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ABSTRACT

We present here the use of a new statistical segmenta-
tion method on the Bacillus subtilis chromosome
sequence. Maximum likelihood parameter estimation
of a hidden Markov model, based on the expectation-
maximization algorithm, enables one to segment the
DNA sequence according to its local composition.
This approach is not based on sliding windows; it
enables different compositional classes to be sepa-
rated without prior knowledge of their content, size
and localization. We compared these compositional
classes, obtained from the sequence, with the anno-
tated DNA physical map, sequence homologies and
repeat regions. The first heterogeneity revealed
discriminates between the two coding strands and
the non-coding regions. Other main heterogeneities
arise; some are related to horizontal gene transfer,
some to t-enriched composition of hydrophobic
protein coding strands, and others to the codon
usage fitness of highly expressed genes. Concerning
potential and established gene transfers, we found 9
of the 10 known prophages, plus 14 new regions of
atypical composition. Some of them are surrounded
by repeats, most of their genes have unknown func-
tion or possess homology to genes involved in
secondary catabolism, metal and antibiotic resistance.
Surprisingly, we notice that all of these detected
regions are a + t-richer than the host genome, raising
the question of their remote sources.

INTRODUCTION

Numerous factors are known to affect statistical composition
of chromosome DNA sequences, such as constraints related to
coding properties (1), gene transfers (2) and statistical biases

related to replication (3). Horizontal gene transfer between
bacteria species (4), often due to mobile elements, is now
recognized as playing an important role in the acquisition of
adaptive traits, such as pathogenicity (5–7), resistance to anti-
biotics (8) or heavy metals, such as mercury (9,10) or arsenic
(11). Horizontal transfer has been shown to occur in a wide
variety of ecosystems (12), raising questions about the conse-
quences of dispersion of genetic constructions from genetically
modified organisms. More generally, horizontal transfer is
considered as a driving force of bacterial evolution (13–15).
Bacteria are known to integrate prophages (16), and to have
other ways of integrating foreign DNA sequences (17–19).
These transfers can correspond to DNA segments, which have
different statistical properties from those of the host. A classical
method of horizontal transfer detection, based on codon usage
frequencies, has been introduced by Médigue et al. (20), and some
other approaches have been recently reviewed in Karlin (21).

Hidden Markov models (HMMs) are good statistical tools
for the analysis of this heterogeneity (22–27). We applied them
to the Bacillus subtilis chromosome (4.2 Mb long). In these
models, one assumes that a DNA sequence is made up of
successive segments, each one belonging to one of a finite
number q of types.

Other statistical models could be used for sequence segment-
ation (28), in particular change point models (29,30). In these
models there are no segment types; each segment of the
sequence has its own set of composition parameters. In our
study, we consider these models to be less realistic because we
typically expect the same composition to be found in different
segments of the chromosome.

In HMMs, each type of segment is characterized by its own
statistical oligonucleotide composition, and the succession of
types along the sequence is represented by an unobservable
q-state Markov chain (the hidden chain). The aim is first to
reconstruct these segments from the DNA sequence, and
characterize the identified segment types, then to find correlations
between segment types and biological DNA features, such as
horizontal transfers.
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MATERIALS AND METHODS

Hidden Markov models

A DNA sequence can be represented by a finite series y1, . . . , yn ,
each base yt being taken from the alphabet Y = {a, c, g, t}. HMMs
are characterized by two processes [see for instance Rabiner
(32)]. The hidden state process s = (s1, . . . , sn), such that st ∈ S =
{1, . . . , q}, which in our set-up governs the succession of the
segment types along the sequence, and the observed process
y = (y1, . . . , yn ) which corresponds to the observed DNA
sequence. Hidden states are generated according to a homo-
geneous first order Markov chain (M1) with transition proba-
bilities P(st = v | st – 1 = u), u, v ∈ S. Conditional on the hidden
process s = (s1, . . . , sn), the observed process y = (y1, . . . , yn ) is a
heterogeneous Markov chain: base yt appears in the sequence
with a probability distribution that depends on the actual hidden
state st, as well as on previous bases yt – k, . . . , yt – 1. Higher order
Markovian dependencies will not be considered for the hidden
chain, as we expect to identify large compositional segments,
but the number q of hidden states will vary; similarly the order
and other structural features of the observed chain will also
vary. Thus, according to the characteristics of these Markov
chains, several models of interest can be constructed.

The M1-M0 model assumes that, conditional on the hidden
state st, nucleotides yt are drawn independently with a probability
P(yt = j | st = u), j ∈ Y, u ∈ S. Hence, this model takes into account
the local base composition of the sequence, and corresponds to the
classical HMM described in the literature. More generally, the
M1-Mk model assumes, conditional on the actual hidden state, a k
order Markovian dependence between observations, with a transi-
tion probability P(yt = j | yt – 1 = ik, . . . , yt – k = i1, st = u). This
model, introduced by Churchill (22), accounts for the local
k +1 nucleotide frequencies of the DNA sequence. We denote
the whole set of model parameters by θ i.e. transition probabilities
between states and between bases.

Given the sequence y, we consider the maximum likelihood
estimator of θ. Consistency and normality results, which justify
the maximum likelihood approach, were proved in the M1-M0
model by Baum and Petrie (31), and extended to the M1-Mk
model by Muri (23). Several methods exist for estimating the
parameters of HMMs, including stochastic likelihood maximi-
zation algorithm and Bayesian estimation (23,24,32–36). All
these methods do not require any learning set of pre-segmented
sequences to estimate θ. They only require specification of the
model structure (number of states, q, and order of the model, k). In
our study we chose not to introduce prior information, and
choose the expectation-maximization algorithm (EM) to maximize
likelihood P(y | θ ) (25), which proved to be one of the most
effective.

Hidden states are missing data, and the likelihood is a sum
over all hidden state paths P(y | θ ) = Σs∈Sn P(y, s | θ ), which
makes it not directly tractable. The EM algorithm is useful in
many estimation problems involving missing data, including
HMM. It is an iterative procedure that alternates two steps, see
Churchill (22), Rabiner (32) and Durbin et al. (35) for detailed
description of the HMM case and Dempster et al. (37) for
mathematical proof of the convergence toward the maximum
likelihood estimator. Given the current value θ (m), the expecta-
tion E(logP(y, s | θ ) | y, θ (m)) is computed during the E-step and
maximized over θ during the M-step. In the HMM context, the
E-step consists of computing the probability of two consecutive

hidden states P(st – 1 = u, st = v | y, θ (m)) from which follows
P(st = v | y, θ (m)). These probabilities are computed using the
Baum–Welch forward–backward recurrence. A new value θ (m + 1)

is obtained in the M-step which increases the likelihood:

where 1{...} is equal to 1 if the sentence between the brackets is
true and 0 otherwise. E and M steps are alternated until we
come to an iteration M for which numerical convergence is
reached.

Every limit point of a sequence (θ (m))m ≥ 0, generated by EM,
satisfies the log-likelihood equations, and (θ (m))m ≥ 0 converges
towards the maximum likelihood estimator, if the starting
point θ (0) is not too far from the true value of the parameter θ
(23). This is why we run EM with multiple random initializa-
tions, and then select the final result presenting the highest
likelihood. Computational cost of the algorithm is proportional
to sequence length and to the square of the number of states.
Obviously cost also grows proportionally to the number of
required iterations which depends on the smoothness of the
likelihood landscape. Memory requirement is proportional to
sequence length and the number of states, but approximations
of the E-step could be done to bypass this problem; they were
implemented but not used here.

In order to identify homogeneous segments in y, probabilities of
each hidden state were computed at each position P(st = u | y,
θ (M)), using the forward–backward recurrence with the
maximum likelihood estimator θ (M). We did not use the
popular Viterbi algorithm (38–41), which consists, given the
sequence, of computing the most probable path of the hidden
states. In the case of our poorly structured model Viterbi recon-
struction is less informative than the one obtained by forward–
backward recurrence. Nevertheless, for results interpretation and
discussion, we will need to recognize segments. Hence, contig-
uous positions having v as the most probable hidden state [i.e.
where v maximizes P(st = u | y, θ (M))] are identified as a homo-
geneous segment of class v. In the M1-Mk model, all the homo-
geneous segments of type v are characterized by the same k + 1
nucleotide composition P(M)(yt = j | yt – 1 = ik, . . . , yt – k = i1, st = v).

Processing the chromosome

Results were obtained with the software RHOM (Research of
HOMogeneous regions in DNA sequences), C++ sources are freely
available for UNIX/Linux, at http://www-mig.versailles.inra.fr/ssb/
rhom/. RHOM implements the algorithms needed to estimate
the parameters of a M1-Mk HMM and to produce a segmenta-
tion in the way presented in the previous section. Concerning
the model, the user only chooses the number of hidden states
and the length of the oligonucleotides taken into account.
Different model orders, 0 ≤ k ≤ 3, and different hidden state
numbers, 2 ≤ q ≤ 8, were used. All models were fitted to the
whole sequence of the B.subtilis chromosome (4.2 Mb) through
likelihood maximization. To give an idea of the computational
cost, processing the chromosome according to the five states
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M1-Mk model with 25 different start points, requires ∼24 h and
550 MB of active memory on a SUN-SPARC 400 MHz.

RHOM produces a graphical display of the estimated hidden
state probabilities for all sequence positions. In our case, we
relied on a more sophisticated graphical presentation of the
results: chromosome contigs were viewed as ‘featured DNA
physical maps’, using appropriate graphical symbols for
existing annotations of the sequence. Hidden state probabilities
for each position were superimposed on the map, enabling a
precise interpretation. Sequences and annotations were taken
from MICADO (http://locus.jouy.inra.fr/micado), a relational
database dedicated to microbial genomes (42), containing a
translation of EMBL/GenBank sequence records.

Segment borders found with RHOM were compared with
gene annotation coordinates. The different segment types were
compared to previously described codon usage classes of
B.subtilis coding sequences (18). As previously found in
Escherichia coli (20), codon usage classes of B.subtilis are
linked to biological characteristics of the genes: class I
contains the majority of the genes, class II is enriched with
genes that belong to translational processes, intermediate
metabolism and other highly expressed genes and, finally,
class III corresponds to genes with properties of horizontally
transferred sequences. Attempts to correlate RHOM hetero-
geneities with finer functional classes of genes were made
using the metabolic classification of B.subtilis gene products,
given in the publication of the complete genome (16), and
maintained on the SubtiList WWW server (http://genolist.pasteur.fr/
SubtiList/). For this purpose, each gene was given the type of
the homogeneous segment spanning the largest part of it,
usually all the gene, or a high proportion of it.

Another kind of heterogeneity we have been looking for is
related to gene transfer. In our opinion, a strong assumption
that a DNA sequence segment arises from a horizontal gene
transfer relies on the simultaneous occurence of three features.
First, it has a singular oligonucleotide composition, compared
with the context of the B.subtilis chromosome. Secondly, it
bears genes with functions known to be transferred between
bacterial species, such as pathogenicity and resistance factors.
Thirdly, it is surrounded by repeated sequences, or large inter-
genic regions (the ‘gray holes’), revealing probable chromo-
somal rearrangements.

For all atypical composition segments revealed by the statis-
tical analysis, homologies for genes with an unknown function
were systematically searched for. This was done by protein
homology searching against the nr non-redundant protein data-
base at the NCBI using BLAST (43). In this publication we
report only highly significant similarities (i.e. when the expect-
ation value is <1 × 10–10). To detect repeated sequences, we
produced dot plots of the segments, and compared them with
repetitions revealed by systematic search (19).

RESULTS

Program behavior

An interesting segmentation of the B.subtilis chromosome is
obtained with the M1-M2 model. Segments are long and coincide
with genes or groups of them. In contrast, M1-M0 and M1-M1
models give very short segments of a few base pairs, which do
not appear related to biological features. Thus, hidden state

probabilities plotted along the sequence give intermingled
profiles. M1-M2 and higher order Markov models integrate
short-range heterogeneities in each segment type, so that the
hidden state chain can fit long-range heterogeneities. There-
fore the M1-M2 model is a good choice to perform chromo-
some segmentation. Higher order models do not seem to
significantly modify the results, while the number of parame-
ters increases geometrically.

With the two-state M1-M2 model, hidden states fit gene
orientation. With the three state M1-M2 model, we typically
get two states matching gene orientations (sensitivity, 86.48%;
specificity, 90.60% at the nucleotide level), and the third one
matching intergenic regions. Such a strong observation may be
an indication of the appropriateness of a three-state model for
segmenting the chromosome. In terms of oligonucleotide
composition, coding strands are a + g rich whereas intergenic
regions are a + t rich. Actually, intergenic regions, computed
according to GenBank annotation, have an a + t content of
63.2%, and coding strands have an a + g content of 54.0%, in
comparison with 56.4% a + t content and 49.9% a + g content for
the whole chromosome. In this context, some genes, systemati-
cally found associated to the state matching the intergenic
regions, appear as atypical. More generally, genes were
assigned to the class corresponding to their main hidden state
in terms of base pairs.

Searching for gene transfers

In its search for three states RHOM was able to detect a first
level of heterogeneity revealing previously identified
prophages, and other DNA segments potentially arising from
horizontal transfer, both containing genes that we call atypical
(for details, see below). Atypical genes belong to the so-called
a + t-rich type (a + t content 66.0%) which also contains most
of the intergenic regions. These genes have a highly hetero-
geneous distribution along the chromosome, with a peak at the
replication terminus, as shown in Figure 5A.

These a + t-rich regions contain 539 genes, of which 68%
have unknown functions, compared with 42% for the complete
genome. Here, the term unknown function means genes similar
to unknown proteins or without similarities, taken from the
functional classification of the bacterium. Genes without any
similarity represent 56%, in comparison with 26% for the
complete genome. A cross comparison with the codon usage
classification reveals that 80% of the genes in the a + t-rich
type belong to class III (specificity), while genes of class III
represent 13% of the B.subtilis genes. On the other hand, 81%
of these genes belong to the atypical state (sensitivity). Thus,
there is a strong correspondence between our atypical regions
and the codon usage class III genes.

Prophage detection. Literature reports 10 prophages integrated
into the B.subtilis chromosome. Seven are putative, or
prophage-like sequences P1–P7 (16), since their identification
is only based on a + t composition, and all these ‘prophages’
are a + t rich. There is experimental evidence for the three
other prophages: PBSX (44), skin (45) and SPβ (46). In this
context, the ability of the program to detect experimentally
identified prophages and prophage-like sequences provides a
biological validation of our approach.

The RHOM software was able to detect all these prophages,
except PBSX. The latter is not detectable by RHOM because its
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content is too close to the local B.subtilis DNA composition,
nor is it detectable by simple a + t content analysis. At least two
distinct explanations may be provided for the non-detection of
PBSX, the first being that it was integrated a long time ago,
resulting in the adaptation of its DNA composition to the host
context, and the second being that its DNA composition was
originally close to that of B.subtilis.

Our detection of SPβ and of the three prophage-like
sequences P1, P3 and P7 is in keeping with the literature. For
the remaining prophage-like sequences, the detection works,
although some boundaries are located differently, or some of
their genes remain in the types associated with B.subtilis.
These differences are probably related to a better segmentation
accuracy using HMM than that produced by 10 kb sliding
windows with a 5 kb step used in the calculation of the a + t
content (16).

New detection of gene transfers. In a similar manner to
prophage detection, we found 14 DNA segments identified as
a + t rich, and thus potentially arising from horizontal transfer.
These segments are presented in Table 1 together with the
prophages. In addition to this compositional observation, some
other signs exist which strengthen our conclusions.

As reported in Table 1, there is a high correlation between
detected segment locations and repeats described in Rocha et al.
(19). In particular, only one of these repeats was found not to
be associated with the detection of some atypical genes. For
example, the 3463–3467 kb segment (Fig. 1) is flanked on both
sides by long direct repeats which probably signal a chromo-
somal rearrangement. These duplicated fragments are larger
than the transferred segment and contain five genes, four of
which belong to the ABC transporter family. In this case, the
putative transfer contains an unknown gene similar to an
arsenical resistance operon repressor (yvbA). Figure 2 shows
another kind of repetition, associated with the 4184–4190 kb
region of the a + t-rich type. These sequences are short, ∼100 bp
long, and repeated four times. These repeats are regularly
spaced, but not correlated with gene borders, and therefore do
not present the characteristics of an integron. Nevertheless, the
four repeats surround four resistance related genes, two of
them are experimentally proven to confer tetracycline resistance
(tetB, tetL), and the other two are similar to streptothrycin
acetyl-transferase (yyaR), and to the mercuric resistance
operon regulator (yyaN), respectively.

The 818–822, 1442–1447 and 4171–4176 kb segments are
surrounded by intergenic regions larger than usual, compared
with sizes expected in bacterial chromosomes. Another
segment located at 3658–3685 kb contains ‘gray holes’. This
segment, including teichoic acid metabolism genes, is
described in the literature as potentially arising from horizontal
gene transfer (17) but the segment detected by the program is
larger because it encompasses other genes also coding
enzymes involved in cell wall synthesis.

The occurrence of genes having imprecisely known function
in these a + t-rich regions, whose homologies are related to
resistance functions, reinforces the hypothesis of gene transfer
events. In addition to those previously mentioned in the
3463–3467 and 4184–4190 segments, we found a homology to
a multidrug-efflux transporter in 818–822 (yfmI), and many
other significant homologies in the largest newly detected
570–600 region. Remarkably, this 30 kb segment, adjacent to

the P2 ‘prophage’, bears genes with numerous homologies,
either related to resistance functions, or to mocR, the rhizopine
catabolism regulator of Sinorhizobium meliloti. Rhizopine is a
compound found in root nodules resulting from plant–bacteria
symbiosis. All homologies of this segment are reported in
Table 2.

Finally, a new potential mobile element was found, located
between 738 and 747 kb. Genes yefB and yefC, belonging to
this segment, are homologous to site-specific recombinases.
Moreover, yeeA shows similarity with a DNA modification
methyltransferase suggesting the presence of a restriction–
modification system. These systems are known to be often
horizontally transferred (47).

Heterogeneities and functional classes

After identifying the coding strand of genes and atypical
segments related to horizontal transfer as being the main heter-
ogeneities, our aim was to find additional ones that can be
linked to significant biological features. For example, can we

Table 1. Coordinates (kb) of potential horizontal transfer regions on the
chromosome of B.subtilis

The Functions column indicates either prophage and prophage-like elements,
as mentioned in Kunst et al. (16), or identified functions and homologies. The
Repeats column provides the positions of long repeats described by Rocha et al.
(19).

Functions HMM Repeats

P1 ‘prophage’ 202–220 202–213

P2 ‘prophage’ 529–570 555–567

See Table 2 570–600 –

P3 ‘prophage’ 651–664 –

Site-specific recombinase 738–747 –

Multidrug-efflux transporter 818–822 –

– 1124–1130 –

P4 ‘prophage’ 1262–1270 –

PBSX prophage (1320–1348) – –

– 1397–1399 1385–1424

– 1442–1447 –

– 1478–1482 –

P5 ‘prophage’ 1879–1891 –

– 2038–2041 –

P6 ‘prophage’ 2046–2073 2050–2060

SPβ prophage 2151–2286 –

Skin prophgage 2652–2701 2654–2701

P7 ‘prophage’ 2707–2756 2725–2735

Competence 3253–3257 –

Arsenic resistance regul. 3463–3467 3462–3469

– – 3608–3634

Cell wall synthesis 3658–3685 3665–3672

ABC transporter 4123–4134 –

ABC transporter 4171–4176 4170–4176

Streptothricin, tetracycline, mercury regul. 4184–4190 4189–4190
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find other kinds of horizontal transfer that are not a + t rich?
We thus fitted HMMs with more than three states to the chro-
mosome. As a consequence of incrementally adding one more
state, the heterogeneity detected is not completely reorganised,
but on the contrary, is refined: one of the previously identified
states is split. This enables us to present the results in a tree
structure as shown in Figure 3. In the following section, we
describe the new hidden states in the order in which they
appear.

Hydrophobic proteins. With the introduction of the fourth and
fifth hidden states into the model, we distinguish a minority
class of coding sequences, borne by both DNA strands of the
chromosome. Compared with the usual a + g-rich coding
strand composition, this new class is t enriched (31.9 versus
25.7% computed from annotations for the coding strand), and
a depleted (21.8 versus 29.9%), in fact it appears as 56.4% t + g
rich. When compared with the functional classification, these
two hidden states are found to be strongly enriched in genes
annotated as coding for transport/binding proteins (TBPs).
These TBP coding genes represent 9.5% of B.subtilis genes,
58% of which belong to the minority class of coding
sequences, while TBP genes constitute 36% of the minority
class.

The TBP category contains a lot of hydrophobic membrane
proteins. Therefore, we looked for amino acid biased composi-
tion. Actually, we noticed that proteins belonging to this
minority state present differences, compared with the majority
state. Their amino acid composition is enriched in: phenylalanine
(frequency 0.072 versus 0.039) for which codons, when
ordered by B.subtilis preference (18), are ttt, ttc; isoleucine

(0.096 versus 0.068) att, atc, ata; and leucine (0.13 versus 0.091)
ctg, ctt, tta, ttg, ctc, cta. Their composition is simultaneously
depleted in: glutamate (0.031 versus 0.080) gaa, gag; aspar-
tate (0.025 versus 0.057) gat, gac; and lysine (0.045 versus
0.073) aaa, aag. These amino acid biases of the minority
class respectively correspond to a t nucleotide/hydrophobic
amino acid enrichment, and an a nucleotide/charged amino
acid depletion. Thus these two states appear to be associated
with genes that code hydrophobic proteins.

A sixth state leads to the separation of atypical a + t-rich
coding sequences according to their transcriptional direction.
Thus sensitivity of coding sense detection reaches 98.35%
(previously 86.48%) but specificity drops to 85.35% since
intergenic regions are counted together with atypical coding
sequences. We investigated the trinucleotide composition of
the segments obtained with a six-state M1-M2 model, by prin-
cipal component analysis (Fig. 4). The first three axes explain
77% of the total inertia. The first axis divides the cloud
according to coding sense, the second axis distinguishes a + t-rich
segments (atypical coding and intergenic) from the others,
while the third axis separates hydrophic coding sequences. The
display of the distribution of the segments according to their
associated type along the chromosome (Fig. 5) reports the
asymmetrical distribution of coding sequences between
leading and lagging strands even for the atypical a + t-rich
segments.

RNA genes. Introducing a seventh hidden state requires
increasing the model order from M1-M2 to M1-M3. Otherwise,
two hidden states remain melted, giving very short segments
and intermingled probability profiles, as described in Results

Figure 1. Detection using a three-state M1-M2 model of an atypical segment (3463–3467 kb, underlined) surrounded by ABC transporter gene duplication (thin
black arrows). Segment reconstruction on 25 kb is shown. At each position, probabilities P(st = u | y, θ (M)), u = 1, 2, 3 (color curves) are plotted on the DNA featured
physical map. Filled arrows represent genes of known function, empty arrows, those of unknown function, and red hairpins represent transcriptional terminators.
The magenta state matches genes on the (+) strand whereas cyan denotes genes on the (–) strand. The black state (a + t rich) fits either intergenic regions or atypical genes.

Figure 2. Detection of an atypical segment (4184–4190 kb) using a three-state M1-M2 model, containing the tetracyclin resistance, and four direct repeats each
∼100 bp in length, shown by small black brackets.
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for M1-M0 and M1-M1 models. The newly identified composi-
tion type corresponds to structural RNA genes. In terms of base
pairs, these genes cover 1.28% of the chromosome. We identified
structural RNA genes with a sensitivity and a specificity
which, at the nucleotide level are 96.6 and 90.8%, respectively.
At the gene level, we found all rRNA genes and 78 out of the

88 annotated tRNA genes. Thus the correspondence of this
compositional type to structural RNA is highly accurate.

Highly expressed genes. An eighth state extracts a subcategory
from majority coding sequences from the (+) strand (the one
given in the sequence file, in opposition to its reverse comple-
ment). This subcategory contains most of the codon usage class
II genes, which have been characterized as highly expressed.
Genes of class II on the (+) strand cover 2.5% of the chromo-
some, 92% are found in this new state, but they only represent
44% of the subcategory that might interestingly extend class II.
It is well known that such highly expressed proteins exhibit
greater codon biases than others (48), producing a different
statistical composition from the remaining genes in bacteria
[see Makrides (49) for a review on high-level expression strat-
egies in E.coli]. They are especially concentrated within the
118–156 kb region close to the replication origin, where most
of them are related to transcription and translation: ribosomal
proteins, RNA polymerase α and β subunits, translation initia-
tion and elongation factors.

The highly expressed genes in this region were already
detected with a two-state M1-M2 model fitted to the 100–200 kb
segment of the chromosome, while we had to go up to eight
states when running on the complete chromosome. This exempli-
fies the interest and complementarity of using both local and
complete genome analyses.

DISCUSSION

General trends of nucleotide compositions

To summarize, general trends are an a + t enrichment for inter-
genic regions and those we identified as resulting from gene
transfer, and a coding strand enrichment in a + g (purine) for
the majority class of genes, as opposed to a coding strand
enriched in t + g (keto) for a minority class of genes corre-
sponding to those coding hydrophobic proteins. The trends are
mixed; for instance, we were able to distinguish transcriptional
orientation of a + t-rich horizontally transferred genes,
according to their a + g content.

The gc-skew (Ng – Nc)/(Ng + Nc) and the at skew are positive
on the replication leading strand in this species, as previously
described (3). These skews are linked to a + g enrichment of
coding strands, due to a high preference in B.subtilis for
encoding of proteins on the leading strand (Fig. 5B and C).
These compositional biases violate the second Chargaff rule.
This empirical statement assumes that the relations Na = Nt and
Ng = Nc are not only valid on double-stranded DNA but also on
each of the strands, if the sequence is long enough. Thus, two
violation levels are clearly observed due to asymmetrical
evolutionary pressure: the first is related to transcription (kilobase
scale), the second to replication (megabase scale). Whereas
some work noticed that results of asymmetric pressure related
to the replication is observable (50,51), our study does not
notice asymmetric bias that could not be due to the transcrip-
tion, probably because of its low magnitude. Hypotheses
explaining strand asymmetry compositions as results of muta-
tion or selection pressures have been extensively discussed by
Frank and Lobry (52).

Whereas the positive gc skew of the leading strand is a
general characteristic of bacterial genomes, a positive at skew

Table 2. Homologies found in the 30 kb long atypical 570–600 kb region,
downstream of the P2 prophage

Homologies have been found using BLAST against the non-redundant protein
database at the NCBI and only highly significant homologies are reported
(with E-value <1 × 10–10).

Genes Homologies

ydeL Transcriptional regulator MocR (GntR family)

ydeP Cinnamoyl ester hydrolase

ydeQ General stress protein 14 of B.subtilis

ydeR Antibiotic resistance translocase

ydeS Transcriptional regulator (TetR/AcrR family)

ydeT Transcriptional regulator (ArsR family)

ydfA Arsenical pump membrane protein

ydfB Antibiotic resistance protein

ydfC Permease

ydfD Transcriptional regulator MocR (GntR family)

ydfF Transcriptional regulator (ArsR family)

ydfH Nitrates/nitrites sensor protein

ydfI Nitrates/nitrites sensor protein

ydfJ Antibiotic transport-associated protein

ydfK Putative transport protein

nap Naproxen carboxylesterase (experimental evidence)

ydfL Multidrug-efflux transcriptional regulator

ydfM Cation efflux system cobalt–zinc–cadmium

ydfN Nitroreductase

ydfO ABC transporter

ydfQ Thioredoxin

Figure 3. Tree representation of state subdivisions as a function of the number
of hidden states. Numeric labels for the six-state HMM correspond to those
used in Figures 4 and 5. (+) and (–) indicate the coding strand.
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is more exceptional, and depends on the codon base position
referred to (3,53). Moreover, the preferred choice of a versus t
at the third codon position is not the same for all the encoded
amino acids (54).

Gene transfers

Concordance between atypical nucleotide composition,
occurence of repetitions, and presence of genes related to
resistances or unknown functions, makes the horizontally
transferred origin of the detected regions very likely. Over-
representation of genes of unknown function within these
regions could then be due to adaptive characters of these genes,
which are only expressed in natural soil surroundings of the
bacteria, and not required by them in the laboratory.

All prophages, plus 14 other segments we identified, are
a + t rich in comparison with the chromosome composition.
We cannot explain this general property, as we expected
nucleotide composition heterogeneity among these horizontal
transfers due to their supposedly diverse origins. This is
intriguing, particulary since a + t enrichment of horizontal
transfers seems common in genomes presenting compositional
heterogeneity, including E.coli. However, we know of some
cases where horizontal transfer is g + c richer than the host
genome, see for example the mu-like prophage integrated in the
Haemophilus influenzae genome (55) or the E.coli yagH gene (56).

The widespread hypothesis is to explain the compositional
heterogeneity of a genome as a snapshot of transferred DNA
fragments progressively adapting to the host composition (2),

Figure 4. Principal component analysis on trinucleotide composition of segments (M1-M2, six states). The a + t-rich intergenic and atypical coding (+) and (–)
senses are labeled 1 and 2. Labels 3 and 5 correspond to the (+) and (–) majority coding, while 4 and 6 are associated with the (+) and (–) hydrophobic coding
states. The crosses display main compositional trends of the principal axes. Hidden state mononucleotide compositions are: 1 (a, 0.36; t, 0.28; c, 0.15; g, 0.21);
2 (a, 0.30; t, 0.37; c, 0.20; g, 0.14); 3 (a, 0.30; t, 0.24; c, 0.21; g, 0.25); 4 (a, 0.22; t, 0.32; c, 0.22; g, 0.24); 5 (a, 0.24; t, 0.30; c, 0.25; g, 0.21); 6 (a, 0.32; t, 0.22;
c, 0.24; g, 0.22).

Figure 5. State repartition along the chromosome. Proportion of coding sequences of each hidden state in a sliding window of 100 kb, B.subtilis chromosome is
4215 kb long, O is the replication origin, T the replication terminus at 2017 kb. (B and C) Asymmetrical repartition of coding sequence preferentially located on
leading strand. This is already true for atypical coding sequences displayed in (A), which are moreover highly concentrated near the replication terminus.



Nucleic Acids Research, 2002, Vol. 30, No. 6 1425

these transfers having originally a distinct nucleotide composi-
tion related to the source organism. If this assumption is
correct, horizontal transfers should generally come from
source organisms which are a + t richer than the host.

According to the analysis results on E.coli and Salmonella
sequences of Syvanen (4), an alternative interpretation may be
suggested, whereby horizontal transfers essentially occur
among strains of the same or close species. In this case, we can
imagine a pool of adaptive genes that are shared by recurrent
transfers. This may explain the relative homogeneity in a + t
richness of the detected fragments, because their shared
nucleotide content could then be due to the same evolutionary
pressure. Possible origins of the a + t composition bias have
been extensively discussed from different angles, not only in
relation to gene transfers (4), but also in the interpretation of
the interspecific a + t content differences (57), of the isochore
existence among vertebrates (58), or even of bacterial intra-
specific a + t content heterogeneity (54), the latter relating to
the context of our study.

Protein hydrophobicity

The t + g richness of hydrophobic proteins appears as one of
the main heterogeneity factors at the DNA composition level,
coming just after heterogeneities derived from coding properties
(coding/non coding, and the transcription direction), and atypical
a + t richness related to gene transfers. This is due to the preferential
occurrence of t in the second codon position of hydrophobic
amino acids.

Influence of amino acid hydrophobicity at the nucleotide
composition level has been previously considered (52),
because global hydrophobicity has been shown as a main
factor for protein variation in amino acid content (59). We
were surprised about the importance of this phenomenon on
nucleotide composition, even without introducing any frame
consideration. It could be interesting to take this heterogeneity
into account to improve gene detection based on Markov
models, as is done for genes of codon usage class III (41,60).

Perspectives

Fitting parameters of a HMM to the oligonucleotide composi-
tion of the chromosome, by likelihood maximization through
the EM algorithm, leads to a segmentation correlated to biological
features of the DNA sequence. It is somewhat remarkable that
such structures could be identified without having to specify a
window length, or any learning set. From here, the mathematical
challenge would be to choose adequate selection criteria of the
Markov order and of the number of states that define the model
structure.

Initially considered as a tool for detecting horizontal gene
transfers, this approach enables one to reveal many more hetero-
geneities, mainly linked to characteristics of coding sequences.
On the basis of these results, it would be interesting to extend
the model to phased sequences using a HMM that changes the
hidden state periodically according to the codon position.
These models allows for a more realistic representation of
coding sequences. One promising feature of using such a
model is to enable the combination of gene detection and hetero-
geneity description, in a similar manner to Besemer et al. (61).
In addition, focusing the analysis on the heterogeneity of inter-
genic regions appears to be very promising. To summarize, our

general goal is to produce a finer integrated description of the
structure of the chromosome, in terms of the statistical compo-
sition of biological features.
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