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Dimensionality Reduction 

� Data representation
Inputs are real-valued vectors in a 
high dimensional space.

� Linear structure� Linear structure
Does the data live in a low 
dimensional subspace?

� Nonlinear structure
Does the data live on a low 
dimensional submanifold?



Dimensionality Reduction so far

PCA Manifold learning methods

Kernel PCA
for non linear 
structure

but does not 
unfold the data



Notations

� Inputs (high dimensional)
x1,x2,…,xn points in RD

� Outputs (low dimensional)

y ,y ,…,y points  in Rd (d<<D) y1,y2,…,yn points  in Rd (d<<D) 



The “magic” of high dimensions

� Given some problem, how do we know 
what classes of functions are capable of 
solving that problem?

� VC (Vapnik-Chervonenkis) theory tells us 
that often mappings which take us into a 
higher dimensional space than the 
dimension of the input space provide us 
with greater classification power.



Example in R2

These classes are 
linearly inseparable in 
the input space.the input space.



Example: High-Dimensional Mapping 

We can make the 
problem linearly 
separable by a simple 
mapping
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Kernel Trick

� High-dimensional mapping can seriously 
increase computation time. 

� Can we get around this problem and still 
get the benefit of high-D?get the benefit of high-D?

� Yes! Kernel Trick

� Given any algorithm that can be expressed 
solely in terms of dot products, this trick 
allows us to construct different nonlinear 
versions of it.
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Popular Kernels



Kernel Principal Component 

Analysis (KPCA)

� Extends conventional principal 
component analysis (PCA) to a high 
dimensional feature space using the 
“kernel trick”.“kernel trick”.

� Can extract up to n (number of samples) 
nonlinear principal components without 
expensive computations.



Making PCA Non-Linear

� Suppose that instead of using the points     we 
would first map them to some nonlinear feature 
space

E.g. using polar coordinates instead of cartesian
coordinates would help us deal with the circle.
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coordinates would help us deal with the circle.

� Extract principal component in that space (PCA)
� The result will be non-linear in the original data 

space!



Derivation

� Suppose that the mean of the data in the feature 
space is

� Covariance:
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Derivation Cont.

� Eigenvectors can be expressed as linear 
combination of features:

� Proof:
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Showing that Showing that Showing that Showing that TT xvxvxx )( ⋅=



Showing that TT xvxvxx )( ⋅=



Derivation Cont.

� So, from before we had, 

this means that all solutions    with
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just a scalar

0=λ� this means that all solutions    with
lie in the span of                         , i.e.,

� Finding the eigenvectors is equivalent to finding 
the coefficients 
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Derivation Cont.

� By substituting this back into the equation we get:

� We can rewrite it as 
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� We can rewrite it as 

� Multiply this by          from the left:
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Derivation Cont.

� By plugging in the kernel and rearranging we get: 

We can remove a factor of K from both sides of the matrix 
(this will only affects the eigenvectors with zero eigenvalue, 

j
2 KK αλα jj n=

(this will only affects the eigenvectors with zero eigenvalue, 
which will not be a principle component anyway):

� We have a normalization condition for the vectors:

jK αλα jj n=

jα
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Derivation Cont.

� By multiplying                      by      and using the 
normalization condition we get:  

� For a new point x, its projection onto the principal 
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� For a new point x, its projection onto the principal 
components is:
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Normalizing the feature space

� In general,           may not be zero mean.
� Centered features:

The corresponding kernel is:
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� The corresponding kernel is:
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Normalizing the feature space 

(cont)

� In a matrix form
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� where       is a matrix with all elements 1/n.

1/n1/n1/n KK2-KK
~

111 +=

1/n1



Summary of kernel PCA

� Pick a kernel
� Construct the normalized kernel matrix   of the 

data (dimension m x m): 
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� Solve an eigenvalue problem: 

� For any data point (new or old), we can 
represent it as
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Example: Input Points



Example: KPCA



Example: De-noising images



Properties of KPCA

� Kernel PCA can give a good re-
encoding of the data when it lies along a 
non-linear manifold.

� The kernel matrix is n x n, so kernel PCA � The kernel matrix is n x n, so kernel PCA 
will have difficulties if we have lots of 
data points.


