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Abstract

Hidden Markov Models (HMMs) are applied to the problems of statistical model-
ing, database searching and multiple sequence alignment of protein families and protein
domains. These methods are demonstrated on the globin family, the protein kinase
catalytic domain, and the EF-hand calcium binding motif. In each case the parame-
ters of an HMM are estimated from a training set of unaligned sequences. After the
HMM is built, it is used to obtain a multiple alignment of all the training sequences.
It is also used to search the SWISS-PROT 22 database for other sequences that are
members of the given protein family, or contain the given domain. The HMM produces
multiple alignments of good quality that agree closely with the alignments produced by
programs that incorporate three-dimensional structural information. When employed
in discrimination tests (by examining how closely the sequences in a database fit the
globin, kinase and EF-hand HMMs), the HMM is able to distinguish members of these
families from non-members with a high degree of accuracy. Both the HMM and PRO-
FILESEARCH (a technique used to search for relationships between a protein sequence
and multiply aligned sequences) perform better in these tests than PROSITE (a dictio-
nary of sites and patterns in proteins). The HMM appears to have a slight advantage
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over PROFILESEARCH in terms of lower rates of false negatives and false positives,
even though the HMM is trained using only unaligned sequences, whereas PROFILE-
SEARCH requires aligned training sequences. Our results suggest the presence of an
EF-hand calcium binding motif in a highly conserved and evolutionarily preserved pu-
tative intracellular region of 155 residues in the a-1 subunit of L-type calcium channels
which play an important role in excitation-contraction coupling. This region has been
suggested to contain the functional domains that are typical or essential for all L-type
calcium channels regardless of whether they couple to ryanodine receptors, conduct
ions or both.



1 Introduction

The rate of generation of sequence data in recent years provides abundant opportunities for
the development of new approaches to problems in computational biology. In this paper,
we apply hidden Markov models (HMMs) to the problems of statistical modeling, database
searching, and multiple alignment of protein families and protein domains. To demonstrate
the method, we examine three protein families. Each family consists of a set of proteins that
have the same overall three-dimensional structure but widely divergent sequences. Features
of the sequences that are determinants of folding, structure and function should be present
as conserved elements in the family of sequences. We consider the globins, whole proteins
ranging in length from 130 to 170 residues (with few exceptions) and two domains, the
protein kinase catalytic domain (250-300 residues) and the EF-hand calcium-binding motif
(29 residues). The same approach can be used to model families of nucleic acid sequences
as well (Krogh et al., 1993).

A hidden Markov Model (Rabiner, 1989) describes a series of observations by a “hidden”
stochastic process — a Markov process. In speech recognition, where HMMs have been
used extensively, the observations are sounds forming a word, and a model is one that by its
“hidden” random process generates these sounds with high probability. Every possible sound
sequence can be generated by the model with some probability. Thus, the model defines a
probability distribution over possible sound sequences. A good word model would assign
high probability to all sound sequences that are likely utterances of the word it models, and
low probability to any other sequence. In this paper we propose an HMM similar to the
ones used in speech recognition to model protein families such as globins and kinases. In
speech recognition, the “alphabet” from which words are constructed could be the set of
phonemes valid for a particular language; in protein modeling, the alphabet we use is the
20 amino acids from which protein molecules are constructed. Where the observations in
speech recognition are words, or strings of phonemes, in protein modeling the observations
are strings of amino acids forming the primary sequence of a protein. A model for a set of
proteins is one that assigns high probability to the sequences in that particular set.

The HMM we build identifies a set of positions that describe the (more or less) conserved
first-order structure in the sequences from a given family of proteins. In biological terms, this
corresponds to identifying the core elements of homologous molecules. The model provides
additional information, such as the probability of initiating an insertion at any position in
the model and the probability of extending it. The structure of the model is similar to that
of a profile (Waterman & Perlwitz, 1986; Barton & Sternberg, 1990; Gribskov et al., 1990;
Bowie et al., 1991; Liithy et al., 1991), but slightly more general. Once we have built the
model from unaligned sequences, we can generate a multiple alignment of the sequences using
a dynamic programming method. By employing it for database searching, the model can be
used to discriminate sequences that belong to a given family from non-members. Finally,
we can study the model we have found directly, and see what it reveals about the common
structure underlying the various sequences in the family.

Our method of multiple alignment differs quite markedly from conventional techniques,
which are usually based on pairwise alignments generated by dynamic programming schemes
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alignments produced by these methods often depend strongly on the particular values of
the parameters required by the method, in particular the gap penalties (Vingron & Argos,
1991). Furthermore, a given set of sequences is likely to possess both fairly conserved re-
gions and highly variable regions, yet conventional global methods assign identical penalties
for all regions of the sequences. Substitutions, insertions, or deletions in a region of high
conservation should ideally be penalized more than in a variable region, and some kinds of
substitutions should be penalized differently in one position compared to another. That is
one of the motivations for the present work. The statistical model we propose corresponds
to multiple alignment with variable, position-dependent gap penalties. Furthermore, these
penalties are in large part learned from the data itself. Essentially, we build a statistical
model during the process of multiple alignment, rather than leaving this as a separate task to
be done after the alignment is completed. We believe the model should guide the alignment
as much as the alignment determines the model.

We are not the first group to employ hidden Markov models in computational biology.
Lander and Green (1987) used hidden Markov models in the construction of genetic linkage
maps. Other work employed HMMs to distinguish coding from non-coding regions in DNA
(Churchill, 1989). Later, simple HMMs were used in conjunction with the EM algorithm to
model certain protein-binding sites in DNA (Lawrence & Reilly, 1990; Cardon & Stormo,
1992) and, more recently, to model the N-caps and C-caps of alpha helices in proteins (D.
Morris, unpublished). These applications of HMMs and the EM (Expectation-Maximization )
algorithm, including our own, presage a more widespread use of this technique in computa-
tional biology. During the time that we have been developing this approach, several related
efforts have come to our attention. One is that of White, Stultz and Smith (1991) (1993),
who use HMMs to model protein superfamilies. This work is more ambitious than our own,
since superfamilies are harder to characterize than families. It is not yet clear how successful
their work has been since no results are reported for sequences not in the training set. If
there are weaknesses in their method, it is possible that these are due to the use of hand-
crafted models and reliance on prealigned data for parameter estimation. In contrast, our
models have a simple regular structure, and we are able to estimate all the parameters of
these models, including the size of the model directly from unaligned training sequences.
Interestingly enough, they independently propose an alternate HMM state structure similar
to ours in section 6.3 of their paper,! where they discuss the relationship of their work to
(1991), but they do not pursue this further. It is possible that the type of models we use
may work better for characterizing supertamilies than those investigated by White et al.
However, it is more likely that they are too simple, and that richer and more varied state
structure along the lines they propose is required for this problem. We recently found that
Asai, Hayamizu and Onizuka have applied HMMs to the problem of predicting the secondary
structure of proteins, obtaining prediction rates that are competitive with previous methods
in some cases (Asai, K. and Hayamizu, S. and Onizuka, K., 1993). In addition, Tanaka,
[shikawa, Asai, and Konagaya also discuss the relationship between the HMM method for
obtaining multiple alignments and previous methods (Tanaka et al., 1993). Finally, in work

'Instead of using delete states, they have direct transitions between each pair of match states m; and m;
with ¢ < j.



most closely related to our own, since the time we presented a preliminary report on this work
(Haussler & Krogh, 1992) (see also (Haussler et al., 1992)), Baldi et al. have further demon-
strated the usefulness of this technique by producing multiple alignments for immunoglobins
and protease as well as globins and kinases (Baldi et al., 1993).2

2 Methods

2.1 HMM Architecture

Consider a family of protein sequences that all have a common three-dimensional structure,
for example the globins. The common structure in these sequences can be defined as a
sequence of positions in space where amino acids occur. In the case of globins, whose
structure contains principally a-helices, the 150 or so helical positions have been named A1,
A2, ..., Al6, B1, ... etc., where the letter denotes the a-helix, and the number indicates
the location within that a-helix (see for example (Bashford et al., 1987)). For each of these
positions there is a (distinct) probability distribution over the 20 amino acids that measures
the likelihood of each amino acid occurring in that position in a typical globin, as well as the
probability that there is no amino acid in that position (i.e., that a sequence belonging to
this family may have a gap at that position in a multiple alignment). These have been called
profiles (Waterman & Perlwitz, 1986; Barton & Sternberg, 1990; Gribskov et al., 1990; Bowie
et al., 1991; Lithy et al., 1991). A profile of globins can be thought of as a statistical model
for the family of globins, in that for any sequence of amino acids, it defines a probability for
that sequence, in such a way that globin sequences tend to have much higher probabilities
than non-globin sequences.

The type of hidden Markov model we use as a statistical model for a protein family
can be viewed as a generalized profile. However, instead of describing the HMM directly in
terms of the probability it assigns to each protein sequence, we find that it is easier to first
think of an HMM as a structure that generates protein sequences by a random process. This
structure and corresponding random process is illustrated in Figure 1 and can be described
as follows.

The main line of the HMM contains a sequence of M states, which we call match states,
corresponding to positions in a protein or columns in a multiple alignment (M equals 4 in
figure 1). Each of these states can generate a letter & from the 20-letter amino acid alphabet
according to a distribution P(x|my), k = 1... M. The notation P(x|m;) means that each of
the match states m, 1 < k& < M, have distinct distributions. For each match state my, there
is a delete state d; that does not produce any amino acid but is a “dummy” state used to
skip my. Finally, there are a total of M + 1 insert states to either side of the match states
which generate amino acids in exactly the same way as the match states, but use probability
distributions P(x|ig). In Figure 1, match, delete and insert states are shown as boxes, circles
and diamonds respectively. For convenience, we have added a dummy “BEGIN” state and
a dummy “END” state, denoted mg and mys 4 respectively, which do not produce any amino

?They have developed a variant of the method described here that employs a gradient descent training
algorithm in place of the EM algorithm.



x Amino acid.

3 Sequence of amino acids (s = 21 ...x2).
L Length of sequence.

q,r State in HMM.

path A sequence of states, ¢1...qy.

N Number of states in a path.

M Length of model.

m,i,d Match, insert, and delete states.

mg,mp/+q1  Begin and end states.
P(x|q)  Probability distribution of amino acids in state g¢.
T(rlq) Probability of a transition from state ¢ to r.

Table 1: Notation.

acid.

From each state, there are three possible transitions to other states, also shown in Figure
1. Transitions into match or delete states always move forward in the model, whereas
transitions into insert states do not. Note that multiple insertions between match states
can occur, since the self-loop on the insert state allows a transition from the insert state to
itself. The transition probability from state ¢ to state r is called 7 (r|¢g). Our notation is
summarized in Table 1.

A sequence can be generated by a “random walk” through the model as follows: Com-
mencing at state my (BEGIN), choose a transition to my, dq, or ig randomly according to
the probabilities 7 (my|mg), 7 (d1|mo), and 7 (ig|mg). If my is chosen, generate the first amino
acid a1 from the probability distribution P(x|m;), and choose a transition to the next state
according to probabilities 7 (-Jm;), where “” indicates any possible next state. If this next
state is the insert state iy, then generate amino acid 3 from P(x|11) and select the next
state from 7 (-|i1). If delete (dz) is chosen next, generate no amino acid, and choose the next
state from 7 (-|dz). Continue in this manner all the way to the “END” state, generating a
sequence of amino acids 1, xy...2 by following a path of states qo,q1 ... qn, gyy1 through
the model, where ¢y = mg (the BEGIN state) and ¢y41 = mpr41 (the END state). Because
the delete states do not produce any amino acid, N is larger than or equal to L. If ¢; is a
match or insert state, we define [(¢) to be the index in the sequence x1...x1 of the amino
acid produced in state ¢;. The probability of the event that the path ¢q...q¢gn4q 1s taken and
the sequence 1 ...z is generated is

N
Prob(wy ... 21,40 .. qnvy1|model) = T (nnyalgn) X TT T (gilgioa)P(2igiylas), (1)

=1

where we set P(xy;)|q;) = 1 if ¢; is a delete state. The probability of any sequence z1 ...y
of amino acids is a sum over all possible paths that could produce that sequence, which we
write as follows:

Prob(a1...x|model) = Z Prob(xy... 21,40 .. qgn41/model). (2)

paths qo,...,an 11



In this way a probability distribution on the space of sequences is defined. The goal is to find
a model (i.e., a proper model length and probability parameters) that accurately describes
a family of proteins by assigning large probabilities to sequences in that family.

This particular structure for the HMM was chosen because it is the simplest model that
captures the structural intuition of a protein: a) a sequence of positions, each with its
own distribution over the amino acids; b) the possibility for either skipping a position or
inserting extra amino acids between consecutive positions; and ¢) allowing for the possibility
that continuing an insertion or deletion is more likely than starting one. This choice appears
to have worked well for modeling the protein families that we have examined, but other
types of HMMs may be better at other tasks, e.g., the more elaborate models for protein
superfamilies used in (White et al., 1991; Stultz et al., 1993). The important feature of the
HMM method is its generality. One can choose any structure for the states and transitions
that is appropriate for the problem at hand. Examples of more general HMM architectures
are given in Sections 2.4 and 2.5 below.

2.2 Estimating the parameters of an HMM from training se-
quences

All the parameters in the HMM (i.e., the transition probabilities and the amino acid distribu-
tions) could in principle be chosen by hand from an existing alignment of protein sequences,
as in (Gribskov et al., 1990; White et al., 1991; Stultz et al., 1993), or from information
about the three-dimensional structure of proteins, as in (Bowie et al., 1991; White et al.,
1991; Stultz et al., 1993). The novel approach we take is to “learn” the parameters entirely
automatically from a set of unaligned primary sequences, using an EM algorithm. This
approach can in principle find the model that best describes a given set of sequences.

Given a set of training sequences s(1),...,s(n), one can see how well a model fits them
by calculating the probability that it generates them. This probability is simply a product
of terms of the form given by (2), i.e.

Prob(sequences|model) = J] Prob(s(j)|model), (3)
j=1

where each term Prob(s(j)|model) is calculated by substituting z1...25 = s(j) in eq. (2).
This is called the likelihood of the model. One would like this value to be high. The
mazimum likelihood (ML) method of model estimation is to find the model that maximizes
the likelihood (3).

An alternate approach to ML estimation is the mazimum a posteriori (MAP) approach.
Here, we assume a prior probability distribution over all possible parameters of the model
embodying prior beliefs on what a model should be like. This can then be used to “penalize”
models that are known to be bad or uninteresting. We discuss this further in Section 2.8.
In MAP estimation, we try to maximize the posterior probability of the model given the
sequences. Using Bayes rule, the posterior probability can be calculated as

Prob(sequences|model)Prob(model)

Prob(model|sequences) = Prob(sequences) : (4)




Here Prob(model) is the prior probability distribution, and Prob(sequences) can be viewed
as a normalizing constant. Since this normalizing constant is independent of the model,
MAP estimation is equivalent to maximizing

Prob(sequences|model)Prob(model). (5)

over all possible models. The MAP approach is closely related to minimum description length
(Jurka & Milosavljevic, 1991) and minimum message length (Allison et al., 1992) methods.

There is no known efficient way to directly calculate the best HMM model either in the
ML or MAP sense. However, there are algorithms that given an arbitrary starting point find
a local maximum by iteratively re-estimating the model in such a way that the likelihood (or
the posterior probability) increases in each iteration. The most common one is the Baum-
Welch or forward-backward algorithm (Rabiner, 1989; Lawrence & Reilly, 1990), which is
a version of the general EM method often used in statistics (Dempster et al., 1977). The
process of the EM algorithm can be viewed as an iterative adaptation of the model to fit the
training sequences. The steps in this process can be summarized as follows.

1. An initial model is created by assigning values to the transition probability 7 (r|¢) and
the amino acid generation probability P(x|q) for each &, ¢ and r, where x is one of the
20 amino acids and ¢ and r are states in the HMM connected by a transition arc. If one
already knows some features present in the sequences, or constraints on the sequences,
these may sometimes be encoded in the initial model. The current model is set to this
initial model.

2. Using the current model, all possible paths for each training sequence are considered
in order to get a new estimate ’j'(r|q) of the transition probability 7 (r|q) and a new
estimate 75(:1;|q) of the amino acid generation probability P(x|q) for each z, ¢ and r.
The transition probability estimate ’j'(r|q) is obtained by counting the number of times
a transition is made from state ¢ to r, for all paths of all training sequences, weighted
by the probability of the path. The estimate 75(:1;|q) is made in a similar manner, by
counting the number of times the amino acid = is aligned to the state g.

3. In the next step of maximum likelihood estimation, a new current model is created by
simply replacing 7 (r|q) by ’j'(r|q) and P(x|q) by 75(:1;|q) for each z, ¢ and r. In MAP
EM estimation, the parameters ’j'(r|q) and 75(:1;|q) are further modified by considering
the prior probability of the model before they are used to replace the old parameters.

4. Step 2 and 3 are repeated until the parameters of the current model change only
insignificantly.

Since the quality of the current model (as measured by (3) or (5)) increases in each
iteration, and no model is arbitrarily good, the process eventually terminates and produces
a model that is, at least locally, the best model for the training sequences to within some
specified precision of the parameters (Dempster et al., 1977). Typically, this occurs very
rapidly (e.g. in less than ten iterations) even for large models and large sets of training
sequences.



The main computational bottleneck in the algorithm is step 2, since individually exam-
ining each possible path for every training sequence would generally take time exponential
in the length of the longest training sequence. However, it is possible to use a dynamic
programming technique known as the forward-backward procedure to speed up this step.
Using this method, the new parameter estimates can be calculated in time proportional to
the number of states in the model multiplied by the total length of all the training sequences.
Details are given in the excellent tutorial article on HMMs by Rabiner (1989).

The forward part of the forward-backward procedure can also be used to efficiently com-
pute — log Prob(sequence|model), the negative logarithm of the probability of a sequence
given the model (as defined in (2)), without summing over all possible paths for the se-
quence (Rabiner, 1989). We call this the negative log likelihood (NLL)-score of the sequence.
The average NLL-score of a training sequence is inversely related to the likelihood of the
model, given by (3), and hence serves as a numerical measure of progress for each iteration
of the EM procedure. The NLL-score can also be used to evaluate how well the model fits
a novel “test” sequence not present in the training set, as described in Section 2.6 below.

2.3 The Viterbi algorithm and multiple alignment from an HMM

The forward-backward procedure is related to the dynamic programming technique used to
align one sequence to another, or more generally to align a sequence to a profile. A variant
of the forward-backward procedure known as the Viterbi algorithm is similar to the stan-
dard profile alignment algorithm (Waterman & Perlwitz, 1986; Barton & Sternberg, 1990;
Gribskov et al., 1990). Instead of calculating the NLL-score for a sequence, which implic-
itly involves all possible paths for that sequence through the model, the Viterbi algorithm
computes the negative logarithm of the probability of the single most likely path for the
sequence. We can write this as

— log max Prob(s, path|model), (6)
paths

where Prob(s, path|model) is given in (1), with s = xy...21, and path = ¢...qn41. Instead
of first maximizing the probability of the path and then taking the negative logarithm, it
is convenient (and equivalent) to simply minimize the negative logarithm of the probability
over all paths. This minimum we will call the distance from the sequence to the model,

dist(s,model) = min{—log Prob(s,path|model)}

paths
N+1

= min Y [—log T (qilgi—1) — log P(xi)]¢)]-
1

ths “
paths =

This distance from a sequence to a model is analogous to the standard “edit distance”
from one sequence to another (with gap penalties), see e.g. (Waterman, 1989), but is perhaps
more related to the distance from a sequence to a profile. The term — log P(x(;)|¢;) represents
a penalty for aligning the amino acid z;(;) to the position represented by state ¢; in the model.
The term —log 7 (¢;|gi—1) corresponds to a penalty for using the transition from ¢;_1 to ¢; in
the model. If this is a transition from a match state to a delete state, then this represents a



gap-initiation penalty; if it is from a delete state to a delete state it represents a gap-extension
penalty; if it is from a match state to an insert state, it represents an insertion-initiation
penalty; and if it is a transition from an insertion state to itself (a “self-loop”), then it
represents an insertion extension penalty. One of the main features of this distance measure
is that all these penalties depend on the position in the model, whereas they would be fixed
in most standard pairwise alignment methods. Often the most likely path has a significantly
higher probability than all other paths, and in that case the distance defined here will be
approximately equal to the NLL-score defined earlier.

The computation time for the Viterbi algorithm is proportional to the number of states
in the model multiplied by the length of the sequence being aligned, i.e. the same as the time
for the forward-backward algorithm. In addition, with a simple extension to the algorithm,
the most probable path itself can be found using the usual backtracking technique (Rabiner,
1989). This is the method we use to obtain our multiple alignments: each sequence is aligned
to the model by the Viterbi algorithm, after which the mutual alignment of the sequences
among themselves is then determined. ®

2.4 Using the HMM to cluster sequences and discover subfami-
lies

When a relatively large number of sequences are available, it is sometimes possible to obtain
improved results by dividing these sequences into clusters of similar sequences and training a
different HMM for each cluster/subfamily. The results of this are illustrated in more detail in
Section 3.1. Given a large set of unlabeled and unaligned sequences, a simple extension of the
hidden Markov model enables us to use the EM training algorithm to automatically partition
the sequences into clusters of similar sequences. By iteratively splitting clusters, this method
might be useful for building phylogenetic trees in a “top-down” manner. However, when the
clusters become too small there will be an insufficient number of sequences in each cluster
to construct an accurate model, so some “bottom-up” processing may still be necessary.

In order to discover w clusters in the data, we make w copies of the HMM, one for each
cluster. We call these components of the (composite) HMM. Presently, the number w of
clusters and the initial lengths of the models for these clusters are determined empirically.
We then add a new begin state with w outgoing transitions, one to each of the begin states
of the component HMMs (see Figure 2).

This new begin state is analogous to the other begin states in that it generates no amino
acid. We then train this composite model with the EM algorithm as described in Section 2.2.
The EM reestimation of a component model is the same as the reestimation of a single model,
except that the weight that a sequence has in the reestimation of a component is proportional
to the probability of the sequence given that component model. Thus, sequences that have
better NLL-scores for a particular HMM component have greater influence in reestimating
the parameters of that component, and this causes the parameters of that component to
change in such a way that the component further “specializes” in modeling those sequences.
The “surgery” procedure described below in Section 2.7 is used to adapt the length of that

3We make no attempt to align portions of the sequence that use the insert states of the model.
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component to further specialize it. In this manner, the individual components evolve during
training to represent clusters in the training sequences. This way of using EM is called
mixture modeling in the statistics literature (Duda & Hart, 1973; Everitt & Hand, 1981),
and is known as ‘(soft) competitive learning’ in the neural network literature (Nowlan, 1990).

When the model is trained, the probability of a sequence given any of the submod-
els can be calculated, i.e., the probability that the sequence belongs to the corresponding
cluster/subclass. The negative logarithm of this probability corresponds to the NLL-score
calculated for a simple HMM. As with the standard HMM we use, this yields a quantitative
measure of how well the model fits the data. The clusters found can also be compared to
known subfamilies of the sequences. Experiments with the clustering of globin sequences are
described in Section 3.1.

2.5 Modeling protein domains with an HMM

There are many cases when one does not want to build a statistical model of a family of whole
proteins like globins, but instead to build a model of a structural motif or domain that occurs
as a subsequence in many different kinds of proteins, such as the EF-hand motif (Nakayama
et al., 1992) or the kinase catalytic domain (Hanks & Quinn, 1991). Here we expect our
model to only match a relatively small subsequence of any given protein, with many other
unmatched amino acids appearing before and after this subsequence. One approach to
this problem is to alter the dynamic programming method used to align a sequence to a
model so that it tries all possible ways of aligning each subsequence of the sequence to a
model (Waterman, 1989). We use a simpler (but almost equivalent) method in which only
the HMM model is altered, so that the same standard procedures (forward-backward and
Viterbi) which we use for models of whole proteins can be used without modification for
models of domains.

Consider a training set of many unaligned sequences consisting not of complete proteins,
but of a specific domain. Our first step is to train an HMM for these sequences exactly
as described earlier. As shown in Figure 1, this HMM will have initial and final “dummy”
match states mg and my41 (where N 4+ 1 =5 in Figure 1) that do not match any amino acid.
To alter the HMM to represent a protein domain, we create two new insert states ig and
ig, adding ip to the model before the state mg and ip at the end of the model after my4
(see Figure 3).

We then add a new dummy “BEGIN” state before ig and a new dummy “END” state
after ig. Fight new transitions are also added to the model. The first four are from “BEGIN”
to ip, from myyq to ig, and the self-loops from ig to itself and from ig to itself. These all
have the same probability p, for some p between 0 and 1. The second four transitions are
from ip to mg, from “BEGIN” to mg, from i to “END”, and from my 11 to “END. These all
have probability 1 — p. The new states added before and after the model, along with these
transitions, form two new modules, one for matching the extra amino acids that occur in the
sequence before the domain, and the other for matching the amino acids after the domain.

The choice of the parameter p does affect the way that the overall model aligns with
a given sequence. To see how, it is convenient to think of the negative logarithm of the
probability of a transition as a penalty for using that transition, as described in Section 2.3.
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In the modified model, all sequences must suffer a penalty of —log(1 — p) to enter and again
to exit the domain part of the model, no matter which path they take. Hence this penalty
is a fixed cost, which can be ignored when comparing the distances or NLL-scores of two
sequences with respect to the model. In addition to this penalty, all sequences will suffer
a penalty of K(—logp + log20), where K > 0 is the number of amino acids that are not
matched to the original domain model, but are instead matched in the states ip and ig.
The —log 20 term arises because we set the probabilities of each amino acid to (1/20) in the
insertion states ip and ip (see Section 2.8).  Thus p will determine the ‘pressure’ on the
sequence to align something to the domain model, i.e., if p is low it advantageous to squeeze
many amino acids into the domain model, using the insert states in this part of the model. If
it is high, it is possible that most sequences would prefer to pass through the delete states in
the domain model, aligning everything instead to the new modules before and after it. It is
straightforward to estimate p the same way as all the other parameters, the only additional
problem is that the same value must be used in all the transitions that use this value, ‘tying’
these parameters to each other. Otherwise the model might become biased towards aligning
the domain either near the beginning of the sequence or near the end of the sequence. We
have not attempted to estimate p. Rather, we have used a fixed p = 1 with good results.
(This should be thought of as a limit of p approaching 1, otherwise —log(1 — p) is infinite.)

Using this construction, it may also be possible to discover interesting domains by training
on whole protein sequences, and letting EM determine which part of the proteins to model.
Furthermore, if more than one occurrence of the same domain is expected in some sequences,
then this model can be further modified to find all occurrences. This is accomplished by
simply adding a transition from the “END” state back to the “BEGIN” state.

2.6 Searching a database with an HMM

Once an HMM is built for a family of proteins, it can be used to search a database such as
PIR or SWISS-PROT for other proteins in this family. Similarly, if an HMM is built for a
protein domain or motif, then it can be used to search for occurrences of this domain or motif
in the database, much like a PROSITE expression (Bairoch, 1992), a commonly used method
for searching for patterns found in protein sequences. Like a profile (Waterman & Perlwitz,
1986; Barton & Sternberg, 1990; Gribskov et al., 1990; Bowie et al., 1991; Liithy et al., 1991),
an HMM has an advantage over a PROSITE expression for database searches, because it
takes into account a large amount of statistical information in matching a sequence, and
weighs this information appropriately, rather than relying on relatively rigid matching rules.

As described in Section 2.2, the forward part of the forward-backward dynamic program-
ming method calculates a NLL-score for any test sequence that measures how well it fits the
model. This NLL-score is the negative logarithm of the probability of the sequence given
the model. It turns out that this raw NLL-score is too dependent on the length of the test
sequence to be used directly to decide if the sequence is in the family modeled by the HMM
or not. However, we can overcome this problem by normalizing this NLIL-score appropriately.

Whenever we build an HMM for a family of proteins or for a protein domain, we run
all the proteins in a standard database (for instance, SWISS-PROT) through this HMM

and compute the NLL-score for each sequence. A scatter plot of sequence length versus
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NLL-score for our kinase catalytic domain model is given in Figure 9.

Most proteins tend to lie on a fairly straight line (towards the top of the plot) indicating
that the NLL-score for these proteins is proportional to their lengths. These proteins are the
ones that do not contain the kinase catalytic domain and thus look like “random proteins”
to the kinase catalytic domain model. In contrast, the proteins that do contain the kinase
catalytic domain tend to have NLL-scores that are much lower than expected for proteins of
their length, and hence appear below the linear band of non-kinase proteins.

We can quantify the difference between NLL-scores for proteins containing the kinase
catalytic domain and NLL-scores for proteins not containing the domain by a simple sta-
tistical method, as follows. Using a local windowing technique,* we first calculate a smooth
average curve for the roughly linear band of the NLL-score versus length plot. The standard
deviation around this average curve is also calculated. Using this, we calculate the difference
between the NLL-score of a sequence and the average NLL-score of typical sequences of that
same length, measured in standard deviations. This number is called the Z-score for the
sequence. We then choose a Z-score cut-off, either a priori or by looking at the histogram
of Z-scores for sequences in the database (see Figure 10), and use it to decide if a given
sequence fits the model or not. We have found that a Z-score of approximately 5 appears
a good choice in most cases we have examined, but we suggest carefully checking the his-
togram by eye before deciding on a cutoff. For example, for our HMM of the kinase catalytic
domain, sequences with Z-scores below 5 are classified as not containing the kinase catalytic
domain, and sequences with Z-scores above 5 are classified as containing the catalytic do-
main. If the Z-score of a sequence indicates that it contains the catalytic domain, we can
align the sequence to the catalytic domain HMM to find out where this domain occurs in
the sequence. The time it takes to do a database search is proportional to the numbers of
residues in the database times the length of the model. For our globin model (length 147) we
can search the SWISS-PROT database (about 8,375,000 residues) in approximately 2 CPU
hours on a Sun Sparcstation 1. Using the shorter EF-hand model (length 29) it takes only
18 CPU seconds (11 user minutes) on a Sun Sparcstation 2. A parallel implemetation of the
search procedure (not yet implemented) will speed up these searches substantially, as it has
the EM training procedure.

While the statistical techniques we have used to determine Z-scores are still quite crude,
we have found that the HMMs are sufficiently good models that these techniques work well
enough in practice. However, it may be that more sophisticated techniques are needed in
certain cases.

*The average curve is calculated as follows. For each length i starting at ¢ = 1, the length [; is computed
such that there are at least 500 proteins of lengths ¢ to /; and less than 500 proteins of lengths ¢ to [; — 1.
The length interval i to /; is called a window. The average curve is piecewise linear through the points
corresponding to the average length and average NLL-score for each window. The first and last parts of the
curve are calculated by linear regression in the first and last window respectively. The standard deviation of
the points from the smooth curve is also calculated for each window. The estimate of the average curve can
be improved by eliminating outliers, i.e. NLL-scores that lie many standard deviations from the average. We
iterate the process of removing outliers and reestimating the average curve until no more outliers remain.
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2.7 Initial model, local minima, and choice of model length

As mentioned in Section 2.2, when estimating the model from the training sequences, the
EM algorithm does not guarantee convergence to the best model. It is basically a steepest-
descent-type algorithm that climbs the nearest peak (local maximum) of the likelihood func-
tion (or the posterior probability in MAP estimation). Since finding the globally optimal
model seems to be a difficult optimization problem in general (Abe & Warmuth, 1990),
we have experimented with various heuristic methods to improve the performance of the
method.

Probably the best method is to give the model a hint if something is already known about
the sequences, which is often the case. A good starting point makes it much more likely that
the nearest peak is at least close to optimal. This is done by setting the probabilities in
the initial model to values reflecting that knowledge. If, for instance, an alignment of some
of the sequences is available, it is straightforward to translate that into a model by simply
calculating the relative frequency of the amino acids and the transition frequencies in each
position, as in the profile method (Gribskov et al., 1990).

It is of course even more interesting if the model can be found from a tabula rasa, i.e.,
using no knowledge about the sequences. For that we have used an initial model where all
equivalent probabilities are the same, i.e., 7 (mj|mg41) is independent of the position k in the
model, and similarly for all other transition probabilities, and P(x|my) is also independent of
k. To avoid the smaller local maxima, noise is added to the model during the iteration before
each reestimation. Initially quite a lot of noise is added, but over ten iterations the noise
is decreased linearly to zero. Since noise is added directly to the model, it is not like the
usual implementation of simulated annealing, but the principle is the same. The “annealing
schedule” is presently rather arbitrary, but it does seem to give reasonable results® if it is
applied several times, and the best of the models found is used as the final model.

It is important that the best model be selected, since suboptimal models do produce
inferior alignments in general. However, when studying alignments from suboptimal globin
models, we noted that they tend to align some regions well, occasionally getting better
alignments in those regions than the best overall model found, while in other regions they
are completely incorrect. This leaves open the intriguing possibility of combining the best
solutions found for different regions into a new overall best model. We have not yet explored
this possibility.

The length of the model is also a crucial parameter that needs to be chosen a priori.
However, we have developed a simple heuristic that selects a good model length, and even
helps in the problem of local maxima. The heuristic is this: After learning, if more than a
fraction® ~4 of the paths of the sequences choose dj, the delete state at position k, that
position is removed from the model. Similarly, if more than a fraction 7;,s make insertions at
position k (in state ix), a number of new positions equal to the average number of insertions
made at that position are inserted into the model after position k. After these changes in

®An alternate method that also appears to give good results has been developed by Baldi et al. (Baldi
et al., 1993; Baldi & Chauvin, 1993). This method uses stochastic gradient descent in place of the EM
method, which may help in avoiding local minima.

SCurrently we choose v4.; and v, each to be 1/2.
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the model, it is retrained, and this cycle is repeated until no more changes are needed. We
call this “model surgery.”

2.8 Over-fitting and MAP estimation

A model with too many free parameters cannot be estimated well from a relatively small
data set of training sequences. If we try to estimate such a model, we run into the problem
of overfitting, in which the model fits the training sequences very well, but gives a poor fit to
related (test) sequences that were not included in the training set. We say that the model
does not “generalize” well to test sequences. This phenomenon has been well documented
in statistics and machine learning (see e.g. (Geman et al., 1992; Berger, 1985)). One way to
deal with this problem is to control the effective number of free parameters in the model by
using prior information. This can be accomplished with MAP estimation. Parameters that
we assume (via our prior distribution on models) can be well-estimated a priori in effect
become less adaptive, because it takes a lot of data to override our prior beliefs about them,
whereas those about which we have only weak prior knowledge are estimated in almost the
same manner as in maximum likelihood estimation. In this way, the model can have a very
large number of parameters, but a much smaller number of “effectively free” parameters.
The parameters in our HMM models describe probability distributions over sets of 20
values (the amino acids), or over 3 values (the three possible transitions out of a given state
to the match, insert and delete states following). Let us focus on the parameters describing
distributions on the amino acids; the other parameters are treated analogously. We have
denoted the parameter defining the probability that amino acid = occurs in the match state
at position k by P(x|mg). For simplicity, let us now fix the position k, and let py, ..., pay
denote the probabilities of the amino acids in this match state at position k. When we
reestimate these probabilities in each iteration of the EM method, the data we use is a set
of (estimated) counts nq,...,ng, where n; is the estimated number of times amino acid ¢
occurs in this state, based on alignments of the training data to the current model, for each
i between 1 and 20. Let n = Y22, n;. In maximum likelihood estimation, the old value p; is
simply replaced by the new value p; = n;/n, i.e. the probability is estimated by the fraction
of times the amino acid occurs. In the Bayesian MAP approach that we use, the new value

is defined by
n; +

pi = , (7)

n+ «o

where aq, ..., a9 > 0 and o = Y22, ;. The numbers ay, . .., ay define an a priori probabil-

ity density over the set of all possible vectors (pi,. .., pso) such that p; > 0 and 372, p; = 1.
This density is known as the Dirichlet distribution with parameters aq, . .., ag (Berger, 1985;
Santner & Duffy, 1989). The p; defined in (7) are the posterior estimates of the parame-
ters, given the count data and this prior.” We use the same oy, ..., ay for reestimating the
probabilities of the amino acids in each match state.

"Assuming that o; > 1, the MAP estimate is actually obtained by subtracting one from each «; before
applying Equation 7. The formula given in Equation 7 corresponds to a Bayesian least-squares estimate of
the p;s.
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In order to apply the Bayesian method, one must decide on the parameters aq, ..., as.
We have done extensive experiments in this area which are reported in detail elsewhere
(Brown et al., 1993). Here we only give a brief description of our approach. The main idea
is to analyze previously built HMMs for other protein families to see what kind of proba-
bility distributions on amino acids appear in their match states, and use this information
to determine the parameters aq, ..., as of the Dirichlet distribution that defines our prior
beliefs. Unfortunately, since we have not yet built many HMMs, we cannot use this ap-
proach effectively at the present time. Therefore we have elected to use data from existing
multiple alignments of homologous proteins in place of previously built HMMs. In particu-
lar, we have used the 129 multiple alignments described in the recent paper of Sander and
Schneider (1991). Multiple alignments with less than 30 proteins are discarded, leaving 41
alignments with a total of 5670 positions. For each position in each alignment we extract

the vector of counts nq,...,nsg, where n; is the number of times amino acid ¢ occurs in that
position among all proteins in that alignment. Then we take these 5670 count vectors and
find the parameters aq,...,az that fit them best. Here we use the maximum likelihood

method, assuming that each vector of counts was generated by selecting a probability dis-
tribution py,. .., pao at random according to the Dirichlet density defined by the (unknown)
Q1,. .., 0z, and then randomly generating amino acids according to this probability distri-
bution. The mathematical details are described in (Brown et al., 1993). The final vector of
a;’s we obtain is { 0.162339 0.037220 0.107508 0.123557 0.074544 0.122092 0.072662 0.112151
0.128548 0.138534 0.063912 0.113368 0.074824 0.103722 0.110612 0.170739 0.154307 0.143584
0.028017 0.069302 }, where the order of the amino acids is alphabetical with respect to the
one letter amino acid code.

Having determined the prior density for the probability distribution of amino acids in a
match state, we still need to find a prior for the distributions of amino acids in the insert
states, and for the probability distributions governing the transitions between states. We
deal with the transitions as follows. For each type of state (match, insert, and delete), we
determine a vector of three as which we denote ,4tch, Qinserts Qgerete. This gives nine as
in all. For a match state, a4z 1s used to regularize the reestimation of the probability
of transition from this match state into the next match state, s+ the transition to the
next insert state, and ayeee the transition to the next delete state. Similar conventions
are used for insert and delete states. Each of these three vectors of as is determined by a
maximum likelihood method like that described above for a, ..., as, except here we really
do use previously built HMMs. Namely, we use an HMM for globins with 147 positions
and an HMM for the kinase catalytic domain with 255 positions to provide 402 examples of
transition distributions out of match states to estimate the parameters aunarch, Qinsert s Odelete
of a Dirichlet prior on these transition distributions, and similarly for the insert and delete
states.
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Kinase Globin
to match | to delete | to insert || to match | to delete | to insert
From match | 15.521340 | 0.254944 | 0.265967 48.0 1.0 1.0
From delete | 1.819972 | 1.886984 | 0.225758 44.0 5.0 1.0
From insert 3.764209 | 0.37648 | 4.006562 29.0 1.0 20.0

The first half of the table shows the alpha values used in the kinase experiments. Because
these regularization values were obtained from only two HMMs, and both HMM’s were built
using previous ad hoc regularization methods, these « values are highly preliminary, and
will probably need to be refined considerably before they are generally useful. In the globin
experiments we used (for historical reasons) a different regularizer.

Finally, we have found that it does not help to try to model the probability distribution
of the 20 amino acids in an insert state. Therefore, to avoid having 20 additional free
parameters for each insertion state, we simply set the amino acid distributions in the insert
states to be uniform distributions, i.e., each amino acid has probability 1/20. In our previous
work we have used the global frequencies of the amino acids (Haussler et al., 1993). We have
found that it usually makes little difference which one is used, but the uniform distributions
tend to improve the performance of the models when searching databases.

The previous discussion implicitly assumed that the model in principle is almost perfect,
i.e., given enough training data a very good model can be found even without a regularizer.
That might not be the case. After all, the model is based on some very simplified assumptions
about proteins, and in some cases the model structure might have an inherent bias towards
models that are wrong biologically. In our globin experiments, for instance, we have seen
cases where the EM algorithm chose to model a lot of proteins as only insertions and deletions
(i.e., skipping a large percentage of the match states). By regularization it is possible to
bias the model toward using the match states for their intended purpose. In the globin
experiment, this was done by increasing the strength of the regularization on the transitions
going from delete to match. Although related, this kind of regularization serves a different
purpose than correcting for the bias introduced by a limited training set.

3 Results

3.1 Globin experiments

The modeling was first tested on the globins, a large family of heme-containing proteins
involved in the storage and transport of oxygen that have different oligomeric states and
overall architecture (for a review see (Dickerson & Geis, 1983)). Hemoglobins are tetramers
composed of two « chains and two other subunits (usually 3, v, 6 or §). Myoglobin is a
single chain, some insect globins are present as dimers and some intracellular invertebrate
globins occur in large complexes of many subunits.

Globin sequences were extracted from the SWISS-PROT database (release 19) by search-
ing for the keyword “globin”. Eliminating the false positives, resulted in 625 genuine globin
sequences of average length 145 amino acids. We left three non-globins in the sample for
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illustrational purposes giving a total of 628 sequences. The sample of globins in the database
is not the random sample a statistician would prefer, but is perhaps one of the best and
largest collection of protein sequences from a homologous family. Searching for the words
“alpha”, “beta”, “gamma”, “delta”, “theta”, and “myoglobin” in the data file yielded 224
alpha, 199 beta, 16 gamma, 8 delta and 5 theta chains and 79 myoglobins, which adds up
to 531 sequences. These should naturally be considered minimum numbers, but they give a
good picture of how skewed the sample is.

To test our method, we trained an HMM using the method described in Sections 2.2 and
2.7. We used a homogeneous initial model that contained no knowledge about the globin
family. Its probability parameters were derived from the prior, and were the same for all
equivalent transitions (i.e., 9 different transition probabilities). All amino acid probabilities
(the P distributions) were set equal to the distribution of the amino acids given in Section
2.8. In the insert states we used a probability of 1/20 for all amino acids. The only
model parameters set by hand are the initial transition probabilities and corresponding
regularization parameters (see Section 2.8).  From our experience, the method does not
seem to be very sensitive to the choice of these parameters, but it would require considerable
further experimentation to verify this quantitatively.

For our training set, we picked 400 sequences at random from the 628 sequences. We
witheld the remaining 228 sequences in order to test the model on data not used in the
training process. The model was trained using noise and model surgery (Yger = Yins = 0.5),
as described in Section 2.7. This procedure was repeated about 20 times with model lengths
chosen randomly between 145 and 170. The average run-time was around 60 cpu minutes
on a Sun Sparcstation I. For each run we computed a NLL-score for the model, which was
the average of the NLL-scores for the training sequences, as defined in Section 2.2. The final
NLL-scores varied considerably for these runs but the best was 210.7.

We then took this model, produced 10 new models by adding noise, and optimized these.
These models all generated approximately the same NLIL-score and we picked the model
with the best NLL-score, 210.3, having a length of 147. We validated this model® in two
ways: from the alignments it produced, and by its ability to discriminate between globins
and non-globins. The results are described below.

Multiple sequence alignments

A multiple alignment of many globin sequences has been produced by Bashford et al. (1987)
by including into the alignment procedure tertiary-structure information of seven globins
(Figure 4). This was achieved by aligning these seven sequences and then aligning the rest
of the 226 studied to the closest of these seven. In contrast, generating multiple alignments
with HMMs requires no prior knowledge of underlying structure. Using the globin HMM,
we produced a multiple alignment of all the 625 globin sequences by the Viterbi algorithm
as described in Section 2.3. Figure 5 shows this alignment for the seven sequences from

(Bashford et al., 1987).

8We stress that the final model was chosen according to an objective measure, namely the NLL-score
on the training set, and not retroactively on the basis of how well it did in multiple alignment or database
search tasks.
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The alignment found in this experiment agrees extremely well with the structurally de-
rived alignment of Bashford et al. . Our alignment differs in the region between the C and E
helices. However, this is a highly variable area since only some globins possess a D helix. The
difference in the F/G-helices is more pronounced, with the remaining discrepancies possibly
representing an alternative alignment. Four of the insertions the model chose are in variable
regions between or at the end of helices, i.e., between secondary structure elements. The
last two insertions appear in the F/G region.

Database search: Discriminating globins from non-globins

The globin HMM model we found was also tested on all the 25,044 proteins in the SWISS-

PROT database release 22.0 of length less than 5000 amino acids (which is all but 2). A

NLL-score and a Z-score were computed for each of these sequences as described in Section

2.6. These are plotted in Figures 6 and 7 as a scatter plot and a histogram, respectively.
For the histogram (but not the scatter plot), the data were filtered as follows:

o All sequences with a Z-score > 3.5 and either more than a total of 25 or more than
15% unknown residues were removed (a total of 23). Currently, we treat an unknown
amino acid, X, as being the most probable amino acid at the position it is matched to,
so sequences with many Xs spuriously match the model very well.

e Since we searched a newer release of SWISS-PROT (rel. 22) than the one from which the
globin training set was extracted (rel. 19), 8 new globins were found and incorporated
into the test set.

e [ive globin fragments of length 19-45 were removed from the data.

e Three non-globin sequences in the globin file that were identified as outliers in Figure 6
were removed. One of these non-globins was left as part of the training set to illustrate
the robustness of the method.

The model distinguishes extremely well between globins and non-globins. Choosing a
Z-score cutoff of 5 we would miss 2 out of 628 globins? and get essentially no false positive
globins. There is one “non-globin”, a bacterial haemoglobin-like protein (SWISS-PROT id
HMP_ECOLI), that may or may not be counted as a false positive depending on your point of
view. Only one sequence, the heme containing catalase of Penicillium Vitale (CATA_PENVI,
Z-score 4.7), has a Z-score between 4.2 and 5.1, so any cutoff in this range will essentially give
the same separation. The two sequences falling between a Z-score of 1 and 4 (GLB_.PARCA
and GLB_TETPY) are protozoan, whereas the other globins are metazoan. The primary
sequences of these globins are similar and have little similarity with other eukaryotic globins.
Note also that both of these sequences are in the test set.

9628 in the original data set, plus 8 new, minus 3 spurious, minus 5 fragments. 397 were left from the
training, and the remaining 231 made up the test set.
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Discovering subfamilies of globins

We also performed an experiment to automatically discover subtamilies of globins using the
method described in Section 2.4. An HMM with 10 component HMMs was used. The
initial lengths of the components were chosen randomly between 120 and 170, but were
adjusted by model surgery during training. We trained this HMM on all 628 globins and
then calculated the NLL-score for each sequence for each of the 10 component HMMs. A
sequence was classified as belonging to the cluster represented by the component HMM that
gave the lowest NLL-score, i.c., the one giving the highest probability to that sequence.'?
Three of these clusters were empty and the remaining 7 nonempty ones represented chains
from known globin subfamilies:

Class 1 233 sequences: principally all o, a few ( (an a-type chain of mammalian embryonic
hemoglobin), 7 /7’ (the counterpart of the a chain in major early embryonic hemoglobin
P), and 0-1 chains (early erythrocyte a-like).

Class 2 232 sequences, almost all 3, a few 6 (S-like), € (S-type found in early embryos),
v (comprise fetal hemoglobin F in combination with two « chains), p (major early
embryonic -type chain) and 6 chains (embryonic -type chain).

Class 3 71 myoglobins.

Class 4 58 sequences. The 13 highest scoring in this cluster are leghemoglobins. This class
contain a variety of sequences including the three non-globins in original data set.

Class 5 19 sequences. Midge globins.
Class 6 8 sequences. Globins from agnatha (jawless fish).

Class 7 T sequences. Varied.

We have not repeated this experiment using different randomization to ascertain if better
results can be obtained. However, we are encouraged by the results of this first experiment
since it is able to classify correctly the major globin subfamilies (alpha, beta and myoglobin).

The final globin model

Examination of the model itself yields information on the structure of globins. Figure 8
shows the normalized frequency counts (the numbers used to re-estimate the parameters
of the model) from some parts of the final model. The thickness of a line indicates what
fraction of the 400 training sequences made that transition or used that particular amino
acid. A dashed line indicates that less than 5% of the sequences used that transition.
(The continued delete is mostly due to fragments that have to make many deletions.) The
histogram in a match state shows the distribution of amino acids that were matched to that

10We can also calculate the posterior probability of each cluster by looking at the transition probabilities
out of the global start state, and thereby obtaining a posterior distribution over the 10 clusters for each
sequence. However, these posteriors are very sharply peaked, so this adds little to the analysis.
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state. The number in an insert state shows the average length of an insertion beginning at
that position.

For the amino acids the ordering proposed by Taylor (1986) is used. Starting from the
top, the amino acids are medium-sized and non-polar, small and medium polar (around G
and P), medium sized and polar (around K), large medium-polar (around F and Y), and
finally below they are medium-large and non-polar. There does seem to be some tendency for
the distributions to peak around neighboring amino acids when using this ordering, as one
would expect. When one looks at the whole model, regions that are highly conserved are also
readily distinguished from the more variable regions, both as a function of the probability
that a position is skipped, and the entropy of the distribution of amino acids at that position.

3.2 Kinase experiments

Protein kinases are defined as enzymes that transfer a phosphate group from a phosphate
donor onto an acceptor amino acid in a substrate protein (Hunter, 1991; Hanks et al.,
1988). Based upon the acceptor amino acid specificity, they have been classified into ser-
ine/threonine, tyrosine, histidine, cysteine, aspartyl and glutamyl kinases. Only enzymes in
the first two categories have been well characterized and recent developments indicate that
some can phosphorylate both alcohol (serine/threonine) and phenol (tyrosine) groups, the
so called dual-specificity protein kinases (Lindberg et al., 1992). It is the region comprising
the catalytic domain of these hydroxyamino acid phosphorylating enzymes that we model by
an HMM and which we subsequently refer to as protein kinases or simply kinases. Despite
the differences in size, substrate specificity, mechanism of activation, subunit composition
and subcellular localization, all these kinases share a homologous catalytic core containing
12 conserved subdomains or regions (Hanks & Quinn, 1991; Hanks et al., 1988).

Because the kinase catalytic domain is only a subsequence embedded in a larger protein,
the kinase experiments differed from the globin experiments. The HMM used in the globin
experiments modeled the entire protein rather than simply a segment of a protein as is the
case for the kinase family. Modeling domains requires several modifications to our standard
HMM training which are described in Section 2.5.

The training set for these experiments is a group of 193 sequences from the March 1992
release of the protein kinase catalytic domain database maintained by S. K. Hanks and
A. M. Quinn (91). This set is composed of serine/threonine, tyrosine and dual-specificity
kinases principally from vertebrates and higher eukaryotes but also includes some from lower
eukaryotes, retroviruses and herpes virus.

We trained 10 HMMs on all 193 (unaligned) sequences in this data set using the prior
distributions described in Section 2.8. No parameters of the modeling process were
set manually and the initial model lengths ranged from 242 to 282 positions (this encom-
passes the average length of the sequences in our kinase catalytic domain training set).
At the end of the ten training runs, the best kinase model had a NLL-score (the average
—log P(sequence|model) over the training set) of 588.39 and a length of 254. Modules were
added at the beginning and end of this model as described in Section 2.5. We tested this
model in the same manner as described earlier for the globin model.

Our main tests were discrimination tests, in which we utilized the model to search the
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SWISS-PROT version 22 database (25,044 sequences) for proteins containing the kinase
catalytic domain.

As described in Section 2.6, a NLIL-score was computed for each of the sequences in the
database and this information was used to compute a sequence’s deviation from the average
curve as measured by a Z-score. The data was then filtered to remove all sequences with any
unknown residues (353) and all sequences having length less than 200 (4230), since complete
protein kinase catalytic domains range from 250 to 300 residues (Hanks et al., 1988). This
filtering removed a total of 4386 sequences. A scatter plot of NLL-score versus length for
the SWISS-PROT sequences in given in Figure 9.

A cutoff of 6.0 was chosen because there are no sequences with Z-scores between 4.935 and
6.773. See figure 10 for a histogram of the resulting Z-scores. Any sequence having a Z-score
> 6.0 was therefore classified as containing the kinase catalytic domain while those with
Z-score < 6.0 were classified as not possessing the domain. With this cutoff, 296 sequences
were classified as containing the kinase catalytic domain. The remaining 20357 sequences
were rejected.

The general issue of estimating the number of false negatives and false positives when
distinguishing sequences belonging to a given family from non-members is a complex one.
In the case of the globins, it is “relatively” straightforward since it is possible to identify all
the globins in the database by performing a keyword or title string search. The situation
for the kinase domain or the EF-hand motif (see Section 3.3) is less obvious and thus more
problematic. For instance, while a given protein may possess the sequence characteristics
for this motif or domain, functionally, the region may not bind calcium or possess kinase
activity. We have attempted to address this complicated matter as best we can as described
below. However, we stress that we do not feel able to give a definitive answer as to the
number of true false negatives and true false positives in our kinase or EF-hand database
discrimination tests.

A list of potential protein kinases was created from the union of sequences designated
as being kinases from four independent sources: our HMM, PROSITE (a dictionary of sites
and patterns in proteins (Bairoch, 1992)), PROFILESEARCH (a technique used to search
for relationships between a protein sequence and multiply aligned sequences (Gribskov et al.,
1990)) and a keyword search.

Two regions of the catalytic domain of eucaryotic protein kinases have been used to
build PROSITE signature patterns. The first pattern corresponds to an area believed to
be involved in ATP binding (PROSITE entry PROTEIN_KINASE_ATP, sequence motif
[LIV]G.G.[FYM][SG].V). There are two signature patterns for the second region important
for catalytic activity: one specific for serine/threonine kinases (PROTEIN_KINASE ST,
[LIVMFYC].[HY].D[LIVMFY]K.2N[LIVMFYC]3) and the other for tyrosine kinases (PRO-
TEIN_KINASE_TYR, [LIVMFYC].[HY].D[LIVMFY][RSTA].2N[LIVMFYC]3). Since PROSITE
expressions do not allow for flexible gapping or insertions, a profile of kinases was constructed
from an alignment of seven kinases and employed for database discrimination tests (M.
Gribskov, personal communication) using the program PROFILESEARCH (Gribskov et al.,
1990). The seven kinases used to generate the profile are, bovine cAMP dependent protein
kinase (PIR code OKBOG), bovine cGMP dependent protein kinase (OKBO2C), bovine pro-
tein kinase C (KIBOC), human mos kinase related transforming protein (TVHUF6), human
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ref-a kinase related transforming protein (TVHUMS), mouse pim-1 kinase related transform-
ing protein (TVMSP1), and human fes/fps kinase related transforming protein (TVHUFF).
The keyword search consisted of searching the descriptions of the sequences in SWISS-
PROT for the following strings: “SERINE/THREONINE-PROTEIN KINASE, SER/THR-
PROTEIN KINASE, PROTEIN-SERINE/THREONINE KINASE, PROTEIN-SER/THR
KINASE, TYROSINE-PROTEIN KINASE, TYR-PROTEIN KINASE, PROTEIN-TYROSINE
KINASE, PROTEIN-TYR KINASE, V-ABL, C-ABL, V-FGR, C-FGR, V-FMS5, C-FMS,
V-FPS/FES, V-FES/FPS, C-FPS/FES, C-FES/FPS, V-FYN, C-FYN, V-KIT, C-KIT, V-
ROS, C-ROS, V-SEA, C-SEA, V-SRC, C-5SRC, V-YES, C-YES, V-ERBB”.

Of the 296 SWISS-PROT 22 sequences that were above the Z-score cutoff of 6.0 and
were thus classified as containing a kinase domain by our HMM, 278 were similarly classified
by PROSITE, PROFILESEARCH and the keyword search. These 278 sequences may be
considered to constitute “certain kinases”. Figure 11 shows the multiple sequence alignment
generated by our HMM of some representative kinases from this set (sequences 1-22). Se-
quences 23-40 are the 18 sequences (296 minus 278) that were designated as kinases by the
HMM and one or two of the three other methods. For PROSITE, we consider a sequence to
be a kinase if it satisfies one or more of the three patterns PROTEIN_KINASE_ATP, PRO-
TEIN_KINASE ST or PROTEIN_KINASE_TYR as a true positive (“I” in Figure 11B).
PROSITE false negatives (“N”), potential hits (“P”) and false positives (“F”, sequences
which do not belong to the set under consideration) are ignored.

Among the 18 sequences classified as kinases by our HMM, eight (23-26, 35, 38-40)
were also deemed to be kinases by the keyword search and PROSITE, and one (27) by
PROFILESEARCH and PROSITE. The remainder (28-34, 36-37, those indicated by “%”
in Figure 11B) are particulate guanylyl cyclases and except for 36-37, PROFILESEARCH
also defines them as possessing a kinase domain. These guanylyl cyclases contain a single
transmembrane domain, a cyclase catalytic domain and an intracellular protein kinase-like
domain in which protein kinase activity has not been seen to date (reviewed in (Garbers,
1992)). Although these sequences are not kinases in terms of function, they possess all
the conserved subdomains except for subdomain I (the nucleotide binding loop) and the
majority of conserved residues present in “certain kinases” (see “Subdomain” of Figure 11A
and positions indicated by “*7).

Sequences 41-50 are the top ten sequences in SWISS-PROT immediately below our cutoff
of 6.0. Of these, the first three (41-43) were classified as kinases by two out of PROSITE,
PROFILESEARCH and the keyword search. Our cutoff was chosen from a visual inspection
of a histogram of Z-scores which indicated that 6.0 lay in a large gap (see Figure 10). If the
Z-score cutoff is lowered to the next largest gap (from Z-score 3.9 to 4.8) between sequences
43-44, then these three viral sequences (41-43) would also be categorized as kinases by the
HMM.

Of the eight sequences (41, 51-53, 56-57, 59-60) that were not classified as kinases by our
HMM but were classified only by the keyword search and PROSITE, one (41) is the first
sequence below our cutoff discussed above. Four (56-57, 59-60) are partial sequences where
the kinase domain is absent. Three (51-53) possess divergent forms of many of the conserved
regions and like 41-43, although they are below our cutoff, the HMM is able to generate an
alignment that correctly identifies divergent forms of conserved regions. Finally, there are
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three aminoglycoside 3’-phosphotransferase sequences (54-55, 58) which are only designated
as kinases because they satisty the PROSITE expression for the catalytic loop.

Inspection of Figure 11B permits an estimation of the accuracy of the various methods
in distinguishing kinases from non-kinases in database discrimination tests. The HMM
generates 6 false negatives (41-43, 51-53) of which the first three fall immediately below
our kinase cutoff. For PROFILESEARCH, there are 12 false negatives (23-26, 35, 38-41,
51-53) but it should be recalled that nine of these (those indicated by “$” in Figure 11B)
do not appear in the results obtained from searching SWISS-PROT 25 provided to us by M.
Gribskov (personal communication). We suspect that at least four (23-26) would be correctly
classified as kinases by PROFILESEARCH leaving an estimate of 3-8 false negatives. In the
case of PROSITE, using our assumption of a kinase to be a true positive (“T”) sequence
for any one of the three patterns, there are 3 false negatives (39, 42-43). However, the
actual performance of the PROSITE patterns themselves is much worse; scans of SWISS-
PROT 22 with each of the patterns PROTEIN_KINASE_ATP, PROTEIN_KINASE ST and
PROTEIN_KINASE_TYR individually yield 40, 2 and 3 false negatives respectively.

The difficulty in quantifying the precise number of false positives and false negatives pro-
duced by the database discrimination tests may be illustrated by employing an alternative
mechanism for assessing the number of false negatives. If simply the number of sequences
denoted as kinases only by all three other methods is evalutated, the number of false nega-
tives for each of the techniques differ from the more detailed analysis: 3 for the HMM (39,
42-43), 7 for PROFILESEARCH (23-26, 35, 38, 40) and 0 for PROSITE (ignoring known
false negatives as above). This general problem is further highlighted by the guanylyl cy-
clases (indicated by “%” in Figure 11B). If the definition of a kinase is based upon function
and not possession of particular sequence patterns, then the guanylyl cyclases are the only
false positives for both the HMM and PROFILESEARCH. The PROSITE patterns PRO-
TEIN_KINASE_ATP, PROTEIN _KINASE ST and PROTEIN_KINASE_TYR produce 8, 0
and 2 false positives respectively, giving some indication of the actual PROSITE perfor-
mance.

Overall, both the HMM and PROFILESEARCH appear to perform generally better than
PROSITE in the discrimination tests, with the HMM possibly having a slight advantage over
PROFILESEARCH.

The HMM database search did not suggest any new putative kinases in SWISS-PROT 22.
However, a comparative examination of the HMM produced multiple sequence alignment and
the crystal structure of the catalytic subunit of cAMP-dependent protein kinase (Knighton
et al,, 1991) (sequence 1), a template for the protein kinase family, yields insights into
the conserved regions and their functions in kinases of unknown structure. Figure 11A
displays the location of secondary structure elements obtained from this crystal structure.
An invariant Asp in subdomain VIb (Asp 166 in (Knighton et al., 1991)) that is proposed
to be the catalytic base is known to diverge in guanylyl cyclases (28-34, 36-37) even though
the immediate region is highly conserved (Garbers, 1992). Our results indicate that other
invariant residues appear to be replaced as well. In the sea urchin spermatozoan cell-surface
receptor for the chemotactic peptide “resact” (sequences 32 and 38), a Lys in subdomain II
(Lys 72) that forms part of the ATP «a- and -phosphate binding site is changed to His. The
heat-stable entertoxin receptor of rat (40) replaces an Asp in subdomain IX (Asp 200) that
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contributes directly to stabilisation of the catalytic loop by Glu. Like these guanylyl cyclases,
veast VPS15 (sequence 39), a probable serine/threonine kinase that is auto-phosphorylated,
also lacks subdomain I. In addition, a conserved ion-pair that stabilises ATP (Glu 91 -
Lys 72) would be disrupted in VPS15 because the Glu in subdomain III is altered to Arg
resulting in the apposition of two positively charged residues. In the putative B12 kinases
of two strains of vaccinia virus (42-43), the proposed Asp catalytic base is replaced by Lys
(¢f guanylyl cyclases). This is accompanied by a further change in the “general” sequence of
the catalytic loop: the normally positively charged residue at n+2 has been altered to Glu.
In general, all the sequences below our cutoff and the last one above it (40-60) appear to
lack a-helix F (see “X-ray” in Figure 11A). The functional and or structural consequences
of these modifications on any kinase activity are not clear.

3.3 EF-hand experiments

For these experiments we used the June 1992 database of EF-hand sequences maintained
by Kretsinger and co-workers (Nakayama et al,, 1992). Sequences in this database are
proteins containing two or more copies of the EF-hand motif, a 29-residue structure present
in cytosolic calcium-modulated proteins (Nakayama et al., 1992; Persechini et al., 1989;
Moncrief et al., 1990). These proteins bind the second messenger calcium and in their active
form function as enzymes or regulate other enzymes and structural proteins. The motif
consists of an a-helix, a loop binding a Ca** ion followed by a second helix. Although a
number of proteins possess the EF-hand motif, some of these regions have lost their calcium-
binding property.

For our training set, we extracted the EF-hand structures from each of the 242 sequences
in the database, obtaining 885 EF-hand motifs having an average length of 29. For our first
experiment we trained five HMMs on all 885 EF-hand motifs, using the standard techniques
described earlier. (In subsequent experiments, described below, we trained on smaller subsets
of these 885 sequences.) The best model had a final length of 29, and a NLL-score (the
average — log P(sequence|model)) of 61.41.

As described in Section 2.5, we modified the final model to enable it to search the SWISS-
PROT database for sequences containing the EF-hand motif. We computed Z-scores for all
sequences as described in Section 2.6 and Figure 12 shows the resulting histogram. In
contrast to the kinases, a visual inspection of the histogram of Z-scores did not indicate the
presence of a distinct gap thus making the selection of a cutoff more difficult. After choosing
by eye a cutoff of 4.75 and excluding all sequences with unknown residues (Xs), the model
classified 232 sequences as containing the EF-hand sequence motif.

As with the kinase experiments in the previous section, false positives and false negatives
were identified in the following manner. A list of “certain EF-hands” was created from the
union of sequences determined to be contain the EF-hand motif by three independent sources:
PROSITE, a keyword search, and the results of Michael Gribskov’s PROFILESEARCH.

We obtained a list of sequences which satisfied the PROSITE pattern “EF-HAND”
i.e. those possessing the sequence “D.[DNS] [A ILVFYW] [DENSTG] [DNQGHRK] [A
GP] [LIVMC] [DENQSTAGC].2 [DE] [LIVMFYW]” which includes the complete EF-hand

loop as well as the first residue following the loop. We consider a sequence to be an EF-
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hand as defined by PROSITE if it is listed as a true positive for the pattern (“T” in
Figure 13B). False negatives (“N”) and potential hits (“P”) are ignored. The keyword
search consisted of searching the annotations of sequences in SWISS-PROT for one or more
of the following keywords: “ALPHA-ACTININ, ALPHA ACTININ, AEQUORIN, CAL-
BINDIN, CALCINEURIN, CALCIUM VECTOR PROTEIN, CA VECTOR PROTEIN,
CALCYPHOSIN, P24 THYROID PROTEIN, CALCIUM-DEPENDENT PROTEIN KI-
NASE, CALCIUM DEPENDENT PROTEIN KINASE, CA DEPENDENT PROTEIN KI-
NASE, CALCIUM-BINDING PROTEIN, CALCIUM BINDING PROTEIN, ICABP, CAL-
CYCLIN, CALGIZZARIN, CALGRANULIN, CALMODULIN, CALPAIN, CALRETININ,
CALTRACTIN, CDC31, DIACYLGLYCEROL KINASE, EIGHT-DOMAIN PROTEIN, F-
ANTIGEN, FIMBRIN, LPS1, LUCIFERIN-BINDING PROTEIN, LUCIFERIN BINDING
PROTEIN, MYOSIN REGULATORY LIGHT CHAIN, MYOSIN ESSENTIAL LIGHT CHAIN,
ONCOMODULIN, OSTEONECTIN, PARVALBUMIN, PLACENTAL-CABP, PLACEN-
TAL CALCIUM BINDING PROTEIN, PLACENTAL CALCIUM-BINDING PROTEIN, 18A2,
5100, S5-100, SARCOPLASMIC CALCIUM-BINDING PROTEIN, SARC1, SARC2, SOR-
CIN, SPECI, SPEC2, SPECTRIN, SQUIDULIN, TCBP-10, VISININ, RECOVERIN, TRO-
PONIN C, TWO-DOMAIN CALCIUM-BINDING PROTEIN” and “TCPB10”. This set of
keywords yielded some extraneous sequences, most of which could be eliminated by re-
moving those sequences containing “CALMODULIN-BINDING, HYPOTHETICAL PRO-
TEIN, CALMODULIN-DEPENDENT, CALMODULIN-SENSITIVE” and “CALPAIN IN-
HIBITOR”. Two different PROFILESEARCH experiments were conducted for us by M.
Gribskov (personal communication). The first employed a profile generated using the mul-
tiple sequence alignment of sequences classified as EF-hands by our HMM and the second
was constructed using an alignment of the following four sequences: E. coli galactose bind-
ing protein (JGECG, 1 EF-hand motif), rabbit parvalbumin (PVRB, 2), human troponin
(TPHUCS, 4) and human calmodulin (MCHU, 4).

Although a sequence may possess multiple copies of the EF-hand (or any other) motif,
only the one which most closely resembles that described by the HMM is identified. Of
the 232 SWISS-PROT 22 sequences that were above the cutoff (Z-score > 4.75) and were
thus classified as containing an EF-hand motit by our HMM, 163 were similarly classified
by PROSITE, both PROFILESEARCH experiments and the keyword search (if only one of
the PROFILESEARCH experiments is considered, then there are an additional 14 sequences
making a total of 177). These may be considered to constitute “certain EF-hands” and Figure
13 shows the multiple sequence alignment generated by our HMM of some representative
EF-hands from this set (sequences 1-27). Of the 69 (232 minus 163) or 55 (232 minus 177)
sequences above the cutoff and not categorized as EF-hands by all three other methods, 33
possess the motif but do not bind calcium (indicated by “%” in Figure 13B) and six (64, 72,
88, 89, 91, 94) were classed as EF-hands by only one other method.

The identification of “certain” EF-hands as compared to “certain kinases” is not as
straightforward, making it difficult to ascertain the precise number of classification errors
made by each technique. This problem arises partly because of the absence of a pronounced
gap in the histogram of Z-scores and the resultant uncertainty in assigning an exact cutoff
(¢f Figures 10 and 12). The mnemonic developed to identify EF-hand homologues and
distinguish them from analogues (Nakayama et al., 1992) (see Ca-binding in Figure 13A) is
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known to generate errors and is unable to detect 8 of the 27 sequences known to be EF-
hands (sequences 1-27 in Figure 13). Therefore, the sensitivity and specificity of the EF-hand
database discrimination tests is unlikely to be comparable to the kinases. Using Figure 13B,
an estimate of the false negative rate for each method was determined by using the simple
notion of evaluating the number of sequences classified as EF-hands by all methods other
than the one being considered. (Those which possess the motif but do not bind calcium,
denoted by “%” in Figure 13B, are not considered.) Using this criterion, the number of
false negatives are 1 for the HMM (101), 20 for PROFILESEARCH using four sequences
(28, 47, 56-57, 59, 67, 74-82, 84-85, 92-93, 96), 7 for PROFILESEARCH using our EF-hand
alignment (28, 57, 74, 79-80, 92-93), 1 for the keyword search (58) and 2 for PROSITE
(60, 70). A similar analysis of false positives produces 6 for the HMM (52, 71, 83, 86, 90,
94) 9 for PROFILESEARCH using four sequences (97, 99, 111-112, 121-122, 129, 132-133),
8 for the keyword (123, 126, 130-131, 134-137) and 1 for PROSITE (120). It should be
noted however, that a search of SWISS-PROT 22 using the PROSITE pattern “EF-HAND”
produces different results: 3 false negatives and 24 false positives (compare with 2 and 1
using the simple criterion). A total of 26 sequences were not designated as EF-hands by the
HMM but were classified so by PROFILESEARCH, PROSITE or the keyword search. Of
these, 19 were classified as such by only one of these methods. This includes five fragments
where the EF-hand motif is missing: human and murine spectrin alpha- and beta-chains
(123, 126, 131, 134) and rabbit calgizzarin (125).

Inspection of the HMM produced alignment and examination of the putative calcium
binding ligands (Figure 13) for the twenty sequences immediately below the cutoff (97-116)
and the false negatives and positives suggests that many possess potential EF-hand motifs.
This includes 6 sequences whose Z-scores lie above our cutoff but are not classed as EF-
hands by any other method: chicken myosin light chain alkali, smooth muscle (52); bovine
calpactain I light chain (71); Arabidopsis thaliana inorganic pyrophosphatase (83); rat pla-
cental calcium-binding protein (90) (note however that the mouse protein, sequence 88, is
designated as an EF-hand by the keyword search); and rat and bovine 1-phosphatidylinositol-
4,5-bisphosphate phosphodiesterase II1 (86 and 94). A notable example among the false neg-
atives is the a-1 subunit of L-type calcium channels from carp and rabbit skeletal muscle (97,
99) and rat and rabbit cardiac muscle (111, 112). These proteins play an important role in
excitation-contraction coupling and carry the calcium antagonist binding domains (reviewed
in (Grabner et al., 1991)). They possess a highly conserved and evolutionarily preserved pu-
tative intracellular region of 155 residues near the carboxyl terminus immediately following
the fourth internal repeat. This region has been suggested to contain functional domains
that are typical or essential for all L-type calcium channels regardless of whether they couple
to ryanodine receptors, conduct ions or both (Grabner et al., 1991). The inferred EF-hands
for these proteins occur within this conserved 155 residue segment.

The above results were for an HMM trained on all 885 EF-hand motifs from the Kretsinger
database. There is considerable overlap between this training set and the EF-hand motifs
found in SWISSPROT 22, so in order to provide some clearer cross validation of our results
we also did another series of experiments. In these experiments, models were estimated using
training sets consisting different numbers of randomly chosen EF-hand sequences from the
database of 885 EF-hand sequences. For training sets consisting of 5, 10, and 20 random EF-
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hand sequences, 15 models were estimated, each using a different randomly chosen training
set. For training sets consisting of 40, 80, 100, 200, and 400 random EF-hand sequences, 5
models were estimated. In all, seventy models were estimated. A model’s performance after
training was gauged on how well it performed on a test set which consisted of motifs from
database of 885 sequences that were not used in the training set. Thus for each model, two
NLL-scores were computed (see Section 2.6), one for the training set and one for the test
set. These NLL-scores serve as a quantitative measure of how well the model is representing
the sequence data. Figure 14 shows that for small training set sizes, the model overfits the
training data. This is shown by low training NLL-scores but very high testing NLL-scores.
This effect largely disappears when the training set size reaches about 100 sequences.

A model’s performance was also gauged on how well it searches a database for sequences
containing the EF-hand motif. For each training set size, one model was randomly chosen
to search SWISSPROT 22. A histogram of the resultant Z-scores was plotted and a cutoff
was chosen by eye. The number of false positives was computed, as described earlier in this
section, by taking a list of “certain EF-hands” (i.e. determined to contain the EF-hand motif
by the three independent sources) and counting the number of sequences above the Z-score
cutoff in the HMM database search that were not in the “certain EF-hand” list. Figure 15
shows that models built from small training sets have large numbers of false positives. Again,
this effect disappears substantially when the training set size reaches about 100 sequences.

4 Discussion

A new method to model protein families using hidden Markov models has been introduced.
The method is capable of tapping into the tremendous amount of statistical information
contained in many unaligned sequences from the same family. For the cases of globins, kinases
and EF-hands, the results have shown that by using this method, it is possible to obtain
multiple alignments that mirror structural alignments, having only the unaligned primary
sequences as input. The results have also shown that the model can be used successfully
in database searches for putative analogs of sequences in a given protein family or domain.
Finally, we believe that the model itself is a valuable tool for representing the family or
domain.

The HMM method we have proposed requires that many sequences be available from
the family or domain one wants to model. Since the number of sequences in the protein
databases is growing rapidly, this may be less of a problem in the future, but it will always
be a serious issue. Currently, only a relatively small number of sequences are available for
most protein families and domains. For the globin family, we found that 400 sequences is
certainly sufficient. Preliminary results indicate that 200 is enough, and even as few as 70
may suffice if they are chosen carefully from our database of 628 (70 chosen at random will be
nearly all a- and f-chains). Our experiments using smaller numbers of EF-hand sequences
for training, as described in Section 3.3, show a similar trend. Using careful regularization,
these numbers might even be lowered further. However, there will be a limit on how small
the number of available sequences can be if one hopes to obtain a reasonable model starting
from a tabula rasa.
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We believe that the answer to the problem of small training sets is to add more prior
knowledge into the training process. One way to do this is by starting with a better initial
model. We have performed several experiments in which we have started with a model
obtained from a small set of aligned sequences, and then trained the model further using a
larger set of unaligned sequences. These will be reported in a future paper. We find that this
technique can often give better results. This also suggests that one application of HMMs
may be in maintaining multiple alignments as the number of sequences in the alignment
grows. Each time new sequences are added to a dataset of homologous sequences, we can
begin with the HMM based on the alignment of the previous set of sequences, train it with
the larger dataset that includes the new sequences, and then create a new multiple alignment
for the larger dataset from this HMM. Not only will the new sequences be included in the
new alignment, but the alignment of the old sequences may be improved by utilizing the
statistical information present in the larger dataset.!!

Another way to add more prior knowledge into the training process is to use a more
sophisticated Bayesian prior. We are currently exploring the use of a prior on the probability
distribution over the amino acids in a match state of the model consisting of a mixture of
Dirichlet priors (Brown et al., 1993). This prior is derived in a manner analogous to that
described in Section 2.8.  Using such a prior is like “soft-tying” the distributions in the
states of the HMM. By “soft-tying” we mean a combination of the idea of tying states, see
e.g. (Rabiner, 1989), in which the number of free parameters is reduced by having groups
of states all share the same distribution on the output alphabet (the 20 amino acids in
this case), and the idea of soft weight sharing from (Nowlan & Hinton, 1992), in which
the regularizer (in this case the prior for the distribution of amino acids) is also adaptively
modified during learning. We have shown that this method can be used to estimate good EF-
hand models using substantially fewer training sequences. Other types of more sophisticated
priors can be obtained by switching from the alphabet of the primary sequences to a different
representation based more on the structural or chemical properties of the amino acids in the
sequence. We plan to explore these as well.

It is interesting to note that we have obtained quite good results in multiple alignment and
database searching without using any special weighting schemes to make up for the statistical
bias in our training sets (see e.g. (Sibbald & Argos, 1990)), or employing Dayhoff’s matrix
or any of its analogs (see e.g. (Waterman, 1989)) to take explicit mutation probabilities
between amino acids into account. It also remains to be seen whether or not incorporating
any of these extensions into the HMM approach will yield even better results.

We also believe that some of the errors made by our HMM models are due to the fact
that these models are suboptimal, in the sense that their NLL-scores are not as low as they
could be. This is because the EM procedure is not guaranteed to find the globally optimal
model for a given training set. In other experiments, reported in (Haussler et al., 1993),
we trained an HMM for globins beginning with a model derived from the Bashford et al.
alignment, and obtained a slightly lower NLL-score than any model from our experiments
using EM on unaligned training sequences (208 compared to 210.3). Hence, we know that
EM is not locating the globally optimal model in this case. An important open problem is

1 This point was suggested to us by an anonymous referee of one of our previous reports.

29



to find a reliable way to prevent EM from getting stuck and returning a suboptimal solution.

Another issue is the adequacy of the hidden Markov model itself as a statistical model
of the sequence variation within a protein family. Clearly an HMM provides at best a
“first order” model of sequence variation. There are many kinds of interactions in proteins
that are not easily modeled by HMMs, for example, pairwise correlations between amino
acid distributions in positions that are widely separated in the primary sequence, but close
in the three-dimensional structure (see e.g. (Klinger & Brutlag, 1993)). It would be very
valuable to have more general models that incorporate such interactions while still remaining
computationally tractable. We are currently exploring the potential of one model class of
this type to capture the base-pairing in RNA families (Sakakibara et al., 1993), and hope
eventually to incorporate some of the features of these models into our protein models.

Finally, we are encouraged by the quality of the multiple sequence alignments generated
by the HMMs and the accuracy of the database searches. For example, the kinase HMM is
able to align correctly class I1I receptor tyrosine kinases which possess a domain that differs
from other receptor tyrosine kinases by the insertion of a stretch of seventy to one hundred
residues (see the insertion between the “D” and “E” helices in sequence 8, the 3-chain of
the platelet-derived growth factor receptor, in Figure 11A). With respect to the database
discrimination tests, we would eventually like to see HMMs built for all the domains and
families currently indexed by PROSITE expressions. In many cases, HMMs for subfamilies
could be constructed automatically using the method described in Section 2.4. Once this is
done, this might then lead to the construction of a simple “protein language parser” using
HMMs. This parser could be constructed by connecting all these individual HMMs in parallel
into a single large HMM with a global “BEGIN” and “END” state, and a transition from
the “END” state back to the “BEGIN” state. In principle, this parser should be capable of
finding all occurrences of each of the PROSITE-indexed domains in a single long protein,
using the Viterbi algorithm. The remaining portions of the sequence could be marked as
“unknown”. While this would not constitute a complete “parse” of the sequence, it would
be very useful in providing some automatic annotation of new sequences, which is of critical
importance as the rate of growth of the protein databases continues to accelerate. A related
approach to protein annotation is given in (Stultz et al., 1993), and a related HMM-based
DNA parser for F. coli is described in (Krogh et al., 1993).

A comparative examination of the HMM produced kinase multiple sequence alignment
and the crystal structure of the catalytic subunit of cAMP-dependent protein kinase (Knighton
et al., 1991) indicates a number of conserved residues in kinases of unknown structure that
may be suitable for further experimental study (see Section 3.2). Results from our database
discrimination tests suggest the presence of an EF-hand calcium binding motif in a highly
conserved and evolutionarily preserved putative intracellular region of 155 residues in the a-1
subunit of L-type calcium channels which play an important role in excitation-contraction
coupling (see Section 3.3). This region has been suggested to contain the functional domains
that are typical or essential for all L-type calcium channels regardless of whether they couple
to ryanodine receptors, conduct ions or both. Our EF-hand HMM indicates the following
proteins may also possess this motif: chicken myosin light chain alkali (smooth muscle),
bovine calpactain I light chain, Arabidopsis thaliana inorganic pyrophosphatase, rat pla-
cental calcium-binding protein and rat and bovine 1-phosphatidylinositol-4.,5-bisphosphate
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phosphodiesterase I11.

Although there are many experiments left to be done, based on our experience, we believe
that HMMs and the EM algorithm have tremendous potential in the area of statistical
modeling of biological macromolecules. Currently, most of this potential remains to be
realized.
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