the dynamics is even more complex and harder to be completely classified. However, some rigorous results can be obtained via the theory of piecewise continuous piece-wise monotone maps.
\triangle Consider forcing of the IF system through variable I. A simple starting point is a square signal for $I(t)$: the performed analysis can be generalized using a stroboscopic map.
\Rightarrow Tackle the problematic of 3D vector field appearing with two recovery variables. In this case we have $\Phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. The general mechanism for generating MMBO is the same, yet leading to richer behaviors due to the geometric structure of the flow.

References

[1] E. Izhikevich. Simple Model of Spiking Neurons. IEEE Transactions on Neural Networks 14:1569-1572, 2003.
[2] J.P. Keener. Chaotic Behavior in Piecewise Continuous Difference Equations. Transactions of the American Mathematical Society, 261:589-604, 1980.
[3] M.Misiurewicz. Rotation intervals for a class of maps of the real line into itself. Ergodic Theory Dynam. Systems, 6:117-132, 1986
[4] F. Rhodes and Ch. L. Thompson. Rotation numbers of discontinuous orientation preserving circle maps. J. London Math. Soc., 34:360-368, 1986
[5] J. Touboul and R. Brette. Spiking Dynamics of Bidimensional Integrate-and-Fire Neurons.

