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Introduction and Outline

Qualitative analysis of dynamical systems in its broader sense addresses the question of charac-

terizing the essential structure of dynamics for describing the phase portrait and, therefore, the

qualitative properties of a system, in particular according to the values of its parameters. The

theories that have been (and keep being) developed with this aim, such as bifurcation theory

and geometric singular perturbation theory, provide useful tools for analyzing the dynamical

mechanisms underlying the complex behaviors of a system. Yet, they even overcome this goal by

providing rigorous results to approximate or reduce the dynamics and to stress the structure of

the parameter space according to the panels of behaviors that the system can adopt. Therefore

they offer a better context to retrieve also quantitative information on the generated orbits.

Naturally applied to models in life sciences for characterizing the impact of the parameters

on the orbits (and thus the signals generated by the state variables), qualitative analysis has

been proven to be particularly useful in the neuroscience field. The general purpose of mathe-

matical neuroscience is to develop models and dedicated analysis methods to better apprehend

complex relationships between brain function and structure. In addition to gaining a better

understanding of neural compartments and their dysfunctions, this process enables a transfer

of neuroscience knowledge by offering new ways to process information. To develop new mo-

dels, to study their mathematical properties for judging their ability to reproduce individual

or mesoscopic activities, and to fit their outputs with actual data, allow us to improve our

understanding of the mechanisms of brain function in humans and animals.

In this context, the problematic of parameter estimation in models generating complex

behaviors (transitory regime, complex oscillations, differential response to impulse) appears

to be essential. Methodological tools based on original approaches are needed to tackle this

question, and may differ according to the model features and the biological knowledge (from

both the theory and the experimental data). From the application viewpoint, they rely on

original processes for model fitting and an unusual approach of experimental signals for retrieving

information relevant to the dynamical mechanisms.
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INTRODUCTION AND OUTLINE

This manuscript present models, using the dynamical system formalism, developed at diffe-

rent scales (individual, population, network) of several neural activities. It summarizes results

obtained from the analysis of these systems generating complex oscillations based on bifurcation

analysis, geometric singular perturbation theory and desingularization methods. Although the

models share common features such as formalism and relative low-dimension, they differ in their

structure and properties, as well as the level of interpretation of the parameters. Hence the link

between the dynamics analysis and the parameter estimation is a two-way road. The challenge

can be to fit the outputs of the system to given quantitative features (with biologically relevant

hypothesis). Or it can consist, for a model based on known biological mechanisms, in exploring

the panel of behaviors, identifying the regions in the parameter space corresponding to each of

them and studying the associated transitions between them. Within this latter question, we

focus on Mixed-Mode Oscillations (MMOs) and Mixed-Mode Bursting Oscillations (MMBOs)

generated by two different mechanisms: the canard-induced MMOs in differentiable dynamics

and a geometric mechanism in a hybrid system.

The presented results are based on the published articles [5, 6, 9, 10, 12, 13, 14, 15] and

studies submitted for publication [16, 17, 19] listed in the Internal References at the end of this

manuscript. The manuscript is organized as follows.

Chapter 1. We introduce basic models (in the sense that they will be used for building

more sophisticated ones) of neural activities, either well-known – non-linear Integrate-and-fire,

FitzHugh-Nagumo – or proposed for the first time in the above articles – intracellular cal-

cium concentration (ICC) model, Gonadotropin Releasing Hormone (GnRH) secretion model,

extended neural-mass model (NMM), neuron-glia mass model (NGMM). The chapter is split

according to the scale of the modeling paradigm: individual cell activities and mass approach

considering coupled neuron populations. We briefly recall the structure of each model (biologi-

cal mechanisms, state variables and parameters), its qualitative behavior and results needed for

subsequent analysis.

Chapter 2. We present methodological tools based on bifurcation analysis and geometric

singular perturbation for tackling the question of parameter estimation in different contexts

defined by the considered model and the associated quantitative specifications brought by the

biological knowledge. We summarize theoretical results, based on implicit reductions to slow

manifolds, that ground a method for tuning the parameter of the three timescale GnRH Se-

cretion model to reach quantitative specifications [5]. We present a method based on MMOs

analysis for reproducing the variable oscillatory patterns in ICC with the corresponding model

[10]. We present the results of a bifurcation analysis of the NMM for (i) characterizing the panel

of possible qualitative patterns, (ii) studying the impact of each excitatory feedbacks involved in

the model, (iii) reproducing an experimental time-series recorded in an epileptic mice [13]. We

combine bifurcation theory and classical constrained optimization method for characterizing the

quantitative conditions on coupling gain parameters of the NGMM corresponding to differential

response to astrocyte deficiency [15].

Chapter 3. We study MMOs and MMBOs pattern generated by the GnRH secretion model

[9], on the one hand, and by the non-linear integrate-and-fire model [19], on the other hand. In

both cases, we focus on characterizing the parameter values corresponding to specific features in

2



INTRODUCTION AND OUTLINE

the signature and its changes with parameter values. In the first case, we use blow-up methods

for desingularizing a three-time scale reduction of the GnRH secretion model featuring a folded

node and prove the existence of sectors of rotations. We estimate the contraction of the global

return map and state the constraints on the parameters for ensuring sufficient counterbalance

of the expansion. We therefore show that the canard-induced MMOs undergo smooth signature

transition, i.e. a small oscillation is added without appearance of chaotic dynamics. In the

second case, we study the dynamics of the non-linear Integrate-and-Fire system by mean of

analyzing an associated discontinuous 1D map. We extend results of the rotation theory and

link the rotation numbers to the signature of generated MM(B)O orbits. We stress the partition

of the reset parameter space according to the signature.

Chapter 4. We tackle the problematic of complex oscillations synchronization in bilaterally

coupled systems and network models. We present a generalization of the GnRH secretion

model accounting for two systems bilaterally coupled impacted by the same regulation from

a slower dynamics [17]. We show how to reproduce exotic GnRH secretion patterns observed

in experimental data and highlight the synchronization/desynchronization process between the

two coupled systems occurring in the pulsatility phase. Using two approaches of reduction,

we estimate the time of desynchronization according to the parameters. In the subsequent

section, we summarize a synchronization study between two identical ICC dynamics, generating

MMOs, under the impact of a symmetric coupling [16]. We characterize the 6D model behaviors

according to the coupling gain value for both inhibition and excitation cases and the persistence

of MMOs in the excitatory case. We prove the frequency decrease when the inhibitory coupling

is strengthened. We also present a network model studied in [10] in which all cells reproduce

MMO patterns of ICC with individual quantitative features and synchronize episodically – yet

periodically – under the influence of a global variable. We use both the analysis of the 3D

model of ICC in individual cells and qualitative results on the network dynamics for reprodu-

cing the quantitative features and the different types of episodic synchronization observed in

experimental data from GnRH neurons.

In the conclusion, we present some perspectives and briefly describe preliminary results of

ongoing studies.
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Chapter 1

A few models in Neuroscience : complex

oscillations and qualitative analysis

At the microscopic level, neurons communicate via spontaneous and rapid variations in mem-

brane potential, called action potential or nerve impulse. Together these electrical phenomena

and their related properties have been studied in models, in particular using dynamical system

formalism. These models, such as the celebrated model developed by Hodgkin and Huxley

[1952], enable us to understand and simulate mechanisms that reproduce neuronal behavior in

generating action potential, dendritic integration and axonal propagation. An exciting chal-

lenge consists in studying the overall behavior of a neuronal population using either networks

of microscopic models (for instance [Stefanescu and Jirsa, 2008]) or macroscopic models based

on the organization of cell interactions (for instance [Jansen and Rit, 1995]).

Mathematical analysis of such models provide a key tool for interpreting the electrophysio-

logical data and for revealing the different (patho-)physiological mechanisms that underlie the

observed patterns. These models also provide assumptions about the behaviors of the observed

system according to parameters that can be interpreted from a biophysical point of view. The

choice of the modeling paradigm depends strongly on the tackled problem and the biological

question. Yet, due to the intrinsic complexity of neuronal activities, all models capturing the

essential features of neuronal mechanisms at a given scale belong to the class of complex systems.

In this chapter, we present a few compact models either well-known or introduced in the

context of the studies presented in this thesis. We briefly recall essential properties that are

needed for establishing the results summarized in the subsequent chapters.
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Chapter 1. A few models in Neuroscience : complex oscillations and qualitative analysis

1.1 Compact models of individual neural cells activity

1.1.1 Integrate-and-fire model

The seminal integrate-and-fire model built by [Lapicque, 1907] is the first attempt to reproduce

the sequence of spike emissions by a neuronal cell with a simple dynamics. This hybrid system

couples a differential equation describing the dynamics of the cell depolarization, with a discrete

dynamics corresponding to the emission of action potentials and the subsequent reset. This

formalism has been used during a century for building and studying models reproducing more

accurately the underlying mechanisms and the experimental outputs (see for instance [Brette

and Gerstner, 2005, Coombes et al., 2012, Izhikevich, 2004, Touboul, 2008]). Among these

models, nonlinear bidimensional integrate-and-fire neuron models are simple yet very versatile

representations of neuronal dynamics and widely used in applications. When the neural cell is

not firing an action potential, these models describe the dynamics of the membrane potential

v together with an adaptation variable w as a nonlinear differential equation (sub-threshold

dynamics):

v̇ = F (v)− w + I (1.1a)

ẇ = a(bv − w), (1.1b)

where a and b are real parameters accounting respectively for the time constant ratio between

the adaptation variable and the membrane potential, and for the coupling strength between

these two variables. The real parameter I represents the input current received by the neuron,

and F is a real function accounting for the leak and spike initiation currents.

In the following, we assume that F is regular (at least three times continuously differen-

tiable), strictly convex and its derivative admits a negative limit at −∞ and an infinite limit

at +∞. Moreover, we assume that F is superquadratic at +∞ (i.e. there exists η > 0 such

that F grows faster than v2+η), so that the membrane potential blows up in finite time and,

at this explosion time t∗, the adaptation variable converges to a finite value w(t∗−). A spike is

emitted at time t∗ when the membrane potential blows up, i.e. lim
t→t∗−

v(t) = +∞. Subsequently,

the voltage is reset and the adaptation variable updated. Considering spikes as stereotypical

electrical impulses s(t) = 1
δtU( tδt) where U(t) is the spike shape rescaled on the dimensionless

interval [0, 1], and δt the spike duration, assumed to be small compared to the input integration

timescale 0 < δt� 1/ε. The adaptation variable integrates this sharp impulse:

w(t∗ + δt) = w(t∗−)e−εδt +

∫ δt

0
bs(t)e−ε(δt−s) ds = γw(t∗−) + d

with γ = e−εδt < 1 and d = b
∫ 1

0 S(u)e−εδt(1−u) du. Hence, the reset mechanism is defined as

follows: {
v(t∗) = vr,

w(t∗) = γw(t∗−) + d,
(1.2)

with γ ≤ 1 and d ≥ 0 corresponding to the effect on the adaptation variable of a spike emission.

The excitability properties of the system governed by the sub-threshold system (1.1) were

investigated exhaustively in [Touboul, 2008]. It was found that all models undergo a saddle-

node bifurcation and a Hopf bifurcation, organized around a Bogdanov-Takens bifurcation,

6



Section 1.1. Compact models of individual neural cells activity

along curves that can be expressed in closed form. An instance of the bifurcation diagram

with respect to (I, b) is depicted in Figure 1.1. For (I, b) in region B, the stable manifold of

Sad
dle

-no
de
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V

w
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Saddle

Stable manifold
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Figure 1.1: Bifurcations of the adaptive exponential model and its saddle-node (brown),
Hopf (green), saddle homoclinic (purple) and Bogdanov-Takens (BT) bifurcations in the (I, b)
parameter plane. The analytical curve separating regions of unstable focus and unstable node
is added in dashed blue. Typical phase planes in the different regions of interest are depicted
as smaller insets. They feature the nullclines (dashed black) and the stable manifold (red).

the saddle is made in part of a heteroclinic orbit Ws
− winding around the unstable focus (see

Figure 1.2). Hence, if the value of vr is chosen such that the reset line v = vr crosses the

heteroclinic orbit, typical orbits display Mixed-Mode Oscillations formed by the alternation of

small oscillations around the focus (sub-threshold oscillations during the quiescence phase) and

subsequent blow-up (corresponding to spike emission). For low enough reset values, several

spikes are emitted and train of spikes (bursts) are generated before the next quiescence phase,

leading to Mixed-Mode Bursting Oscillations (MMBO).

Hence, even in region B of the bifurcation diagram, the model benefits from a great versatility

and can generate a large panel of patterns according to the values of the reset mechanisms vr, γ

and d. In section 3.2, we present the results of a first study of the MM(B)Os signature according

to the reset parameter values, by mean of an induced return map (adaptation map) and its

rotation properties. Note that the mechanism generating the small oscillations, that can be

compared to the one underlying Resonate-and-Fire systems, differs from slow-fast mechanism

of canard-induced MMOs.

1.1.2 Fitzhugh-Nagumo model: a paragon model of excitable cell

FitzHugh-Nagumo’s system [FitzHugh, 1961, Nagumo et al., 1962] is one of the most famous

differentiable system featuring the excitability property. Developed to reproduce a neuron firing

rate by a compact dynamics, this slow-fast system has also been widely studied for identifying

fine dynamical behaviors, including canard phenomenon first highlighted on a specific case of

this dynamics. Several models presented in this thesis are based on this dynamics (extension

with a third variable, coupling between oscillators, slow-fast regulation, etc). We only briefly

7
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Figure 1.2: Instances of orbits and generated signals (regular spiking and MMBO). The dotted
lines represent the nullclines of the sub-threshold system.

recall the properties that will be useful for the presentation of the subsequent results and refer

the reader to the literature for more details.

We use the following parameterization of the slow-fast FitzHugh-Nagumo dynamics

dX

dτ
= −Y + g(X) (1.3a)

dY

dτ
= ε (b0X + b1Y + b2) (1.3b)

with g(X) = −X3 + 3ν2X. Classical changes of parameters and variables show that this one-

parameter family of cubic functions allows to embed all qualitative and quantitative features

of the output obtained with any other cubic function. We assume the timescale separation

parameter ε to be small, b1 small (in a sense defined according to the different contexts) and

b0 > 0 (without loss of generality when considering a single system, we assume b0 = 1). In

the subsequent models, we will consider either positive and negative values for b1. In the

interpretation of this dynamics as a model of a single neuron activity, X represents the electric

activity while the recovery variable Y relies on ionic dynamics. Nevertheless, in the following, we

will also use this dynamics as a paragon of excitable system reproducing a fast switch between

two states that are transitory stable.

We introduce the classical terminology of slow-fast system analysis. Hence, the cubic critical

manifold Y = g(X) consists of singular points of the fast dynamics (1.3a) for the various value

of the slow variable Y considered as a parameter. The right fold P g+ = (ν, 2ν3) and the left fold

P g− = (−ν,−2ν3) split the critical manifold into three branches: the left and right branches are

attractive for the fast dynamics and the middle branch is repulsive. After the theory of Fenichel

[1979], any compact submanifold M of these branches (that does not contain a fold point)

perturbs for ε small enough into an invariant and normally hyperbolic manifold lying in a O(ε)-

neighborhood of M for the Hausdorff distance. Despite such manifold is not uniquely defined,

in the case of the left (resp. right) branches, for any ε, a single attractive perturbed manifold

8



Section 1.1. Compact models of individual neural cells activity

admits an extension by the flow that is asymptotic to the critical manifold for X → −∞ (resp.

−∞): this one is called the left (resp. right) slow manifold.

In the following, we only recall briefly a few results on the bifurcations according to (b1, b2, ε)

that will be used in the sequel. Therefore, we assume both b1 and b2 positive and small enough

for the Ẏ -nullcline to intersect the critical manifold on the middle branch at a repulsive singular

point (X0, Y0). Two other intersection points lie respectively on the left and right branch. A

surface of Hopf bifurcation of (X0, Y0) exists in (b1, b2, ε) defined for ε small enough

Hp : b2 = hp(b1, ε) = ν + 2b1ν
3 +O(ε) (1.4)

Such bifurcation happens when the middle singular point (X0, Y0) is close to the left fold P g− of

the critical manifold. The Hopf bifurcation gives birth to a small limit cycle which surrounds the

middle singular point (X0, Y0) as (ε, b1, b2) crosses transversallyHp to enter the set b2 < hp(b1, ε).

This limit cycle undergoes a Canard explosion as (ε, b1, b2) moves away from Hp and becomes

quickly a big relaxation limit cycle (see Figure 1.3-a)

2⌫

�2⌫

⌫

�⌫

Figure 1.3: a) Limit cycle of the Regulating System (RSε) for the following parameter values:
b1 = 0.1, b2 = 1, ε = 0.1. b) Limit-periodic set Γ0: limit of the family of genuine limit cycles
(C(b1, b2, ε))ε∈]0;ε0] as ε tends to 0 according to the Hausdorff distance.

We introduce the projections of the fold points along the fast fibers on the opposite branch:

Qf+ = (−2λ, 2λ3), Qg+ = (−2ν, 2ν3). We can state the following lemma that ensures the existence

of a relaxation limit cycle and its asymptotic shape when ε→ 0.

Lemma 1.1. For each α > 0, for all (b1, b2) such that 0 ≤ b2 < min(ν+ 2b1ν
3−α; 2ν− 2b1ν

3),

there exists ε0 > 0 such that, for all ε ∈]0, ε0[, the limit cycle of (RSε) exists and contains some

points of [ν,+∞[×R. Moreover, for (b1, b2) fixed, the limit cycle C(b1, b2, ε) lies in a O(ε2/3)-

neighborhood of the union Γ0 of the two branches of the cubic Y = g(X) linking Qg+ to P g− and

Qg− to P g+, with the segments [P g+, Q
g
+] and [P g−, Q

g
−].

Fixing the value of α, we will be interested in the homoclinic bifurcation of the relaxation

limit cycle described by the following statement.

Proposition 1.2. There exists, locally near ε = 0, a C1-surface of homoclinic connections in

the (b1, b2, ε)-space given by the graph over b1 ∈
]
ν+α
4ν3

, 1
ν2

[
:

Hc : b2 = hc (b1, ε) = 2ν − 2ν3b1 +O
(
ε2/3

)
.
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Chapter 1. A few models in Neuroscience : complex oscillations and qualitative analysis

1.1.3 Dynamics of intracellular calcium concentration in neural cell

Models of intracellular calcium concentrations have been proposed in the literature (for in-

stance [Harvey et al., 2011]) with the aim of reproducing a large panel of oscillatory behaviors.

Focusing on certain types of neural cells, we have designed a model as compact as possible (three-

dimensional) dedicated to reproduce the features observed in the experimental recordings and

accounting for the essential mechanisms identified in those cells.

Biological background Detailed investigations in different neural cells (GnRH cells, mo-

toneurons) revealed that the intracellular calcium concentration evolves in an oscillatory manner

reflecting the electric activity on a slower timescale and impacting it. This phenomenon is known

as Calcium Induced Calcium Release (CICR) (i.e. the ability of calcium dynamics through the

neuron membrane to activate calcium release from intracellular stores) [Thul et al., 2008]. The

most common patterns of variation of calcium level in one neural cell are characterized by the

following qualitative features. Each pattern consists of successive peaks characterized by a fast

increase followed by a slower decrease to a baseline. Before the subsequent peak, a quiescent

phase of a few minutes occurs, as either a jitter near the constant baseline calcium level or a

slight and slow increase. We have built a minimal model with one fast and two slow variable

embedding CICR dynamical property and able to reproduce the most common pattern of the

time-varying intracellular calcium concentration (ICC) [10, 16].

Calcium dynamics We add a third variable Ca to the FitzHugh-Nagumo dynamics standing

for the ICC. Its dynamics is built as a slow integration of the electric variable x together with

a clearance term, and slow variable Ca acts as a feedback upon the x dynamics. The model,

accounting for one fast and two slow variables, reads

ẋ = (−y + f(x)− φfall(Ca)) (1.5a)

ẏ = εk (x+ a1y + a2) (1.5b)

Ċa = ε

(
φrise(x)− Ca− Cab

τCa

)
(1.5c)

with

f(x) = −x3 + 3λ2x, φfall(Ca) =
µCa

Ca+ Cad
, φrise(x) =

λrise

1 + exp(−ρCa(x− xon))
. (1.6)

Parameter k > 0 is of order 1 compared to ε. Parameter Cab represents the baseline of the

intracellular calcium level. We assume a1 < 0 and small in absolute value so that the y-nullcline

is steep, and system (1.5a)-(1.5b) admits a single singular point for any value of Ca. When φrise

is inactive (φrise(x) close to 0), Ca reaches a quasi-steady state close to Cab. The speed of this

motion is determined by the ε/τCa ratio, i.e. the exponential decay rate. The feedback on x

dynamics through the increasing function φfall(Ca) bounded by µ reduces the electric activity

of the neuronal population in response to the rise of the calcium concentration. Parameters µ

and Cad are positive, ensuring that φfall(Ca) is well-defined and positive for all positive values

of Ca.
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Section 1.1. Compact models of individual neural cells activity

Slow-fast dissection The dynamics features classical properties of slow-fast relaxation sys-

tems with one fast and two slow variables. The critical manifold S (or x-nullcline), given by

y = f(x) − φfall(Ca), is an S-shaped surface with two fold lines: F− at x = −λ and F+ at

x = λ. The fold lines split S into three parts (see Figure 1.4): the left and right sheets contained

entirely in the half-spaces x < 0 and x > 0, respectively, are attracting for the fast dynamics

and the middle sheet is repelling. The y-nullcline a0x+ a1y+ a2 = 0 is a plane crossing F− for

a given value Caf of Ca. The Ca-nullcline Ca = τCaφrise(x) + Cab is an attractive surface for

Ca dynamics. The right hand side of this latter equation is a smooth sigmoidal function of x.
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2. Excitable regime: the singular point lies on either the left or the right branch close to the
knee. The excitability of the system is then characterized by the following property. Let us
consider the stable singular point lying on the left branch of the cubic near the left knee as
initial condition. Then, a small perturbation of this initial condition by increasing x and/or
increasing y implies a great incursion of the orbit near the right branch of the cubic towards
the right knee then near the left branch before reaching the vicinity of the singular point
again.

3. Steady regime: the singular point lies on either the left or the right branch far away from the
knees: the singular point is then stable and attracts any orbit of (3a)-(3b). The perturbation
from the steady state should be strong to obtain a great incursion in the phase portrait.

Let us recall that the transition between the excitable state and the oscillatory regime, occurring in a
very narrow interval of Ca values, is the well-known Canard phenomenon, leading to the existence of
small attractive limit cycle following the middle branch of the cubic for a while. Now considering the
3D model, the periodic exploration by the current point of the regions corresponding to oscillatory
regime and excitable regime of subsystem (3a)-(3b) may produce Mixed-Mode Oscillations. We
will use this feature to reproduce the quiescent phase in the generated calcium pattern.

System (3) is a slow-fast system with one fast and two slow variables. To describe the dynamical
mechanisms of this system, we introduce the following notations. The critical manifold S0 (or x-
nullcline) given by :

y = 4x � x3 � IAHP (Ca) (5)

is an S-shaped surface displaying two fold lines F� (lying in x < 0) and F+ (lying in x > 0) that
split S0 into three parts : the left and right ones lying entirely in x < 0 and x > 0 respectively and
the middle one. The y-nullcline defined by :

a0x + a1y + a2 (6)

is a plane that crosses F� for a given value Caf of Ca. Finally, the Ca-nullcline is defined by a
relation between x and Ca :

Ca = ⇥CaICa(x) + Cabas (7)

that is, like ICa, a smooth sigmoidal function. This surface is attractive for the Ca dynamics.
Let us describe the typical interactions between the state variables, starting from a low level

of Ca (i.e. close to Cabas) and (x, y) such that (x, y, Ca) lies just below F�. Under the influence
of the fast dynamics, the current point (x, y, Ca) quickly reaches the right branch of S0, x and
⇥CaICa(x) quickly increases. Consequently Ca increases while the current point goes up along
the right branch of S0 towards F+. Then, once the current point has arrived above F+, under
the influence of the fast dynamics, it quickly comes back near the left branch of S0, x quickly
decreases as well as ⇥CaICa(x) (which becomes almost null). The current point, driven by the slow
dynamics, goes down along the left branch of S0 and Ca decreases eventually down to Cabas. Then
several situation may occur depending mainly on the value of µ and related to the regime of system
(3a)-(3b):

1. For small values of µ, when the current point reaches the vicinity of F�, system (3a)-(3b) is
in oscillatory regime. As a consequence, the current point directly and quickly reaches the
right branch of S0, and the behavior described above repeats immediately.
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2. For an interval of values of µ, system (3a)-(3b) is in excitable regime when Ca approaches
Cabas. Then (x, y) reaches the vicinity of the singular point of (3a)-(3b) close to the left knee.
As Ca keeps decreasing until the current point is very close to the attractive surface given by
(7). Consequently system (3a)-(3b) passes into oscillatory regime. During this passage, the
current point makes small oscillations around the fold F� before the fast transition to the
right branch and the whole motion repeats.

3. For great value of µ, system (3a)-(3b) remains stuck in the steady regime. Hence, after one
pulse, the level of Ca remains close to the baseline.

In the following, we are specially interested in the second case since the generated pattern of Ca
fits quite well the qualitative specifications of the experimental time series obtained by Terasawa
in [5], especially the quiescent phase at the baseline level between two successive pulses. Hence, we
will chose the value of µ in the interval where the orbit of system (3) display MMO. It is worth
noticing that this interval of values depends on the other parameters, particularly on the time scale
parameters ⇧ and µ. To fix the idea, we consider the following set of parameter:

a0 = 1, a1 = �0.1, a2 = 0.8, ⇧ = 0.06,

µ = 2.4, Ca0 = 500, Cabas = 100, ⌅Ca = 2,

� = 175, ⇤Ca = 4.5, xon = �0.45.

(8)

With this values, the generated calcium pattern fulfills the typical qualitative behavior described
in 3.1 and the average quantitative specifications: 10 min of IPI, peak level at 342 nM (red signal
in all panels of Figure ??.

Now, we will show how to mimic the variability of the quantitative features of calcium patterns
between di�erent cells by choosing di�erent values for parameters of special importance: µ and
k. Let us note that, from the above explanation, one can already see that the precise value
of µ prescribes the number of small oscillations of the current point near the left fold F� and,
consequently, the duration of the quiescent phase. Since variations in µ does not impact much
the duration of the pulses, one can consider that this parameter controls marginally the InterPulse
Interval (IPI). Panel A of Figure ?? shows the results of change in µ: the red signal is obtained
with parameter values (8) (IPI=10 min), the blue one with µ = 2.32 (IPI=7 min) and the yellow
one with µ = 2.42 (IPI=14 min). It is worth noticing that the interval of values of µ for which a
quiescent phase appear between two successive pulses in the calcium pattern depends on the other
parameters.

Parameter k essentially tunes the time scale separation between y and Ca (x being much more
faster). Hence, an increase in y implies a shorter time for subsystem (3a)-(3b) to complete a
relaxation oscillation and, consequently, a shorter time for Ca to increase and decrease back to the
baseline. In conclusion, one can increase or decrease the calcium peak level by tuning the value of
parameter k. Of course, a variation in parameter k value also implies a change in the quiescence
phase duration and, thus, the IPI. Panel B of Figure ?? shows, together with the initial red signal
(peak level at 342 nM, IPI=10min), a blue signal obtained with k = 1.2 (peak level at 320 nM,
IPI=4 min) and a yellow one obtained with k = 0.8 (peak level at 365 nM, IPI=16 min). Of course,
one can choose both the peak level and the IPI by tuning first the value of k and afterwards the
value of µ. Panel C of Figure Figure ?? shows calcium patterns obtained with the same set of k
values as in panel B but the di�erences in the IPI as been corrected by choosing appropriate values
of µ : 2.448 for the blue signal, 2.238 for the yellow one.
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2. For an interval of values of µ, system (3a)-(3b) is in excitable regime when Ca approaches
Cabas. Then (x, y) reaches the vicinity of the singular point of (3a)-(3b) close to the left knee.
As Ca keeps decreasing until the current point is very close to the attractive surface given by
(7). Consequently system (3a)-(3b) passes into oscillatory regime. During this passage, the
current point makes small oscillations around the fold F� before the fast transition to the
right branch and the whole motion repeats.

3. For great value of µ, system (3a)-(3b) remains stuck in the steady regime. Hence, after one
pulse, the level of Ca remains close to the baseline.

In the following, we are specially interested in the second case since the generated pattern of Ca
fits quite well the qualitative specifications of the experimental time series obtained by Terasawa
in [5], especially the quiescent phase at the baseline level between two successive pulses. Hence, we
will chose the value of µ in the interval where the orbit of system (3) display MMO. It is worth
noticing that this interval of values depends on the other parameters, particularly on the time scale
parameters ⇧ and µ. To fix the idea, we consider the following set of parameter:

a0 = 1, a1 = �0.1, a2 = 0.8, ⇧ = 0.06,

µ = 2.4, Ca0 = 500, Cabas = 100, ⌅Ca = 2,

� = 175, ⇤Ca = 4.5, xon = �0.45.

(8)

With this values, the generated calcium pattern fulfills the typical qualitative behavior described
in 3.1 and the average quantitative specifications: 10 min of IPI, peak level at 342 nM (red signal
in all panels of Figure ??.

Now, we will show how to mimic the variability of the quantitative features of calcium patterns
between di�erent cells by choosing di�erent values for parameters of special importance: µ and
k. Let us note that, from the above explanation, one can already see that the precise value
of µ prescribes the number of small oscillations of the current point near the left fold F� and,
consequently, the duration of the quiescent phase. Since variations in µ does not impact much
the duration of the pulses, one can consider that this parameter controls marginally the InterPulse
Interval (IPI). Panel A of Figure ?? shows the results of change in µ: the red signal is obtained
with parameter values (8) (IPI=10 min), the blue one with µ = 2.32 (IPI=7 min) and the yellow
one with µ = 2.42 (IPI=14 min). It is worth noticing that the interval of values of µ for which a
quiescent phase appear between two successive pulses in the calcium pattern depends on the other
parameters.

Parameter k essentially tunes the time scale separation between y and Ca (x being much more
faster). Hence, an increase in y implies a shorter time for subsystem (3a)-(3b) to complete a
relaxation oscillation and, consequently, a shorter time for Ca to increase and decrease back to the
baseline. In conclusion, one can increase or decrease the calcium peak level by tuning the value of
parameter k. Of course, a variation in parameter k value also implies a change in the quiescence
phase duration and, thus, the IPI. Panel B of Figure ?? shows, together with the initial red signal
(peak level at 342 nM, IPI=10min), a blue signal obtained with k = 1.2 (peak level at 320 nM,
IPI=4 min) and a yellow one obtained with k = 0.8 (peak level at 365 nM, IPI=16 min). Of course,
one can choose both the peak level and the IPI by tuning first the value of k and afterwards the
value of µ. Panel C of Figure Figure ?? shows calcium patterns obtained with the same set of k
values as in panel B but the di�erences in the IPI as been corrected by choosing appropriate values
of µ : 2.448 for the blue signal, 2.238 for the yellow one.
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2. Excitable regime: the singular point lies on either the left or the right branch close to the
knee. The excitability of the system is then characterized by the following property. Let us
consider the stable singular point lying on the left branch of the cubic near the left knee as
initial condition. Then, a small perturbation of this initial condition by increasing x and/or
increasing y implies a great incursion of the orbit near the right branch of the cubic towards
the right knee then near the left branch before reaching the vicinity of the singular point
again.

3. Steady regime: the singular point lies on either the left or the right branch far away from the
knees: the singular point is then stable and attracts any orbit of (3a)-(3b). The perturbation
from the steady state should be strong to obtain a great incursion in the phase portrait.

Let us recall that the transition between the excitable state and the oscillatory regime, occurring in a
very narrow interval of Ca values, is the well-known Canard phenomenon, leading to the existence of
small attractive limit cycle following the middle branch of the cubic for a while. Now considering the
3D model, the periodic exploration by the current point of the regions corresponding to oscillatory
regime and excitable regime of subsystem (3a)-(3b) may produce Mixed-Mode Oscillations. We
will use this feature to reproduce the quiescent phase in the generated calcium pattern.

System (3) is a slow-fast system with one fast and two slow variables. To describe the dynamical
mechanisms of this system, we introduce the following notations. The critical manifold S0 (or x-
nullcline) given by :

y = 4x � x3 � IAHP (Ca) (5)

is an S-shaped surface displaying two fold lines F� (lying in x < 0) and F+ (lying in x > 0) that
split S0 into three parts : the left and right ones lying entirely in x < 0 and x > 0 respectively and
the middle one. The y-nullcline defined by :

a0x + a1y + a2 (6)

is a plane that crosses F� for a given value Caf of Ca. Finally, the Ca-nullcline is defined by a
relation between x and Ca :

Ca = ⇥CaICa(x) + Cabas (7)

that is, like ICa, a smooth sigmoidal function. This surface is attractive for the Ca dynamics.
Let us describe the typical interactions between the state variables, starting from a low level

of Ca (i.e. close to Cabas) and (x, y) such that (x, y, Ca) lies just below F�. Under the influence
of the fast dynamics, the current point (x, y, Ca) quickly reaches the right branch of S0, x and
⇥CaICa(x) quickly increases. Consequently Ca increases while the current point goes up along
the right branch of S0 towards F+. Then, once the current point has arrived above F+, under
the influence of the fast dynamics, it quickly comes back near the left branch of S0, x quickly
decreases as well as ⇥CaICa(x) (which becomes almost null). The current point, driven by the slow
dynamics, goes down along the left branch of S0 and Ca decreases eventually down to Cabas. Then
several situation may occur depending mainly on the value of µ and related to the regime of system
(3a)-(3b):

1. For small values of µ, when the current point reaches the vicinity of F�, system (3a)-(3b) is
in oscillatory regime. As a consequence, the current point directly and quickly reaches the
right branch of S0, and the behavior described above repeats immediately.
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2. For an interval of values of µ, system (3a)-(3b) is in excitable regime when Ca approaches
Cabas. Then (x, y) reaches the vicinity of the singular point of (3a)-(3b) close to the left knee.
As Ca keeps decreasing until the current point is very close to the attractive surface given by
(7). Consequently system (3a)-(3b) passes into oscillatory regime. During this passage, the
current point makes small oscillations around the fold F� before the fast transition to the
right branch and the whole motion repeats.

3. For great value of µ, system (3a)-(3b) remains stuck in the steady regime. Hence, after one
pulse, the level of Ca remains close to the baseline.

In the following, we are specially interested in the second case since the generated pattern of Ca
fits quite well the qualitative specifications of the experimental time series obtained by Terasawa
in [5], especially the quiescent phase at the baseline level between two successive pulses. Hence, we
will chose the value of µ in the interval where the orbit of system (3) display MMO. It is worth
noticing that this interval of values depends on the other parameters, particularly on the time scale
parameters ⇧ and µ. To fix the idea, we consider the following set of parameter:

a0 = 1, a1 = �0.1, a2 = 0.8, ⇧ = 0.06,

µ = 2.4, Ca0 = 500, Cabas = 100, ⌅Ca = 2,

� = 175, ⇤Ca = 4.5, xon = �0.45.

(8)

With this values, the generated calcium pattern fulfills the typical qualitative behavior described
in 3.1 and the average quantitative specifications: 10 min of IPI, peak level at 342 nM (red signal
in all panels of Figure ??.

Now, we will show how to mimic the variability of the quantitative features of calcium patterns
between di�erent cells by choosing di�erent values for parameters of special importance: µ and
k. Let us note that, from the above explanation, one can already see that the precise value
of µ prescribes the number of small oscillations of the current point near the left fold F� and,
consequently, the duration of the quiescent phase. Since variations in µ does not impact much
the duration of the pulses, one can consider that this parameter controls marginally the InterPulse
Interval (IPI). Panel A of Figure ?? shows the results of change in µ: the red signal is obtained
with parameter values (8) (IPI=10 min), the blue one with µ = 2.32 (IPI=7 min) and the yellow
one with µ = 2.42 (IPI=14 min). It is worth noticing that the interval of values of µ for which a
quiescent phase appear between two successive pulses in the calcium pattern depends on the other
parameters.

Parameter k essentially tunes the time scale separation between y and Ca (x being much more
faster). Hence, an increase in y implies a shorter time for subsystem (3a)-(3b) to complete a
relaxation oscillation and, consequently, a shorter time for Ca to increase and decrease back to the
baseline. In conclusion, one can increase or decrease the calcium peak level by tuning the value of
parameter k. Of course, a variation in parameter k value also implies a change in the quiescence
phase duration and, thus, the IPI. Panel B of Figure ?? shows, together with the initial red signal
(peak level at 342 nM, IPI=10min), a blue signal obtained with k = 1.2 (peak level at 320 nM,
IPI=4 min) and a yellow one obtained with k = 0.8 (peak level at 365 nM, IPI=16 min). Of course,
one can choose both the peak level and the IPI by tuning first the value of k and afterwards the
value of µ. Panel C of Figure Figure ?? shows calcium patterns obtained with the same set of k
values as in panel B but the di�erences in the IPI as been corrected by choosing appropriate values
of µ : 2.448 for the blue signal, 2.238 for the yellow one.
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is a plane that crosses F� for a given value Caf of Ca. Finally, the Ca-nullcline is defined by a
relation between x and Ca :
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that is, like ICa, a smooth sigmoidal function. This surface is attractive for the Ca dynamics.
Let us describe the typical interactions between the state variables, starting from a low level

of Ca (i.e. close to Cabas) and (x, y) such that (x, y, Ca) lies just below F�. Under the influence
of the fast dynamics, the current point (x, y, Ca) quickly reaches the right branch of S0, x and
⇥CaICa(x) quickly increases. Consequently Ca increases while the current point goes up along
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the influence of the fast dynamics, it quickly comes back near the left branch of S0, x quickly
decreases as well as ⇥CaICa(x) (which becomes almost null). The current point, driven by the slow
dynamics, goes down along the left branch of S0 and Ca decreases eventually down to Cabas. Then
several situation may occur depending mainly on the value of µ and related to the regime of system
(3a)-(3b):

1. For small values of µ, when the current point reaches the vicinity of F�, system (3a)-(3b) is
in oscillatory regime. As a consequence, the current point directly and quickly reaches the
right branch of S0, and the behavior described above repeats immediately.
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Figure 1.4: Different types of system (1.5) orbits according to the value of µ. In each panel,
the surface represents the x nullcline S whose folds F± are represented by red lines. Panel
A: attractive periodic orbit without small oscillations near the fold F−. This type of orbit is
obtained for small values of µ. Panel B: attractive MMO limit cycle with small oscillations near
the fold F−. This type of orbit is obtained for an interval of µ values. Panel C: orbit that,
after a transient excursion in the phase portrait, tends to the attractive singular point of system
(1.5) lying on the left sheet of S. This type of orbit is obtained for large value of µ. Panel D is
the zoom of the purple box of Panel B and shows a magnified view of the small oscillations of
the orbit.

We briefly describe the typical interactions between the state variables, starting from a low

level of Ca, close to Cab, and initial (x, y) condition such that (x, y, Ca) lies just below F−.

Under the influence of the fast dynamics, the current point (x, y, Ca) quickly reaches the right

sheet of S, so that x and τCaφrise(x) quickly increase. Consequently Ca increases while the

current point moves up along the right sheet of S towards F+. Then, once the current point

has arrived above F+, it quickly comes back near the left sheet of S under the influence of

the fast dynamics ; variable x quickly decreases as well as the term τCaφrise(x), that becomes

almost zero. The current point, driven by the slow dynamics, moves down along the left sheet

of S and Ca decreases eventually down to Cab. Then, depending on the value of parameter µ,

several main situations may occur, illustrated in Figure 1.4.

A: For small values of µ, when the current point reaches the vicinity of F−, system (1.5a)-

(1.5b) is in an oscillatory regime. The current point directly and quickly reaches the right

sheet of S, and the behavior described above repeats immediately.

B: For an interval of values of µ, system (1.5a)-(1.5b) is in the excitable regime when Ca

approaches Cab. Then (x, y) reaches the vicinity of the singular point of (1.5a)-(1.5b) close

to the left knee. Ca keeps decreasing until the current point is very close to the attractive
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Ca-nullcline and system (1.5a)-(1.5b) enters the oscillatory regime. During this passage,

the current point describes small oscillations around the fold F− before it undergoes the

fast transition to the right sheet and the whole motion repeats. Therefore, the global orbit

displays MMOs.

C: For large values of µ, system (1.5a)-(1.5b) remains permanently in the steady regime.

Hence, after an excursion in the phase space, the current point reaches and remains in the

attractive singular point vicinity. Consequently, the Ca pattern consists of one peak and

subsequent return to the baseline.

Each qualitative behavior is identified in experimental data, both in hypothalamic GnRH (go-

nadotropin releasing hormone) neurons [Richter et al., 2002, Terasawa et al., 1999] and in

motoneurons [Fallani et al., 2015]. In section 2.2, we show the ability of this model to generate

outputs matching quantitative specifications related to amplitude, pulse and quiescence phase

durations (and therefore pulse frequency), and explain the underlying dynamical mechanisms

used for defining the parameter estimation process.

It is worth noting that other types of orbits are generated in case B for each transition

in the number of small oscillations in the MMO orbit (see [Krupa and Wechselberger, 2010,

Szmolyan and Wechselberger, 2001]). Yet in such systems with one fast and two slow variables,

it is known that such transition (change in the MMO signature) involves chaotic behaviors.

The problematic of parameter estimation to reach given global specifications for this type of

oscillations is an open problem to-date. An analysis of the signature change according to the

parameter is performed in section 3 on other models, featuring additional properties, namely the

Integrate-and-Fire model introduced in section 1.1.1 and the GnRH secretion model described

in the next section.

1.2 Mass approach modeling

Neural mass modeling is a part of computational neuroscience that was developed to study the

general behavior of neuronal populations. Using this paradigm, the precise features of the indi-

vidual activities and the microscopic dynamical interactions are no longer taken into account.

The state variables of the models are global outputs of neuron assemblies considered to behave

jointly, and the parameters involved in the dynamics aggregate several individual parameters.

Such mesoscopic model is able to generate output signals that are comparable with experi-

mental data. Moreover, the model dimension is obviously much lower than the dimension of a

corresponding network model based on the coupling between individual activities. Therefore,

the qualitative analysis remains an accurate tool for studying the fundamental mechanisms un-

derlying the dynamics and for deciphering between different phase portrait structures according

to the parameter values.

We present models built for reproducing neuronal activities in two different contexts: the

secretion of the neurohormone GnRH (Gonadotrophin Releasing Hormone) by hypothalamic

neurons, and the cortical activity resulting from the interactions (mediated by the neurotrans-

mitter concentrations in the extracellular space) between neurons and astrocytes.
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Section 1.2. Mass approach modeling

1.2.1 Mass approach model of GnRH secretion

Biological background In mammals, the reproductive system is made up of the hypotha-

lamus, belonging to the central nervous system (CNS), the pituitary gland and the gonads

(ovaries in females, testes in males). Within the hypothalamus, specific neurons secrete GnRH

in a pulsatile manner, which plays a fundamental role in the differential control of the secretion

of both LH (Luteinizing Hormone) and FSH (Follicle Stimulating Hormone) by the pituitary

gland which, in turn, stimulate differentially the secretion of progesterone (P) and estradiol

(E2) by the gonads. The estradiol signal is conveyed to GnRH neurons through a network

of interneurons. The balance between stimulatory and inhibitory signals, emanating from the

plasmatic level of steroids (estradiol E2 and progesterone P) and relayed by the interneurons,

controls the behavior of the GnRH network. This global mechanism and hormone secretion

patterns described below are schematized in Figure 1.5.

In females, the pulsatile part of the GnRH pattern is divided into the luteal and follicular

phases. The luteal phase is characterized by the secretion of progesterone from the corpus

luteum. The follicular phase is characterized by increasing secretion of estradiol. The expe-

rimental studies have established that the GnRH pulse frequency not only was greater in the

early follicular phase than in the luteal phase, but also increases further within the follicular

phase as the surge approaches. Hence, the pulse frequency from the beginning to the end of

the pulsatile phase is increased by a factor (about 4 in studied species). The GnRH pulsatile

pattern is tremendously altered once per ovarian cycle into a surge which triggers LH surge and

ovulation in response to increasing levels of estradiol.

The set of neuronal and glial cells involved in the control of GnRH secretion is commonly

known as the “GnRH pulse generator”. It includes the GnRH neurons and the regulatory

neurons processing the steroids signals and regulating the GnRH neuron activities accordingly.

From the beginning of the century, a specific regulatory system, formed by the kisspeptin

producing neurons, has been identified as playing a key role in mediating the steroid feedback

control of GnRH secretion [Pinilla et al., 2012]. Different subsets of kisspeptin neurons can

be associated with hypothalamic areas involved differentially in the ovarian feedback exerted

either on the pulse frequency in the pulsatile regime (arcuate nucleus) or on the surge triggering

(antero-ventral periventricular nucleus). This differential effect and the sudden change in the

type of impact exerted by regulatory neurons on GnRH neurons activity, as well as the cyclicity

of the biological system, motivates us to model this impact with an excitable system.

GnRH secretion model A mathematical model accounting for the alternating pulse and

surge pattern of GnRH secretion was proposed in [Clément and Françoise, 2007] and further

studied in [5, 6, 9, 14]. The model is based on the slow-fast coupling between two FitzHugh-

Nagumo systems. We thus consider the following four-dimensional dynamical system with three

different timescales:

εδẋ = −y + f(x), (1.7a)

εẏ = a0x+ a1y + a2 + cX, (1.7b)

εẊ = −Y + g(X), (1.7c)

Ẏ = X + b1Y + b2, (1.7d)
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Figure 1.5: Scheme of the global feedback loop regulating the GnRH secretion by hypothala-
mic neurons in mammals. The pulsatile release of GnRH into the hypothalamo-pituitary portal
blood induces the pulsatile secretion by the pituitary gland of luteinizing hormone (LH) and
follicle-stimulating hormone (FSH) controlling the development of ovarian follicles and their
secretory activity. In turn, steroid hormones progesterone and estradiol modulate the secretion
of GnRH, LH and FSH. In females, the GnRH secretion pattern dramatically alters once per
ovarian cycle, in response to the time-varying levels of ovarian steroids, and switches to the
GnRH surge characterized by a massive release of GnRH (red in the corresponding insert).

where ai, bi and c are positive parameters (b0=1) and the timescale separation parameters ε

and δ are positive and small. The associated model output is

yout(t) = y(t)χ{y(t)>yth}, (1.8)

χA being the indicator function (χ = 1 on A, 0 elsewhere). In the following, we consider the

parameterization

f(x) = −x3 + 3λ2x, g(X) = −X3 + 3ν2X.

so that the local extrema are P f± = (±λ,±2λ3) and P g± = (±ν,±2ν3). The projections of these

fold points on the other branch of the cubics Qf± and Qg±, are easy to compute:

Qf+ = (−2λ, 2λ3), Qg+ = (−2ν, 2ν3), Qf− = (2λ,−2λ3), Qg− = (2ν,−2ν3) (1.9)

System (1.7a)-(1.7b), named “Secretor”, reproduces the average activity of GnRH neurons,

while system (1.7c)-(1.7d), named “Regulator”, corresponds to the average activity of regulatory

neurons. Within this framework, the FitzHugh-Nagumo system is used (twice) for reproducing

excitability behaviors of the whole neuronal population, on a variation timescale much slower

than the individual neuron activity. Yet, each of them reproduces, using a mass approach, the

change in the corresponding subpopulation output, resulting from joint activities of individual
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inner cells. The linear coupling between both systems is mediated through the unilateral in-

fluence of the slow regulatory interneuron population onto the fast GnRH neuron population,

which aggregates the global balance between inhibitory and excitatory neuronal inputs onto the

GnRH neurons. We consider the output yout to reproduce the shape of the pulse: a pulse is

triggered only if the recovery variable y overcomes threshold yth, fixed once for all.

Underlying dynamical mechanisms and qualitative properties of the output It is

convenient to take advantage of the slow-fast coupled structure of the model for a first qualitative

description of the different phases that underlie the pattern generation. Under the general

assumption (involving parameters b1 and b2) that the Regulator admits a relaxation limit cycle,

variable X alternates mostly between two states either X > ν or X < −ν, and switches from

one state to another almost instantaneously. This property reflects the estradiol surge-inducing

effect on the interneuron network occurring in a low progesterone environment.

Figure 1.6: Dynamical pattern of variable X reflecting the estradiol surge-inducing effect on
the interneuron network. Top left panel: schematic temporal changes in estradiol plasma levels
(inspired from [Baird et al., 1981]). Top right panel: temporal changes in the estradiol levels
cumulated over the sliding window [t−56h, t−8h]. Bottom panels: limit cycle of the Regulator
and dynamical pattern of variable X. The temporal changes in X mimic the cumulated dose of
estradiol (pink parts) until the time when the threshold X = −ν is reached. Beyond X = −ν,
the state of variable X changes quasi-instantaneously to X > ν. The threshold corresponds to
the cumulated dose of estradiol (in the absence of progesterone) needed to trigger the surge.

The top left panel of Figure 1.6 illustrates the pattern of estradiol plasma levels during the

follicular phase. The top right panel shows the estradiol levels cumulated over a two-day sliding

window and shifted by a delay that accounts for the time-lag needed to relay the integrated

estradiol signal onto GnRH neurons. Considering the two right panels simultaneously enlightens

how the dynamical pattern of variable X along the left part of the limit cycle (X < −ν) mimics

the cumulated estradiol pattern, until the time when a given threshold is reached (horizontal
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black lines hitting the pink curves). The cumulated estradiol threshold corresponds to the (grey)

area under the (green) curve on the top left panel of Figure 1.6. The switch of variable X from

negative to positive values coincides, on the interneuron network level, with the surge-triggering

time.

We now briefly recall the sequential changes undergone by the X-driven Secretor along the

limit cycle of the Regulator and reproducing the qualitative properties of the GnRH secretion

pattern. The y-nullcline a0x+ a1y+ a2 + cX = 0 is translated according to the value of X and

the number of singular points of the Secretor and their positions with respect to the folds of the

x-nullcline change with time. Accordingly, the resulting periodic sequence can be divided into 4

phases (Figure 1.7): pulsatile regime, transition from pulsatility to surge, surge, and resumption

of pulsatility. During the pulsatile regime, the Secretor admits an unstable singular point on the

middle branch of f(x) (between the upper and lower folds) which is surrounded by an attracting

relaxation cycle. This cycle disappears through a Hopf bifurcation near the lower fold of the

critical manifold in the transition from pulsatile regime to surge. In contrast, in the surge regime,

the current point of the Secretor climbs up along the left branch of the critical manifold. In

some cases (discussed later in this manuscript), it may follow a stable quasi-stationary point

lying on this branch and moving as X changes. The opposite transition from surge to pulsatility

phase occurs when the y-nullcline is brought back rightwards. If the rightward motion does not

overcome the right fold, the pulsatile regime resumes at once. Otherwise a “pause” with small

amplitude oscillations precedes pulsatility resumption, resulting from an MMO mechanism.

Figure 1.7: Decomposition of the Secretor dynamics according to the four phases of the
Regulator limit cycle.

One of the salient features of the model is the frequency increase occurring during the

pulsatile regime. This increase ensues from the changing location of the unstable stationary

point lying on the middle branch of the cubic f(x). At the beginning of the pulsatile regime,

this point is close to the upper fold of the cubic. As a consequence, the current point (x, y)

running on the limit cycle is slowed down in the vicinity of the stationary point, hence the period

of the cycle is rather long (this low frequency pattern corresponds to the so-called luteal phase of

the ovarian cycle). As X increases, the y-nullcline moves leftwards, so that the stationary point

moves away from the right fold; the current point escapes from the influence of the stationary

point and the period gets smaller and smaller, up to the surge triggering (this high frequency
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pattern corresponds to the follicular phase of the ovarian cycle). This feature is illustrated by

Figure 1.8.

t0 1t0 1

x x

y y

yout yout

0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5
Velocity Velocity

Figure 1.8: Magnitude of the vector field associated with the Secretor during the luteal phase
(left panel) and at the end of the follicular phase (right panel). The phase plane (x, y) is colored
according to the magnitude of the vector field at each point. In the left panel, the singular point
lies near the right knee: the weak magnitude of the vector field in the gold neighborhood slows
down the dynamics along the limit cycle. In the right panel, the singular point is away from
the limit cycle along which the velocity remains medium to high. Consequently, the pulsatile
frequency is greater during the follicular phase than during the luteal phase.

In [5], constraints on the parameters were obtained from geometric arguments to guarantee

not only the proper qualitative sequence of secretory events, but also quantitative features

subject to biological specifications and dealing with the duration, amplitude and frequency

of the GnRH signal. These results and the most important methods developed to perform

such parameter estimation are presented in section 2.1. In [9], we have performed an in-depth

analysis of the pause event guaranteed by a slow passage though a Hopf bifurcation. The most

striking result of this analysis consists in the non chaotic transition during the small oscillation

adding phenomenon, i.e. the existence of an attracting MMO limit cycle even during the

signature transition induced by a change in a parameter value. The main steps of this analysis

are presented in section 3.1. Furthermore, this 4D model has been recently extended into 6D

system by adding a second Secretor interacting with the first one, and subject to the same

forcing from the Regulator. This extension, accounting for the clustering of the GnRH neuron

network, allows us to reproduce singular patterns of GnRH secretion observed in experimental

data (for instance [Caraty et al., 1998, Moenter et al., 1990, 1991]) displaying a double surge

(i.e. a surge with two “bumps”). A link between the occurrence of such double surge and the

subsequent desynchronization between clusters at the end of the pulsatile phase are presented

in section 4.1.

17



Chapter 1. A few models in Neuroscience : complex oscillations and qualitative analysis

1.2.2 Neural mass model with double excitatory feedbacks

The neural mass approach for building model of the cortical activity has been extensively de-

veloped since the seminal work of Beurle [1956] and keep being used and studied [Coombes and

Byrne, 2016]. Among others, Griffith [1963, 1965] used a neural field formalism and introduced

a second order linear differential operator to represent both excitatory and inhibitory interac-

tions between neural cells. Thereafter Wilson and Cowan [1972, 1973] derived the non-linear

temporal dynamics for spatially localized neuron populations (voxel) driven the average firing

rates associated with a two subpopulation model. Their work popularized the neural mass mo-

dels using the ODE formalism as an efficient tool for studying the interaction mechanisms at a

mesoscopic level. Besides, such models produce output signals, especially local field potentials

(LFP), comparable with experimental results such as those produced by electroencephalography

(EEG) [Lopes da Silva et al., 1974].

Neural mass models that have been developed mainly involved the dynamical interactions

between two neural populations: a main population of pyramidal cells P and a population

of inhibitory interneurons I. For a more realistic modeling, some authors have considered a

feedback of each subpopulation on itself. In particular for the excitatory feedback of principal

cells, two approaches have been considered. On the one hand, a classical way to model this

excitatory feedback involving a direct link from the output of principal cells to their input was

proposed by Wilson and Cowan [1973] and used by many authors [Liley et al., 2002, Molaee-

Ardekani et al., 2010, Robinson et al., 1997]. On the other hand, Jansen and co-workers proposed

an indirect track that amounts to considering an intermediary population of pyramidal cells P ′

interacting with P through synaptic connections [Jansen and Rit, 1995, Jansen et al., 1993].

Interactions between these populations are those introduced by Lopes da Silva et al. [1974,

1976] and the indirect excitatory feedback of pyramidal cells follows the structure studied by

Katznelson [1981]. Afterwards, Wendling et al. [2000] applied similar models using indirect

excitatory feedback to simulate paroxystic neural activity in the context of partial epilepsies.

From the modeling perspective, we cannot privilege one type of feedback over the other since

both couplings are physiologically relevant and can co-exist, a very local one and a more or less

distant one. Nevertheless a difference may exist in the range of the local connections considered

in these approaches. In practical terms, an indirect feedback induces a delay in the excitatory

coupling, which may model a larger neighborhood involved in this feedback. In fact the different

couplings studied imply specific underlying dynamics of the model and, therefore, give rise to

different panels of behaviors. The emergence of identifiable temporal output features (sub-

threshold oscillations, epileptic spikes, etc.) can be characterized or predicted by understanding

these dynamics.

Therefore, we have embedded both types of excitatory feedbacks in a single neural mass

model that we will call NMM in the following [13]. Hence, it includes three feedback loops on

population P activity: an inhibitory feedback through the interneuron population I, a direct

excitatory feedback of P onto itself (referred to as “direct feedback”) and an indirect excitatory

feedback (referred to as “indirect feedback”) involving the population P ′ (Figure 1.9(a)). We

briefly describe how the dynamics is built in the following paragraph.

The model structure mainly follows the one of Jansen and Rit’s model. After the work of

Van Rotterdam et al. [1982], the processes converting the average pulse density into excitatory

and inhibitory postsynaptic potential are based on the α-functions hE(t) = Aa t e−a t and

hI(t) = B b t e−b t, respectively. Those are Green’s functions of the differential operators FE and
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Figure 1.9: Two schematic representations of the NMM with double excitatory feedbacks.
P : main population of pyramidal cells. I: Interneuron population. P ′: secondary population
of pyramidal cells. Red (resp. green) arrows in (a): excitatory (resp. inhibitory) interactions.
Box hE (resp. hI): second order process converting action potentials into excitatory (resp. in-
hibitory) post-synaptic potential. Box Snr: process converting average membrane potential into
average action potential density discharge by neurons of populations P , P ′ and I respectively.
Ci for i ∈ [[1, 4]]: coupling gain parameters depending on the maximal number C of synaptic
connections between two populations. G: direct feedback coupling gain. p(t): external input.
y0, y1, y2: state variables. x0, x1, x2: intermediary variables.

FI respectively:

FE(hE) = 1
A

(
1
a h
′′
E + 2h′E + a hE

)
, (1.10a)

FI(hI) = 1
B

(
1
b h
′′
I + 2h′I + b hI

)
. (1.10b)

Parameter A (resp. B) stands for the average excitatory (resp. inhibitory) synaptic gain and

tunes the amplitude of excitatory (resp. inhibitory) postsynaptic potentials. Additionally, 1/a

(resp. 1/b) represents the time constant of excitatory (resp. inhibitory) postsynaptic potentials

representative of the kinetics of synaptic connections and delays introduced by circuitry of the

dendritic tree [Freeman, 1975, Jansen et al., 1993, Van Rotterdam et al., 1982]. Following

the work of Freeman [1975], the functions converting the average membrane potential into an

average pulse density can be approximated by sigmoids. We thus introduce

S(x, xth, rsl) =
1

1 + ersl (xth−x)
.

Yet, for sake of compactness of the NMM presentation, we introduce an auxiliary parameteri-

zation after [Freeman, 1975]:

Snr(x, v) = 2 e0 S(x, v, r) =
2 e0

1 + er (v−x)

where 2 e0 represents the maximum discharge rate, v the excitability threshold and r the stiff-

ness of neuronal excitability. Finally, the NMM receives an excitatory input p(t) standing for
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the action on population P of neural populations in other areas through long-range synaptic

connections. This input can be deterministic for representing a specific stimulus. To reproduce a

non-specific input and generate realistic model outputs, one classically considers p(t) a gaussian

variable.

Parameters Ci = αiC, i ∈ {1, 2, 3, 4}, represent the average number of synapses between

two populations and weight the coupling modeling the synaptic connections (Figure 1.9(b)).

Therefore, parameter C, denoting the maximal number of synapses between two populations,

represents the global synaptic coupling strength. The excitation of P by its own output, resulting

from the intra-population synaptic connections, is weighted by the coupling gain G. We refer

to Table 1 in Appendix for the description and values of all the parameters of the model.

The model writes with the same state variables as the Jansen-Rit model: the excitatory

output y0 and the excitatory y1 and inhibitory y2 inputs of the main population P . Hence

following the diagram in Figure 1.9(b), one obtains:

ÿ0 = AaSnr(y1 − y2, vP )− 2 a ẏ0 − a2 y0, (1.11a)

ÿ1 = Aa [C2 Snr(C1 y0, vP ′) +GSnr(y1 − y2, vP )]− 2 a ẏ1 − a2 y1 +Aap(t), (1.11b)

ÿ2 = B bC4 Snr(C3 y0, vI)− 2 b ẏ2 − b2 y2. (1.11c)

We often consider the local field potential (LFP) as the main model output. Following [Jansen

et al., 1993], it is defined by LFP(t) = y1(t) − y2(t). It is important to note that, generally,

studies of neural mass models only considered the case with the same constant excitability

thresholds for all populations, i.e.

vP = vP ′ = vI = v0.

The panel of this model outputs is very large depending on the values of the parameters and

reflect the ability of the model to represent the activity of the different type of voxel (size of

the neural populations, structure of the synaptic connections, etc). In [13], we have performed

a bifurcation analysis involving parameters p = p(t) (first considered as a parameter), C, α2

and G for identifying the different types of outputs. The results of this analysis are presented

in section 2.3.

1.2.3 Neuron-glia mass model

Biological and computational background Considered as simple energy suppliers for the

neurons, the role of the glial cells in the information processing has been neglected for a long

time. In the last decade, a specific interest has emerged for the impact of the glial cells activity,

in particular astrocytes, upon the neuron behavior. The presence of transporters for GABA

and glutamate (the main neurotransmitters of the central nervous system) in both neurons and

astrocytes raised the question of the functional importance of the astrocytes in the regulation

of the neural activity [Wang and Bordey, 2008]. Henceforth, it has been shown that glial cells

and particularly astrocytes have a great impact on both the metabolic regulation [Lee et al.,

2011, Sahlender et al., 2014, Schousboe et al., 2013, Volman et al., 2007] and the cerebral blood

flow dynamics [Kowianski et al., 2013]. Indeed, the astrocytes activity modulates the dynamics

of neurotransmitter concentrations, and consequently the neuronal excitability threshold that

depends on the neurotransmitter concentrations in the synaptic cleft, the synaptic transmission
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and the neural activity [Araque et al., 1998, 1999, Campbell and Hablitz, 2008, Chever et al.,

2016, Losi et al., 2014]. Consequently, astrocytes dysfunctions are involved in several brain

pathologies [Losi et al., 2012, Pittenger et al., 2011, Seifert et al., 2006]. Studying the inter-

actions between the neurons and astrocytes cells has therefore become an essential problem in

neurophysiology and biophysics. However, there exists no experimental dynamical variations of

neurotransmitter concentrations data published in the literature to date.

Several models including these metabolic regulation mechanisms have been proposed in the

literature: models of tri-partite synapse [Nadkarni and Jung, 2007, Postnov et al., 2009, 2007,

Volman et al., 2012, 2007], models of a single neuron coupled with an astrocyte [De Pittà et al.,

2011, Gruetter et al., 2001, Silchenko and Tass, 2008] and sometimes with a hemodynamic

compartment [Aubert and Costalat, 2002, 2005, Aubert et al., 2005]. In general, these models

are built using conductance-based models of individual neuron activities, and therefore need to

scale up for the investigation of the mesoscopic scale. Computational network models of the

neuron-glia interactions have also been introduced in [Savin et al., 2009, Volman et al., 2013]

to study post-traumatic injury and epileptogenesis respectively. Although those models are

useful for comparing in silico and in vivo data, these network models are hardly mathematically

tractable.

Therefore, in [15], we have proposed a neuron-glia mass model built on two bilaterally cou-

pled compartments: the NMM presented in section 1.2.2 generates the neural activity dynamics

and the dynamics of neurotransmitter concentrations in the extracellular space involving their

uptakes by the local astrocytes.

Neurotransmitter concentrations in the extracellular space The glial compartment

is based on the model introduced in [Blanchard et al., 2016] for reproducing the dynamics of

GABA and glutamate concentrations (driven by the GABAergic interneurons and glutamatergic

pyramidal cells activities) in the extracellular space locally to the main population P . The

local nature of this interaction implies that the firing rate of the secondary population P ′ of

pyramidal cells does not impact the glial dynamics associated with the neighboring astrocytes

of the main population P . Figure 1.10 illustrates the following mechanism: excited pyramidal

cells (resp. interneurons) release glutamate (resp. GABA) in the extracellular space (synaptic

cleft). Astrocytes and pre-synaptic neurons reuptake the neurotransmitters. Astrocytes recycle

or consume the neurotransmitters while the presynaptic neurons capture them to complete their

stock.

The glial compartment is driven by the firing rates of the pyramidal cell and interneuron

populations. We introduce the following state variables: (i) JenG and Jeiγ : the fluxes of glutamate

and GABA from neurons to extracellular space, (ii) [Glu]e and [GABA]e: the neurotransmitter

concentrations in the extracellular space, (iii) [Glu]a and [GABA]a: the quantity of neurotrans-

mitters recycled and consumed by the astrocytes. Naturally, the dynamics governing JenG and

Jeiγ are driven by second-order differential operators similar to the synaptic transfer dynamics

introduced in (1.10) (see [Molaee-Ardekani et al., 2013, Van Rotterdam et al., 1982]):

FG(hG) =
1

W

(
1

w1
h′′G +

w1 + w2

w1
h′G + w2 hG

)
,

Fγ(hγ) =
1

Z

(
1

z1
h′′γ +

z1 + z2

z1
h′γ + z2 hγ

)
.
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Figure 1.10: Neuron-glia model with glial feedback. P and P ′: main and secondary popu-
lations of pyramidal cells. I: interneuron population. p(t): external input on population P .
[Glu]e and [GABA]e: glutamate and GABA extracellular concentrations. [Glu]a and [GABA]a:
glutamate and GABA glial concentrations. Red arrows: P → P , P → I and P → P ′ couplings.
Orange arrow: P ′ → P coupling. Green arrow: I → P coupling. Cyan arrows : glutamate and
GABA release by populations P and I into extracellular space (fluxes Jenγ and Jeiγ ). Purple ar-
rows: glial and neural reuptakes of neurotransmitters. Red dashed arrows: glutamate feedbacks
on populations P and I. Brown dashed arrow: GABA feedback on population P .

As for the synaptic transfer functions, parameter W (resp. Z) tunes the peak amplitude of

glutamate (resp. GABA) concentrations and parameters w1 and w2 (resp. z1 and z2) tune

the rise and decay times of glutamate (resp. GABA) release transfer function (see Table 1 in

Appendix for the description and values of all the parameters involved in the model). These

dynamics are well-suited for reproducing the qualitative and quantitative properties of rise and

decay in neurotransmitter concentrations.

The reuptakes of glutamate from the extracellular space by astrocyte and neurons are trig-

gered when extracellular concentration of glutamate reaches a threshold. Moreover, the efficien-

cies of these processes saturate for high concentration values, which leads to model these dyna-

mics using sigmoidal functions. GABA reuptakes are modeled with Michaelis-Menten dynamics

following the experimental literature [Blanchard et al., 2016], using the following function:

H(x, k) =
x

x+ k

The dynamics of the extracellular concentrations ([Glu]e and [GABA]e) are derived from the

input (induced by the fluxes JenG and Jeiγ of neurotransmitters released by the neurons) and

output fluxes (induced by the glial and neuronal reuptakes) described above. The astrocyte

concentration dynamics ([Glu]a and [GABA]a) result from the glial reuptake ones and a linear

consumption term. We introduce parameters V ae
G and V ne

G as the maximal rates of glutamate

reuptakes by the astrocytes and the neurons respectively, and V c
G and V c

γ as the glutamate and

GABA degradation rates in astrocytes.
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Following the above explanations, we obtain the dynamics for the glial compartment, where

y0, y1 and y2 follow the NMM (1.11):

d2JenG
dt2

= W w1 Snr(y1 − y2, vP )− (w1 + w2)
dJenG
dt
− w1w2 J

en
G , (1.12a)

d[Glu]e
dt

= JenG − (V ae
G + V ne

G )S([Glu]e, sg, rg), (1.12b)

d[Glu]a
dt

= V ae
G S([Glu]e, sg, rg)− V c

G [Glu]a, (1.12c)

d2Jeiγ
dt2

= Z z1 Snr(C3 y0, vI)− (z1 + z2)
dJeiγ
dt
− z1 z2 J

ei
γ , (1.12d)

d[GABA]e
dt

= Jeiγ − V ae
γ H([GABA]e,K

ea
γ )− V ne

γ H([GABA]e,K
en
γ ), (1.12e)

d[GABA]a
dt

= V ae
γ H([GABA]e,K

ea
γ )− V c

γ [GABA]a. (1.12f)

Modulation of neuron excitability by neurotransmitter concentrations The concen-

trations of neurotransmitters in a synaptic cleft act on the excitability threshold of the post-

synaptic neuron [Araque et al., 1998]. The alteration of this neural excitability threshold can be

reproduced in the NMM by dynamical changes in vP , vP ′ and vI . In the following, we describe

how we model the modulation of the neuron excitability in each population by the neurotrans-

mitter concentrations in the extracellular space basing ourselves on biological knowledge.

Extracellular concentrations of neurotransmitters have a thresholded impact on neural acti-

vity [Araque et al., 1998]. Precisely, on one hand, the impact of neurotransmitter concentrations

on neural activity is implicitly taken into account in the neuronal compartment, thus the glial

feedback steps in only when the concentrations become larger than physiological ones. On the

other hand, the postsynaptic neurons are saturated when these concentrations become to large

and, consequently, the neural excitability remains bounded. As explained in the introduction,

quantitative experimental data of the impact of neurotransmitter concentrations on neural ex-

citability do not exist up to now. Hence, to reproduce qualitatively the biological mechanisms,

we have considered sigmoidal functions to model the glial feedback on neural excitability which

is a natural choice for aggregating the qualitative experimental knowledge. It is worth noti-

cing that the qualitative properties are preserved with any bounded increasing functions with

a unique inflection point.

We introduce three sigmoidal functions to model the components of the glial feedback:

(a) mP
G S([Glu]e, vG, rG) for the glutamate feedback on pyramidal cells,

(b) mI
G S([Glu]e, vG, rG) for the glutamate feedback on interneurons,

(c) mγ S([GABA]e, vγ , rγ) for the GABA feedback on pyramidal cells.

Note that the fixation mechanisms of glutamate on pyramidal cells and interneurons are the

same since the neurotransmitter transporters are independent on the type of neuron [Huang

et al., 2004, Pittenger et al., 2011]. Thus, only parameters mP
G and mI

G representing the maximal

coupling gains of the glutamate-related component of the glial feedback discriminate between the

coupling functions mP
G S([Glu]e, vG, rG) and mI

G S([Glu]e, vG, rG), since the synaptic sensitivities

may not be the same in pyramidal cells and interneurons.

At the beginning of this section, we evoked that the glial feedback acts on the excitability

thresholds of neurons. More specifically, if there is an excess of neurotransmitter in a synapse,
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the extracellular concentration of this neurotransmitter acts on the postsynaptic neuron by

modulating its excitability threshold. Following the mass approach, we scale this feature to the

populations. We build the feedbacks (dotted arrows in Figure 1.10) on the dynamics of the

neural compartment, for each type of synaptic connection, using the sigmoidal functions of the

neurotransmitter concentrations, basing ourselves on the biological knowledge (e.g. [Araque

et al., 1998]).

• P ′ → P or P → P ′. The glial compartment only takes into account neurotransmitters

released locally by neurons of populations P and I, whereas population P ′ is non local to

population P . Hence, extracellular concentrations of neurotransmitters in the vicinity of

P ′ have no impact on P and the concentrations in the neighborhood of P and I do not

influence postsynaptic neurons of population P ′. Consequently, we keep constant vP ′ = v0.

• P → I. In case of extracellular glutamate excess, the postsynaptic neuron is more ex-

citable. Consequently, more neurons are activated in the population I. We model this

mechanism by introducing a dependency of population I excitability threshold and set

vI = v0 −mI
G S([Glu]e, vG, rG). (1.13)

Note that GABA consumption through “intern” cycles (GABA shunt) is considered as a

secondary mechanism compared to the GABA uptake by interneurons [Liang et al., 2006,

Patel et al., 2005]. As a consequence, in our model, we decided to neglect the excitability

modulation of interneurons by GABA.

• I → P and P → P . GABA excess strengthens the inhibition of the postsynaptic neuron,

i.e. less neurons are activated in P . Moreover, a synaptic connection of type P → P

is impacted by the extracellular concentration of glutamate implying a modulation of

variable x0 dynamics as well. In case of an excess of glutamate in a P → P type synapse,

the postsynaptic neuron is more excitable. Gathering both modulations impacting the

excitability of population P , we set

vP = v0 +mγ S([GABA]e, vγ , rγ)−mP
G S([Glu]e, vG, rG). (1.14)

The whole neuron-glia mass model is thus obtained by coupling the NMM (1.11) and the

glial dynamics (1.12) with the dynamical entries vI and vP mentioned above. Consequently, the

sigmoidal functions appearing in equations (1.11a), (1.11b), (1.11c), (1.12a) and (1.12d) become

Snr(y1 − y2, vP ) =
2 e0

1 + er (v0+mγ S([GABA]e,vγ ,rγ)−mPG S([Glu]e,vG,rG)−(y1−y2))
,

Snr(C1 y0, vP ′) =
2 e0

1 + er (v0−C1 y0)
,

Snr(C3 y0, vI) =
2 e0

1 + er (v0−mIG S([Glu]e,vG,rG)−C3 y0)
.

The modulation of the neural activity by the neurotransmitter concentrations has been

identified in recent studies as an essential mechanism of several pathologies triggered by glial

reuptake deficiencies. In [15], we have performed a model-based study of the link between

the glial reuptake deficiency and the neuronal hyperexcitability which is an essential point for

understanding the genesis of epileptic behaviors. In section 2.4, we present the main results

of this study, based on the analysis of a dynamical bifurcation using constrained optimization

tools.
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Bifurcation-based tools for parameter

estimation

2.1 GnRH secretion model

2.1.1 Species-dependent specifications of the GnRH secretion pattern

The quantitative features of the GnRH secretion pattern are subject to a huge between-species

variability, although the general biological mechanisms are common. Consequently, a funda-

mental question for properly applying the model to the investigation of the GnRH secretion

model introduced in section 1.2.1 has been to develop an efficient way for tuning the parameters

of the model so that the outputs fulfill a set of quantitative features. These specifications are

• the ratio between the pulsatility phase and the surge durations,

• the duration of the follicular and luteal phases,

• the ratio between the pulse and surge amplitudes,

• the pulse frequency increase from the beginning to the end of the pulsatile phase.

From the dynamical viewpoint, the challenge is to prove the existence, for any set of quan-

titative specifications, of a set of parameter values leading to a matching output. Moreover,

since a single parameter may impact several features of the generated output, it is important

to find the good sequence for fixing the parameters according to each quantitative constraint

on the pattern. We have developed an algorithm-like procedure for tuning the parameters de-

tailed in [5] built on the slow-fast properties of the subsystems extracted from the model. The

main idea, summarized in the following, is to take advantage of the unilateral coupling between

the Regulator (FitzHugh-Nagumo system) and the Secretor (FitzHugh-Nagumo system driven

by the Regulator) to identify, for any value of ε small enough, values of (b1, b2) leading to a

given surge-to-pulsatile phase duration ratio. Then, among these values, one couple leads to

the wanted value for the luteal-to-follicular phase duration ratio. Therefore, parameter ε value,
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which is critical in the sense that it impacts both amplitudes and durations related features of

the outputs as well as the mean pulse frequency, can be chosen together with the other values

of the Secretor parameters without taking into account the phase durations. Parameter (b1, b2)

values can be chosen afterwards for fitting the phase durations.

In the sequel, we summarize the theoretical results on the link between the phase durations

and parameters (ε, b1, b2) by mean of a foliation of the parameter space. Then, we explain the

algorithm-like procedure to tune all the parameters of the GnRH secretion model so that the

output fulfills a given quantitative set of specifications. We give two results of this procedure

application by mean of reproducing GnRH patterns fulfilling the quantitative specifications of

the secretion pattern in the rhesus monkey and the ewe.

2.1.2 Foliation of the Regulator parameter space

Parameter space restriction From the bifurcation results recalled in section 1.1.2, we re-

duce the (ε, b1, b2) parameter space for imposing the existence of a relaxation limit cycle to

the Regulator. Hence, along such attractive cycle, the X variable alternatively takes negative

and positive values, which discriminates between the pulse phase and the surge of the whole

system (1.7). In the sequel, we will only consider (ε, b1, b2) values both below the surface Hc of

homoclinic connections, and below and far enough from the Hopf bifurcation surface to avoid

any canard phenomenon. With the notations of Lemma 1.1, for ε small enough, the surface of

homoclinic bifurcations Hc is given by b2 = hc(b1, ε) and the surface of Hopf bifurcation Hp by

b2 = hp(b1, ε) = h0
p(b1) +O(ε). We introduce a security plane:

H−αp : b2 = h0
p(b1)− α = ν + 2b1ν

3 − α, α > 0 (2.1)

Thus we consider the new reduced parameter space (see Figure 2.1)

(b1, b2, ε) ∈ R1 =





(b1, b2, ε) ∈ R3
+

∣∣∣∣∣∣∣

b2 < h0
p(b1)− α

b2 < hc(b1, ε)

ε < ε0




.

Figure 2.1: Bifurcation diagram for ε < ε0 and restriction R1 of the parameter space.
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Section 2.1. GnRH secretion model

Approximations of pulsatility phase and surge duration Classical results of singular

perturbation theory [Dumortier and Roussarie, 1996, Fenichel, 1979, Szmolyan and Wechsel-

berger, 2001] ensures that the left (resp. right) slow part of the limit cycle is exponentially

close to the left (resp. right) slow manifold. We note that the perturbed compact slow manifold

[Jones, 1995] does not cross the critical manifold and that is can be expressed as a graph over

X. Hence, the invariant slow manifold fulfills the following differential equation :

dY

dX
=
Ẏ

Ẋ
= ε

X + b1Y + b2
−Y + g(X)

< 0 (2.2)

By introducing the difference between the left (resp. right) branch of the critical manifold and

the corresponding compact slow manifold, we can express integral forms of ε-approximations

for the time spent along the limit cycle in X < 0 and X > 0 respectively. The detailed proof of

the following lemma can be found in [5] (Lemma 4.1).

Lemma 2.1. For (b1, b2, ε) ∈ R1, note (X(t), Y (t)) a parameterization of the limit cycle

C(b1, b2, ε) such that X(0) = 0 and Y (0) > 0, and T (b1, b2, ε) its period.

Then, there exists a unique T−(b1, b2, ε) such that X(t) < 0 for t ∈ (0, T−(b1, b2, ε)] and

X(t) > 0 for t ∈ [T−(b1, b2, ε), T (b1, b2, ε)]. Note Xmin(b1, b2, ε) and Xmax(b1, b2, ε)) the minimal

and maximal value respectively taken by X along C(b1, b2, ε), and T+(b1, b2, ε) = T (b1, b2, ε) −
T−(b1, b2, ε). Then, as ε tends to 0

T−(b1, b2, ε) =

∫ −ν

Xmin(b1,b2,ε)

g′(X) + ∂Ψ−
∂X (X, ε)

X + b1 (g(X) + Ψ−(X, ε)) + b2
dX +O(ε) (2.3a)

T+(b1, b2, ε) =

∫ ν

Xmax(b1,b2,ε)

g′(X) + ∂Ψ+

∂X (X, ε)

X + b1 (g(X) + Ψ+(X, ε)) + b2
dX +O(ε) (2.3b)

where Ψ− < 0 and Ψ+ > 0 are differentiable functions defined on ]Xmin(b1, b2, ε),−ν]×]0, ε0]

and [ν,Xmax(b1, b2, ε)[×]0, ε0] respectively such that

∃λ(ε) =
ε→0

O(ε2/3),

{
∀X ∈ ]Xmin(b1, b2, ε),−ν] , |Ψ−(X, ε)| < λ(ε)

∀X ∈ [ν,Xmax(b1, b2, ε)[ , |Ψ+(X, ε)| < λ(ε)
(2.4)

Note that the approximations obtained when considering ε = 0 are easier to compute :

T 0
−(b1, b2) =

∫ −ν

−2ν

g′(X)

X + b1g(X) + b2
dX, T 0

+(b1, b2) =

∫ ν

2ν

g′(X)

X + b1g(X) + b2
dX.

Note that in application to GnRH secretion pattern, the duration of the pulsatility phase has to

be much longer than the surge duration. To do so, the current point (X,Y ) has to be confined

for a while in the vicinity of the left singular point, which means (b1, b2, ε) very close to the

surface of homoclinic bifurcations. But, close to Hc, the above approximations are not precise

enough for characterizing accurately the value of a large duration ratio between the pulsatility

phase and the surge. For this reason, we shall take into account the time spent along the

O(ε2/3) path from X = Xmin to X = −2ν, even more so since the motion is very slow near

the singular point. This remark has motivated the introduction of the ε approximations (2.3).

It is worth noticing that this way of calculating durations using implicitly the reduction to the
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slow manifold has been extended for a more complex system of two coupled three-dimensional

oscillator generating MMOs (see section 4.2.3).

Control of the pulse-to-surge duration ratio Yet, the case ε = 0 is important to ground

the subsequent results on the ε-dependent approximations. Hence, we first state the dependence

of T 0
− and T 0

+ on b1 and b2 in the following technical lemma. The main property is the possibility,

for any b1 in a precise interval, to choose b2 so that T 0
− is as large as we want, while T 0

+ remains

bounded.

Lemma 2.2. 1) For all b1 ∈
[
0, 1/ν2

[
, b2 → T 0

−(b1, b2) (resp. b2 → T 0
+(b1, b2)) is a C1 strictly

increasing (resp. strictly decreasing) function on
[
0,min

(
hp(b1)− α, h0

c(b1)
)[

2) In R1, T 0
+(b1, b2) remains finite, while

∀b1 ∈
[
ν + α

4ν3
,

1

ν2

[
, lim
b2→2ν−2b1ν3

T 0
−(b1, b2) = +∞

3) The function b1 → T 0
−(b1, hp(b1) − α) (resp. b1 → T 0

+(b1, hp(b1) − α)) is C1 and strictly

increasing (resp. strictly decreasing) on
[
0, ν+α

4ν3

[
. Moreover:

lim
b2→2ν−2b1ν3

T 0
−(b1, hp(b1)− α) = +∞

We now prove that we can select the value of b2 from fixed values of b1 and ε any ratio r > 1

for T−/T+, first for ε = 0 in Proposition 2.3, then for any ε small enough using the implicit

function theorem in Theorem 2.4.

Proposition 2.3. There exists a C1-foliation of R1∩{ε = 0} of 1-dimensional leaves such that:

1) for each leaf F , there exists b̄r1 ∈
[
0, ν+α

4ν3

[
such that F is the graph: b2 = l0r(b1) of a differen-

tiable function l0r defined on
[
b̄r1,

1
ν2

[
,

2) for each r ≥ 1, there is a unique leaf F0
r on which T 0

−(b1, b2)/T 0
+(b1, b2) = r.

Theorem 2.4. There exists a C1-foliation of R1, defined near ε = 0, of two dimensional leaves

such that:

1) each leaf is the graph b2 = lr(b1, ε), b1 ∈
[
b̄r1,

1
ν2

[
of a differentiable function lr,

2) for each r ≥ 1, there exists a unique leaf Fr on which T−(b1, b2, ε)/T+(b1, b2, ε) = r.

We have thus proved that, for any prescribed ratio r of the duration of the pulsatility phase

to the surge duration, there exists a 2-dimensional manifold of solutions in the parameter space

(ε, b1, b2), and we have provided a O(ε2/3) approximation of the leaf by the surface:

{
(ε, b1, b2) | 0 ≤ ε ≤ ε0, b2 = l0r(b1), b̄r1 ≤ b1 ≤

1

ν2

}

Starting from this initial guess, a numerical process allows us to reach the precise value of the

ratio. We have performed a global simulation for building discretization of several leafs shown

in Figure 2.2.

2.1.3 Algorithm for tuning the model parameter

We present the algorithm-like procedure for tuning the parameter values in order to meet the

set of quantitative specifications together (the values of parameters λ, ν appearing in functions
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Figure 2.2: Left panel : one-dimensional leaves F0
r , r = 2, 3, 6, 9, 12, of the foliation of

R1 ∩ {ε = 0}. Each leaf is defined by T 0
−/T

0
+ = r. Right panel : two-dimensional leaves in R1

defined by T−/T+ = r. This ratio corresponds to the pulsatility phase duration over the surge
duration.

f and g as well as δ are chosen once for all). This procedure is detailed in [5]. In particular, we

don’t recall the constraints on the parameter values, obtained from classical geometric arguments

on the nullclines, that ensure the pulse and surge alternation in the generated output.

The procedure first consists in obtaining an initial guess for the parameters values, from the

following specification-driven and analysis-based operating sequence:

1. Fix the value of a2 between λ and λ
√

3 so that the ẏ-nullcline for X = 0 separates left

fold of the x-nullcline, on its left, from the origin, on its right. The value a2 is chosen even

greater that the prescribed surge amplitude is high.

2. Choose the order of magnitude of ε to fit the average pulse frequency. Combining the whole

cycle duration with the average pulse frequency, we can get an approximate number of

pulses along a cycle. Since ε is a timescale separation parameter between the Regulator

(which drives the whole cycle) and the Secretor (which produces the pulses), it is in the

order of the inverse of the pulse number.

3. Tune the value of a0 to obtain a suitable frequency at the end of the pulsatility phase. As-

suming that a1 is small, we may approximate the minimum period of the GnRH Secreting

System, for X ranging between −2ν and −ν, by:

Tmin = 2ε

∫ −λ

−2λ

f ′(x)

a0x
dx =

ε

a0

(
9λ2 − 6 ln 2

)
(2.5)

Hence, to obtain a prescribed frequency φ at the end of the pulsatility phase, we can link

a0 to ε by Tmin = 1/φ. The corresponding value of a0 will impact the pulse to surge

amplitude ratio, since the surge amplitude increases exponentially as a0 decreases.

4. Find the value of c consistent with the pulse frequency ratio ρ between the beginning and

the end of the pulsatility phase. With a2 ranging between λ and λ
√

3, the period of the

limit cycle of the Secretor for X = −ν can be approximated by the minimum Tmin. In

that case, the period of the limit cycle for X = −2ν is equal to Tmin/ρ. Finding c thus
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amounts to solve the implicit equation:

∫ −λ

−2λ

f ′(x)

a0x+ a1f(x) + a2 − cν
dx+

∫ λ

2λ

f ′(x)

a0x+ a1f(x) + a2 − cν
dx =

Tmin
ρ

(2.6)

It is worth noticing that this equation does not admit a solution in c for every value of ρ.

The greatest ratio can be reached with the following value of c:

c =
a0λ+ 2a1λ

3 + a2

2ν
(2.7)

5. Define the precise value of a1. We already assume that a1 is small enough. The precise

choice of a1 affects marginally the amplitude of the surge, which increases as a1 increases.

6. Deduce the values of b1 and b2 from the results stated in section 2.1.2. For a prescribed

duration ratio r between the pulsatility phase and the surge durations, there is a one-

dimensional curve of solutions in the (b1, b2)-space. Along one such curve of constant

ratio, the smaller b1 is (within the
[
b̄r1,

1
ν2

[
interval), the longer X remains close to −ν,

in comparison with the time spent near X = −2ν, hence the sooner the pulse frequency

increases. This property is used to set the durations of the luteal and follicular phases.
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Figure 2.3: Outputs of the GnRH Secretion model fulfilling the quantitative features of the
GnRH secretion patterns in the rhesus monkey and the ewe respectively. Parameter values have
been obtained from the algorithm-like procedure.

From this initial guess, numerical simulations are then performed to improve gradually the

compliance with the specifications. More precisely, the values of ε and a0 are updated from the

comparison of the observed generated output with that of the prescribed signal. The value of ε
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Section 2.2. Intracellular calcium oscillations in neurons

is updated once (multiplied by the ratio of the prescribed to the observed number of pulses along

the cycle). In contrast, since the search for a0 is a little more heuristic, several trial simulations

may be needed before obtaining the expected pulse to surge amplitude ratio. The remaining

parameter values are fixed from entering directly step 4 in the sequence described above.

From the general biological knowledge and experimental studies that have been performed

on ewes [Moenter et al., 1992, 1990, 1991, Skinner et al., 1997] and rhesus monkey [Catchpole

and Wagenen, 1975, Xia et al., 1992], a set of values for the specification can be inferred. Using

the parameter tuning process described above, we can find two sets of parameter values for

which the GnRH secretion model produce outputs fulfilling the two sets of specification values

consistent with the GnRH secretion pattern in the ewe and the rhesus monkey respectively (see

Figure 2.3).

2.2 Intracellular calcium oscillations in neurons

In this section, we address the problem of choosing the parameter values of model (1.5) for

reproducing oscillatory patterns of ICC in a single cell fulfilling prescribed quantitative fea-

tures. From experimental studies, we observe that the frequency and amplitudes of the calcium

oscillations as well as the baseline in a given cell is often quite close to constant while conside-

rable variability exists between different cells (see for instance [Richter et al., 2002, Terasawa

et al., 1999] for GnRH neurons and [Fallani et al., 2015] for motoneurons). In our model, the

choice of the baseline value is straightforward by mean of parameter Cab. We thus focus on

the InterPeak Interval (IPI) and the peak height. As mention in section, a long quiescent phase

is reproduced along orbits of the model displaying MMOs. The parameter estimation for such

dynamics requires different methods than the one developed in the previous section, although

they are based on the application of geometric singular perturbation theory.

Note that, in order to meet the physical timescale in the pattern without changing the

parameters of function f involved in the fast dynamics, we have introduced a time rescaling

parameter τ (that does not impact the phase portrait of the system). Hence, the ICCM presented

in section 1.1.3 becomes:

ẋ = τ (−y + f(x)− φfall(Ca)) (2.8a)

ẏ = τεk (x+ a1y + a2) (2.8b)

Ċa = τε

(
φrise(x)− Ca− Cab

τCa

)
(2.8c)

with the same functions

f(x) = −x3 + 3λ2x, φfall(Ca) =
µCa

Ca+ Cad
, φrise(x) =

λrise

1 + exp(−ρCa(x− xon))
. (2.9)

2.2.1 Folded singularity and MMOs in the model of intracellular calcium

dynamics

The occurrence and the types of MMOs generated by the model are explained by the analysis of

the folded singularity [Brøns et al., 2006, Guckenheimer, 2008, Guckenheimer and Meerkamp,
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2011, Krupa and Wechselberger, 2010, Szmolyan and Wechselberger, 2001]. After a time resca-

ling, we can state the system reduced to the critical manifold

h(x, y, Ca) = f(x)− φfall(Ca), (2.10a)

ẏ = l1(x, y) = x+ a1y + a2, (2.10b)

Ċa = l2(x,Ca) = φrise(x)− Ca− Cab
τCa

. (2.10c)

After projection on the (x,Ca)−plane and time rescaling by function −hx, one obtains the

desingularized system

ẋ = hyl1 + hCal2, (2.11a)

Ċa = −hxl2. (2.11b)

The folded singularities are fold points (x̄, f(x̄, Ca), Ca) of the critical manifold such that

(hyl1 + hCal2)
∣∣∣y=f(x̄,Ca) = 0. (2.12)

We recall that the critical manifold has two fold lines F− (x = −λ) and F+ (x = λ). Let us

consider x̄ = −λ (one can analyze analogously the case x̄ ∈ F+). Equation (2.12) for x̄ = −λ
is linear in µ, so for every Ca it is possible to find µ = µ̄(Ca) such that (−λ,Ca) is a folded

singularity. The linearization of the desingularized system provides the topological type of the

singular folds. We can therefore observe the existence of a folded saddle-node bifurcation for

a given value of µ. Moreover, it is possible to check that it corresponds to a real equilibrium

of the full system, proving that it is a folded saddle-node bifurcation of type II [Guckenheimer,

2008, Guckenheimer and Meerkamp, 2011, Krupa and Wechselberger, 2010].

2.2.2 Parameter tuning of calcium patterns

We mimic the variability of the quantitative features of calcium patterns between different

cells by choosing different values for parameters of special importance: µ and k. Parameter

k essentially tunes the timescale difference between y and Ca (x being much faster). Hence,

an increase in k implies a shorter time for subsystem (2.8a)-(2.8b) to complete a relaxation

oscillation and, consequently, a shorter time for Ca to increase and decrease back to the baseline.

One can thus increase or decrease the height of the Ca peak by tuning the value of parameter

k. Of course, a change in k also implies a change in the duration of the quiescence phase and,

consequently, the IPI.

Using the results of the preceding section, we can define the sectors of rotation associated

with the folded singularity. Therefore, the precise value of µ prescribes the number of small

oscillations of the current point near the left fold F− and, consequently, the duration of the

quiescent phase. Since variations in µ do not impact much the duration of the peaks, this

parameter can be considered to control the IPI. Panel B of Figure 3 shows the results of a

change in µ: an increase (resp. decrease) in µ value implies an increase (resp. decrease) in the

IPI as shown by the green (resp. blue) pattern compared to the red one in Panel A. The range

of variation in µ is limited by the need to produce a quiescent phase between two successive

peaks in the Ca pattern.
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Section 2.3. Bifurcation analysis of the neural mass model

Finally, the peak height and the IPI can be chosen independently by first tuning the value

of k and afterwards the value of µ. Figure 2.4 illustrates the way to fit independently the IPI

and the peak amplitude in the Ca output of the model by changing k and µ afterwards.
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Figure 2.4: The values of µ and k corresponding to each colored pattern are given on the
right of each panel. Panel A: initial pattern with 10 min IPI and 342 nM peak height. Panel B
illustrates the effect of a change in µ on the IPIs. Panel C illustrates the effect of a change in
k on both the IPI and the peak height. Panel D shows how to hold the IPI constant (10 min)
while changing the peak height.

2.3 Bifurcation analysis of the neural mass model

The neural mass model (1.11) involves, like the GnRH Secretion model, aggregated parameters

that can be interpreted at the scale of the populations. Some can be fit according to quantitative

experimental data (for instance from EEG and MRI recordings), but others depend on features

that can vary according to the context of application, for instance the scale of the populations,

the synaptic connectivity in the local area, the possible pathologies. In the study presented in

this section, we had a particular interest, in terms of generation of pathological behaviors, on

the balanced effects of both excitatory feedbacks which models a fast local feedback versus a

delayed neighbor feedback. It is worth noticing that parameters G and α2 represent the col-

lateral excitations physiologically existing in many brain structures [Frick et al., 2008, Miles

and Wong, 1986, Wang et al., 2006]. Increase of local excitatory feedback is prompt to pro-

voke hyperexcitability that may lead to pathological behaviors [Salin et al., 1995], as epileptic

discharges [McKinney et al., 1997].

In [13], we have performed a bifurcation analysis according to parameter p(t) = p (considered

as a constant), C, α2 and G. In this analysis, several objects can be defined explicitly or, at least,
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Chapter 2. Bifurcation-based tools for parameter estimation

expressed as solutions of a simple implicit system of equations. Therefore, we have developed

dedicated codes on Matlab® including this theoretical knowledge, which allowed us to perform

a more extended analysis (in terms of codimension and size of the parameter space to explore).

Nevertheless, parts of the codes were based on general and well-documented numerical methods

(in particular numerical continuation) for tracking certain bifurcations involving periodic orbits.

The result of this bifurcation analysis allowed us to establish a glossary of identifiable behaviors

in the time series underlaid by specific organizations of the NMM bifurcations.

2.3.1 Bifurcation structures with p and time series glossary

To analyze the bifurcations of the NMM, we consider its dynamics presented in section 1.2.2

(system (1.11)) as a system of first order differential equations:

ẏ0 = y3, (2.13a)

ẏ1 = y4, (2.13b)

ẏ2 = y5, (2.13c)

ẏ3 = AaSnr(y1 − y2, vP )− 2 a y3 − a2 y0, (2.13d)

ẏ4 = Aa [C2 Snr(C1 y0, vP ′) +GSnr(y1 − y2, vP )]− 2 a y4 − a2 y1 +Aap(t), (2.13e)

ẏ5 = B bC4 Snr(C3 y0, vI)− 2 b y5 − b2 y2. (2.13f)

The bifurcation diagram according to p = p(t), assumed to be a constant parameter, traces

the evolution of the geometric invariants that organize the dynamics. Basing ourselves on the

various possible organizations, we have classified the types of (non trivial) time series (generated

this time with a time-varying input p(t)) according to their qualitative properties, mostly the

changes in the oscillatory pattern. Figure 2.5 displays, for each case, a typical bifurcation

diagram (left panel), and an instance of associated LFP time series obtained with p(t) a Gaussian

variable and its time-frequency diagram (right panels). We have associated a name, an acronym

and a colored flag with each type of time series relying on its fundamental properties.

Note that different diagrams can generate the same type of time series as long as they share

essential structural properties. Below we only display one instance of the bifurcation structure

associated with one type of generated time series. Yet, the whole set of bifurcation structures

leading to the same type of time series can be retrieved from the codimension 2 bifurcation

diagrams with respect to C and p displayed in subsequent section 2.3.2.

Noise Modulated Oscillations (NMO). The locus of singular points is a graph over p.

Two Hopf bifurcations H1 and H2 are linked by a one-dimensional family of limit cycles. For

a time-varying input p(t), the generated time series oscillates when pH1 < p(t) < pH2 and

oscillation amplitude and frequency are modulated by the input value.

Noise Induced Thresholded Amplitude Modulation (NITAM). As in the NMO case,

the locus of singular points is a graph over p. The system undergoes 4 Hopf bifurcations at

pH1 < pH2 < pH3 < pH4 . The one-parameter family of limit cycles linking H1 to H2 admits two

folds FLC1 and FLC2, while the one linking H3 to H4 admits a fold FLC3. For p(t) a gaussian

input, the generated time series alternates between low and high amplitude oscillations due to

the presence of stable limit cycles for pFLC1 < p(t) < pFLC2 and pFLC3 < p(t) < pH4 respectively.

Quiescence phases may appear when the point along the orbit follows the stable point for a while.
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Figure 2.5: Bifurcation diagram (left) according to p, instance of LFP time series generated
with p(t) a gaussian input and its spectrogram (right). The horizontal grey bar above each
diagram represents the confidence interval [< p > −σ,< p > +σ] of the Gaussian variable used
to generate the time series.
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Noise Induced Spiking (NIS). The curve of singular points is S-shaped and points SN1

and SN2 corresponding to saddle-node bifurcations split it into three branches. A supercritical

Hopf bifurcation H1 on the higher branch creates a stable limit cycle which persists for smaller

p values until it disappears through a SNIC bifurcation (Saddle-Node on Invariant Cycle, or

saddle-node homoclinic bifurcation) at pSNIC = pSN1 . For an input p(t) with a mean value close

to pSN1 , the system alternates between a stable point on the lower branch and a high-amplitude

limit cycle. The period of the cycle is quite large since it is close to the SNIC bifurcation. Hence

the generated time series display alternations of spikes and long quiescence phases.

Noise Induced Spiking and Over Threshold Oscillations (NIS-OTO). The locus of

singular points is S-shaped as in the NIS case (two saddle nodes SN1 and SN2 exist) but three

Hopf bifurcations exist on the higher branch: a subcritical one at pH1 and two supercritical

ones at pH2 and pH3 . Bifurcation H1 gives birth to an unstable limit cycle which persists for

greater values of p. At pFLC, it disappears through a fold bifurcation of limit cycles with a high-

amplitude stable limit cycle. This latter stable cycle exists for p between pSN1 , corresponding to

a SNIC bifurcation, and pFLC. Moreover, a family of low amplitude stable limit cycles connects

H2 and H3. When considering a time varying input p(t), the generated time series alternates

high amplitude oscillations (for p(t) ∈]pH1 , pFLC[), low amplitude oscillations for p(t) ∈]pH2 , pH3 [

and quiescence phases.

Noise Induced Spiking and Sub-Threshold Oscillations (NIS-STO).

The set of singular points is split into three branches (lower, middle and higher) by two saddle-

node bifurcations SN1 and SN2 as in NIS case. A subcritical Hopf bifurcation H1 exists on

the lower branch and a supercritical one on the higher branch. A one-parameter family of

limit cycles connects the two Hopf bifurcation points and admits a fold at pFLC (lower than

pSN1) corresponding to a fold bifurcation of limit cycles. With p(t) a gaussian input of mean

value close to pH1 , the time series displays an alternation of large oscillations, quiescence phases

reflecting the input noise, and sub-threshold oscillations. The large oscillations result from the

presence of the stable cycle for p(t) > pFLC. The quiescence phases correspond to periods of

time during which the current point is close to lower branch of stable points (p(t) < pH1). The

sub-threshold oscillations occur in the transitions between the two preceding regimes and results

from the repulsiveness of the singular point on the lower branch when p(t) ∈]pFLC, pH1 [.

Note that a similar dynamical organization was found by Liley and Walsch [2013] in a mean

field model designed to reproduce the burst suppression during anesthesia. This model is able

to reproduce small oscillations between high amplitude bursts and burst suppression emerges

when adding a slow dynamics driven by the mean field output. Therefore, several physiologically

plausible hypotheses arise for explaining the EEG bursting genesis. One of them concerns slow

changes of GABA and Glutamate neuro-modulations in activity.

2.3.2 Impact of the balance between direct and indirect feedbacks

Direct and indirect feedbacks have an essential impact on the generated signals resulting in dif-

ferent oscillation profiles. We recall that the indirect feedback gain is defined, in the model, as a

proportion α2 ∈ [0, 1] of the maximum number C of synaptic connections between populations.

Hence, an analysis of the relative effects of direct and indirect feedbacks requires to take into

account parameter C in addition to parameters α2 and G (coupling gain of direct feedback).
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Section 2.3. Bifurcation analysis of the neural mass model

For fixed values of α2 and G, we can identify the different types of time series that the model

can generate among those described in the previous section depending on the value of C using

the codimension 2 bifurcation diagrams (w.r.t. C and p). By modifying the values of α2 and

G, this diagram changes and so does the panel of possible generated time series.

We have computed the codimension 2 bifurcation diagrams according to C and p and their

distribution in the rectangle (G, α2) ∈ [0, 80] × [0, 1]. We obtain a partition of this rectangle

(Figure 2.6) and, for each region representing a scale of direct and indirect feedback gains, a panel

of possible behaviors of the NMM. Each region from (a) to (i) is related to a type of codimension

2 diagram according to (C, p) shown in Figure 2.7. We have highlighted the intervals of C values

for which the model generates a given type of outputs from those presented in section 2.3.1.

Each interval is materialized by a colored vertical band (associated with color flags in Figures

2.5) and the acronym corresponding to the type of related outputs.
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Figure 2.6: Partition of the rectangle [0, 80] × [0, 1] of (G,α2) values according to the type
of bifurcation diagram in (C, p). The right frame is a zoom on the center part of the rectan-
gle. Cyan curve: Appearance/disappearance of two folds of the Hopf branch. Red curve:
Degenerated Bogdanov-Takens bifurcation. Blue curve: Cusp-cusp bifurcation. Green curve:
Appearance/disappearance of at least one cusp (Cusp0 or Cusp1/Cusp2 couple). These curves
define a partition of the rectangle into 11 regions indexed from (a) to (i): each region is charac-
terized by a structure of the codimension 2 bifurcation diagram in (C, p) shown in the associated
panel in Figure 2.7.

We refer to [13] for a detailed description of the codimension 2 bifurcation diagrams. Even if

this partition is built by considering the type of time series generated, several transitions between

regions correspond to codimension 3 and 4 bifurcations. Indeed, the red curve (separating (a)

and (b), (c) and (g), (e) and (h), (f) and (i)) is a degenerate Bogdanov-Takens bifurcation

[Baer et al., 2006, Dumortier et al., 1991] occurring with a cusp bifurcation. The intersection

between the red curve and the blue curve is a codimension 4 bifurcation in parameters G, α2,

C and p where a degenerate Bogdanov-Takens bifurcation involving a cusp bifurcation coincide

with a cusp-cusp bifurcation. Similarly, the intersection point between the red and cyan curves

corresponds to simultaneous occurrences of a degenerate Bogdanov-Takens bifurcation and the

fusion of two folds of the Hopf bifurcation branch. These two central points in the rectangle

partition with values of (G,α2) primarily organize the time series panel that the system can

generate based on the values of the direct and indirect excitatory feedback gains.
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trivial cases.
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2.3.3 Estimation of the relative contributions of excitatory feedbacks

Certain types of codimension 2 bifurcation diagrams differ only in the bifurcations that affect

trivial cases and, consequently, certain regions of the partition in Figure 2.6 cannot be differen-

tiated by the panel of time series that the system can generate. We have simplified the partition

in Figure 2.6 by ignoring the appearances of cusp bifurcations along the green curves and obtain

the simplified partition displayed in Figure 2.8. Hence, each new region is characterized by a

single panel of time series generated for various values of C ∈ [0, 400]. This panel is identified

with a flag composed of the colors related to the types of time series.
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Figure 2.8: Partition of parameter (α2, G) space based on the time series panel that the
system can generate for C ∈ [0, 400]. The cyan curve represents the appearance/disappearance
of two folds of the Hopf bifurcation branch. The red curve is a branch of degenerate Bogdanov-
Takens bifurcations. The blue curve is a branch of cusp/cusp bifurcation. This diagram defines
five regions characterized by a single panel of output types: NIS-OTO, NIS, NIS-STO for (a);
NMO, NITAM, NIS-STO for (b); NIS, NIS-STO for (c); NIS, NIS-STO, NMO for (e); NMO
for (g).

This partition can be used as a tool for inferring the parameter values from the sequential

qualitative motifs appearing in experimental time series. A computational process for extracting

such information remains to be developed. Yet, we illustrate the impact of a slight change

in a parameter values to reproduce the transition from pre-ictal phase to epileptic seizures

in experimental data recorded from a Mesial Temporal Lobe Epilepsy (MTLE) mouse model

(Figure 2.9 (a)). Using our model, we have generated a time series displaying NIS behavior

for t < 8s and NIS-STO behavior afterwards (Figure 2.9 (b)). The transition from NIS case

to NIS-STO case is obtained by switching α2 value (from 0.4 to 0.35) at time t = 8s. The

spectrograms associated with the model output and the experimental data (Figure 2.9) show

that the model output is comparable with the real data in terms of frequency and oscillation

amplitudes in each regime.
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Figure 2.9: (a) Experimental LFP time series and associated spectrogram. (b) Model output
and associated spectrogram. For t < 8s, NIS case (α2 = 0.4) and for t > 8s, NIS-STO case
(α2 = 0.35).

2.4 Neuron-glia mass model and hyperexcitability

In [Nadkarni and Jung, 2005], the authors have produced numerical evidences of the link between

the neuronal hyperexcitability and the neuron-glia interactions at the microscopic scale (indi-

vidual neuron, interneuron and astrocyte) using the so-called tripartite model. In [15], we have

studied this link at the mesoscopic scale using the Neuron-Glia Mass Model (NGMM) presented

in section 1.2.3. By coupling arguments from the bifurcation analysis and constrained optimiza-

tion tools, we have identified both the different types of reaction of the neural compartment in

response to astrocyte deficiency and the conditions on the aggregated parameters (related to

the neuronal excitability modulation) corresponding to each behavior.

2.4.1 Deficiency in the astrocyte activity

We analyze the impact of the astrocyte deficiency to reuptake neurotransmitters that, con-

sequently, accumulate pathologically in the synaptic cleft. In case of a GABA increase, the

post-synaptic neurons receive more inhibition and release less neurotransmitters in the follo-

wing synapses, we expect a decrease of their activities. A glutamate reuptake deficiency involve

more intricate and opposite mechanisms : an increase in the extracellular concentration of glu-

tamate increases post-synaptic neuron excitability. However, interneurons release more GABA

implying an increase in the GABA extracellular concentration as well, and an enhancement

of the inhibition of the pyramidal activity. Hence, the possible balance between glutamate-

induced over-excitation and subsequent GABA-induced over-inhibition may lead to different

types of response of the neuronal compartment.
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In the model, we can reproduce a reuptake deficiency by decreasing parameter V ae
γ for

GABA and V ae
G for glutamate, standing for the maximum rate of each neurotransmitter flux

from the extracellular space to the astrocytes, i.e. in case of neurotransmitter saturation in

the extracellular space. Such changes result in the increase of [GABA]e and [Glu]e respectively.

At the neuronal level we are interested in the change in the pSNIC value, standing for the

excitability threshold of the NMM, according to the feedback sigmoidal functions. We recall

that the fixation mechanisms of glutamate on pyramidal cells and interneurons are the same,

which results in the possibility to set

mI
G S([Glu]e, vG, rG) → v1,

mP
G S([Glu]e, vG, rG) → mP

G

mI
G

v1,

mγ S([GABA]e, vγ , rγ) → v2.

in the mathematical analysis. The v1 and v2 ranges are defined by the limits ofmI
G S([Glu]e, vG, rG)

and mγ S([GABA]e, vγ , rγ), respectively: v1 ∈ [0,mI
G] and v2 ∈ [0,mγ ]. With these new nota-

tions, the dynamical excitability thresholds vP , vP ′ and vI of populations P , P ′ and I become:

vP = v0 + v2 −
mP
G

mI
G

v1,

vP ′ = v0,

vI = v0 − v1.

Moreover, the set of singular points obtained for the different values of parameter p can be

explicitly expressed according to y0, v1 and v2 all other parameters being fixed:

p = f(y0, v1, v2) =
a

A
(v0 −

mP
G

mI
G

v1 + v2)− a

A r
ln

(
2Ae0 − a y0

a y0

)
− aG

A
y0

−C2 Snr(C1 y0, v0) +
aB

bA
C4 Snr(C3 y0, v0 − v1). (2.14)

With these new parameters, an increase or a decrease in GABA (resp. glutamate) extracellular

concentration is represented by an increase or a decrease in the value of v2 (resp. v1) respectively.

2.4.2 Glial GABA reuptake deficiency

The effect on neural activity of an increase in the extracellular GABA concentration, induced

by a deficiency of glial GABA reuptake is characterized by the following

Proposition 2.5. pSNIC is linear and increasing according to v2.

The proof relies on stating the implicit condition defining the saddle-node bifurcation (occur-

ring at the same value of p as the SNIC bifurcation) and using equation (2.14) (see [15]). Hence

a deficiency in the glial GABA reuptake implies a decrease in the neural activity. It is worth

noticing that the glutamate extracellular concentration remains close to the baseline. Conse-

quently, the impact of the changes in v1 value can be neglected and, under this approximation,

Proposition 2.5 characterizes the global effect of such deficiency on the neural compartment

excitability.
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We illustrate the application of this proposition by the following simulation. We initialize

the NGMM in an oscillatory phase with a low oscillation frequency and consider p(t) a Gaussian

input. At t = 40s, we turn off the GABA glial reuptake by setting V ae
γ = 0 (Figure 2.10). The

result is an increase in GABA extracellular concentration implying an increase in pSNIC. As

pSNIC increases, the probability for p(t) to overcome pSNIC along the associated brownian motion

decreases, and also does the oscillation frequency (Figure 2.10). Consequently, we observe a

decrease in the oscillation frequency after t > 40s. In the time series, the oscillation frequency

decreases gradually during a transient (40s < t < 60s) until reaching its minimum. This can

be explained by the slow increase of GABA extracellular concentration that reaches its new

baseline at t = 60s.
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Figure 2.10: The dependency of the SNIC value on v2 explains the impact of an alteration of
the GABA glial reuptake on the neural activity. Variation of pSNIC value according to v2 (left).
Time series corresponding to LFP, [GABA]e, [Glu]e and v2 = mγ S([GABA]e, vγ , rγ) (right from
top to bottom) for p(t) a Gaussian variable. At t = 40 s, the GABA glial reuptake is artificially
altered by setting V ae

γ = 0 for any subsequent time. The grey time window highlights the
transient towards the new behavior.

2.4.3 Glial glutamate reuptake deficiency

We now consider an increase of the extracellular glutamate concentration that we analyze dy-

namically by considering changes in v1 for fixed v2. We introduce the function

g(y0, v1) ≡ f(y0, v1, v2)|v2 fixed.

For each v1, there exists a unique bifurcation value pSNIC occurring at the non-hyperbolic

(saddle-node) singular point characterized by ySNIC which is defined by

∂g

∂y0
(ySNIC, v1) = 0,

∂2g

∂y2
0

(ySNIC, v1) < 0.

This value satisfies pSNIC = g(ySNIC, v1). We cannot find the explicit expressions of ySNIC(v1)

and pSNIC(v1). Thus, for characterizing the variations of pSNIC with v1, we take advantage of

the implicit definitions above and focus on localizing the extrema of pSNIC(v1).
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Proposition 2.6. Assume that for any v1 such that 0 ≤ v1 ≤ mI
G, pSNIC exists and the

associated saddle-node bifurcation is not degenerate. Then

1. if
mPG
mIG

> B e0 r C4
2 b , pSNIC(v1) has no local extremum,

2. if 0 <
mPG
mIG

< B e0 r C4
2 b , pSNIC(v1) may admit two local extrema: a minimum at v∗1 and a

maximum at v∗∗1 . If both exist, then v∗1 < v∗∗1 .

We stress the idea of the proof based on characterizing the change in the SNIC bifurcation

value pSNIC by solving a constrained optimization problem, since it presents a generic feature

that can be used in other context involving the dynamical bifurcations, in particular saddle-node

bifurcations. The details can be found in [15].

Proof. We search for local extrema of function pSNIC(v1) for fixed value of v2 which is implicitly

defined by

pSNIC(v1) = f(y0, v1, v2), (2.15a)
∂f
∂y0

(y0, v1, v2) = 0, (2.15b)

∂2f
∂y20

(y0, v1, v2) 6 0. (2.15c)

Hence, we are interested in solving the following problem of constrained optimization:

min /max

{
g(y0, v1) | ∂g

∂y0
(y0, v1) = 0

}
. (2.16)

After introducing the associated Lagrangian function, one obtain the necessary condition for

the existence of an extremum for g under the constraint ∂g
∂y0

= 0

∂g

∂y0
(y0, v1)− λ ∂

2g

∂y2
0

(y0, v1) = 0, (2.17a)

∂g

∂v1
(y0, v1)− λ ∂2g

∂v1∂y0
(y0, v1) = 0, (2.17b)

∂g

∂y0
(y0, v1) = 0. (2.17c)

Following the assumption that a non degenerate SNIC bifurcation occurs for any value of v1

such that 0 ≤ v1 ≤ mI
G, equation (2.17) admits a solution for any v1. Hence, if the constrained

problem admits an extremum, it corresponds to a SNIC bifurcation occurring at (y0, v1) such

that
∂g

∂y0
(y0, v1) = 0.

From (2.14), for any fixed values of y0, function v1 → ∂g
∂v1

(y0, v1) is bell-shaped and its maximal

value does not depend on y0, one obtains that function ∂g
∂v1

(y0, v1) vanishes in v1 if

0 <
mP
G

mI
G

<
B e0 r C4

2 b
. (2.18)

otherwise function ∂g
∂v1

(y0, v1) admits no zero, which proves the first item of the Proposition.
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Chapter 2. Bifurcation-based tools for parameter estimation

Now, we assume that condition (2.18) is fulfilled. The two values of v1 satisfying ∂g
∂v1

(y0, v1) = 0

can be explicitly calculated using 2.14 and we note them v∗1 < v∗∗1 . Note that v∗1 (resp. v∗∗1 )

corresponds to the extremum when the saddle-node SN1 (resp. SN2) crosses the fold of the

surface g(y0, v1) = p. We consider v1 = v∗1 and we note y∗0 the value of y0 corresponding to the

SNIC connection for this value of v1, i.e. the solution of

∂g

∂y0
(y0, v

∗
1) = 0,

∂2g

∂y2
0

(y0, v
∗
1) < 0.

The bordered Hessian matrix H associated with the Lagrangian function at its singular point

(y0, v1, λ) = (y∗0, v
∗
1, 0) reads

H(y∗0, v
∗
1, 0) =




0 ∂2g
∂y20

∂2g
∂v1∂y0

∂2g
∂y20

∂2L
∂y20

∂2L
∂v1∂y0

∂2g
∂v1∂y0

∂2L
∂v1∂y0

∂2L
∂v21




|(y∗0 ,v∗1 ,0)

=




0 ∂2g
∂y20

∂2g
∂v1∂y0

∂2g
∂y20

∂2g
∂y20

∂2g
∂v1∂y0

∂2g
∂v1∂y0

∂2g
∂v1∂y0

∂2g
∂v21




|(y∗0 ,v∗1 ,0)

The determinant of H(y∗0, v
∗
1, 0) is given by

detH(y∗0, v
∗
1, 0) = −∂

2g

∂y2
0

(y∗0, v
∗
1)

[
∂2g

∂y2
0

(y∗0, v
∗
1)
∂2g

∂v2
1

(y∗0, v
∗
1)−

(
∂2g

∂v1∂y0
(y∗0, v

∗
1)

)2
]
.

On the one hand, the saddle-node associated with the SNIC bifurcation is not degenerate

and is a local maximum of g(y0, v1), thus ∂2g
∂y20

(y∗0, v
∗
1) < 0. On the other hand, for any y0,

v1 → ∂g
∂v1

(y0, v1) is increasing at (y0, v
∗
1), thus ∂2g

∂v21
(y∗0, v

∗
1) > 0. Finally detH(y∗0, v

∗
1, 0) < 0 and

(y∗0, v
∗
1) corresponds to a local minimum of pSNIC. A similar argument proves that (y∗∗0 , v

∗∗
1 )

corresponds to a local maximum of pSNIC (where y∗∗0 is the y0 value corresponding to SN2

bifurcation for v1 = v∗∗1 ).

The above proposition can be interpreted as a necessary condition for observing a change

in the sense of variations of pSNIC when v1 varies in [0,mI
G]. Basing ourselves on this result

and considering the explicit expression of ∂g
∂v1

(y0, v1), we can derive a necessary and sufficient

condition so that v∗1 actually lies in [0,mI
G]: I1 ≤ mPG

mIG
≤ I2, where

I1 = 2B e0 r C4
b

er (v0−C3 y
∗
0)

(1+er (v0−C3 y
∗
0))2

, (2.19)

I2 = 2B e0 r C4
b

er (v0−m
I
G−C3 y

∗
0)

(1+e
r (v0−mIG−C3 y

∗
0)

)2
. (2.20)

We recall that Proposition 2.5 shows that, for a fixed value of v1, pSNIC is linear and increasing

with v2. Both results allow us to predict that there exist three shapes of pSNIC(v1, v2) according

to the value of
mPG
mIG

.

(a) If
mPG
mIG

< I1 then v∗1 < 0 and pSNIC strictly increases with v1 and v2.
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Section 2.4. Neuron-glia mass model and hyperexcitability

(b) If
mPG
mIG

> I2, then v∗1 > mI
G and pSNIC strictly decreases when v1 increases (for v2 fixed)

and strictly increases with v2 (for v1 fixed).

(c) If I1 ≤ mPG
mIG
≤ I2, then 0 ≤ v∗1 ≤ mI

G and pSNIC decreases when v1 increases in [0, v∗1] and

increases with v1 > v∗1 (for v2 fixed).

Figure 2.11 illustrates the three qualitative types of neural activity resulting from an alteration

of the glutamate reuptake by the astrocytes: we provide simulations representing the value of

pSNIC in (v1, v2) space and time series generated by the model.

Biological interpretation The intermediate case discussed above in case of glial glutamate

reuptake deficiency (transient hyperexcitability) highlights the possible regulation of an excess of

glutamate extracellular concentration after a delay, triggering a decrease of neural activity after

the initial increase. Moreover, the frequency after the regulation delay can be greater or lower

than the initial one, depending on the value of the ratio
mPG
mIG

. Note that this value can be tuned

to obtain v∗1 small enough and pSNIC large enough so that the frequency after regulation is equal

or lower than the one before reuptake deficiency. This property offers the possibility of fitting

the model outputs to experimental data and allows us to propose hypotheses about physiological

and pathological mechanisms. In particular, this study is a proof of concept of the importance

of the balance between the glutamate-induced excitability modulation on the pyramidal cells

and the interneurons. This balance would be necessary for the physiological neuro-glial system

to benefit from a resilience property in case of lowered astrocyte activity. Otherwise, either the

hyperexcitability may degenerate in a crisis or the neural activity diminishes pathologically.

45



Chapter 2. Bifurcation-based tools for parameter estimation

0 0.2 0.4 0.6 0.8 1

v
1 Time (s)

20 140120100806040

20

10
0

-10

5

4
3

40

20

0

1.0

0.5

0

LFP

v
1

Glu
E

GABA
E

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

0.09

0.10

v
2

1151051009590

p
SNIC

6

110

0

0 0.2 0.4 0.6 0.8 1

v
1 Time (s)

20 140120100806040

20

0

-20

20

0

200

100

0

1.0

0.5

0

LFP

v
1

Glu
E

GABA
E

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0

v
2

1009590858075

p
SNIC

40

0

70

0 0.2 0.4 0.6 0.8 1

v
1 Time (s)

0 12010080604020

20

0

-20

10

5

0

100

50

0

1.0

0.5

0

LFP

v
1

Glu
E

GABA
E

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0

0.18

0.20

v
2

969492908886

p
SNIC

140

[GABA]e

LFP

[Glu]e

v1

[GABA]e

LFP

[Glu]e

v1

[GABA]e

LFP

[Glu]e

v1

pSNIC

v1

v2

pSNIC

v1

v2

pSNIC

v1

v2

t (sec)

t (sec)

t (sec)

(a)

(b)

(c)

Figure 2.11: Alteration of glial glutamate reuptake (a) lessening the excitability, (b) resulting
in sustained hyperexcitability, (c) resulting in transient hyperexcitability. In each case, the
colormaps on the left display the values of pSNIC in (v1, v2) plane, and the time series on the
right correspond to LFP, [GABA]e, [Glu]e and v1 = mI

G S([Glu]e, vG, rG). The black curves
on the colormaps are the traces of (mI

G S([Glu]e, vG, rG), mγ S([GABA]e, vγ , rγ)) along the
associated orbits of the model. At t = 20s, we alter the glutamate glial reuptake by setting

V ae
G = 0. The three cases are obtained with : (a)

mP
G

mI
G

= 1.7, (b)
mP

G

mI
G

= 3.2, (c)
mP

G

mI
G

= 2.43. All

other parameters are the same in the three cases and given in Table 1.
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Chapter 3

Signature analysis in global MMO and

MMBO

MMO patterns are characterized by their signature Ls11 Ls22 Ls33 · · · , where Li denotes the number

of consecutive large amplitude oscillations and si the number of subsequent small oscillations.

Periodic signatures with period k are only denoted by finite sequence of length k, Ls11 Ls22 ...Lskk .

A challenging question arising from the analysis of MMOs is the change in the signature

of the orbits with the change of parameter values. When focusing on the global orbits, such

analysis requires both to understand the complex structure of the local dynamics generating the

small oscillations, and the control of the global return mechanism to this region of the phase

plane. This problem can be tackled for different types of dynamics generating MMOs. In this

chapter, we describe the results obtained in two different contexts: in a differentiable three

timescale system generating canard-induced MMOs (the GnRH secretion model) and a planar

hybrid system (the non-linear adaptive Integrate-and-Fire model).

3.1 Signature variation in MMOs generated by a phantom burster

For canard-induced MMOs, the dynamical structure underlying the generation of the small

oscillations is linked with the type of the folded singularity: its analysis, often performed using

blow-up methods, enables to characterize the features of each local orbit and, therefore, the

number of small oscillations for each. A prototypical example of a folded singularity with small

oscillations is the folded node, studied by Benôıt [1990], Szmolyan and Wechselberger [2001],

and Wechselberger [2005]. These articles focused on the local aspects of the dynamics. An

exposition of how the dynamics near the folded node can be combined with a global return

mechanism to lead to MMOs was given in Brøns et al. [2006]. This work was used as a basis of

various explanations of MMO dynamics found in applications [Ermentrout and Wechselberger,

2009, Rotstein et al., 2008, Rubin and Wechselberger, 2007, Vo et al., 2010]. A shortcoming of

the folded node approach is the lack of connection to a Hopf bifurcation that plays a prominent
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Chapter 3. Signature analysis in global MMO and MMBO

role in many MMOs. This led to the interest in another, more degenerate folded singularity,

known as folded saddle-node of type II (FSNII), originally introduced by Milik et al. [1998]

and recently analyzed in some detail by Krupa and Wechselberger [2010]. Guckenheimer [2008]

studied a very similar problem in the parameter regime yet closer to the Hopf bifurcation, calling

it singular Hopf bifurcation. The transition between the two settings was studied by Curtu and

Rubin [2011]. For a more comprehensive overview we refer the reader to the recent review article

[Desroches et al., 2012].

Two notions that are central to the study of canard-induced MMOs are secondary canards

and sectors of rotation. Secondary canards [Brøns et al., 2006, Wechselberger, 2005] are tra-

jectories which originate in the attracting slow manifold, make a number of small oscillations

in the fold region, and continue to the unstable slow manifold. Two trajectories crossing the

region between two consecutive canards display the same number of small oscillations. Hence,

the regions separated by secondary canards have been called sectors of rotation [Brøns et al.,

2006]. As a parameter changes, a periodic orbit may move closer to a canard and pass to the

adjacent sector of rotation. Few studies focused on this complex transition, similar to a canard

explosion, since chaotic behavior arise, in particular for systems with one fast and two slow

variables.

In [9], we have analyzed the dynamical mechanism based on three different timescales that

underlies the occurrence of the small oscillations in the GnRH secretion model introduced in

section 1.2.1. We proved that, for certain choices of the parameter values, the MMOs, including

the pulse phase, surge and pause, exist and are stable limit cycles, even when close to a secondary

canard. More precisely, we proved that canards with a specified number of small oscillations are

unique (with fixed choices of slow manifolds) and that any two adjacent canards differ by one

rotation. Thus we proved that sectors rotation are well-defined and the passage, as a parameter

varies, through a secondary canards adds (or subtracts) one small oscillation to the globally

attracting orbit. These results are complementary to the results in [De Maesschalck et al., 2014,

2016, Krupa et al., 2008, Krupa and Wechselberger, 2010, Wechselberger, 2005] and relevant to

the context of the phantom burster. Finally, coupling this local analysis with the proof of the

contraction in each direction resulting from the return mechanism, we proved the existence of

an attracting MMO orbit for all parameter values, i.e. the transition from an MMO orbit with

n small oscillations to an MMO orbit with n+ 1 small oscillations is free of chaotic dynamics,

a unique stable periodic orbit exists through the canard transition.

3.1.1 Constraints on the parameters and main theorem

We first warn the reader that parameter ε and δ have been exchanged in [9] com-

pared to system (1.7) used in other publications related to the GnRH secretion

model.

Hence, the model becomes:

εδẋ = −y + f(x), (3.1a)

δẏ = a0x+ a1y + a2 + cX, (3.1b)

δẊ = −Y + g(X), (3.1c)

Ẏ = X + b1Y + b2, (3.1d)
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Section 3.1. Signature variation in MMOs generated by a phantom burster

We refer to this latter notation in this section for the sake of consistency with the corresponding

publication. We consider a certain region of the parameter space of system (3.1) for which the

Secretor admits a singular point either on the middle or the left branch of the cubic y-nullcline

for any X value taken along the Regulator limit cycle. This implies in particular that the

Secretor admits 3 singular points: we note xsing(X) the x-component of the middle one. The

fact that the result of the subsequent analysis (deterministic transition in the MMO signature)

only applies under these assumptions is discussed from the viewpoint of parameter estimation

at the end of the section. We assume the following.

H1 : X = Xmin H2 : X = −µ H3 : X = Xmax H4 : X = µ

�

�

��

Figure 3.1: Illustration of the four hypotheses (H1) to (H4) on parameters to obtain the right
system behavior. Hypothesis (H1) requires that the intersection point of y-nullcline with the
cubic x-nullcline should be on the right of – and close to – the upper fold. To illustrate the
hypotheses (H2) to (H4), we have prescribed the slope of the nullcline, defined by −a0/a1. Then
each of the hypotheses (H2) to (H4) is equivalent to the y-nullcline lying in the corresponding
non-hatched half-plane. In each case, the dashed grey line of slope −a0/a1 is the boundary of
the half-plane and represents the position of the y-nullcline in the case of equality associated
with the corresponding hypothesis.

(H1) The y-nullcline should pass through the right fold point of the cubic y = f(x) which

generates the small oscillations. Hence, we assume that, for X = Xmin, the y-nullcline

should be on the right of – and close to – the upper fold (λ, f(λ)):

λ . xsing(Xmin) i.e. Xmin . Xf = −a0λ+ a1f(λ) + a2

c
.

(H2) Once the y-nullcline has passed the right fold and the relaxation limit cycle of the Secretor

appears, the cycle should persist until X = −µ. Hence, we assume that for X = −µ, the

y-nullcline intersects the cubic y = f(x) on its middle branch:

−λ < xsing(−µ) i.e. − a0λ+ a1f(−λ) + a2 − cµ < 0.

(H3) From the beginning of the surge phase, the Secretor must admit an attracting node and

a saddle on the left branch of the cubic y = f(x). This condition reads

a0 + a1λ1 > 2
√
a1cλ1Xmax and xsing(Xmax) < −λ.

The first part of this condition together with assumption (H4) below implies the second

part. Hence, we restrict (H3) to the first part of the condition above which is equivalent
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to

Xmax < XSN =
(a0 + a1λ1)2

4a1cλ1
.

Let us note that value XSN of X corresponds to the saddle-node bifurcation of the Secretor

occurring when the y-nullcline is tangent to the left branch of the cubic y = f(x).

(H4) Until the end of the surge phase, the Secretor (3.1a)-(3.1b) must admit an attracting

node and a saddle on the left branch of the cubic y = f(x) as well. This condition reads

−λ > xsing(µ) i.e. − a0λ+ a1f(−λ) + a2 + cµ > 0.

Note that (H2) and (H4) are needed for the generation of the adequate pulse-to-surge transition

in the generated pattern. (H1) ensures that a pause exists after the surge. (H3) is an additional

hypothesis which decipher between certain qualitative features in GnRH Secretion pattern. In

particular, large pulse-to-surge amplitude ratio cannot be obtained in that case.

The main result of internal reference [9] is the following theorem.

Theorem 3.1. Assume that (H1)-(H4) hold. There exists a constant κ such that 1, for any ε

small enough and any δ < κε, there exists a unique stable limit cycle consisting of a number

of small oscillations, a number of pulses and one surge. Some exceptional limit cycles, existing

only in exponentially small parameter regions, contain canard segments. All the limit cycles

are fixed points of a single passage around the cycle of surge, pause and pulsatility. Varying a

regular parameter can lead to a change in the number of pulses or small oscillations by means of

a passage through a canard explosion. There are two canard explosions, one associated with the

upper fold and another one with the lower fold. A passage through the canard explosion at the

upper fold yields a transformation of a small oscillation into a pulse or vice versa. The passage

through the canard explosion at the lower fold leads to an addition or a subtraction of a pulse.

The proof relies on a classical method in global analysis of slow-fast system. Considering a

section transverse to the flow, we prove the well-posedness of the return map induced by the

flow from this section into itself. We introduce a decomposition of this application by successive

transition applications between chosen intermediary sections, namely (see left panel of Figure

3.2)

Σin = {(x, y,X, Y ) : y = f(λ)− η},
Σf = {(x, y,X, Y ) : x = λ},

Σsurge = {(x, y,X, Y ) : x = xsing(Xmax) + η},
Σendsurge = {(x, y,X, Y ) : x = xsing(γ)− η}.

1This additional hypothesis ensures that the return map induced by the global flow is contracting. The
quantitative statement derives from the comparison between exponential contraction and expansion ratios induced
by the flow along the successive phases. Noting X−f the X value for which the slow and fast nullclines cross at
the lower fold and f̃(x) = −(a0x+ a1f(x) + a2)/c, it reads:

ε

xsing(µ)∫
xsing(Xmax)

c(f̃ ′(x))2g′(f̃(x))dx

f ′(x)(f̃(x) + b1g(f̃(x)) + b2)
> δ

λ∫
−λ

(
(f ′(x))2

a0x+ a1f(x) + a2 + cX−f
− (f ′(x))2

a0x+ a1f(x) + a2 + cXf

)
dx.
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with η a small but fixed constant. For each transition function, corresponding mainly to phases

from 1 to 4 of the Regulator limit cycle illustrated in Figure 1.7, the GnRH Secretion dynamics

can be reduced using a specific reduction to slow manifolds.
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Figure 3.2: Sections used for decomposing the return map induced by the global flow repre-
sented in the (x, y)-plane. In the vicinity of the fold point (magnified view), a blow-up analysis
is performed for characterizing the existence of secondary canards (large amplitude orbit shown)
and the canard-induced small oscillations (small amplitude orbit shown) .

Using singular perturbation analysis, we evaluate the amount of contraction (or expansion)

of each function according to the timescale separation parameter ε and δ. We therefore prove

the exponential contraction of the global return map induced by the flow which ensures the

existence and unicity of a fixed point corresponding to an attractive limit cycle. In the following

subsections, we stress the key point of the proof: the technical details, in particular the blow-up

analysis, can be found in [9].

3.1.2 Reductions of the flow in each phase

Three dimensional reduction with three timescales during the pulsatile phase. Slow

motion 1 (Xmin < X < µ) corresponds for the Secretor to the oscillatory phase producing the

small oscillations and subsequently the pulses in the y-signal. The variables X and Y follow the

slowest timescale and the current point (X,Y ) remains in a O(δ)-neighborhood of the Regulator

critical manifold. This reads Y = hδ(X) where (X, δ) 7→ hδ(X) is an analytic function on

]−∞,−µ[×R∗+ and h0 = g. Thus, on ]−∞,−µ[, h′δ(X) = g′(X) +O(δ).

We introduce a reduced system obtained from (3.1) assuming that Y = hδ(X). We differen-

tiate this condition, with δ constant: Ẏ = Ẋh′δ(X). By replacing the dynamics of Ẏ in (3.1),

one obtains the three-dimensional system with three different timescales:

εδẋ = −y + f(x), (3.2a)

δẏ = a0x+ a1y + a2 + cX, (3.2b)

Ẋ =
X + b1(g(X) +O(δ)) + b2

g′(X) +O(δ)
. (3.2c)

Boundary-layer system during the transitions. During fast motions 2 and 4, (X,Y )

evolves according to the X timescale and the slowest variable Y is almost constant. After a
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time rescaling and setting δ = 0, one obtains the Boundary-Layer System

εẋ = −y + f(x), (3.3a)

ẏ = a0x+ a1y + a2 + cX, (3.3b)

Ẋ = −Y + g(X), (3.3c)

with Y ' g(−µ) for fast motion 2 and Y ' g(µ) for fast motion 4.

Two-dimensional reduction with two timescales during the surge phase. Slow mo-

tion 3 (µ < X < Xmax) corresponds to the surge phase. The current point (x, y) follows the

attracting node of the Secretor lying on the left branch of y = f(x). Hence, both approximation

Y ' g(X) and y ' f(x) stand.

By reducing the fastest timescale and setting Y = g(X), one obtains

δf ′(x)ẋ = a0x+ a1f(x) + a2 + cX, (3.4a)

g′(X)Ẋ = X + b1g(X) + b2. (3.4b)

Away from the folds of both cubics, we can rewrite (3.4):

δẋ =
a0x+ a1f(x) + a2 + cX

f ′(x)
, (3.5a)

Ẋ =
X + b1g(X) + b2

g′(X)
. (3.5b)

Hence we have obtained a two-dimensional slow-fast system with slow variable X and fast

variable x.

3.1.3 Local analysis near a folded node with three timescales

Suppose the number of the small rotations for two trajectories (x, y,X) and (x̃, ỹ, X̃) is different.

Then there exists a secondary canard with initial condition somewhere on the segment between

(x, y,X) and (x̃, ỹ, Ỹ ). This way we can define sectors of the same rotation, or simply sectors

of rotation, as the segments of the intersection between the slow manifold and the section

Σin between the consecutive canards. The following theorem leads to a precise definition and

description of the sectors of rotation.

Theorem 3.2. There exists a number R > 0 such that, for every 0 < ν < R there exists a

family of kth secondary canards with
ν

δ
< k <

R

δ
.

The canards with consecutive rotation numbers are next to each other. The distance between

the consecutive canards measured in the section Σin is bounded below by C1δ
√
ε and above by

C2δ
√
ε, where C1 and C2 are positive constants.

Corollary 3.3. The kth sector of rotation, defined as the region between the kth and the (k+1)st

secondary canard consists of points whose trajectories make k rotations in the fold region.
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The proof of Theorem 3.2 is based on the application of the blow-up blow up transformation

Φ : R+ × S4 → R4,

(r, x, y,X, ε) → (r̄x̄, r̄2ȳ, r̄X̄, r̄2ε̄) = (x, y,X, ε).
(3.6)

to system (3.2) augmented by ε̇ = 0. This specific blow-up transformation was used by Du-

mortier and Roussarie [1996] to study the canard phenomenon and was later slightly adapted

by Szmolyan and Wechselberger [2001] to study the folded node.

The four-dimensional sphere S4 can be identified with a collection of charts and chart-to-

chart transformations defined on the overlap of the charts. The local analysis two charts: K1,

defined by setting ȳ = −1, and K2, defined by setting ε̄ = 1. Chart K1 is where normal

hyperbolicity can be extended. Chart K2 is where at least a part of the timescale separation

is lost, in fact if the problem has genuinely just two timescales the system in K2 is no longer

slow-fast. In our case we recover a two timescale system in K2. Since we are looking for

canards, we wish to make connections from attractive and repulsive slow manifolds. The idea

is to extend them to the overlap of K1 and K2, transform them to K2 using the chart-to-chart

transformation, and construct the connection in K2.

Finally, note that we define a number of sections of the flow, starting with the entry section

Σin, defined in the original coordinates, then Σin
1 , which is Σin transformed to K1, Σout

1 , which

is the exit section of K1, Σin
2 , which the image by the chart-to-chart transformation of Σout

1 to

K2, additional sections in K2, and then similar sections leading from K2 back to K1, near the

repulsive slow manifold.

3.1.4 Global attractive limit cycle and small oscillation adding phenomenon

The proof of Theorem 3.1 is based on estimates of both the δ-dependent contraction of the

flow during the surge phase, and the maximal ε dependent expansions occurring during the

passage through the upper fold of the Secretor (canard-induced small oscillations studied in the

local analysis) and the passage from pulsatility to surge. These estimates allows us to state a

condition δ < κε ensuring that the contraction overcomes the expansion, ensuring the existence

of an isolated fixed point of the return map corresponding to a limit cycle of the whole system.

We illustrate the deterministic signature transition Ls to Ls+1 for varying value of a2, i.e. the

addition of a small oscillation in a limit cycle tracked as a2 changes using numerical continuation

method.

It is worth noticing that the fundamental condition (H3), ensuring that the flow is con-

tracting during the whole surge phase, limits the amplitude of the surge in the GnRH secretion

generated by the model. Henceforth, the quantitative specifications decipher between different

types related to dynamical structure in the GnRH secretion model. For instance, assumption

(H3) is violated for the parameter values leading to a GnRH pattern fulfilling the quantitative

specifications in the ewe, while it is fulfilled in the case of the rhesus monkey. This difference

directly impacts the length of the pause, and its possible variability from one cycle to the

subsequent one. The previous study is thus a first step towards the stability analysis of the

neuroendocrine control of the ovarian cycle according to the species.
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Figure 3.3: Family of periodic orbits of system (3.1) when a2 is varied. The vertical axis
shows the maximum in y for each computed limit cycle along the branch. Four orbits have been
highlighted with black dots shown in the panels on the right: a small oscillation is added during
the passage from orbits 1 to 4.

3.2 MMO and MMBO signature analysis in an integrate-and-

fire model

In contrast to the canard-induced MMOs studied in the preceding section, the MMOs emerges

in the non-linear integrate-and-fire model (1.1) together with the reset mechanism (1.2) from

simpler geometric mechanisms. This relative simplicity allows us to finely characterize the MMO

patterns through the study of iterates of a 1D map associated with the hybrid system, called

the adaptation map. This map is however singular: it is discontinuous and has unbounded left-

and right-derivatives. We have applied and extended rotation theory of circle maps for this class

of adaptation maps to precisely characterize the trajectories with respect to the parameters of

the system.

3.2.1 Adaptation map

Definition 3.4. The definition domain D of the adaptation map is the set of adaptation values

w ∈ R such that the point (vr, w) does not belong to the stable manifold of the saddle. With

any w ∈ D, the adaptation map associates the value Φ(w) of the adaption variable after reset

for the orbit of the system with initial condition (vr, w), i.e.

Φ(w) = γW (t∗; vr, w) + d,

where (V (t; vr, w),W (t; vr, w)) is the solution of equation (1.1) with initial condition (vr, w) and

t∗ satisfying limt→t∗− V (t; vr, w) =∞ is the time of the first spike for this solution.

We introduce several objects of interest for the precise description of the adaptation map,

shown in Figure 3.4. We focus on the case where the vector field admits a repulsive focus

(v−, F (v−) + I) and a saddle (v+, F (v+) + I) with v− < v+. We denote by Ws and Wu the

stable and unstable manifolds of the saddle. Each of these manifolds are made of two branches,

and we note Ws
− the branch of Ws pointing towards w < 0, and Wu

− and Wu
+ the branches of

Wu pointing towards v < 0 and v > 0 respectively.

We denote by

• w∗ = F (vr)+I the w-component of the intersection of the reset line v = vr with the v-nullcline,
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Section 3.2. MMO and MMBO signature analysis in an integrate-and-fire model

• w∗∗ = bvr the intersection of the reset line with the w-nullcline,

• (wi)
p
i=1 the sequence of intersections of the reset line with Ws, labeled in increasing order.

Except for vr = v−, there exists a finite number of such points or none depending on the

parameter values: an even number of intersections for v < v− and an odd number for v > v−.

In Figure 3.4, we illustrate the case with two intersection points in the magnified view on

the unstable focus. We denote by p1 = dp/2e the index such that (wi)i≤p1 are below the v-

nullcline and (wi)i>p1 are above. The points (wi) split the real line into p+ 1 intervals denoted

(Ii)
p
i=0 corresponding to those in which the number of small oscillations occurring between two

consecutive spikes is constant except the interval Ip1 which is split into two subintervals by w∗.
The number of small oscillations for trajectories starting from Ii is





i if i < p1,

(p+ 1/2)− i if i > p1,

p1 if i = p1 and w < w∗,

p1 + 1/2 if i = p1 and w > w∗ and p is even

p1 − 1/2 if i = p1 and w > w∗ and p is odd.

(3.7)

We denote by w−lim < w+
lim < ∞ the limit of the adaptation variable when v → +∞ along

Wu
− and Wu

+ respectively and introduce the corresponding values obtained through the reset

mechanism:

β = γw−lim + d, α = γw+
lim + d.

-1.5        -1       -0.5        0         0.5         1         1.5        2         2.5        3

w�
lim

w+
lim

1

0.5

0

-0.5

Wu
�

Wu
+

Ws
�

Ws
�

vr

v

w

Figure 3.4: Geometry of the phase plane with indication of the points relevant in the charac-
terization of the adaptation map Φ. In this example, there are only p = 2 intersections of v = vr
with Ws, thus p1 = 1.

Theorem 3.5. The adaptation map Φ has the following properties.

1. It is defined for all w ∈ D = R \ {wi}pi=1.

2. It is regular (at least C1) everywhere except at the points {wi}pi=1.

3. In any given interval Ii with i ∈ {1 · · · p + 1}, the map is increasing for w < w∗ and

decreasing for w > w∗.
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4. At the boundaries of the definition domain D, {wi}pi=1, the map has well-defined and

distinct left and right limits:





lim
w→w−i

Φ(w) = α and lim
w→w+

i

Φ(w) = β if i ≤ p1,

lim
w→w−j

Φ(w) = β and lim
w→w+

j

Φ(w) = α if j > p1.

5. The derivative Φ′(w) diverges at the discontinuity points:





lim
w→w±i

Φ′(w) = +∞ if i ≤ p1,

lim
w→w±i

Φ′(w) = −∞ if i > p1.

6. Φ has a horizontal plateau for w → +∞ provided that lim
v→−∞

F ′(v) < −a(b+
√

2).

7. For w < min
(

d
1−γ , w1, w

∗∗
)

, we have Φ(w) ≥ γw + d > w.

8. If vr < v+, Φ(w) ≤ α for all w ∈ D. Moreover, for any w taken between the two branches

of the unstable manifold of the saddle, hence in particular for w ∈ (w1, wp), Φ(w) > β.

3.2.2 Infinite number of discontinuity points

We will refer to the points wi as the discontinuity points of Φ (although Φ is not defined at wi).

We start by treating the case where the adaptation map has an infinite number of discontinuity

points for simplicity of notations, before extending our results to the general case. This occurs

for vr = v−, yet the results can be extended to the case where the sub-threshold dynamics has a

stable fixed point with a circular attraction basin bounded by the unstable limit cycle (orange

region C of the parameter space in Figure 1.1) and the reset line {v = vr} intersects this limit

cycle.

Proposition 3.6. Assume that the reset line has an infinite number of intersections with the

stable manifold Ws of the saddle. If moreover all the discontinuity points (wi)i≤p1 (below w∗)
belong to [β, α], then for every n ∈ N and every finite sequence (si)

n
i=1, where si = ki + li/2,

ki ∈ N, li ∈ {0, 1}, there exists an interval J ⊂ [β, α] such that for any w0 ∈ J , the orbit with

initial condition (vr, w0) has a transient signature

1s11s21s3 ...1sn ...

Note that, in that case, we cannot ensure the stability of the orbit.

3.2.3 Subcases with two discontinuity points

The general case of finite number of discontinuity point is a tremendously difficult question. In

[19], we studied the case with two discontinuity points w1 and w2 such that β < w1 < w∗ < w2

implying that generated MMOs have at most one small oscillation between spikes. Nevertheless,

this case splits into several subcases leading already to a large versatility in the signature.

The partition of (d, γ) parameter plane according to this subcases is shown in Figure 3.5. We

summarize the main results obtained in the different regions. The study is based on the analysis

of the rotation number(s) (that can depend on the initial condition).
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Figure 3.5: Partition of (d, γ) parameter space (for fixed values of the other parameters)
according to the geometric properties of the Φ map in the case with two intersections points
of the reset line with the heteroclinic orbit. For the simulation, we used the quartic function
F = v4 + 2av, a = 0.1, b = 1, I = 0.1175 and vr = 0.1158.

Non-overlapping case For introducing a definition of such rotation number, we consider an

extension to R of the adaptation map.
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Definition 3.7. Assume that (d, γ) belong to the non-overlapping case (union of regions A, B

and C in Figure 3.5). The lift Ψ of Φ : I → I is defined on (β, α] as

Ψ = x ∈ (β, α] 7→





Φ(x) if β < x < w1

α if x = w1

Φ(x) + (α− β) if w1 < x ≤ α.
(3.8)

For x ∈ R, we extend Ψ uniquely through the relationship:

∀w ∈ R, ∀k ∈ Z, Ψ(w + k(α− β)) = Ψ(w) + k(α− β).

Then, provided that the limit exists, the rotation number of Φ (or Ψ) at the point w ∈ R is

defined as:

%(Ψ, w) = lim
n→∞

Ψn(w)− w
n(α− β)

(3.9)

Theorem 3.8. Assume that (d, γ) belongs to the non-overlapping case. Then the rotation

number of map Φ is well-defined and does not depend on w. Moreover, the rotation number is

rational % = p/q ∈ Q with p ∈ N and q ∈ N relatively prime if and only if Φ has a periodic orbit,

which is related to the MM(B)O pattern fired in the following way:

1. If % = 0 the model generates tonic asymptotically regular spiking for every initial condition

w0 ∈ [β, α] \ {w1}.
2. If % = 1 the model generates asymptotically regular MMOs for every initial condition

w0 ∈ [β, α] \ {w1}, i.e. the signature is periodic: 111111... = (11).

3. If % = p/q ∈ Q \ Z (p, q relatively prime, q > 1 and p < q), then the model generates

MMBOs for every initial condition w0 ∈ [β, α] \ {w1}. Defining 0 ≤ l1 < · · · < lp ≤ q − 1

the integers such that lip/q mod 1 ≥ (q − p)/q and Li = li+1 − li for i = 1 · · · p (with the

convention lp+1 = q + 1), the MMBO signature is L1
1 · · · L1

p.

4. If % ∈ R\Q, then there is no fixed point and no periodic orbit, and the system fires chaotic

MMOs.

Under the same hypothesis, we have proved that the rotation number varies as a devil

staircase with d as rigorously stated in the following theorem.

Theorem 3.9. Assume that for any d ∈ [d1, d2], the adaptation map Φd remains in the non-

overlapping case and Φd(αd2) < Φd(βd1). Let %d be the unique rotation number of Φd. Then:

• ρ : d 7→ %d is continuous and non-decreasing;

• for all p/q ∈ Q ∩ Im(ρ), ρ−1(p/q) is an interval containing more than one point, except,

maybe, at the boundaries of the interval {d1, d2};
• ρ reaches every irrational number at most once;

• ρ takes irrational values on a Cantor-type subset of [d1, d2], up to a countable number of

points.
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Overlapping case In regions D and E, the rotation number may differ according to the initial

condition. We therefore use the notion of rotation interval [a(Ψ), b(Ψ)] with

a(Ψ) = inf
w∈R

lim inf
n→∞

Ψn(w)−w
n(α−β) , (3.10)

b(Ψ) = sup
w∈R

lim sup
n→∞

Ψn(w)−w
n(α−β) . (3.11)

Theorem 3.10. Assume that (d, γ) belongs to the overlapping case (union of regions D and E

in Figure 3.5) and not Ψ the lift associated with Φ. Then:

1. if Φ admits a q-periodic point w with rotation number %(Ψ, w) = p
q , then a(Ψ) ≤ p

q ≤ b(Ψ);

2. if a(Ψ) < p
q < b(Ψ), then Φ admits a periodic point w of period q and rotation number

%(Ψ, w) = p/q.

Moreover, for any %1 and %2 such that a(Ψ) ≤ %1 ≤ %2 ≤ b(Ψ), there exists w0 such that

lim inf
n→∞

Ψn(w0)− w0

n(α− β)
= %1, lim sup

n→∞

Ψn(w0)− w0

n(α− β)
= %2. (3.12)

The second part of the theorem implies in particular that the rotation set in the overlapping

case is closed, and that every number % ∈ [a(Ψ), b(Ψ)] is the rotation number %(Ψ, w) of some

w ∈ [β, α].

Tracking the rotation numbers We illustrate numerically the dependence of the rotation

numbers (characterizing the MMBO pattern fired) and its possible uniqueness on the values of

parameters d and γ.
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Figure 3.6: Rotation numbers according to (d, γ). Left panel : rotation number of w = 0
together with the boundaries of the regions A to E corresponding to the different subcases when
w1 is the unique discontinuity of the adaptation map lying in the [β, α]. Right panel : rotation
numbers of the left and right lifts Ψl and Ψr associated with Φ for (d, γ) varying along the blue
segment drawn in the insert.

The left panel of Figure 3.6 shows the rotation number associated with the adaptation map

of the point w = 0 as a function of (d, γ). The various regions in the (d, γ)-plane corresponding

to the different subcases studied above and already shown in Figure 3.5 are superimposed on

the colormap. Several points are worth noticing. First, one can track the appearance and
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disappearance of the fixed points according to the value of d and γ together with the evolution

of the rotation number or rotation interval. Second, the well-definition of the rotation number

or rotation interval has been shown in regions A to E, i.e. when considering that the adaptation

map features a single discontinuity in the invariant interval.

The right panel of Figure 3.6 illustrates the evolution of the rotation number (or rotation

interval) along a segment of (d, γ) values crossing all regions from A to E. We have computed

the rotation interval [a(Ψ), b(Ψ)] along this segment.

• In region A, the rotation number associated with Φ is uniquely defined (for any initial

condition) and varies along the segment in (d, γ).

• In region B, the rotation number is uniquely defined and constant equal to 1/2.

• In region C, the rotation number is uniquely defined. Note that the constant value 1/2

obtained in the simulation only depends on the choice of the segment for (d, γ) values. As

shown in the right panel, the rotation number can differ from this value for other values

of (d, γ) in region C (e.g. in the right part).

• In region D, the rotation number is not uniquely defined in the general case. Nevertheless,

along the particular chosen segment (d, γ), a(Ψ) = b(Ψ) = 1/2 and the rotation number

of Φ does not depend on the initial condition. This particular simulation illustrates a way

to evidence that the rotation number is unique by showing that the rotation interval is

reduced to a singleton.

• In region E, the rotation interval evolves according to (d, γ) in the tunnel bounded by the

black and red lines.
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Chapter 4

Synchronization of complex oscillations and

network models

Synchronization of coupled oscillators has been widely studied and many studies have focused

on the setting of weakly coupled oscillators from a pure mathematical viewpoint (for instance

[Coombes and Thul, 2016, Kopell and Ermentrout, 1986, Malkin, 1956]) or applied in neuro-

science (for instance [Hansel et al., 1995]). Synchronization depends mainly on the structure of

the coupling; some of the frequently considered coupling architectures are “nearest neighbor”

[Kopell and Ermentrout, 1986], “all-to-all” [Mirollo and Strogatz, 1990] and coupling depending

on a global variable, e.g. the average of the phases [Hadley et al., 1988, Rotstein et al., 2003].

More recently some ideas have emerged on how to understand synchronization in the context of

slow-fast systems using the limit of strong, rather than weak coupling, see for example [Börgers

and Kopell, 2003].

In this chapter, we present contributions to the study of synchronization in the context

of applications previously introduced. More precisely, we consider different coupling structure

between cell or population dynamics for reproducing the expected structure arising from the

corresponding biological system. We therefore reproduce exotic GnRH pattern observed in

experimental data by considering two coupled Secretor impacted by the same Regulator. We

analyze the effect of either inhibitory or excitatory coupling between two similar cells of ICC,

each of them generating MMOs in the uncoupled case. We also consider a network of such cells

impacted by the global variable for reproducing episodic synchronization between calcium peaks

as observed in GnRH neuron populations.
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4.1 Cluster (de)synchronization in a GnRH secretion model

with two secretors

The GnRH secretion is far beyond being a simple event and have complex behaviors which

remain as open questions. When looking finely at the secretion pattern of GnRH into the portal

blood, one can see that, the surge may in some cases be composed of two main bumps instead

of a single one (for instance experimental data in [Caraty et al., 1998, Moenter et al., 1990,

1991]. Other interesting observations in the GnRH secretion is the degradation in pulsatility

and appearance of noise that blurs the GnRH pulses arising from the desynchronization within

the GnRH neuron network, which accompany the increasing pulse frequency at the end of the

follicular phase [Evans et al., 1995].

4.1.1 GnRH Secretion model with two coupled neuron subpopulations

In [17], we have built a model adapted from the GnRH secretion system (introduced in section

1.2.1 and studied in sections 2.1 and 3.1) for reproducing a surge with two bumps, accounting

two Secretors impacted by the same Regulator (X,Y ). Between the two Secretors, we introduce

an X-dependent diffusive coupling from the x variables upon the y variables. We consider the

following general form for such coupled model:

εδẋ1 = −y1 + f(x1), (4.1a)

εẏ1 = a
(1)
0 x1 + a

(1)
1 y1 + V (1)(x1, x2, y1, y2, X, Y ), (4.1b)

εδẋ2 = −y2 + f(x2), (4.1c)

εẏ2 = a
(2)
0 x2 + a

(2)
1 y2 + V (2)(x1, x2, y1, y2, X, Y ), (4.1d)

εẊ = −Y + g(X), (4.1e)

Ẏ = b0X + b1Y + b2, (4.1f)

and

yout1 (t) = y1(t)χ{y1(t)>yth}, (4.2a)

yout2 (t) = y2(t)χ{y2(t)>yth}, (4.2b)

z(t) = yout1 (t) + yout2 (t). (4.2c)

We will refer to subsystems (4.1a)-(4.1b) and (4.1c)-(4.1d) as Secretor 1 and 2 (S1 and S2)

respectively. The global output of the model is z(t) given by (4.2c) as the sum of thresholded

S1 and S2 outputs. Following the results of parameter estimation for the 4D GnRH Secretion

system presented in section 2.1, we choose parameter values for S1 and S2 leading to quantita-

tive features in the generated pattern close to the specifications for the ewe, yet we introduce

heterogeneity in parameter a2 and c.

The coupling in (4.1b) and (4.1d) stands for a modulation of the secretor sensitivity to the

control exerted by the Regulator, that we assume active only under a threshold value of X. We

have therefore introduced an activation function ψ(Xsync, X) and Xsync a threshold parameter,

for instance the sigmoid function:

ψ(Xsync, X) =
1

1 + exp(ρ(X −Xsync))
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We have considered two types of coupling functions : a so-called constant coupling

V (1)(x1, x2, y1, y2, X, Y ) = a
(1)
2 + c(1)X + g1(x1 − x2)ψ(Xsync, X), (4.3a)

V (2)(x1, x2, y1, y2, X, Y ) = a
(2)
2 + c(2)X + g2(x2 − x1)ψ(Xsync, X), (4.3b)

and a so-called dynamical coupling

V (1)(x1, x2, y1, y2, X, Y ) = a
(1)
2 + c(1)X + ĝ1 y

out
1 (x1 − x2)ψ(Xsync, X), (4.4a)

V (2)(x1, x2, y1, y2, X, Y ) = a
(2)
2 + c(2)X + ĝ2 y

out
2 (x2 − x1)ψ(Xsync, X). (4.4b)

With both coupling we have observed the occurrence of two-bumps surge in a certain region

of parameters. In a subregion, we also observe desynchronization between the two Secretors at

the end of the pulsatile phase. We have introduced a definition of desynchronization dedicated

to the application to GnRH secretion: considering a pulsatile phase, S1 and S2 desynchronize

from the first occurrence of two pulses that do not overlap in time.

4.1.2 Dynamical mechanisms

Choosing a value of Xsync such that the point (Xsync, g(Xsync)) lies on the middle of the right

branch of g (see Figure 4.1(a1, a2)) leads to a deactivation of the coupling function during the

first part of the surge, as long as X(t) > Xsync. If the difference between the parameters of the

secretors is sufficient, the 4-phased behavior of secretors interacting through the coupling can

be summarized as follows.

1. Pulsatile regime X < 0. The coupling is active, S1 and S2 stay synchronized for either

the whole pulsatile regime, or a part of it, depending on the parameter values of S1 and

S2 and the coupling strengths.

2. Surge triggering. X increases rapidly and overcomes Xsync, which deactivates the

coupling. S1 and S2 follow their motion along the left branches of f(x1) and f(x2) inde-

pendently.

3. Surge regime. As long as Xmax > X > Xsync (first part of the surge), X decreases

slowly, S1 and S2 move along the left branches of f(x1) and f(x2), respectively. In the

second part of the surge, the coupling is activated as long as Xsync > X > γ, the secretors

get closer to each other as variable yi decreases in the secretor with greater amplitude

while it increases in the other.

If this two-part regime generates a non-monotonic pattern in z, with an initial increase

followed by a decrease, a camel surge is obtained (see for instance, the curves corresponding

to Xsync = {1.8, 1.9, 2} in Panel (b) of Figure 4.1.

4. Resumption of pulsatility. X decreases rapidly and triggers the descending parts of

the surges followed by the resumption of pulses.

Using quasi-stationary approximations, we have obtained an approximation of the first bump

occurrence time as function of the parameters, and therefore, we have obtained a characteriza-

tion of the Xsync values for which the camel surge displays two bumps.
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Figure 4.1: Activation function ψ(Xsync, X) and shaping of a camel surge using constant
coupling function. Panel (a1): location of the activation value Xsync = 2 on the (X,Y ) plane.
The point (Xsync, g(Xsync)) lies in the middle of the right branch of Y = g(X). Panel (a2):
activation signal as a function of time, with initial time chosen at the very beginning of the surge,
and change in X starting from its maximal value X = Xmax and decreasing progressively to
reach Xsync during the surge. Panel (b): Global output z during the surge according to different
values of Xsync. Panels (c1-c3): Signals yi generated with three different values of Xsync.

4.1.3 Approximation of the desynchronization between Secretors

The time during which pulses remain synchronized depends on the strength of the coupling

and increases with each coupling strengths. We have introduced two different asymptotic tools,

namely a 4D quasi-static approach and a geometric approach, for assessing the desynchronization

time t6Ddesync (univocally defined by the value of X at that time denoted by X6D
desync).

We take advantage of the timescale separation of the 6D slow-fast feature (4.1). During the

pulsatile regime, (X,Y ) follows the slowest timescale, while xi and yi change at speeds O(εδ)

and O(ε), respectively. Since the change in X is very slow compared to the motion of (xi, yi),

we consider a reduced system for any fixed value of X ∈ [Xmin,−µ] along the left branch of

Y = g(X) by taking ε = 0. The system equations for a constant input X(t) = X with the

remaining timescale δ reads:

δẋ1 = −y1 + f(x1), (4.5)

ẏ1 = a0x1 + a1y1 + a
(1)
2 + c(1)X + ĝ1 y

out
1 (x1 − x2),

δẋ2 = −y2 + f(x2),

ẏ2 = a0x2 + a1y2 + a
(2)
2 + c(2)X + ĝ2 y

out
2 (x2 − x1)

which will be simulated for values of X ∈ [Xmin,−µ] to identify X4D
desync, i.e. the value of X for

which the synchronized pulses disappear in (4.5) for a given pair of (ĝ1, ĝ2). The corresponding
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Figure 4.2: Signal z for Xsync = 2. Panel (a) Constant coupling with small coupling strengths
g1 = 0.02, g2 = 1 ; there is no camel surge and the oscillators get desynchronized at the end
of the pulsatile regime. Panel (b) Constant coupling with strong coupling strengths g1 = 2,
g2 = 10: a camel surge occurs and the oscillators remain synchronized all along the pulsatile
regime. Panel (c) Dynamic coupling with small coupling strengths ĝ1 = 0.02, ĝ2 = 0.1: a camel
surge occurs and the oscillators get desynchronized at the end of the pulsatile regime.

desynchronization time t4Ddesync such that X4D
desync = X(t4Ddesync), will be computed from (4.1e)

and (4.1f).

The geometric approach is based on our definition of synchronization. The secretors interact

via variables yi, so that the coupling terms directly affect the locations of the yi-nullclines.

Assume that both S1 and S2 are on the right branch of the xi-nullclines and S2 is ahead

(x2 < x1, y2 > y1). The coupling may lead to a recurrent bifurcation in S2 according to the

following scenario: when the coupling is switched on, the unstable equilibrium point (x∗2, y
∗
2)

lying on the middle branch of f(x2) moves rightwards and crosses the upper fold. Then, a

quasi-stationary equilibrium point appears on the right branch of f(x2) and slows down the

motion of (x2, y2), since

(a0x2 + a1y2 + a
(2)
2 + c(2)X) > (a0x2 + a1y2 + a

(2)
2 + c(2)X + ĝ2 y

out
2 (x2 − x1))

with ĝ2 y
out
2 (x2−x1) < 0. Once the (x2−x1) difference starts to decrease, the quasi-equilibrium

(x∗2, y
∗
2) moves leftwards, crosses the upper fold again and goes back to the middle branch.

So that a relaxation limit cycle appears. This 4D geometric approach assumes the following

condition: a quasi-equilibrium point, (x∗2, y
∗
2), appears on the right branch when the coupling

is switched on, so that S2 goes on moving slowly, instead of jumping, until S1 overcomes the

yth threshold and produces a pulse. A synchronized pulse can occur if S1 reaches yth before

the leftwards jump of S2. This will be guaranteed if the quasi-stationary point, (x∗2, y
∗
2), is

located at least on the upper fold of the x2-nullcline, (λ, f(λ)), when (x1, y1) = (xth, yth) with
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yth = f(xth), xth > 0. This assumption can be expressed from the nullclines of S2:

x2−nullcline : y2 = f(x2) (4.6)

y2−nullcline : y2 = −a0x2 + a
(2)
2 + c(2)X

a1 + ĝ2(x2 − x1)
,

and the maximum X value fulfilling this requirement of synchronization, Xsing
desync, is given by

Xsing
desync =

−f(λ)(a1 + ĝ2(λ− xth))− a0λ− a(2)
2

c(2)
. (4.7)

Note that Xsing
desync only depends on ĝ2 that is the coupling strength of S2 which is ahead.

The desynchronization time assessed according to this geometric approach tsingdesync such that

Xsing
desync = X(tsingdesync) is computed from (4.1e) and (4.1f).

Numerical simulations show that the 4D quasi-static approach matches successfully the

desynchronization time of the 6D system output. The geometric approach leads to a poorer

result, since both the assessment of Xsing
desync and tsingdesync clearly underestimate the proper values.

The effect of ĝ2 in the geometric approach is contested: the error in tsingdesync values diminishes

as ĝ2 increases, whereas the error in Xsing
desync increases. This difference is due to the fact that

the change in X (dX/dt) is faster as X approaches −µ, so that a small time step results in a

greater change in X than when X is far from the left fold. Even if there is some discrepancy,

the values assessed by these approaches, especially the 4D quasi-static approach, can be used

as an initial guess to select the parameter values given a priori specifications on the time of the

desynchronization.

4.2 A study of the synchronization of two coupled neuron mod-

els generating MMOs

4.2.1 A cluster model of intracellular calcium concentrations in neurons

In [16], we have considered two identical oscillators O1 and O2 based on the ICCM dynamics,

i.e. two copies of model (1.5). We consider the same set of parameter values for both, so that

they feature the same MMO limit cycle. Such set can be found, following the study presented in

section 2.2. We have introduced a bidirectional symmetric and linear coupling between the two

oscillators through the fast variable in the slow equation ẏ and obtained the following model

(O1)





ẋ1 = (−y1 + f(x1)− φfall(Ca1)),

ẏ1 = ε(x1 + a1y1 + a2 + c(x1 − x2)),

Ċa1 = ε

(
φrise(x1)− Ca1 − Cab

τCa

)
,

(4.8)

(O2)





ẋ2 = (−y2 + f(x2)− φfall(Ca2)),

ẏ2 = ε(x2 + a1y2 + a2 + c(x2 − x1)),

Ċa2 = ε

(
φrise(x2)− Ca2 − Cab

τCa

)
.

(4.9)
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We have analyzed both positive and negative values for the coupling gain parameter c to study

both excitatory and inhibitory coupling, the synchronization between cell and its property. In

particular, we have addressed the question whether the MMO persist in each cell and, in such

case, study the property of this synchronization.

First remark that, obviously, the 3D subspace {x1 = x2, y1 = y2, Ca1 = Ca2} is an invariant

space where there exists an unstable equilibrium point of the 6D system and a limit cycle of the

6D system that is attractive inside that subspace. In other terms, with same initial conditions

for O1 and O2, the coupling terms do not affect the dynamics of the system, and both systems

will behave exactly as if they were uncoupled, having an unstable equilibrium point close to the

lower fold and being attracted to the same limit cycle at the same time (synchronized in-phase).

(0) Uncoupled case, c = 0. (a) Total oscillation death, c = −0.7.
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(b) One oscillator death, c = −0.502. (c) Anti-phase synchronization, c = −0.25.

0 10 20 30 40 50 60 70
ï4

ï2

0

2

4
x(t), X(t)

0 10 20 30 40 50 60 70
0

2

4

z(t), Z(t)

x2

Ca2

Ca1

x1

0 10 20 30 40 50 60 70
ï4

ï2

0

2

4
x(t), X(t)

0 10 20 30 40 50 60 70
0

2

4

z(t), Z(t)

x2

Ca2

Ca1

x1

(d) Almost-in-phase synchronization, c = 0.1. (e) In-phase locking synchronization, c = 1.
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Figure 4.3: Representation of the different dynamical patterns that system (4.8)-(4.9) under-
goes for different values of c.
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We represent in Figure 4.3 (0) the time traces of the first (x1, x2) and third (Ca1, Ca2)

variables in system (4.8)-(4.9) of two identical uncoupled (c = 0) oscillators in MMO regime

with different initial conditions. When c 6= 0, system (4.8)-(4.9) with different initial conditions

on each oscillator can display different behaviors depending on c. We represent an instance of

each case in Figure 4.3

(a) Total oscillation death: both oscillators reach the same stable equilibrium.

(b) One oscillator death: one oscillator generates relaxation oscillations, while the other oscil-

lates confined on the left branch.

(c) Anti-phase synchronization: the oscillators follow the same periodic or quasi-periodic

relaxation orbit, with a half-period phase-shift.

(d) Almost-in-phase synchronization: the oscillators follow the same MMO orbit, yet a small

phase-shift exists.

(e) In-phase synchronization: the oscillators reach asymptotically the MMO limit cycle of the

uncoupled case and they are perfectly synchronized.

4.2.2 Main behavior repartition with respect to the coupling strength

We first present a synoptic view of the repartition of the behaviors presented in section 4.2.1

according to parameter c. Figure 4.4 shows return times, shifts and return values associa-

ted with the signals generated by O1 and O2 according to the value of c ∈ [−1, 1]. Pre-

cisely, we note (xc1(t), yc1(t), Cac1(t), xc2(t), yc2(t), Cac2(t)) the solution of the coupled system for

a fixed value of c starting from an initial condition that does not belong to the subspace

{x1 = x2, y1 = y2, Ca1 = Ca2}. We have simulated the solutions for each value of c on a 10−3

step grid of [−1, 1] as long as necessary

• either for the orbit to reach the stable equilibrium point (case of total oscillation death,

panel (a) in Figure 4.3),

• or for the orbit to cross each section {x1 = 0, y − 1 > 0} or {x2 = 0, y2 > 0} a hundred

times (oscillatory cases, panel (b) to (e) in Figure 4.3).

For each value of c in the grid corresponding to the second case, we have kept the 25 last time

values (tx1=0
i (c))25

i=1 and (tx2=0
i (c))25

i=1. We have calculated the phase shifts between the two

oscillators :

φi(c) = |tx1=0
i (c)− tx2=0

i (c)|, i ∈ [[1, 25]]. (4.10)

Figure 4.4 shows, according to the value of c, the return times (tx1=0
i (c))25

i=1 (blue points) and

(tx2=0
i (c))25

i=1 (green points) respectively and the phase shifts (φi(c))
25
i=1 (red points).

For c in interval A, both oscillators reach a stable equilibrium (panel (a) of Figure 4.3) and,

consequently, no return times can be plotted. In intervals B, C and E of c values, the sequences of

return times converges to the same limits for both oscillators. Hence, the sets of blue and green

points coincide and the blue points are hidden behind the green ones. These cases correspond to

cases (b), (c) and (e) of Figure 4.3 respectively. It is also the case for subintervals of D for which

the oscillators are in-phase synchronized and generate an MMO orbit. A discrepancy between

the return times occur for the other c values in interval D corresponding to almost-in-phase
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Figure 4.4: Global view of the different synchronization patterns described in Theorem 4.1,
depending on the value of the coupling parameter c.

synchronization of complex MMO patterns (panel (d) in Figure 4.3). Above interval C, we have

also plotted the half of the return time (dashed black line): it coincides precisely with the time

shift between oscillators, which highlights the anti-phase synchronization.

The following theorem formalizes the macroscopic structure of this repartition with respect

to parameter c shown in Figure 4.4 and the above observations. The proof of this theorem can

be found in [16].

Theorem 4.1. Consider system (4.8)-(4.9). Assume that each subsystem (4.8) and (4.9) pos-

sesses the attractive MMOs limit cycle γµ(t) when c = 0. There exists 0 < δ � 1, such that,

for different initial conditions on each subsystem, the coupled system (4.8)-(4.9) displays the

following synchronization patterns, depending on parameter c.

1. Case c > δ (regions D and E in Figure 4.4). There is a phase delayed synchronization

pattern. The MMOs persist with the coupling, that is, small oscillations take place in each

oscillator before the jump to the right branch of the critical manifold.

2. Case c < −δ. We can distinguish three different subcases separated by the limit values

cd(µ) < c0(µ) < 0 :

(a) If c ∈ (c0(µ) + δ,−δ), (region C in Figure 4.4)), there is anti-phase synchronization

pattern. The period of the orbit depends on the specific value of c.

(b) For c ∈ (cd(µ) + δ, c0(µ)− δ), there is a death of one of the oscillators, (region B in

Figure 4.4).
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(c) If c < cd(µ) − δ, the 6D system (4.8)-(4.9) has a stable equilibrium point, that is,

there is a total oscillation death, (region A in Figure 4.4).

The MMOs disappear in the three cases, (see figures 4.3 (a), (b) and (c)). Moreover, c0(µ)

and cd(µ) can be approximated as the single solution c in the interval (−1, 0) of explicit

equations (we refer the reader to [16] for the detailed expressions).

4.2.3 Increase of the period with the inhibition strength in the antiphasic

case

Figure 4.4 evidences that in region C (case 2.(a) in Theorem 4.1, i.e. c ∈ (c0(µ) + δ,−δ) and

antiphasic synchronization), the oscillation frequency increases with c, i.e. the return time

increases with the inhibition strength. In this section, we give an approximation of this period

for small values of ε by neglecting the duration of the fast parts of the dynamics. We prove that

this approximate period decreases while c increases and we provide a global upper bound of its

partial derivative with respect to c.

We first give an illustration of the durations that will be computed in the following theorems

by mean of Figure 4.5. The asymptotically stable antiphasic cycle benefits from the symmetry

between the two coupled identical oscillators. Hence, the active phase during which x1 > 0 and

x2 < 0 has the same duration as the active phase during which x1 < 0 and x2 > 0. Similarly, the

recovery phase during which x1 < x2 < 0 has the same duration as the recovery phase during

which x2 < x1 < 0. The global period is then twice the sum of the active phase and the recovery

phase durations. For sake of simplicity in the following, we express both approximations T1 and

T2 of the active phase and recovery phase durations using integrals parameterized by variable

x1 from xmax
1 to λ and from x0

1 to −λ respectively, i.e. we compute the approximate durations

in the cases corresponding to the situations associated with circled T1 and T2 in Figure 4.5.
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Figure 4.5: Decomposition of the global period of the antiphasic pattern into two active phase
durations (T1) and two recovery durations (T2).

We recall that, during the active phase, the state variables (x1, y1, Ca1) of the first oscillator

follow the right slow manifold close to y1 = f(x1, Ca1), x1 > λ. Along the corresponding

trajectory, x1 decreases from a maximal value xmax
1 to the right fold value λ, and the state

variables of the second oscillator remains close to a stable equilibrium point, slowly moving

with the value of x1. Once x1 becomes less than λ, the first oscillator experiences a fast motion

of negligible duration before the beginning of the subsequent recovery phase. The following

theorem takes advantage of reductions to the slow manifold and quasi-stationary approximation
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to state an integral expression for the duration of (x1, y1, Ca1) slow motion (under the impact

of the bidirectional coupling with (x2, y2, Ca2)) corresponding to x from xmax
1 to λ. Therefore,

it extends to a more sophisticated context the method introduced in [5] for approximating the

duration of slow motions in a slow-fast dynamics and building the foliation of the FitzHugh-

Nagumo parameter space (see section 2.1.2).

Theorem 4.2. Assume the hypotheses of Theorem 4.1, 2.(a), (c ∈ (c0(µ) + δ,−δ) leading to

anti phasic synchronization between oscillators). Consider a parameterization

(x1(t), y1(t), Ca1(t), x2(t), y2(t), Ca2(t))

of the limit cycle C(c, ε) corresponding to the anti-phase synchronization pattern. The active

phase duration, i.e. the time spent by each oscillator close to the right branch of their slow

manifold during one cycle, can be approximated at first order in ε by T1(c, ε) +O(1) with

T1(c, ε) =
1

ε

(∫ λ

xmax
1

f ′(x1) + ∂ψr
∂x1

(x1, Ca1, ε)

(1 + c)x1 + a1f(x1)− cx̃2(x1, c, ε) + kr(x1, Ca1, ε)
dx

)
, (4.11)

where x̃2(x1, c, ε) = xeq2 (x1, c, ε) +O(ε), and xeq2 (x1, c, ε) denotes the x2 component of the equili-

brium point of system (4.9) moving with x1 and lying on the left branch of the critical manifold,

kr(x1, Ca1, ε) = a2 + a1ψr(x1, Ca1, ε)

− a1µCa1

Ca1 + Cad
+

(
µCad

(Ca1 + Cad)2
− ∂ψr
∂Ca1

(x1, Ca1, ε)

)(
φrise(x1)− Ca1 − Cab

τCa

)
, (4.12)

with ψr a differentiable function defined on (λ, xmax
1 )×IrCa× (0, ε0), with IrCa the Ca1-path while

x1 ∈ (λ, xmax
1 ) along the limit cycle C(c, ε), such that

∃ξr(ε) = O(ε2/3), ∀(x1, Ca1) ∈ (λ, xmax
1 )× IrCa, |ψr(x1, Ca1, ε)| < ξr(ε). (4.13)

Theorem 4.3. With the same hypotheses and notations as in Theorem (4.3), the recovery time

of an antiphasic cycle can be approximated at first order in ε by T2(c, ε) +O(1) where

T2(c, ε) =
1

ε

(∫ −λ

x01(c)

f ′(x1) + ∂ψl
∂x (x1, Ca1, ε)

(1 + c)x1 + a1f(x1)− cx̂2(x1, c, ε) + kl(x1, Ca1, ε)
dx1

)
, (4.14)

x0
1(c) is the x1 value of the equilibrium point of O1 at the end of the O2 active phase, i.e. the

unique solution for x1 < −λ of equation

a1(f(x1)− φfall(Cab)) + (1 + c)x1 + a2 − cλ = 0, (4.15)

function x̂2(x1, c, ε) is the parameterization of the x2 value along the part of the limit cycle

C(c, ε) while x1 ∈ (xmin
1 ,−λ),

kl(x1, Ca1, ε) = a2 + a1ψl(x1, Ca1, ε)

− a1µCa1

Ca1 + Cad
+

(
µCad

(Ca1 + Cad)2
− ∂ψl
∂Ca1

(x1, Ca1, ε)

)(
φrise(x1)− Ca1 − Cab

τCa

)
, (4.16)
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with ψl is a differentiable function defined on

(xmin
1 ,−λ)× I lCa × (0, ε0),

with I lCa the Ca1−path while x1 ∈ (xmin
1 ,−λ) along the limit cycle C(c, ε), such that

∃ξl(ε) = O(ε2/3),∀(x1, Ca1) ∈ (xmin
1 ,−λ)× I lCa, |ψl(x1, Ca1, ε)| < ξl(ε). (4.17)

Using the two approximations stated above, we can prove the subsequent Theorem (4.4)

stating that T1 and T2 decrease while c increases in [c0(µ) + δ,−δ].

Theorem 4.4. For c ∈ [c0(µ) + δ,−δ] and ε small enough,

∂T1

∂c
(c, ε) < 0 and

∂T2

∂c
(c, ε) < 0 (4.18)

Consequently, the first order approximation in ε of the global anti-phasic cycle period, given by

2(T1(c, ε) + T2(c, ε)), decreases while parameter c increases and the global oscillation frequency

is increasing with c.

4.3 A network model of calcium oscillations in GnRH neurons

4.3.1 Episodic synchronization of calcium peaks in GnRH neurons

Experimental data [Terasawa et al., 1999] have evidenced the existence of isolated episodes

of synchronization in the ICC among GnRH neurons1: almost all cells begin a peak at ap-

proximately the same time and for each cell recruited in the synchronization the height of its

calcium peaks during a synchronized peak is higher than the peak heights attained outside

of the synchronization periods. These episodes of synchronization are followed by a “post-

excitatory suppression” of a few minutes during which calcium levels are at the baseline in all

cells. Moreover, the episodes of synchronization occur at regular intervals of nearly 60 minutes.

There is also a gradual decrease in the signal amplitude (due to photobleaching) inherent in the

experimental protocol and that we did not intend to capture with our modeling study.

Additional experiments have shown the variability in the qualitative organization of these

patterns. In particular, partial recruitment of the cells in the synchronized episodes has been

identified, and doublets of synchronization have also been observed.

4.3.2 A global variable to control synchronization

In [10], we have proposed a network model of N cells, each one following the cell model of

intracellular calcium concentration (1.5), that is able to reproduce the episodic synchronization

1See the figure at http://www.jneurosci.org/content/19/14/5898/F5.expansion.html
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of calcium peaks observed in Terasawa et al. [1999].

ẋj = τ (−yj + f(xj)− φfall(Caj)) , (4.19a)

ẏj = τεkj (xj + a1yj + a2 − ηjφsyn(σ)) , (4.19b)

˙Caj = τε

(
φrise(xj)−

Caj − Cab
τCa

)
, (4.19c)

σ̇ = τ

(
δεσ − γ(σ − σ0)φσ

(
1

N

N∑

i=1

Cai − Cadesyn

))
, (4.19d)

for j = 1, . . . , N , with N the number of neurons and

φsyn(σ) =
1

1 + exp(−ρsyn(σ − σon))
,

φσ(u) =
1

1 + exp(−ρσu)
.

(4.20)

Parameters ρsyn and ρσ are assumed to be large so that the above sigmoid functions play the

role of activation functions, close to Heaviside ones. We assume δ to be small (order of ε), γ

large enough relative to ε and δ, and σ0 < σon.

Several differences exist between this approach and the model introduced in the previous sec-

tion. First we consider a necessary heterogeneity between cells by choosing different parameter

values for parameter k: this allows us to reproduce the variability in both the InterPeak Interval

(IPI) and the amplitude in the calcium patterns from one cell to another. Second, we add a

global variable for inducing synchronization, and not a coupling between each cells. Variable σ

represents a global state of the network and acts on each cell through the term ηjφsyn(σ). The

differential sensitivity among cells to the impact of σ is reproduced by choosing various values

for ηj . Such coupling has been inspired by the work of Hadley et al. [1988] and Rotstein et al.

[2003]. Its dynamics consists of a very slow linear part (ε and δ are assumed to be small) and a

term that depends on the level of synchronization of the network and acts as a reset mechanism

when the network is sufficiently synchronized (function φσ is applied to the difference between

the mean calcium level and the desynchronization threshold Cadesyn).

We briefly explain the σ driven transition of a particular cell of the network from the inde-

pendent regime to the synchronized regime (see Figure 4.6) and, consequently, how the model

can reproduce the alternation of asynchronous phases and episodes of synchronization. Con-

sider an initial value of σ juste above σ0. While σ < σon, φsyn(σ) is almost zero and, since

the values of parameters kj are different, each cell generates a Caj pattern with its own IPI.

As a consequence, the calcium peaks are asynchronous and, as time varies, the mean calcium

level among cells, given by 1
N

∑N
i=1Cai, remains low. As long as it is smaller than Cadesyn, the

second term of the σ dynamics is negligible. Then, since δ is assumed to be small, σ increases

very slowly. This regime corresponds to the orbit in blue shown in panel A of Figure 4.6 and

the blue parts of the time series in panels C to F. Once the mean calcium level exceeds the

threshold value σon, φsyn(σ) activates. Let us consider the j-th cell: when φsyn(σ) is activated,

the yj nullcline quickly moves to the right and, provided that ηj is large enough, ends up in-

tersecting the xj nullcline on its right branch as shown on panel B of Figure 4.6. Hence, as

long as φsyn(σ) is activated, the cell remains in a steady regime. The current point (xj , yj)

reaches the vicinity of a singular point on the right branch and remains stationary. Therefore,
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the corresponding calcium level is higher than usual. Provided that sufficiently many cells are

recruited in this process, the mean level quickly becomes higher than Cadesyn. This corresponds

to the red parts of the curves in Figure 4.6. Then, the reset term of the σ dynamics activates,

σ quickly decreases, crossing back the threshold value σon, to a value near σ0. Consequently,

φsyn(σ) is deactivated, and the whole process starts again.
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Figure 4.6: Transition of the j-th cell of the network from independent to synchronized regime.
In each panel, the blue parts correspond to the unsynchronized regime, σ < σon and φsyn(σ) ' 0,
and the red parts to the synchronized regime, σ > σon and φsyn(σ) ' 1.

It is worth noticing that all cells recruited in the event (i.e. those corresponding to a large

enough value of ηj) were synchronized by the global variable to produce a higher calcium peak

than usual. Moreover, they come back to their own pulsatile regime approximately at the same

time, starting by a quiescence phase. Hence, all individual calcium levels are at the baseline for a

while, before individual peaks rise again unsynchronized, which corresponds to a postexcitatory

suppression.

4.3.3 Parameter estimation and sensitivity analysis

We now show how to control the network level parameters σ0, σon and δ to obtain global

synchronization with a specified frequency. It appears clearly that the evolution of σ depends

on the ratio σon/σ0 rather than on each of these parameters independently. Proposition 4.5

gives a formula for the dependence of the frequency of the synchronized peaks on δ and σon/σ0.

Proposition 4.5. In the case ρσ =∞, for γ large enough relative to ε and δ, the period between

two successive episodes of synchronization in system (4.19) is approximated by

Tsyn =
1

τεδ
ln
σon

σ0
. (4.21)

Using together the results summarized in section 2.2, the qualitative analysis of section 4.3.2

and the above proposition, we have been able to reproduce both the qualitative and quantitative

features of the experimental results of Terasawa et al. [1999].
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Full synchronization of intracellular calcium peaks in a network of GnRH cells We

choose the same value for all parameters ηj , so that the effect of σ on each cell is the same. The

value of Cadesyn is chosen just above the mean calcium peak height of individual Caj pattern

(i.e. the one generated by the three-dimensional system (1.5) with parameter values in Table 1).

This ensures that random synchronization between few cells will not interrupt the slow increase

of σ as the mean calcium level among all cells will not exceed Cadesyn. This happens only if a

sufficient number of cells generate at the same time a greater calcium peak than usual.

Panel A of Figure 4.7 displays in the same graph the Caj patterns generated by system

(4.19) with 50 cells. Outside the synchronization episodes, the oscillations are asynchronous,

with each cell producing calcium peaks at its own frequency. Synchronization episodes take

place every 61 minutes (at minute 17, 78 and 139). Panel B is a magnified view of the Caj
patterns during the unsynchronized phase (over a 15 minute interval). Note that, due to the

variability in the kj values, the heights of the calcium peaks and the IPIs differ from one cell to

another. Panels C and D show magnified views of two synchronization episodes. All cells are

recruited in both episodes, resulting in higher calcium peaks than usual for all cells followed by

complete postexcitatory suppression.

Figure 4.7: Patterns of calcium oscillations in a network of 50 GnRH neurons. Panel A shows
the individual Caj patterns. Panel B displays a magnified view of the asynchronous phase
occurring between successive episodes of synchronization. The Caj patterns display variability
in IPI and height of the peaks between cells. Depending on the phases of each cell when the
synchronization is triggered, the calcium peaks may be more or less tightly synchronized as
emphasized in Panels C and D.

Partial recruitment As mentioned in the preceding section, parameter ηj tunes the impact

of variable σ upon the corresponding cell and, therefore, represents its sensitivity to the im-

pact of the network state. We have mimicked the variability in this sensitivity among cells

by choosing different values of ηj with the aim of reproducing the phenomenon of partial re-

cruitment identified by [Terasawa et al., 1999]. Panel A of Figure 4.8 shows the Caj patterns

generated by the model with ηj chosen randomly. Only 20 cells with sufficiently large value of

ηj are completely recruited in the synchronization episodes and generate calcium peaks signifi-

cantly higher than usual: their Caj patterns are assembled in panel B. For 18 other cells (panel

C) corresponding to intermediate values of ηj , the Caj peaks are not significantly higher than
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usual, even if they are synchronized with those in panel B. Moreover, in these Caj patterns,

the last IPI before the synchronization episode is much shorter than usual which indicates that

it does not result from a random coincidence but the cells actually undergo the effect of the

synchronization process. Finally, the Caj patterns of the 12 remaining cells with low values

of ηj (Panel D) are not recruited by the synchronization mechanism: their peak heights are

unchanged, their IPI remains constant during the synchronization episode and the calcium level

can even be at the baseline.

Figure 4.8: Patterns of calcium oscillations in a 50 GnRH cells network with various sensitivity
to the synchronization process. Panel A shows the Caj patterns in all cells. Only a part of
the cells participates in the synchronization episodes. The three other panels display magnified
views of the second synchronization episodes by assembling the Caj patterns in cells which are
completely recruited in this event (panel B), recruited with no significant increase in the peak
level (panel C) or not recruited at all (panel D).

Doublets As explained previously, the reset mechanism of σ is introduced through a fast part

of the dynamics activated by the synchronization of the calcium peaks. The strength of this

mechanism is controlled by the value of parameter γ and, in contrast with a classical reset, the

decrease of σ can be tuned by choosing the range of γ values. In the preceding simulations, the

values of γ were chosen large enough (compared to ε) so that, through the reset mechanism, σ

can decrease down to a value very close to σ0 before the mean calcium level decreases below the

threshold Cadesyn. We have reproduce doubled episodes of synchronization2 by slowing down

the σ decrease induced by the synchronization of calcium peaks, i.e. by choosing a smaller value

of γ.

Figure 4.9: Synchronization as doublets in patterns of calcium oscillations in the 50 GnRH
cells of a network.

2Doublets in experimental data: http://www.jneurosci.org/content/19/14/5898/F8.expansion.html
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To ensure that, after the episode of synchronization, the mean calcium level decreases as soon

as σ starts to decrease, we have selected small enough values of ηj . For the sake of simplicity, we

have considered the same value for all ηj , j ∈ [[1, N ]], since the phenomenon of synchronization

as doublet does not require variability in the cell sensitivity to synchronization, for obtaining the

outputs shown in Figure 4.9. Since the synchronization is not tight, the corresponding peak in

the mean calcium level is not much higher than the asynchronous peaks. When σ decreases below

σon, the mean calcium level decreases and quickly becomes smaller than Cadesyn. Parameter γ

is small enough so that the σ reset mechanism is not entirely completed: σ starts increasing

again from a value much greater than σ0. Hence, a second episode of synchronization occurs few

minutes later (at minute 23) and the corresponding synchronization is tighter than the preceding

one, with the calcium peaks occurring in a time interval of 25 second length. The second mean

calcium peak of a synchronization doublet is thus higher than the first one. Subsequently, the

time needed for the mean calcium level to decrease below Cadesyn is long enough for the σ

reset mechanism to be completed. The second doublet of synchronization results from the same

mechanism.

Note that the time separating two synchronization episodes of a doublet depends strongly

on the value of parameter γ and the tightness of synchronization of the first episode. There is

a strong variability in this duration from one doublet to another in a same set of Caj patterns.

Hence, reproducing a given sequence of doublet is a challenging problem. It is worth noticing

that the variability in the doublets reproduced with the model is consistent with the variability

observed in the experimental data.
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Conclusion and Perspectives

The methods presented in this manuscript result from the application of qualitative analysis

tools (mainly bifurcation theory and singular perturbation theory) for retrieving quantitative

or semi-quantitative information on the generated outputs of dynamical systems. Designed to

tackle the problematic of parameter estimation for neuroscience models, these methods share

similarities in the fundamental approach, yet differ according to the features of the dynamics

and quantitative specifications considered.

Numerous developments can be imagined for extending these results: we evoke three of them

and show three sets of preliminary results of ongoing studies.

Heterogeneity in coupled ICC models. The results presented in section 4.2 concern a

coupled system of two identical oscillators (with the same set of parameter values). A natural

way to extend the study is to introduce heterogeneity in parameter values among cells and

consider the system as a perturbation of the case with identical oscillators. Away from the

transition between qualitatively different behaviors, the structural stability of the unperturbed

vector field ensures that a hyperbolic limit cycle persists under small perturbation, i.e. in case

of sufficiently weak heterogeneity between cells. Moreover, the generic bifurcations with respect

to c will be shifted yet preserved. We expect to retrieve some information on the repartition

of the model behaviors according to c in case of weak heterogeneity among cells. Additional

analysis is needed to characterize the new synchronization types obtained in the asymmetric

case (see Figure 4.10).

Network model of ICC models. The coupling of two ICC dynamics can be interpreted

as an idealized model of two clusters of neurons such that, within each cluster, the neurons

are perfectly synchronized. We have already scaled this system by considering each cluster to
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Figure 4.10: Instance of calcium oscillation pattern generated by a coupled system of two
non-identical ICC dynamics.

be a network of excitatory coupled cells, and inhibiting the other cluster. Such model is well-

dedicated to reproduce the interactions between motoneurons, roughly organized as two sub-

populations of neurons acting (more or less) jointly. The possible bilateral inhibition between

the two subpopulations, suggested by the experimental data, and its precise role in the biological

system remains to be characterized. We have successfully reproduced the features of experimen-

tal recordings of ICC oscillations in zebrafish motoneurons with our network model (see Figure

4.11 and Figure 1 in [Fallani et al., 2015]). We intend to study the role of inhibition in the

model behavior as well as the impact of heterogeneity and connectivity on the synchronization

properties, with the aim of inferring the interaction structure of the motoneuron network.
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Figure 4.11: Patterns of calcium oscillations generated by a clustered ICC network model.
Each subpopulation is formed by 5 cells with different parameter values synchronized through an
excitatory coupling and the cells of one population inhibit the cells of the other one. The patterns
share qualitative and quantitative features with experimental recordings of ICC oscillations in
zebrafish motoneurons.
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Network model of neuron-glia interactions. We have already developed such network

model. Each node represents a voxel formed by local neural and glial populations, whose

dynamics is based on the NGMM studied in section 2.4. The coupling between nodes accounts

for recent knowledge on diffusive-like interactions between astrocytes in addition to the neural

connectivity. We have performed a preliminary numerical study with a reduced number of nodes

of the hyperexcitability propagation from a voxel impacted by a deficiency in the astrocytic

activity to the other nodes of the network (Figure 4.12). We intend to analyze the differential

roles of neural connectivity and astrocyte interactions in the neural activity. With this aim,

we will take advantage of the (dynamical) bifurcation analysis performed on the NMM and the

NGMM.
Modèle de réseau neuro-glial Couplage

Couplage entre régions
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Figure 4.12: Propagation of transient hyperexcitability induced by astrocyte deficiency from
one node to the other ones in a network of local NGMM accounting for neural connectivity and
astrocyte interactions.
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Abbreviations and Parameter Table

EEG Electro-EncephaloGraphy

FSH Follicle-Stimulating Hormone

GABA Gamma-AminoButiric Acid

GnRH Gonadotropin Releasing Hormone

ICC Intracellular Calcium Concentration

ICCM Intracellular Calcium Concentration Model

LFP Local Field Potential

LH Luteinizing Hormone

MMO Mixed Mode Oscillations

MMBO Mixed Mode Bursting Oscillations

MRI Magnetic Resonance Imaging

NIS Noise Induced Spiking

NIS-OTO Noise Induced Spiking and Over-Threshold Oscillations

NIS-STO Noise Induced Spiking and Sub-Threshold Oscillations

NITAM Noise Induced Thresholded Amplitude Modulation

NMM Neural Mass Model

NGMM Neuron Glia Mass Model

NMO Noise Modulated Oscillations

SNIC Saddle-Node on Invariant Circle
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ABBREVIATIONS AND PARAMETER TABLE

Table 1: Descriptions and values of the neuron-glia mass model parameters

Parameter Interpretation Value

Neuronal compartment

A Average excitatory synaptic gain 3.25 mV
B Average inhibitory synaptic gain 22 mV
1
a Time constant of excitatory postsynaptic potentials 1

100 s
1
b Time constant of inhibitory postsynaptic potentials 1

50 s
e0 Half of the maximum discharge rate of a neuronal population 2.5 s−1

v0 Basic excitability threshold for neurons 6 mV
r Stiffness of neuronal excitability 0.56 mV−1

C1 Strength of the synaptic connections from P to P ′ 135
C2 Strength of the synaptic connections from P ′ to P 108
C3 Strength of the synaptic connections from P to I 33.75
C4 Strength of the synaptic connections from I to P 33.75
G Gain of the direct excitatory feedback from P to itself 40

Glial compartment

W Tunes the peak amplitude of glutamate concentrations 53.6µM.s−1

Z Tunes the peak amplitude of GABA concentrations 53.6µM.s−1

w1 Tune the rise and decay times of glutamate release transfer function
90 s−1

w2 33 s−1

z1 Tune the rise and decay times of GABA release transfer function
90 s−1

z2 33 s−1

V en
G Maximal rate of glutamate reuptake by neurons 0.5µM.s−1

V ea
G Maximal rate of glutamate reuptake by astrocytes 4.5µM.s−1

sg Activation threshold of sigmoid glutamate reuptakes 6µM
rg Stiffness of sigmoid glutamate reuptakes 0.9µM−1

V ea
γ Maximal rate of glial GABA reuptake 2µM.s−1

Kea
γ Maximal concentration for Hill dynamics of glial GABA reuptake 8µM

V en
γ Maximal rate of neuronal GABA reuptake 5µM.s−1

Ken
γ Maximal concentration for Hill dynamics of neuronal GABA reuptake 24µM

V c
G Rate of glutamate degradation by astrocytes 9µM.s−1

V c
γ Rate of GABA degradation by astrocytes 9µM.s−1

Neuron excitability modulations by neurotransmitter concentrations (feedbacks)

vG Excitability threshold of glutamate feedback function 30µM
rG Stiffness of sigmoid glutamate feedback function induced by glutamate 0.15µM−1

mP
G Maximal coupling gain of glutamate feedback on pyramidal cells 2.5 mV

mI
G Maximal coupling gain of glutamate feedback on interneurons 1 mV
vγ Excitability threshold of GABA feedback function 25µM−1

rγ Stiffness of sigmoid GABA feedback function 0.12µM−1

mγ Maximal coupling gain of GABA feedback 1 mV
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Wendling, F. (2016). A new computational model for neuro-glio-vascular coupling: astrocyte activation

can explain cerebral blood flow nonlinear response to interictal events. PloS one, 11(2):e0147292.

Börgers, C. and Kopell, N. (2003). Synchronization in networks of excitatory and inhibitory neurons

with sparse, random connectivity. Neural Computation, 15(3):509–538.

Brette, R. and Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as an effective de-

scription of neuronal activity. Journal of Neurophysiology, 94:3637–3642.

Brøns, M., Krupa, M., and Wechselberger, M. (2006). Mixed-mode oscillations due to generalized canard

phenomenon. In Bifurcation Theory and Spatio-Temporal Pattern Formation, pages 39– 64. Fields

Institute Communications.

Campbell, S. L. and Hablitz, J. J. (2008). Decreased glutamate transport enhances excitability in a rat

model of cortical dysplasia. Neurobiology of Disease, 32(2):254–261.

85



BIBLIOGRAPHY

Caraty, A., Fabre-Nys, C., Delaleu, B., Locatelli, A., Bruneau, G., Karsch, F. J., and Herbison, A. (1998).

Evidence that the mediobasal hypothalamus is the primary site of action of estradiol in inducing the

preovulatory gonadotropin releasing hormone surge in the ewe. Endocrinology, 139:1752–1760.

Catchpole, H. R. and Wagenen, G. V. (1975). Reproduction in the rhesus monkey, Macaca mulatta. In

Bourne, G. H., editor, The Rhesus Monkey, pages 117–140. Academic Press.

Chever, O., Dossi, E., Pannasch, U., Derangeon, M., and Rouach, N. (2016). Astroglial networks promote

neuronal coordination. Science Signaling, 9(410):ra6.

Clément, F. and Françoise, J.-P. (2007). Mathematical modeling of the GnRH-pulse and surge generator.

SIAM Journal on Applied Dynamical Systems, 6:441–456.
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