MAD Quizz

Exercise 1 Mixture	
Questions	Réponses
1. Is a mixture of uniform distributions identifiable ?	□ yes
	■ no
2. The kmeans algorithm assumes that	■ the proportions of the mixture are all equal
	\Box the mean vectors of the mixture are equal
	■ the covariance matrices of the mixture are equal
	■ the covarance matrices are proportional to the identity
	■ the components of the mixture are normal
3. The E-step of the EM algorithm computes	■ The expectation of the complete log-likelihood
	\Box The probabilities $P(Z_{ik} = 0 \boldsymbol{x}_i)$
	\Box The probatilities $P(\boldsymbol{x}_i Z_{ik})$
4. The M-step of the EM algorithm maximises	• the expectation of the log likelihood knowing $X: log P(X)$
	\Box the expectation of the log likelihood knowing Z: log P(Z)
	□ something else
5. The EM algoirthm finds a maximum which is	□ global
	■ local
6. A finite mixture is	□ gaussian
	■ a density
7. The Bayesian information criterion	■ is used for model selection
	\Box is used for determining the entropy of the mixture

Questions	Réponses
1. Principal Component Analysis is used to identify ?	new independent variables
	□ clusters
2. The principal components are	vectors spanning a subspace where data is projected
	a new coordinates system
	🗆 a gaussian mixture
3. The total variance of the dataset is equal to	□ the maximum eigenvalue of the empirical covariance
	matrix
	■ the sum of the eigenvalue of the empirical covariance
	matrix
	■ the number of variables if the data is scaled.
4. The principal axis are	vectors spanning a subspace where data is projected
	■ eigenvectors of the empirical covariance matrix
	■ orthogonal vectors.
5. The percentage of projected variance	■ is used for chosing the number of princicpal component
	\Box is used for chosing the minimal eigenvalue.
6. Principal Coordinate Analysis aims at	□ maximizing the total variance
	□ summarizing the principal components
	■ finding a representation of the dataset.
7. Principal Component Analysis	allows a decomposition of the total variance
	maximizes the projected variance
	■ minimizes the variance in the space orthogonal to the
	projection space.
8. Principal Component Analysis requires	more individuals than variables
	more variables than individuals.

Exercise 2 Principal Component Analysis