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Dimensionality Reduction

Data representation

Inputs are real-valued vectors in a
high dimensional space.

Linear structure

Does the data live in a low
dimensional subspace?

Nonlinear structure

Does the data live on a low
dimensional submanifold?




Dimensionality Reduction so far

Manifold learning methods

for non linear ot d
structure Kernel PCA ut does not
unfold the data



Notations

Inputs (high dimensional)
X1,X5,...,X, poOints in RP
Outputs (low dimensional)
Y1,¥Yo,...,¥Y, Points in RY (d<<D)



The “magic” of high dimensions

Given some problem, how do we know
what classes of functions are capable of
solving that problem?

VC (Vapnik-Chervonenkis) theory tells us
that often mappings which take us into a
higher dimensional space than the
dimension of the input space provide us
with greater classification power.



Example in R?

e, 54 ~ These classes are
= 1 linearly inseparable in
SO |- the input space.



Example: High-Dimensional Mapping

e ~ We can make the

- problem linearly
' ~ separable by a simple
mapping

| : ()(1,X2)H(X1,X2’)(12_|_X22)




Kernel Trick

High-dimensional mapping can seriously
Increase computation time.

Can we get around this problem and still
get the benefit of high-D?

Yes! Kernel Trick
K (%%, )= (x)" (x,)

Given any algorithm that can be expressed
solely in terms of dot products, this trick
allows us to construct different nonlinear
versions of It.



Popular Kernels

Gaussian |K(x,X) = exp(-B[3 - ¥|")

Polynomial [K(&.#)=(1+5-%)

Hyperbolic tangent |K(3,5) = tanh(5 - ¥ + 3




Kernel Principal Component
Analysis (KPCA)

Extends conventional principal
component analysis (PCA) to a high
dimensional feature space using the
“kernel trick”.

Can extract up to n (number of samples)
nonlinear principal components without
expensive computations.



Making PCA Non-Linear

Suppose that instead of using the points X we
would first map them to some nonlinear feature
space @(X)
E.g. using polar coordinates instead of cartesian
coordinates would help us deal with the circle.

Extract principal component in that space (PCA)

The result will be non-linear in the original data
space!



Derivation

Suppose that the mean of the data in the feature

space is 1.0
M= HZ¢(>§) =0
Covariance: =

C=—=Y #(x)h(x)"
Eigenvectors

Cv=Av



Derivation Cont.

Eigenvectors can be expressed as linear
combination of features:

V= Zn: a;9(%)
Proof: i )
OV=2 (X )(X) V= Av
thus

1 T,_ LN . 3T
:/1_21: (X )p(X ) v—/m;@(&) V)(%)



Showing that xx"'v=(x-v)x'
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Showing that xx"v=(x-v)x'
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Derivation Cont.

So, from before we had,
1 n T _i n | | T
V=n—l§¢(x)¢(>@) V= M;(qﬁ(x) V)é(x)

just a scalar
this means that all solutions v with 4 =0
lie in the span of ¢(X,),..,¢(X,), i.e.,

V= Zn:ai¢(xi)

Finding the eigenvectors is equivalent to finding
the coefficients ¢,



Derivation Cont.

By substituting this back into the equation we get:
1 n n n
HZ¢(X| ) (X )T(ZO‘J‘|¢(X| )] = ;{j ZO‘J‘|¢(X|)
=1 =1 |=1
We can rewrite it as

%Zn:ﬂxi)[ia“ K()g,)ﬁ)j =iji0ﬁ|¢(>ﬁ)

Multiply this by @(X, ) from the left:

%Zn:¢(xk)T ¢(>§)(Zn: a, K(X,X )] =1, Zn:a“¢(xk)T H(X)



Derivation Cont.

By plugging in the kernel and rearranging we get:

K205j =ni,Ke,

We can remove a factor of K from both sides of the matrix
(this will only affects the eigenvectors with zero eigenvalue,
which will not be a principle component anyway):

Kaj =n/1jaj

We have a normalization condition for the Otj vectors:

Viv, =1 = > Y a,a,éx) 4(x)=1 = a'Ka, =1

k=1 =1



Derivation Cont.

By multiplying Ka; =ni,a; by a; and using the
normalization condition we get:

T .
Ana;a; =1 V]

For a new point X, its projection onto the principal
components is:

BTV, = D 4T 9x) = K (%)



Normalizing the feature space

In general, #(X) may not be zero mean.
Centered features:

~ 1 n
(%)= ¢(>§)—EZ¢(XK)
k=1
The corresponding kernel is:

K%)= 8(%)" ¢ (x))
[ s00-23-000) | [005)-33 0000

=K(x,xo—%iK(x,xo—%iK(xj,xk>+n—12ir<<x,xk)

| k=1



Normalizing the feature space
(cont)

R (%, %)= K6 X ) =23 K (%, %)~ =3 K (., xk>+—zr<(x X,)
A A

I k=1

In a matrix form

:K_lejnK_l_ll/nKljJn

where 1, IS a matrix with all elements 1/n.



Summary of kernel PCA

Pick a kernel

Construct the normalized kernel matrix of the
data (dimension mx m):

K =K-21,,K+1,KL,
Solve an eigenvalue problem:
|Z0[i = A«
For any data point (new or old), we can
represent it as

Y :ZajiK(X’Xi), ]=1..,d



Example: Input Points
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Example: KPCA
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Example: De-noising images
Original data

L 1Y IOMKA 7181910

Data corrupted with Gaussian noise
iﬁ E ﬁ ﬁ ﬁ i TN *‘.‘ 8

Result after linear PCA

4 SIS0

Result after kernel PCA., Gaussian kernel

L H 31046 /181710




Properties of KPCA

Kernel PCA can give a good re-
encoding of the data when it lies along a

non-linear manifold.

The kernel matrix is n x n, so kernel PCA
will have difficulties if we have lots of

data points.



