UNSUPERVISED LEARNING 2011

LECTURE :KERNEL PCA

Rita Osadchy

Some slides are due to Scholkopf, Smola, Muller, and Precup

Dimensionality Reduction

• Data representation

Inputs are real-valued vectors in a high dimensional space.

Linear structure

Does the data live in a low dimensional subspace?

Nonlinear structure

Does the data live on a low dimensional submanifold?

Dimensionality Reduction so far

Notations

 Inputs (high dimensional)

 *x*₁, *x*₂,..., *x*_n points in R^D

Outputs (low dimensional)
 *y*₁, *y*₂,..., *y*_n points in R^d (d<<D)

The "magic" of high dimensions

- Given some problem, how do we know what classes of functions are capable of solving that problem?
- VC (Vapnik-Chervonenkis) theory tells us that often mappings which take us into a higher dimensional space than the dimension of the input space provide us with greater classification power.

Example in \mathbb{R}^2

These classes are linearly inseparable in the input space.

Example: High-Dimensional Mapping

We can make the problem linearly separable by a simple mapping

 $\Phi: \mathbf{R}^2 \to \mathbf{R}^3$

 $(x_1, x_2) \mapsto (x_1, x_2, x_1^2 + x_2^2)$

Kernel Trick

- High-dimensional mapping can seriously increase computation time.
- Can we get around this problem and still get the benefit of high-D?
- Yes! Kernel Trick

$$K(x_i, x_j) = \phi(x_i)^T \phi(x_j)$$

 Given any algorithm that can be expressed solely in terms of dot products, this trick allows us to construct different nonlinear versions of it.

Popular Kernels

Kernel Principal Component Analysis (KPCA)

- Extends conventional principal component analysis (PCA) to a high dimensional feature space using the "kernel trick".
- Can extract up to n (number of samples) nonlinear principal components without expensive computations.

Making PCA Non-Linear

• Suppose that instead of using the points x_i we would first map them to some nonlinear feature space $\phi(x_i)$

E.g. using polar coordinates instead of cartesian coordinates would help us deal with the circle.

- Extract principal component in that space (PCA)
- The result will be non-linear in the original data space!

Derivation

• Suppose that the mean of the data in the feature space is 1^{n}

$$\mu = \frac{1}{n} \sum_{i=1}^{n} \phi(x_i) = 0$$

• Covariance:

$$\mathbf{C} = \frac{1}{n} \sum_{i=1}^{n} \phi(x_i) \phi(x_i)^T$$

• Eigenvectors

$$\mathbf{C}\mathbf{v} = \lambda \mathbf{v}$$

• Eigenvectors can be expressed as linear combination of features:

$$v = \sum_{i=1}^{n} \alpha_i \phi(x_i)$$

• Proof:

$$\mathbf{C}\mathbf{v} = \frac{1}{n} \sum_{i=1}^{n} \phi(x_i) \phi(x_i)^T \mathbf{v} = \lambda \mathbf{v}$$

thus

$$v = \frac{1}{\lambda n} \sum_{i=1}^{n} \phi(x_i) \phi(x_i)^T v = \frac{1}{\lambda n} \sum_{i=1}^{n} (\phi(x_i) \cdot v) \phi(x_i)^T$$

Showing that $xx^Tv = (x \cdot v)x^T$

$$(xx^{T})v = \begin{pmatrix} x_{1}x_{1} & x_{1}x_{2} & \dots & x_{1}x_{M} \\ x_{2}x_{1} & x_{2}x_{2} & \dots & x_{2}x_{M} \\ \vdots & \vdots & \ddots & \vdots \\ x_{M}x_{1} & x_{M}x_{2} & \dots & x_{M}x_{M} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{M} \end{pmatrix}$$
$$= \begin{pmatrix} x_{1}x_{1}v_{1} + x_{1}x_{2}v_{2} + \dots + x_{1}x_{M}v_{M} \\ x_{2}x_{1}v_{1} + x_{2}x_{2}v_{2} + \dots + x_{1}x_{M}v_{M} \\ \vdots \\ x_{M}x_{1}v_{1} + x_{M}x_{2}v_{2} + \dots + x_{M}x_{M}v_{M} \end{pmatrix}$$

Showing that $xx^Tv = (x \cdot v)x^T$

$$= \begin{pmatrix} (x_{1}v_{1} + x_{2}v_{2} + \ldots + x_{M}v_{M}) x_{1} \\ (x_{1}v_{1} + x_{2}v_{2} + \ldots + x_{M}v_{M}) x_{2} \\ \vdots \\ (x_{1}v_{1} + x_{2}v_{2} + \ldots + x_{M}v_{M}) x_{M} \end{pmatrix}$$
$$= \begin{pmatrix} x_{1}v_{1} + x_{2}v_{2} + \ldots + x_{M}v_{M} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{M} \end{pmatrix}$$

 $= (x \cdot v)x$

• So, from before we had,

$$v = \frac{1}{n\lambda} \sum_{i=1}^{n} \phi(x_i) \phi(x_i)^T v = \frac{1}{n\lambda} \sum_{i=1}^{n} (\phi(x_i) \cdot v) \phi(x_i)^T$$

just a scalar

• this means that all solutions *v* with $\lambda = 0$ lie in the span of $\phi(x_1), ..., \phi(x_n)$, i.e.,

$$v = \sum_{i=1}^{n} \alpha_i \phi(x_i)$$

• Finding the eigenvectors is equivalent to finding the coefficients α_i

• By substituting this back into the equation we get:

$$\frac{1}{n}\sum_{i=1}^{n}\phi(x_i)\phi(x_i)^T\left(\sum_{l=1}^{n}\alpha_{jl}\phi(x_l)\right) = \lambda_j\sum_{l=1}^{n}\alpha_{jl}\phi(x_l)$$

- We can rewrite it as $\frac{1}{n} \sum_{i=1}^{n} \phi(x_i) \left(\sum_{l=1}^{n} \alpha_{jl} K(x_i, x_l) \right) = \lambda_j \sum_{l=1}^{n} \alpha_{jl} \phi(x_l)$
- Multiply this by $\phi(x_k)$ from the left:

$$\frac{1}{n}\sum_{i=1}^{n}\phi(x_k)^T\phi(x_i)\left(\sum_{l=1}^{n}\alpha_{jl}K(x_i,x_l)\right) = \lambda_j\sum_{l=1}^{n}\alpha_{jl}\phi(x_k)^T\phi(x_l)$$

• By plugging in the kernel and rearranging we get:

$$\mathbf{K}^2 \boldsymbol{\alpha}_j = n \lambda_j \mathbf{K} \boldsymbol{\alpha}_j$$

We can remove a factor of K from both sides of the matrix (this will only affects the eigenvectors with zero eigenvalue, which will not be a principle component anyway):

$$\mathbf{K}\boldsymbol{\alpha}_{j} = n\lambda_{j}\boldsymbol{\alpha}_{j}$$

• We have a normalization condition for the α_i vectors:

$$v_j^T v_j = 1 \implies \sum_{k=1}^n \sum_{l=1}^n \alpha_{jl} \alpha_{jk} \phi(x_l)^T \phi(x_k) = 1 \implies \alpha_j^T K \alpha_j = 1$$

• By multiplying $K\alpha_j = n\lambda_j\alpha_j$ by α_j and using the normalization condition we get:

$$\lambda_j n \alpha_j^T \alpha_j = 1, \quad \forall j$$

 For a new point x, its projection onto the principal components is:

$$\phi(x)^T v_j = \sum_{i=1}^n \alpha_{ji} \phi(x)^T \phi(x_i) = \sum_{i=1}^n \alpha_{ji} K(x, x_i)$$

Normalizing the feature space

- In general, $\phi(x_i)$ may not be zero mean.
- Centered features:

$$\widetilde{\phi}(x_k) = \phi(x_i) - \frac{1}{n} \sum_{k=1}^n \phi(x_k)$$

• The corresponding kernel is:

$$\begin{split} \widetilde{K}(x_i, x_j) &= \widetilde{\phi}(x_i)^T \widetilde{\phi}(x_j) \\ &= \left(\phi(x_i) - \frac{1}{n} \sum_{k=1}^n \phi(x_k) \right)^T \left(\phi(x_j) - \frac{1}{n} \sum_{k=1}^n \phi(x_k) \right) \\ &= K(x_i, x_j) - \frac{1}{n} \sum_{k=1}^n K(x_i, x_k) - \frac{1}{n} \sum_{k=1}^n K(x_j, x_k) + \frac{1}{n^2} \sum_{l,k=1}^n K(x_l, x_k) \end{split}$$

Normalizing the feature space (cont)

$$\widetilde{K}(x_i, x_j) = K(x_i, x_j) - \frac{1}{n} \sum_{k=1}^n K(x_i, x_k) - \frac{1}{n} \sum_{k=1}^n K(x_j, x_k) + \frac{1}{n^2} \sum_{l,k=1}^n K(x_l, x_k)$$

• In a matrix form

$$\widetilde{\mathbf{K}} = \mathbf{K} - 2\mathbf{1}_{1/n} \mathbf{K} + \mathbf{1}_{1/n} \mathbf{K} \mathbf{1}_{1/n}$$

• where $\mathbf{1}_{1/n}$ is a matrix with all elements 1/n.

Summary of kernel PCA

- Pick a kernel
- Construct the normalized kernel matrix of the data (dimension m x m):

$$\widetilde{\mathbf{K}} = \mathbf{K} - 2\mathbf{1}_{1/n} \mathbf{K} + \mathbf{1}_{1/n} \mathbf{K} \mathbf{1}_{1/n}$$

Solve an eigenvalue problem:

$$\widetilde{\mathbf{K}}\boldsymbol{\alpha}_i = \lambda_i\boldsymbol{\alpha}_i$$

 For any data point (new or old), we can represent it as

$$y_j = \sum_{i=1}^n \alpha_{ji} K(x, x_i), \ j = 1,..,d$$

Example: Input Points

Example: KPCA

Example: De-noising images

Original data

(234567890

Data corrupted with Gaussian noise

Result after linear PCA

1239067390

Result after kernel PCA, Gaussian kernel

1239567890

Properties of KPCA

- Kernel PCA can give a good reencoding of the data when it lies along a non-linear manifold.
- The kernel matrix is n x n, so kernel PCA will have difficulties if we have lots of data points.