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We develop a general framework for performing large-scale signifi-
cance testing in the presence of arbitrarily strong dependence. We
derive a low-dimensional set of random vectors, called a depen-
dence kernel, that fully captures the dependence structure in an
observed high-dimensional dataset. This result shows a surprising
reversal of the “curse of dimensionality” in the high-dimensional
hypothesis testing setting. We show theoretically that condition-
ing on a dependence kernel is sufficient to render statistical tests
independent regardless of the level of dependence in the observed
data. This framework for multiple testing dependence has implica-
tions in a variety of common multiple testing problems, such as in
gene expression studies, brain imaging, and spatial epidemiology.

empirical null | false discovery rate | latent structure |
simultaneous inference | surrogate variable analysis

I n many areas of science, there has been a rapid increase in the
amount of data collected in any given study. This increase is due
in part to the ability to computationally handle large datasets and
the introduction of various high-throughput technologies. Analyz-
ing data from such high-dimensional studies is often carried out
by performing simultaneous hypothesis tests for some behavior of
interest, on each of thousands or more measured variables. Large-
scale multiple testing has been applied in fields such as genomics
(1-3), astrophysics (4,5), brain imaging (6-8), and spatial epidemi-
ology (9). By their very definition, high-dimensional studies rarely
involve the analysis of independent variables, rather, many related
variables are analyzed simultaneously. However, most statistical
methods for performing multiple testing rely on independence,
or some form of weak dependence, among the data correspond-
ing to the variables being tested. Ignoring the dependence among
hypothesis tests can result in both highly variable significance mea-
sures and bias caused by the confounding of dependent noise and
the signal of interest.

Here, we develop an approach for addressing arbitrarily strong
multiple testing dependence at the level of the original data col-
lected in a high-dimensional study, before test statistics or P values
have been calculated. We derive a low-dimensional set of random
vectors that fully captures multiple testing dependence in any fixed
dataset. By including this low-dimensional set of vectors in the
model-fitting process, one may remove arbitrarily strong depen-
dence resulting in independent parameter estimates, test statistics,
and P values. This result represents a surprising reversal of the
“curse of dimensionality” (10), because of the relatively small sam-
ple size in relation to the large number of tests being performed.
Essentially, we show that the manifestation of the dependence
cannot be too complex and must exist in a low-dimensional sub-
space of the data, driven by the sample size rather than by the
number of hypothesis tests. This approach provides a sharp con-
trast to currently available approaches to this problem, such as
the estimation of a problematically large covariance matrix, the
conservative adjustment of P values, or the empirical warping of
the test statistics’ null distribution.

The main contributions of this article can be summarized as
follows. We provide a precise definition of multiple testing depen-
dence in terms of the original data, rather than in terms of
P values or test statistics. We also state and prove a theoretical
result showing how to account for arbitrarily strong dependence
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among multiple tests; no assumptions about a restricted depen-
dence structure are required. By exploiting the dimensionality of
the problem, we are able to account for dependence on each spe-
cific dataset, rather than relying on a population-level solution.
We introduce a model that, when fit, makes the tests indepen-
dent for all subsequent inference steps. Utilizing our framework
allows all existing multiple testing procedures requiring indepen-
dence to be extended so that they now provide strong control
in the presence of general dependence. Our general character-
ization of multiple testing dependence directly shows that latent
structure in high-dimensional datasets, such as population genetic
substructure (11) or expression heterogeneity (12), is a special case
of multiple testing dependence. We propose and demonstrate an
estimation technique for implementing our framework in practice,
which is applicable to a large class of problems considered here.

Notation and Assumptions

We assume that m related hypothesis tests are simultaneously per-
formed, each based on ann-vector of data sampled from a common
probability space on R”. The data corresponding to hypothesis test
iarex; = (X1,Xi2, . ..,Xin), fori = 1,2,...,m. The overall data can
be arranged into an xn matrix X where the ith row is composed of
x;. We assume that there are “primary variables” Y = (y;,...,y,)
collected, describing the study design or experimental outcomes
of interest, and any other covariates that will be employed. Pri-
mary variables are those that are both measured and included in
the model used to test the hypotheses.

We assume that the goal is to perform a hypothesis test on
E[x;|Y]. We will also assume that E[x;|Y] can be modeled with
a standard basis-function model, which would include linear mod-
els, nonparametric smoothers, longitudinal models, and others.
To this end, we write E[x;[Y] = b;S(Y), where b; is a 1 x d-vector
and S(Y) is ad x n matrix of basis functions evaluated at Yd < n.
When there is no ambiguity, we will write S = S(Y) to simplify
notation. Note that Y can be composed of variables such as time,
a treatment, experimental conditions, and demographic variables.
The basis S can be arbitrarily flexible to incorporate most of the
models commonly used in statistics for continuous data.

The residuals of the model are then ¢; = x; — E[x;]Y] = x; —b;S.
Analogously, we let E be the m x n matrix, where the ith row is
¢;. We make no assumptions about what distribution the residuals
follow, although by construction E[e;|S(Y)] = 0. We allow for arbi-
trary dependence across the tests, i.e., dependence across the rows
of E. We assume that the marginal model for each e; is known or
approximated sufficiently when performing the hypothesis tests.
That is, we assume that the marginal null model for each test is
correctly specified.
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Fig. 1. A schematic of the general steps of multiple hypothesis testing. We directly account for multiple testing dependence in the model-fitting step, where
all the downstream steps in the analysis are not affected by dependence and have the same operating characteristics as independent tests. Our approach
differs from current methods, which address dependence indirectly by modifying the test statistics, adaptively modifying the null distribution, or altering
significance cutoffs. For these downstream methods the multiple testing dependence is not directly modeled from the data, so distortions of the signal of
interest and the null distribution may be present regardless of which correction is implemented.

In matrix form, the model can be written as
X =BS+E. (11
The goal is then to test m hypotheses of the form:
Hy :b; e Qy vs. Hy:b e

where the null and alternative hypothesis tests are identically
defined for each of the tests. This setup encompasses what
is typically employed in practice, such as in gene expression
studies and other applications of microarrays, brain imaging,
spatial epidemiology, astrophysics, and environmental modeling
(4,7,9,13, 14).

Two Open Problems

The classical approach to testing multiple hypotheses is to
first perform each test individually. This involves calculating a
1-dimensional statistic for each test, usually as some comparison
of the model fit under the constraint of the null hypothesis to that
under no constraints. By utilizing the observed test statistics and
their null distributions, we calculate a P value for each test (15).
An algorithm or point estimate is then applied to the set of P val-
ues to determine a significance threshold that controls a specific
error measure at a specific level (16), such as the false discovery
rate (FDR) at 10% (17, 18). Variations on this approach have
been suggested, such as estimating a g-value for each test (19) or
a posterior error probability (20). Regardless of the approach, the
validity and accuracy of these procedures are essentially deter-
mined by whether the null distributions are correctly specified (or
conservatively specified) and whether the data are independent
(or weakly dependent) across tests (21, 22).

Two open problems in multiple testing have received a lot of
recent attention. The first is concerned with controlling multi-
ple testing error measures, such as the FDR, in the presence of
dependence among the P values (23, 24). This dependence is usu-
ally formulated as being present in the “noise” component of the
models used to obtain the P values. The second open problem is
concerned with the fact that latent structure among the tests can
distort what would usually be the correct null distribution of the
test statistics (11, 25-27). The approach proposed here shows that

Leek and Storey

both problems actually stem from sources of variation that are
common among tests, which we show is multiple testing depen-
dence, and both problems can be simultaneously resolved through
one framework.

The current paradigm for addressing these two problems can be
seen in Fig. 1, where the steps taken to get from the original data
X to a set of significant tests are shown. It can be seen that existing
approaches are applied far downstream in the process. Specifi-
cally, adjustments are performed after 1-dimensional summaries
of each test have been formed, either to the test statistics or P val-
ues. As we show below, the information about noise dependence
and latent structure is found in the original data X by modeling
common sources of variation among tests. Our proposed approach
addresses multiple testing dependence (from either noise depen-
dence or latent structure) at the early model-fitting stage (Fig. 1),
atwhich point the tests have been made stochastically independent
and the null distribution is no longer distorted.

Proposed Framework

Definition of Multiple Testing Dependence. Multiple testing dependence
has typically been defined in terms of P values or test statis-
tics resulting from multiple tests (21, 24, 26, 28, 29). Here, we
form population-level and estimation-level definitions that apply
directly to the full dataset, X. The estimation-level definition also
explicitly involves the model assumption and fit utilized in the sig-
nificance analysis. When fitting model 1, we denote the estimate
of B by B.

Definition: We say that population-level multiple testing depen-
dence exists when it is the case that:

Pr(xi,%2,...,Xn|Y) # Pr(xi|Y) x Pr(x2]Y) x - -+ x Pr(x,]Y).

We say that estimation-level multiple testing dependence exists
when it is the case that:

Pr(X1,X2, . . . » Xm|B, S(Y)) # Pr(x[B, S(Y)) x - - - x Pr(x,,|B, S(Y)).

Multiple testing dependence at the population level is there-
fore any probabilistic dependence among the x;, after conditioning
on Y. In terms of model 1, this is equivalent to the existence of

PNAS | December2,2008 | vol. 105 | no.48 | 18719

STATISTICS



[

P

1\

=y

dependence across the rows of E; i.e., dependence among the
e, ey, ...,e,. Estimation-level dependence is equivalent [ to depen-
dence among the rows of the residual matrix R = X — BS. It will
usually be the case that if population-level multiple testing depen-
dence exists, then this will lead to estimation-level multiple testing
dependence. The framework we introduce in this article is aimed
at addressing both types of multiple testing dependence.

A General Decomposition of Dependence. DEpendence among the rows
of E and among the rows of R = X — BS are types of multivariate
dependence among vectors. The standard approach for modeling
multivariate dependence is to estimate a population-level para-
meterization of the dependence and then include estimates of
these parameters when performing inference (30). For example,
if the e; are assumed to be Normally distributed with the columns
of E being independently and identically distributed random m-
vectors, then one would estimate the m x m covariance matrix
which parameterizes dependence across the rows of E. One imme-
diate problem is that because n <« m, it is computationally and
statistically problematic to estimate the covariance matrix (31).

A key feature is that, in the multiple testing scenario, the dimen-
sion along which the sampling occurs is different than the dimen-
sion along which the multivariate inference occurs. In terms of
our notation, the sampling occurs with respect to the columns
of X, whereas the multiple tests occur across the rows of X. This
sampling-to-inference structure requires one to develop a special-
ized approach to multivariate dependence that is different from
the classical scenarios. For example, the classical construction and
interpretation of a P value threshold is such that a true null test is
called significant with P value < « at a rate of « over many inde-
pendent replications of the study. However, in the multiple testing
scenario, the P values that we utilize are not P values correspond-
ing to a single hypothesis test over m independent replications of
the study. Rather, the P values result from m related variables that
have all been observed in a single study from a single sample of size
n. The “sampling variation” that forms the backbone of most sta-
tistical thinking is different in our case: we observe one instance of
sampling variation among the variables being tested. Therefore,
even if each hypothesis test’s P value behaves as expected over
repeated studies, the set of P values from multiple tests in a single
study will not necessarily exhibit the same behavior. Whereas this
phenomenon prevents us from invoking well-established statisti-
cal principles, such as the classical interpretation of a P value, the
fact that we have measured thousands of related variables from
this single instance of sampling variation allows us to capture and
model the common sources of variation across all tests. Multiple
testing dependence is variation that is common among hypothesis
tests.

Thus, rather than proposing a population-level approach to this
problem (which includes the population of all hypothetical stud-
ies that could take place in terms of sampling of the columns of
X), we directly model the random manifestation of dependence in
the observed data from a given study, by aggregating the common
sampling variation across all tests’ data. Including this information
in the model during subsequent significance analyses removes the
dependence within the study. Therefore dependence is removed
across all studies, providing study-specific and population-level
solutions. To directly model the random manifestation of depen-
dence in the observed data, we do the following: (i) additively
partition E into dependent and independent components, (i) take
the singular value decomposition of the dependent component,
and (iii) treat the right singular values as covariates in the model
fitting and subsequent hypothesis testing. To this end, we pro-
vide the following result, which shows that any dependence can be
additively decomposed into a dependent component and an inde-
pendent component. It is important to note that this is both for
an arbitrary distribution for E and an arbitrary (up to degeneracy)
level of dependence across the rows of E.
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Proposition 1. Let the data corresponding to multiple hypothe-
sis tests be modeled according to Eq. 1. Suppose that for each
e, there is no Borel measurable function g such that ¢ =

gler,...,e_1,€41,...,ey) almost surely. Then, there exist matrices
rmxr; ern (}’ =< n), and Um><n such that
X=BS+TIG+U, [2]

where the rows of U are jointly independent random vectors so that

Pr(uj,uy,...,u,) = Pr(u;) x Pr(up) x --- x Pr(u,,).

Also, foralli = 1,2,...,m,vw; # 0andw; = h;(e;) fora non-random
Borel measurable function h;.

A formal proof of Proposition 1 and all subsequent theoretical
results can be found in the supporting information (SI) Appendix.
Note that if we let ¥ = n and then set U = 0 or set U equal to
an arbitrary m x n matrix of independently distributed random
variables, then the independence of the rows of U is trivially sat-
isfied. However, our added assumption regarding e; allows us to
show that a nontrivial U exists where u; # 0 and w; = A;(e;) for
a deterministic function /4;. In other words, u; is a function of ¢;
in a nondegenerate fashion, which means that U truly represents
a row-independent component of E. The intuition behind these
properties is that our assumption guarantees that e; does indeed
contain some variation that is independent from the other tests.
For hypothesis tests where there does exist a Borel measurable
g such that e; = g(ey,...,€i_1,€i41,...,€,), then the variation of
e; is completely dependent with that of the other tests’ data. In
this case, one can set u; = 0 and the above decomposition is still
meaningful.

The decomposition of Proposition I immediately indicates one
direction to take in solving the multiple testing dependence prob-
lem, namely to account for the I'G component, thereby removing
dependence. To this end, we now define a “dependence kernel”
for the data X.

Definition: An r x n matrix G forms a dependence kernel for the
high-dimensional data X, if the following equality holds:

X=BS+E
=BS+IG+U

where the rows of U are jointly independent as in Proposition 1.

In practice, one would be interested in minimal dependence
kernels, which are those satisfying the above definition and hav-
ing the smallest number of rows, r. Proposition 1 shows that at
least one such G exists with » < n rows. As we discuss below
in Scientific Applications, the manner in which one incorporates
additional information beyond the original observations to esti-
mate and utilize I and G is context specific. In the ST Appendix, we
provide explicit descriptions for two scientific applications, latent
structure as encountered in genomics and spatial dependence as
encountered brain imaging. We propose a new algorithm for esti-
mating G in the genomics application and demonstrate that it has
favorable operating characteristics.

Dependence Kernel Accounts for Dependence. An important question
arises from Proposition 1. Is including G, in addition to S(Y),
in the model used to perform the hypothesis tests sufficient to
remove the dependence from the tests? If this is the case, then
only an r x n matrix must be known to fully capture the depen-
dence. This is in contrast to the m(m — 1)/2 parameters that must
be known for a covariance matrix among tests, for example. To
put this into context, consider a microarray experiment with 1,000
genes and 20 arrays. In this case, the covariance has ~500,000
unknown parameters, whereas G has, at most, 400 unknown val-
ues. The following two results show that including G in addition to

Leek and Storey


www.pnas.org/cgi/content/full/0808709105/DCSupplemental
www.pnas.org/cgi/content/full/0808709105/DCSupplemental

[

P

1\

=y

S(Y) in the modeling is sufficient to remove all multiple hypothesis
testing dependence.

Corollary 1. Under the assumptions of Proposition 1, all population-
level multiple testing dependence is removed when conditioning on
both Y and a dependence kernel G. That is,

Pr(x1,xz,...,%,|Y,G)

= Pr(x1]Y, G) x Pr(x2|Y,G) x - -- x Pr(x,,Y, G).

If instead of fitting model 1, suppose that we instead fit the
decomposition from Proposition 1, where we assume that S and G
are known:

X=BS+TIG+U. [31

It follows that estimation-level multiple testing independence may
then be achieved.

Proposition 2. Assume the data for multiple tests follow model 1, and
let G be any valid dependence kernel. Suppose that model 3 is fit by
least squares, resulting in residuals r; = x; — b;S — y,G. When the
row space jointly spanned by S and G has dimension less than n,
Qze Lesidua{{ Iy, r2,. ..,y are jointly independent given S and G, the
by, by, ..., by, are jointly independent given S and G, and

Pr(xq,xz,. .. ,xm|§, S, f, G)
= Pr(x;B,S,T,G) x - - x Pr(x,,|B, S, T, G).

The analogous results hold for the residuals and parameter estimates
when fitting the model under the constraints of the null hypothesis.

Since G will be unknown in practice, the practical implication of
this proposition is that we have to estimate only the relatively small
r x n matrix G well in order to account for all of the dependence,
while the simple least-squares solution to I suffices. When the row
space jointly spanned by S and G has dimension equal to n, then the
above proposition becomes trivially true. However, if we assume
that S, G, and T are known, then the analogous estimation-level
independence holds. In this case, we have to estimate I and G well
in order to account for dependence. These (i + r)n parameters
are still far smaller than the unknown m(m — 1)/2 parameters of
a covariance matrix, for example.

Strong Control of Multiple Testing Error Rates. Many methods exist for
strongly controlling the family-wise error rate (FWER) or FDR
(16, 18, 19, 21, 24, 32). These methods are applied to the P values
calculated from multiple hypothesis tests. Most of these methods
require the P values corresponding to true null hypotheses to be
independent in order for the procedure to provide strong control.
For example, finite-sample strong control of several FDR proce-
dures (21, 24) and the conservative point estimation of the FDR
(19) all require the true null P values to be independent. Several
methods exist for controlling FWER or FDR when dependence
is present. However, these either tend to be quite conservative or
require special restrictions on the dependence structure (21, 24).

When utilizing model 3, the statistics formed for testing the
hypothesis should be based on a function of the model fits
and residuals. When this is the case, we achieve the desired
independence of P values.

Corollary 2. Suppose that the assumptions of Proposition 2 hold,
model 3 is utilized to perform multiple hypothesis tests, and G is
a known dependence kernel. If P values are calculated from test sta-
tistics based on a function of the model fits and residuals, then the
resulting P values and test statistics are independent across tests.

In other words, Corollary 2 extends all existing multiple test-
ing procedures that have been shown to provide strong control
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when the null P values are independent to the general depen-
dence case. Instead of deriving new multiple testing procedures
for dependence at the level of P values, we can use the existing
ones by including G into the model fitting and inference carried
out to get the P values themselves.

Scientific Applications

Two causes for multiple testing dependence can be directly derived
from scientific problems of interest. In each case, the dependence
kernel G has a practical scientific intepretation.

Spatial Dependence. Spatial dependence usually arises as depen-
dence in the noise because of a structural relationship among the
tests. In this case, we will consider the e; of model 1 to simply
represent “noise,” an example being the spatial dependence for
noise that is typically assumed for brain-imaging data (6-8). In
this setting, the activity levels of thousands of points in the brain
are simultaneously measured, where the goal is to identify regions
of the brain that are active. A common model for the measured
intensities is a Gaussian random field (6). It is assumed that the
Gaussian noise among neighboring points in the brain are depen-
dent, where the covariance between two points in the brain is
usually a function of their distance.

In Fig. 2 A and B, we show two datasets generated from a sim-
plified 2-dimensional version of this model. It can be seen that the
manifestation of dependence changes notably between the two
studies, even though they come from the same data generating
distribution. Using model 3 for each dataset, we removed the I'G
term. In both cases, the noise among points in the 2-dimensional
space becomes independent and the P value distributions of points
corresponding to true null hypotheses follow the Uniform dis-
tribution. It has been shown that null P values following the
Uniform(0, 1) distribution is the property that confirms that the
assumed null distribution is correct (22). Additionally, it can be
seen that the null P values from the unadjusted data fluctuate
substantially between the two studies, and neither follows the
Uniform(0, 1) null distribution. This is due to varying levels of
correlation between S and G from model 3. In one case, S and
G are correlated producing spurious signal among the true null
hypotheses; this would lead to a major inflation of significance.
In the other case, they are uncorrelated leading to a major loss
of power. By accounting for the I'G term, we have resolved these
issues.

Latent Structure. A second source of multiple testing dependence
is a latent structure due to relevant factors not being included
in the model. It is possible for there to be unmodeled factors
that are common among the multiple tests but that are not
included in S. Suppose there exists unmodeled factors Z such
that E(x;[Y) # E(x;|Y,Z) for more than one test. If we utilize
model 1 when performing the significance analysis, there will be
dependence across the rows of E induced by the common factor Z,
causing population-level multiple testing dependence. Likewise,
there will be dependence across the rows of R causing estimation-
level multiple testing dependence. A similar case can arise when
the model for x; in terms of Y is incorrect. For example, it could
be the case that E[x;|Y] = b;S*(Y), where the differences between
S and S* are nontrivial among multiple tests. Here, there will be
dependence across the rows of Rinduced by the variation common
to multiple tests due to S* but not captured by S, which would cause
estimation-level multiple testing dependence. Failing to include all
relevant factors is a common issue in genomics leading to latent
structure (11, 12). The adverse effects of latent structure due to
unmodeled factors on differential expression significance analyses
has only recently been recognized (12).

Fig. 2 C and D shows independently simulated microarray stud-
ies in this scenario, where we have simulated a treatment effect
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Noise Independent
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Null P-values Biased Null P-values Unbiased
KS Test P < 0.0001 KS Test P =0.4565

Null P-values Biased Null P-values Unbiased
KS Test P < 0.0001 KS Test P=0.4977

Null P-values Biased ~ Null P-values Unbiased
KS Test P < 0.0001 KS Test P =0.9597

Null P-values Biased ~ Null P-values Unbiased
KS Test P <0.0001 KS Test P =0.1764

Fig. 2. Simulated examples of multiple testing dependence. A and B consist of spatial dependence examples as simplified versions of that encountered in
brain imaging, and C and D consist of latent structure examples as encountered in gene expression studies. In all examples, the data and the null P values are
plotted both before and after subtracting the dependence kernel. The data are plotted in the form of a heat map (red, high numerical value; white, middle;
blue, low). The signal is clearer and the true null tests’ P values are unbiased after the dependence kernel is subtracted. (A and B) Each point in the heat map
represents the data for one spatial variable. The two true signals are in the diamond and circle shapes, and there is autoregressive spatial dependence between
the pixels. (A) An example where the spatial dependence confounds the true signal, and the null P values are anticonservatively biased. (B) An example where
the spatial dependence is nearly orthogonal to the true signal, and the null P values are conservatively biased. (C and D) Each row of the heat map corresponds
to a gene’s expression values, where the first 400 rows are genes simulated to be truly associated with the dichotomous primary variable. Dependence across
tests is induced by common unmodeled variables that also influence expression, as described in the text. (C) An example where dependence due to latent
structure confounds the true signal, and the null P values are anticonservatively biased. (D) An example where dependence due to latent structure is nearly
orthogonal to the true signal, and the null P values are conservatively biased.

plus effects from several unmodeled variables. The unmodeled
factors were simulated as being independently distributed with
respect to the treatment, which is equivalent to a study in which
the treatment is randomized. As in Fig. 2 4 and B, it can be seen
that the P values corresponding to true null hypotheses (i.e., genes
not differentially expressed with respect to the treatment) are not
Uniformly distributed. When utilizing model 3 for these data and
subtracting the term I'G, the residuals are now made independent
and the null P values are Uniform(0, 1) distributed.

Estimating G in Practice

There are a number of scenarios where estimating G is feasible in
practice. One scenario is when nothing is known about the depen-
dence structure, but it is also the case that d +r < n, where d and
r are the number of rows of the model S and dependence kernel
G, respectively. This is likely when the dependence is driven by
latent variables, such as in gene expression heterogeneity (12). In
the SI Appendix, we present an algorithm for estimating G in this
scenario. It is shown that the proposed algorithm, called iteratively
reweighted surrogate variable analysis (IRW-SVA), exhibits favor-
able operating characteristics. We provide evidence for this over a
broad range of simulations. Another scenario is when the depen-
dence structure is well characterized at the population level. Here,
it may even be the case that d + r ~ n. This scenario is common
in brain imaging (6, 7) and other spatial dependence problems
(9), as discussed above. The fact that T is largely determined by
the known spatial structure allows us to overcome the fact that
d +r = n (SI Appendix).

Discussion

We have described a general framework for multiple testing
dependence in high-dimensional studies. Our framework defines
multiple testing dependence as stochastic dependence among

1. Storey JD, Tibshirani R (2003) Statistical significance for genome-wide studies. Proc
Natl Acad Sci USA 100:9440-9445.

2. Dudoit S, Shaffer JP, Boldrick JC (2003) Multiple hypothesis testing in microarray
experiments. Stat Sci 18(1):71-103.

3. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to
the ionizing radiation response. Proc Nat/ Acad Sci, USA 98:5116-5121.
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tests that remains when conditioning on the model is used in the
significance analysis. We presented an approach for addressing
the problem of multiple testing dependence based on estimating
the dependence kernel, a low-dimensional set of vectors that com-
pletely defines the dependence in any high-throughput dataset. We
have shown that if the dependence kernel is known and included
in the model, then the hypothesis tests can be made stochastically
independent. This work extends existing results regarding error
rate control under independence to the case of general depen-
dence. An additional advantage of our approach is that we can not
only estimate dependence at the level of the data, which is intu-
itively more appealing than estimating dependence at the level of
P values or test statistics, but we can also directly adjust for that
dependence in each specific study. We presented an algorithm
with favorable operating characteristics for estimating the depen-
dence kernel for one of the main two scientific areas of interest
that we discussed. We anticipate that well behaved estimates of
the dependence kernel in other scientific areas are feasible.

One important implication of this work is that multiple testing
dependence is tractable at the level of the original data. Down-
stream approaches to dealing with multiple testing dependence
are not able to directly capture general dependence structure (Fig.
1). Another implication of this work is that, for a fixed complexity,
the stronger the dependence is among tests, the more feasible it is
to properly estimate and model it. It has also been shown that the
weaker multiple testing dependence is, the more appropriate it
is to utilize methods that are designed for the independence case
(21). Therefore, there is promise that the full range of multiple
testing dependence levels is tractable for a large class of relevant
scientific problems.
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