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ABSTRACT
Motivation: When running experiments that involve multi-
ple high density oligonucleotide arrays, it is important to re-
move sources of variation between arrays of non-biological
origin. Normalization is a process for reducing this varia-
tion. It is common to see non-linear relations between ar-
rays and the standard normalization provided by Affymetrix
does not perform well in these situations.
Results: We present three methods of performing nor-
malization at the probe intensity level. These methods are
called complete data methods because they make use of
data from all arrays in an experiment to form the normaliz-
ing relation. These algorithms are compared to two meth-
ods that make use of a baseline array: a one number scal-
ing based algorithm and a method that uses a non-linear
normalizing relation by comparing the variability and bias
of an expression measure. Two publicly available datasets
are used to carry out the comparisons. The simplest and
quickest complete data method is found to perform favor-
ably.
Availabilty: Software implementing all three of the com-
plete data normalization methods is available as part of
the R package Affy, which is a part of the Bioconductor
project http://www.bioconductor.org.
Contact: bolstad@stat.berkeley.edu
Supplementary information: Additional figures may be
found at http://www.stat.berkeley.edu/∼bolstad/normalize/
index.html

INTRODUCTION
The high density oligonucleotide microarray technology,
as provided by the Affymetrix GeneChipR©, is being used
in many areas of biomedical research. As described in
Lipshutz et al. (1999) and Warringtonet al. (2000),

∗To whom correspondence should be addressed.

oligonucleotides of 25 base pairs in length are used to
probe genes. There are two types of probes: reference
probes that match a target sequence exactly, called the
perfect match (PM), and partner probes which differ from
the reference probes only by a single base in the center of
the sequence. These are called themismatch (MM) probes.
Typically 16–20 of these probe pairs, each interrogating a
different part of the sequence for a gene, make up what
is known as a probeset. Some more recent arrays, such
as the HG-U133 arrays, use as few as 11 probes in a
probeset. The intensity information from the values of
each of the probes in a probeset are combined together
to get an expression measure, for example, Average
Difference (AvgDiff), the Model Based Expression Index
(MBEI) of Li and Wong (2001), the MAS 5.0 Statistical
algorithm from Affymetrix (2001), and the Robust Multi-
chip Average proposed in Irizarryet al. (2003).

The need for normalization arises naturally when
dealing with experiments involving multiple arrays. There
are two broad characterizations that could be used for the
type of variation one might expect to see when comparing
arrays: interesting variation and obscuring variation.
We would classify biological differences, for example
large differences in the expression level of particular
genes between a diseased and a normal tissue source,
as interesting variation. However, observed expression
levels also include variation that is introduced during
the process of carrying out the experiment, which could
be classified as obscuring variation. Examples of this
obscuring variation arise due to differences in sample
preparation (for instance labeling differences), production
of the arrays and the processing of the arrays (for instance
scanner differences). The purpose of normalization is
to deal with this obscuring variation. A more complete
discussion on the sources of this variation can be found in
Harteminket al. (2001).
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Affymetrix has approached the normalization problem
by proposing that intensities should be scaled so that each
array has the same average value. The Affymetrix nor-
malization is performed on expression summary values.
This approach does not deal particularly well with cases
where there are non-linear relationships between arrays.
Approaches using non-linear smooth curves have been
proposed in Schadtet al. (2001, 2002) and Li and Wong
(2001). Another approach is to transform the data so that
the distribution of probe intensities is the same across a
set of arrays. Sidorovet al. (2002) propose parametric
and non-parametric methods to achieve this. All these
approaches depend on the choice of a baseline array.

We propose three different methods of normalizing
probe intensity level oligonucleotide data, none of which
is dependent on the choice of a baseline array. Normaliza-
tion is carried out at probe level for all the probes on an
array. Typically we do not treat PM and MM separately,
but instead consider them all as intensities that need to be
normalized. The normalization methods do not account
for saturation. We consider this a separate problem to be
dealt with in a different manner.

In this paper, we compare the performance of our three
proposed complete data methods. These methods are then
compared with two methods making use of a baseline
array. The first method, which we shall refer to as the
scaling method, mimics the Affymetrix approach. The
second method, which we call the non-linear method,
mimics the approaches of Schadtet al. Our assessment
of the normalization procedures is based on empirical
results demonstrating ability to reduce variance without
increasing bias.

NORMALIZATION ALGORITHMS
Complete data methods
The complete data methods combine information from all
arrays to form the normalization relation. The first two
methods, cyclic loess and contrast, are extensions of ac-
cepted normalization methods that have been used suc-
cessfully with cDNA microarray data. The third method,
based on quantiles, is both quicker and simpler than those
methods.

Cyclic loess This approach is based upon the idea of
the M versus A plot, where M is the difference in
log expression values andA is the average of the log
expression values, presented in Dudoitet al. (2002).
However, rather than being applied to two color channels
on the same array, as is done in the cDNA case, it is
applied to probe intensities from two arrays at a time. An
M versusA plot for normalized data should show a point
cloud scattered about theM = 0 axis.

For any two arraysi , j with probe intensitiesxki andxk j
wherek = 1, . . . , p represents the probe, we calculate

Mk = log2
(
xki/xk j

)
and Ak = 1

2 log2
(
xki xk j

)
. A

normalization curve is fitted to thisM versus A plot
using loess. Loess is a method of local regression (see
Cleveland and Devlin 1988 for details). The fits based on
the normalization curve arêMk and thus the normalization
adjustment isM ′

k = Mk − M̂k . Adjusted probe intensites

are given by x ′
ki = 2Ak+ M ′

K
2 and x ′

k j = 2AK − M ′
k

2 .
The preferred method is to compute the normalization
curves using rank invariant sets of probes. This paper uses
invariants sets since it increases the implementation speed.

To deal with more than two arrays, the method is
extended to look at all distinct pairwise combinations. The
normalizations are carried out in a pairwise manner as
above. We record an adjustment for each of the two arrays
in each pair. So after looking at all pairs of arrays for any
arrayk where 1≤ k ≤ n, we haveadjustments for chipk
relative to arrays 1, . . . , k−1,k +1, . . . , n. We weight the
adjustments equally and apply to the set of arrays. We have
found that after only 1 or 2 complete iterations through all
pairwise combinations the changes to be applied become
small. However, because this method works in a pairwise
manner, it is somewhat time consuming.

Contrast based method The contrast based method is
another extension of theM versusA method. Full details
can be found inÅstrand (2001). The normalization is
carried out by placing the data on a log-scale and
transforming the basis. In the transformed basis, a series
of n − 1 normalizing curves are fit in a similar manner to
the M versusA approach of the cyclic loess method. The
data is then adjusted by using a smooth transformation
which adjusts the normalization curve so that it lies
along the horizontal. Data in the normalized state is
obtained by transforming back to the original basis and
exponentiating. The contrast based method is faster than
the cyclic method. However, the computation of the loess
smoothers is still somewhat time consuming.

Quantile normalization The goal of the quantile method
is to make the distribution of probe intensities for each
array in a set of arrays the same. The method is motivated
by the idea that a quantile–quantile plot shows that the
distribution of two data vectors is the same if the plot is
a straight diagonal line and not the same if it is other than
a diagonal line. This concept is extended ton dimensions
so that if all n data vectors have the same distribution,
then plotting the quantiles inn dimensions gives a straight
line along the line given by the unit vector

( 1√
n
, . . . , 1√

n

)
.

This suggests we could make a set of data have the same
distribution if we project the points of ourn dimensional
quantile plot onto the diagonal.

Let qk = (qk1, . . . , qkn) for k = 1, . . . , p be the vector
of the kth quantiles for alln arraysqk = (qk1, . . . , qkn)
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andd =
(

1√
n
, . . . , 1√

n

)
be the unit diagonal. To transform

from the quantiles so that they all lie along the diagonal,
consider the projection ofq ontod

projd qk =
(

1

n

n∑
j=1

qkj , . . . ,
1

n

n∑
j=1

qkj

)

This implies that we can give each array the same
distribution by taking the mean quantile and substituting
it as the value of the data item in the original dataset. This
motivates the following algorithm for normalizing a set of
data vectors by giving them the same distribution:

1. given n arrays of lengthp, form X of dimension
p × n where each array is a column;

2. sort each column ofX to give Xsort;

3. take the means across rows ofXsort and assign this
mean to each element in the row to getX ′

sort;

4. get Xnormalized by rearranging each column of
X ′

sort to have the same ordering as originalX

The quantile normalization method is a specific case of
the transformationx ′

i = F−1 (G (xi )), where we estimate
G by the empirical distribution of each array andF
using the empirical distribution of the averaged sample
quantiles. Extensions of the method could be implemented
whereF−1 andG are more smoothly estimated.

One possible problem with this method is that it forces
the values of quantiles to be equal. This would be
most problematic in the tails where it is possible that a
probe could have the same value across all the arrays.
However, in practice, since probeset expression measures
are typically computed using the value of multiple probes,
we have not found this to be a problem.

Methods using a baseline array
Scaling methods The standard Affymetrix normalization
is a scaling method that is carried out on probeset
expression measures. To allow consistent comparison
with our other methods, we have carried out a similar
normalization at the probe level. Our version of this
method is to choose a baseline array, in particular, the
array having the median of the median intensities. All
arrays are then normalized to this ‘baseline’ via the
following method. If xbase are the intensities of the
baseline array andxi is any array, then let

βi = x̃base

x̃i

where x̃i is the trimmed mean intensity (in our analysis
we have excluded the highest and lowest 2% of probe

intensities). Then the intensities for the normalized array
would be

x ′
i = βi xi

One can also easily implement the scaling algorithm by
using probes from a subset of probesets chosen by using
some stability criteria. The HG-U133 arrays provide a set
of probesets that have been selected for stability across
tissue types, and these could be used for establishing a
normalization.

Non-linear method The scaling method is equivalent to
fitting a linear relationship with zero intercept between the
baseline array and each of the arrays to be normalized.
This normalizing relation is then used to map from each
array to the baseline array. This idea can be extended to use
a non-linear relationship to map between each array and
the baseline array. Such an approach is detailed in Schadt
et al. (2002). This method is used in Li and Wong (2001)
and implemented in the dChip software http://www.dchip.
org. The general approach of these papers is to select a
set of approximately rank invariant probes (between the
baseline and arrays to be normalized) and fit a non-linear
relation, like smoothing splines as in Schadtet al. (2002),
or a piecewise running median line as in Li and Wong
(2001).

The non-linear method used in this paper is as follows.
First we select a set of probes for which the ranks are
invariant across all the arrays to be normalized. Then we
fit loess smoothers to relate the baseline to each of the
arrays to be normalized. These loess normalization curves
are then used to map probe intensities from the arrays to
be normalized to the baseline. This approach is intended
to mimic the approach used in dChip. We expect loess
smoothers to perform in the same manner as splines or
a running median line.

Suppose that̂fi (x) is the loess smoother mapping from
arrayi to the baseline. Then, in the same notation as above,
the normalized array probe intensities are

x ′
i = f̂i (xi )

Note that as with the scaling method, the baseline is the
array having the median of the median probe intensities.

DATA
We make use of data from two sets of experiments:
A dilution/mixture experiment and an experiment using
spike-ins. We use these datasets because they allow us to
assess bias and variance. The dilution/mixture and spike-
in datasets are available directly from GeneLogic (2002)
and have been made available for public comparison of
analysis methods. This data has been previously described
in Irizarry et al. (2003).
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Fig. 1. A plot of the densities for PM for each of the 27
spike-in datasets, with distribution after quantile normalization
superimposed.

Dilution/mixture data
The dilution/mixture data series consists of 75 HG-U95A
(version 2) arrays, where two sources of RNA, liver
(source A), and a central nervous system cell line (source
B) are investigated. There are 30 arrays for each source,
broken into 6 groups at 5 dilution levels. The remaining 15
arrays, broken into 3 groups of 5 chips, involve mixtures of
the two tissue lines in the following proportions: 75: 25,
50 : 50, and 25: 75.

Spike-in data
The spike-in data series consists of 98 HG-U95A (version
1) arrays where 11 different cRNA fragments have been
spiked in at various concentrations. There is a dilution
series consisting of 27 arrays which we will examine in
this paper. The remaining arrays are two sets of latin
square experiments, where in most cases three replicate
arrays have been used for each combination of spike-
in concentrations. We make use of 6 arrays (two sets of
triplicates) from one of the latin squares.

RESULTS
Probe level analysis
Figure 1 plots the densities for the log(P M) for each of
the 27 arrays from the spike-in dataset, along with the
distribution obtained after quantile normalization.

An M versusA plot allows us to discern intensity de-
pendent differences between two arrays. Figure 2 shows
M versusA plots for unadjusted PM for all 10 possible
pairs of 5 arrays in the liver 10 group before normaliza-
tion. Clear differences between the arrays can be seen by
looking at the loess lines. The point clouds are not cen-
tered aroundM = 0 and we see non-linear relationships

Fig. 2. 10 pairwiseM versusA plots using liver (at concentration
10) dilution series data for unadjusted data.

Fig. 3. 10 pairwiseM versusA plots using liver (at concentration
10) dilution series data after quantile normalization.

between arrays. The same 10 pairwise comparisons can
be seen after quantile normalization in Figure 3. The point
clouds are all centered aroundM = 0. Plots produced us-
ing the contrast and cyclic loess normalizations are similar.

Expression measures
Comparing normalization methods at the probeset level
requires that one must decide on an expression measure.
Although in this paper we focus only on one expression
measure, the results obtained are similar when using other
measures.

The expression summary used in this paper is a robust
combination of background adjusted PM intensities and
is outlined in Irizarryet al. (2003). We call this method
the Robust Multichip Average (RMA). RMA estimates

188

 by guest on D
ecem

ber 18, 2013
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/


Normalization of Oligonucleotide Arrays

are based upon a robust average of log2 (B (P M)), where
B (P M) are background corrected PM intensities. The
expression measure may be used on either the natural or
log scales.

Irizarry et al. (2003) contains a more complete discus-
sion of the RMA measure, and further papers exploring its
properties are under preparation.

Probeset measure comparisons
Variance comparisons In the context of the dilution
study, consider the five arrays from a single RNA source
within a particular dilution level. We calculate expression
measures for every probeset on each array and then
compute the variance and mean of the probeset expression
summary across the five arrays. This is repeated for each
group of 5 arrays for the entire dilution/mixture study. We
do this after normalization by each of our three complete
data methods.

Plotting the log of the ratio of variances versus the av-
erage of the log of the mean (expression measure across
arrays) allows us to see differences in the between array
variations and intensity dependent trends when comparing
normalization methods. In this case, the expression mea-
sures have all been calculated on the natural scale. Fig-
ure 4 shows such plots for the liver at the dilution level
10. Specifically, the four plots compare the variance ratios
for quantile : unnormalized, loess: quantile, contrast:
quantile and contrast: loess. The horizontal line indicates
the x-axis. The other line is a loess smoother. Where the
loess smoother is below thex-axis, the first method in the
ratio has the smaller ratio and vice versa when the loess
smoother is above the line. All three methods reduce the
variance at all intensity levels in comparison to data that
has not been normalized. The three normalization methods
perform in a relatively comparable manner, but the quan-
tile method performs slightly better for this dataset, as can
be seen in the loess: quantile and contrast: quantile plots.
Similar results are seen in comparable plots (not shown)
for the other dilution/mixture groups.

We repeat this analysis with the 27 spike-in arrays, but
this time we include the two baseline methods in our
comparison. The complete data methods generally leave
the mean level of a particular probeset at a level similar
to that achieved when using unnormalized data. However,
when one of the two baseline methods is used, the mean
of a particular probeset is more reminiscent of the value of
that probeset in the baseline array. In the natural scale, it is
easy to see a mean-variance relationship, where a higher
mean implies high variability. Thus, when a comparison is
made between the baseline methods and the complete data
methods, we find that if a baseline array which shifts the
intensities higher (or lower) than the level of those of the
unnormalized means is selected, then the corresponding
variance of the probeset measures across arrays is higher
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Fig. 4. log2 variance ratio versus average log2 mean for liver
dilution data at concentration 10.
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Fig. 5. log2 variance ratio versus average log2 mean using the spike-
in data. Comparing the baseline methods with the quantile method.

(or lower) due to the shifting and not because of the
normalization. To minimize this problem and make a fairer
comparison, we work with the expression measure on the
log scale when comparing the baseline methods to the
complete data methods. Figure 5 compares the baseline
methods to the quantile methods. We see that the quantile
method reduces the between array variances more than the
scaling method. The non-linear normalization performs
a great deal closer to the quantile method. Similar plots
(not shown) comparing the complete data methods with
each other for the spike-in data demonstrate that quantile
normalization has a slight edge over all the other methods.
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Fig. 6. Comparing the ability of methods to reduce pairwise
differences between arrays by using average absolute distance from
loess smoother tox-axis in pairwiseM versusA plots using spike-in
dataset. Smaller distances are favorable.

A similar plot (not shown) comparing the two baseline
methods shows as expected that the non-linear method
reduces variance when compared to the scaling method.

Pairwise comparison The ability to minimize dif-
ferences in pairwise comparisons between arrays is a
desirable feature of a normalization procedure. AnM
versus A plot comparing expression measures on two
arrays should be centered aroundM = 0 if there is no
clear trend towards one of the arrays. Looking at the
absolute distance between a loess for theM versus A
plot and thex-axis allows us to assess the difference in
array to array comparisons. We can compare methods by
looking at this distance across a range of intensities and
averaging the distance across all pairwise comparisions.

Figure 6 shows such a plot for the spike-in data, we
see that the scaling method performs quite poorly when
compared to the three complete data methods. The non-
linear method performs at a similar level to the complete
data methods. For this dataset the quantile method is
slightly better. An important property of the quantile
method is that these differences remain relatively constant
across intensities.

Bias comparisons One way to look at bias is in the
context of the spike-in dilution series. We use data for the
27 arrays from the spike-in experiment with 11 control
fragments spiked in at 13 different concentrations (0.00,
0.50, 0.75, 1.00, 1.50, 2.00, 3.00, 5.00, 12.50, 25.00,
50.00, 75.00, 100.00, 150.00 pM). We normalize each
of the 27 arrays as a group using each of the quantile,
contrast, cyclic loess and scaling normalizations. To the

spike-in probesets, we fit the following linear model

log2 E = β0 + β1 log2 c + ε

whereE is the value of the expression measure andc are
the concentrations. Note that the array with spike-in con-
centration 0 is excluded from the model fit, although it is
used in the normalization. The ideal results would be to
have slopes that are near 1. Table 1 shows the slope esti-
mates for each of the spike-in probesets after normaliza-
tion by each of the three complete data methods, the two
methods using a baseline and when no normalization has
taken place. For the three complete data methods for 10
out of the 11 spike-in probesets, the quantile method gives
a slope closer to 1 and the non-linear method has slopes
lower than the complete data methods. However, both the
scaling and not normalizing have slopes closer to 1. For
the non-spike-in probesets on these arrays we should see
no linear relation if we fit the same model, since there
should be no relation between the spike-in concentrations
and the probeset measures. Fitting the linear model above,
we find that there is a median slope of 0.042 for these
probesets using the unnormalized data. For the quantile
method the value of the median slope is−0.005. All the
other normalization methods have median slope near 0.
This is about the same difference in slopes as we observed
for the spike-ins when comparing the unnormalized data
and the best of the normalization methods. In other words,
there is a systematic trend due to the manner in which the
arrays were produced that has resulted in the intensities of
all the probesets being related to the concentration of the
spike-ins. We should adjust the spike-in slopes by these
amounts. For example, we could adjust the slope of BioB-
5 for the quantile method to 0.845+ 0.005 = 0.850 and
the unnormalized slope to 0.893− 0.042= 0.851.

The averageR2 for the spike-in probesets, excluding
CreX-3, are 0.87 for the quantile method, and 0.855,
0.849, 0.857 and 0.859 for the contrast, loess, non-linear
and scaling methods, respectively. It was 0.831 for the
unnormalized data. The median standard error for the
slopes was 0.063 for the quantile method. For the other
methods these standard errors were 0.065 (contrast), 0.068
(cyclic loess), 0.063 (non-linear), 0.065 (scaling) and
0.076 (unnormalized). Thus of all the algorithms, the
quantile method has high slopes, a better fitting model and
more precise slope estimates.

The slopes may not reach 1 for several reasons. It is
possible that there is a ‘pipette’ effect. In other words we
can not be completely sure of the concentrations. It is more
likely that we observe concentration plus an error which
leads to a downward bias in the slope estimates. Other
possible reasons include the saturation of signal at the high
end (this is not a concern with this data) and having a
higher background effect at the lower end.
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Table 1. Regression slope estimates for spike-in probesets. A slope closer to one is better

Name Quantile Contrast Loess Non-linear Scaling None

AFFX-BioB-5 at 0.845 0.837 0.834 0.803 0.850 0.893
AFFX-DapX-M at 0.778 0.771 0.770 0.746 0.783 0.826
AFFX-DapX-5 at 0.754 0.747 0.728 0.731 0.764 0.807
AFFX-CreX-5 at 0.903 0.897 0.889 0.875 0.912 0.955
AFFX-BioB-3 at 0.836 0.834 0.825 0.807 0.848 0.890
AFFX-BioB-M at 0.789 0.782 0.781 0.762 0.797 0.838
AFFX-BioDn-3 at 0.547 0.543 0.550 0.514 0.553 0.595
AFFX-BioC-5 at 0.801 0.794 0.793 0.763 0.808 0.851
AFFX-BioC-3 at 0.796 0.790 0.785 0.769 0.805 0.847
AFFX-DapX-3 at 0.812 0.804 0.793 0.776 0.815 0.859
AFFX-CreX-3 at −0.007 −0.006 0.002 −0.007 0.005 0.046
Non-spike-in (median) −0.005 −0.005 −0.005 −0.007 −0.001 0.042

The problems with choosing a baseline The non-linear
(and scaling) method requires the choice of a baseline.
In this paper we have chosen the array having the
median median, but other options are certainly possible.
To address these concerns we examine a set of six arrays
chosen from the spike-in datasets. In particular, we choose
two sets of triplicates, where the fold change of each of
the spike-in probesets between the two triplicates is large.
The two triplicates are chosen so that about half of the
probesets are high in one triplicate and low in the other
and vice versa.

We normalize this dataset using both the quantile and
non-linear methods. However, for the non-linear method
we experiment with the use of each of the six arrays as the
baseline array. We also try using two synthetic baseline
arrays: one constructed by taking probewise means
and one taking probewise medians. Figure 7 shows the
distribution of the mean of the probeset measure across
arrays. We see that the quantile normalization produces
a set of means that is very similar in distribution to the
means of the unnormalized data. The means from the
non-linear normalizations using each of the six different
baseline arrays are quite different from each other and the
unnormalized data. This is somewhat of a drawback to
the baseline methods. It seems more representative of the
complete data to consider all arrays in the normalization
rather than to use only a single baseline and give the
normalized data characteristics closer to those of one par-
ticular array. Only the mean based synthetic baseline array
comes close to the unnormalized and quantile methods.

Table 2 summarizes some results from this analysis.
We see that all the methods reduce the variability of
the probeset measure between arrays compared to that
of the unnormalized data. In each case, around 95% of
the probesets have reduced variance. When compared to
the quantile method, it comes out more even with a little
over50% of probesets having reduced variance for four of

None Quantile means median 1 2 3 4 5 6

2
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6
8

10
12

14

Method

Mean of probeset expression based on 6 chips

Fig. 7. Distribution of average (over 6 chips) of a probeset
expression measure using different baseline normalizations.

the baselines. However, two baseline arrays perform quite
poorly. As noted before, this is a reflection of the baseline
methods shifting the intensities higher or lower depending
on the baseline. The mean based synthetic baseline does
not reduce the variabilty of the probeset measure to the
same degree as the quantile method.

Looking at the 11 spike-in probesets, we calculate bias
by taking the difference between the log of the ratio
between spike-in concentrations and the log of the ratio
of intensities in the two groups. One spike-in, Crex-3, did
not seem to perform quite as well as the other spike-ins
and was excluded from the analysis. Looking at the total
absolute bias across the 10 spike-in probesets, we see that
the non-linear method has lower total bias (compared to
the quantile method) for four of the methods, but two
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Table 2. Comparing variance and bias with the non-linear normalization when using different baselines

Method % with lower var % lower var Abs # abs # abs
reduced cf. U reduced cf. Q Bias Bias cf U Bias cf Q

Probewise mean 83 40 9.2 5 5
Probewise median 96 58 7.9 6 6
Non-linear 1 96 53 7.5 7 5
Non-linear 2 93 31 11.8 2 4
Non-linear 3 94 37 10.5 4 4
Non-linear 4 95 47 7.4 6 5
Non-linear 5 96 55 7.4 7 5
Non-linear 6 96 55 7.5 7 5
Quantile (Q) 95 NA 8.5 6 NA
Unnormalized (U) NA NA 9.7 NA NA

are even bigger than for unnormalized data. Again, this
is related to the mean–variance relationship. The four
baselines shifted slightly lower in the intensity scale give
the most precise estimates. Using this logic, one could
argue that choosing the array with the smallest spread and
centered at the lowest level would be the best, but this does
not seem to treat the data on all arrays fairly. Compared to
the unnormalized data, 6 of the spike-in probesets from the
quantile normalized data have a smaller bias. For the non-
linear normalization using array 1 as the baseline (this is
the array chosen using our heuristic), 7 had smaller bias.
However, looking at the other baselines, anywhere from
2 to 7 probesets had lower bias. When compared to the
quantile method, the results are more even, with about
an equal number of the spike-in probesets having a lower
bias when using the non-linear method as when using the
quantile normalization. AnM versusA plot between the
two groups shows all the spike-in points clearly outside the
point cloud, no matter which normalization is used. This
plot for quantile normalized data is shown in Figure 8.

CONCLUSIONS
We have presented three complete data methods of nor-
malization and compared these to two different methods
that make use of a baseline array. Using two different
datasets, we established that all three of the complete
data methods reduced the variation of a probeset measure
across a set of arrays to a greater degree than the scaling
method and unnormalized data. The non-linear method
seemed to perform at a level similar to the complete
data methods. Our three complete data methods, while
different, performed comparably at reducing variability
across arrays.

When making pairwise comparisons the quantile
method gave the smallest distance between arrays. These
distances also remained fairly constant across intensities.

In relation to bias, all three complete data methods

2 4 6 8 10 12
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M vs A plot for spikein triplicates

Fig. 8. M versusA plot for spike-in triplicate data normalized using
quantile normalization. Spike-ins are clearly identified.

performed comparably, with perhaps a slight advantage
to the quantile normalization. The non-linear method did
poorer for the spike-in regressions. The scaling method
had slightly higher slopes. Even so, they were more
variable.

We saw that the choice of a baseline does have
ramifications on down-stream analysis. Choosing a poor
baseline would conceivably give poorer results. We also
saw that the complete data methods perform well at both
variance reduction and on the matter of bias, and in
addition more fully reflect the complete set of data. For
this reason we favor a complete data method.

In terms of speed, for the three complete data methods,
the quantile method is the fastest. The contrast method
is slower and the cyclic loess method is the most time
consuming. The contrast and cyclic loess algorithms are
modifications of an accepted method of normalization.
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The quantile method has performed favorably, both in
terms of speed and when using our variance and bias
criteria, and therefore should be used in preference to the
other methods.

While there might be some advantages to using a
common, non-data driven, distribution with the quantile
method, it seems unlikely an agreed standard could be
reached. Different choices of a standard distribution might
be reflected in different estimated fold changes. For this
reason we prefer the minimalist approach of a data based
normalization.
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