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Abstract: Statistics of motifs have been widely revisited in the last 15 years
due to the increasing availability of genomic sequences. The identification of
DNA motifs with biological functions is still a huge challenge of genome analysis.
Many functional and essential motifs have the particularity to be very frequent
all along the chromosome or to be concentrated in some particular regions
(e.g. in front of genes) or to be co-oriented with the replication direction. The
prediction of functional motifs is then mostly based on statistical properties of
pattern occurrences in Markovian sequences. This paper will be mostly devoted
to such properties with a special focus on pattern frequency. How to compute
or approximate the count distribution to assess motif exceptionality? How to
test if a motif is significantly unbalanced between two (sets of) sequences? How
to deal with degenerated patterns? How to model occurrences to find regions
significantly enriched with a given pattern? etc. Examples of functional motifs
will illustrate all these questions and we will see how the Chi motif has been
identified in Staphylococcus aureus thanks to its statistical properties.
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1.1 Introduction

Genomic sequence analysis is probably the applied domain which has been of-
fering for the last 15 years the widest variety of problems on pattern statistics.
This variety is due to the huge length of the sequences, to their heterogeneous
composition and structure, but also to the complexity of the functional motifs.
These motifs take place in fundamental molecular processes like chromosome
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maintenance or gene transcription but few of them have been completely iden-
tified (i.e. whose sequence of letters is known). Moreover, they are rarely
conserved through species leading to a very challenging area of DNA motif dis-
covery. This chapter is related to the statistical approach used to predict candi-
date functional motifs. Indeed, many known functional motifs are characterized
by an exceptional behavior of their occurrences. Some of them are extremely
frequent along the entire genome (or along a particular DNA strand), others
are avoided because their occurrences are lethal for the chromosome, some are
preferred in particular genomic regions. Two main quantities have then been
widely studied from a probabilistic and statistical point of view: the number
of occurrences of a motif in a random sequence and the distances (cumulated
or not) between occurrences of a motif. To avoid a huge list of references, we
just point to chapter 6 and 7 from Lothaire (2005) for technical expositions and
to Robin et al. (2005) for a more applied exposition. In this chapter, we have
chosen to present the main statistical results that are really used in practice
to help identifying functional DNA motifs. Many biological examples will then
be given to illustrate the usefulness of the approaches. The biggest part will
be devoted to the question of detecting words with an exceptional frequency
in a given sequence; Distribution of a word count in Markovian sequences will
then be studied (Section 1.2). We will also consider the related problem of
comparing the exceptionality of a word frequency between two independent
sequences. Functional motifs can indeed be specific from known parts of the
chromosome (or from some particular chromosomes); In this case, the word
occurrences themselves are modeled and a statistical test is derived from the
two count processes (Section 1.3). However, when one look for regions signifi-
cantly enriched (or devoid) of a given word, the quantity of interest becomes the
distance between occurrences. Section 1.3 also presents results on the distance
distribution when the occurrences are modeled by a compound Poisson process.
Other results on distances and waiting times can be found in Stefanov’s chapter
when the sequence is Markovian. Section 1.4 addresses the generalization to
more complex patterns, namely degenerated patterns and structured motifs.
Finally, we end with some ongoing works and open problems.

1.2 Words With Exceptional Frequency

Lots of functional DNA motifs are extremely over-represented in complete
genomes, or in specific genomic regions, whatever the composition level of the
biological sequence one takes into account. This statistical property reveals a
strong constraint on the DNA sequence. For instance, if we look for the two
most over-represented 9-letter words in the complete genome of the bacteria
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Haemophilus influenzae (1830140 letters long), we find the two reverse comple-
mentary oligo-nucleotides aagtgcggt and accgcactt which occur respectively
740 and 731 times. As an illustration, Table 1.1 just gives the expected count of
these two words when fitting the sequence composition of smaller words. These

Markov fitted expected count expected count
model composition of aagtgcggt of accgcactt

M0 letters 4.694 3.779
M1 2-letter words 6.279 4.847
M2 3-letter words 8.603 6.208
M3 4-letter words 18.601 15.080
M4 5-letter words 55.704 48.658
M5 6-letter words 219.081 220.284
M6 7-letter words 549.815 574.734
M7 8-letter words 719.440 722.366

Table 1.1: Expected counts ofaagtgcggt and accgcactt in random sequences
having in average the same composition than the H. influenzae complete
genome.

two 9-letter words are in fact very well known from the biologists: they are the
two DNA uptake sequences involved in discriminating self from foreign entering
DNA during competence in the bacteria.
Another example is the word gctggtgg which is the “crossover hotspot instiga-
tor” (Chi) motif in the bacteria Escherichia coli and is involved in chromosome
maintenance. Chi is among the 5 most over-represented 8-letter words in the
E. coli genome (4638858 letters long). This example will be detailed in Section
1.2.5.
On the contrary, many restriction sites (generally 6-letter words) are strongly
under-represented along bacterial genomes, which is not surprising because they
induce a double-strand break of the bacterial DNA.
The aim of this section is precisely to show how to assess the significance of
over- and under-representations.

When we want to analyze the distribution of a word along a sequence or
when we want to know if a word occurs significantly more often in one sequence
compared to another one (Section 1.3), it is relevant to model the occurrences
themselves in order to fit the observed frequencies of this word. However, if the
problem is precisely to know if a given word occurs in a DNA sequence with
a frequency that seems either too low or too high, one needs to compare it to
an expected frequency. Usually, one compares the observation with what one
would expect in random sequences sharing common properties with the DNA
sequence. Under classical sequence models (Section 1.2.1), we can analytically
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calculate the moments of the count (Section 1.2.2) and sometimes get its dis-
tribution or some approximations (Section 1.2.3), leading to p-values (Section
1.2.4). We will end this section by presenting how the Chi motif of Staphylo-
coccus aureus has been predicted, thanks to its exceptional frequency, before
being experimentally validated [Halpern et al. (2007)].

1.2.1 Sequence models

The commonly used sequence models have the property to fit the letter com-
position of the observed sequence and more generally its composition in small
words of a given length. For instance, it is usual to fit the 3-letter word com-
position of coding DNA sequences because the letters of these sequences are
read 3 by 3 by the ribosome which translates each disjoint triplets into amino
acids to form a protein. The most intuitive model is therefore the permutation
model (or shuffling model) consisting in shuffling the letters of the observed
sequence so that the composition remains exactly the same. Preserving exactly
the letter composition is an easy task but it is more difficult for 2-letter words
or longer words, both from algorithmic and probabilistic points of view. In that
respect, stationary Markov chains are particularly interesting if one accepts to
fit the composition in average rather than exactly. Moreover, if one wants to
take some periodicity or an heterogeneous composition along the sequence into
account, permutation models become very complicated to manipulate.

In the remainder, we will consider a random sequence S = X1X2 · · ·Xn on
the four-letter DNA alphabet, i.e. Xi ∈ A := {a, c, g, t}.

Permutation models These models assume that random sequences are uni-
formly drawn from the set Sm of sequences having exactly the same counts of
words of length 1 up to m than the observed DNA sequence, for a given integer
m ≥ 1. The probability of a sequence S is then 1/|Sm|. For m = 1 or m = 2,
for instance, we have:

|S1| =
n!

Nobs(a)! × Nobs(c)! × Nobs(g)! × Nobs(t)!

|S2| =
∏

a∈A

Nobs(a+)!∏
b∈A Nobs(ab)!

× HXn,X1
(S)

where Nobs(·) denotes the count in the observed sequence Sobs, Nobs(a+) :=∑
b Nobs(ab) and HXn,X1

(S) is the cofactor corresponding to row Xn and column
X1 of the matrix

(
1I{a = b} − N(ab)/N(a+)

)
a,b∈A

[Whittle (1955)]. Note that
the constraint for S ∈ S2 to have the same letter composition than Sobs is
equivalent to start (resp. to end) with the first (resp. last) letter of Sobs.
Indeed, we have Nobs(a+) = Nobs(a) for all a ∈ A but the last nucleotide of Sobs;
The counts then differ from 1. Knowing the letter composition, additionally
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to the dinucleotide composition, determines the last letter Xn of the sequences
S ∈ S. It is the same for the first letter X1 by using the numbers Nobs(+b) of
dinucleotides that end with b.
Working with these permutation models require lots of combinatorics.

Stationary Markov chains Let us consider the first order stationary Markov
model, denoted by M1; It means that the random letters Xi’s are not indepen-
dent and satisfy the following Markov property: P(Xi = b | X1,X2, . . . ,Xi−1) =
P(Xi = b | Xi−1), ∀b ∈ A. The transition probabilities will be denoted as fol-
lows:

π(a, b) = P(Xi = a | Xi−1 = b),∀a, b ∈ A;

Π = (π(a, b))a,b will denote the transition matrix. Moreover, all Xi’s have
the same distribution, namely the stationary distribution µ which satisfies the
relation µ = µΠ.

The transition probabilities are estimated by their maximum likelihood es-
timators, i.e.

π̂(a, b) =
N(ab)

N(a+)
, a, b,∈ A, (1.1)

where N(·) denotes the number of occurrences in the sequence S = X1X2 · · ·Xn.

Moreover, the letter probability µ(a) is usually estimated by µ̂(a) = N(a)
n .

An important consequence of such estimation is that the plug-in estimator of
the expected number of ab in model M1 is approximately equal to the observed
count of ab in the DNA sequence. Indeed, we will see in Section 1.2.2 than
E[N(ab)] = (n − 1)µ(a)π(a, b) which leads to

Ê[N(ab)] := (n − 1)µ̂(a)π̂(a, b) ≃ N(ab).

In other words, model M1 fits in average the 2-letter word composition of the
observed sequence.

Similarly, the stationary m-th order Markov chain model (Mm) fits in aver-
age the (m + 1)-letter word composition of the observed sequence. In practice,
the choice of the order m of the model Mm is important because it defines the
set of reference sequences and, as we will see in Section 1.2.5, this choice often
has a strong influence on the statistical results. This influence can already be
observed on Table 1.1: expected counts vary a lots with respect to the chosen
model.
Since model Mm on the A alphabet can be considered like a model M1 on the
larger alphabet Am, we will focus on first order Markov chains in this chapter.

Phased Markov chains for coding sequences The interest of considering
phased Markov chains came from the analysis of coding DNA sequences. Such
sequences are split into adjacent 3-letter words called codons, each of them
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being translated into an amino acid to form a protein. The succession of codons
ensures the reading frame for the translation. The nucleotides of a coding DNA
sequence are then alternatively the first letter of a codon, the second letter of
a codon, the third letter of a codon, and so on. The phase of a nucleotide is its
position with respect to the codons; A letter can then be in 3 different phases
in a coding sequence. The three positions of a codon do not have the same
importance. First of all, an amino acid is often determined by the two first
letters of a codon according to the genetic code. Moreover, the 3D structure
of the protein usually implies constraints on the succession of amino acids. It
is therefore important to take the phase of the nucleotides into account when
modeling coding DNA sequences.

In a phased Markov chain of order 1, the transition probability from letter
a to letter b depends on the phase φ ∈ {1, 2, 3} the nucleotide b will be. We
then have the three following transition probabilities

πφ(a, b) = P(X3i+φ = b | X3i+φ−1 = a), a, b ∈ A.

We can also define the distributions µφ of letters on each phase φ ∈ {1, 2, 3};
They satisfy µ1 = µ3Π1, µ2 = µ1Π2 and µ3 = µ2Π3.

When estimating these parameters by the maximum likelihood method, it
allows to fit in average the composition of the coding DNA sequence in ab’s on
phase 1, in ab’s on phase 2 and ab’s on phase 3, for all a, b ∈ A.

Thanks to an appropriate change of alphabet, the phased Markov model
on the A alphabet can be considered like a model M1 on A × {1, 2, 3}. It
suffices to rewrite the sequence S over the alphabet A × {1, 2, 3} by defining
X⋆

i = (Xi, i modulo 3). The transition probability from (a, φ′) to (b, φ) is then
equal to πφ(a, b) if φ = φ′ + 1 modulo 3, and 0 otherwise.

Heterogeneous Markov models Some entire chromosomes have been now
completely sequenced for several years, and it has been quickly noticed that
their composition is more or less heterogeneous. Many reasons may explain
this heterogeneity: genes are more constrained than intergenic regions because
they have to code for functional proteins, bacterias can exchange genomic re-
gions (so-called horizontal transfers) but they all have their own signature in
terms of composition, etc. It is then natural to use heterogeneous Markov mod-
els. Usually the heterogeneity is considered like a piecewise homogeneity, i.e.
homogeneous regions alternate along the genome. If the heterogeneity is known
in advance (for instance genes/intergenic regions), one may then use piecewise
homogeneous Markov models. When the aim is precisely to recover the hetero-
geneous structure then the most popular models in genome analysis are hidden
Markov models. Note that a hidden Markov chain with a hidden state space Q
and an observation space A can be considered like a Markov chain on A×Q.
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1.2.2 Mean and variance for the count

The derivation of the expectation and the variance of a word count under the
permutation model based on S2 can be found in Cowan (1991) and Prum et al.
(1995) (see Schbath (1995b) and Robin et al. (2005) for the letter permutation
model).

In this section, we assume that the sequence S = X1X2 · · ·Xn is a first-order
stationary Markov chain (model M1) with non zero transition probabilities.

The number of occurrences N(w) of a h-letter word w = w1w2 · · ·wh in the
sequence S = X1X2 · · ·Xn can be simply defined by

N(w) =

n−h+1∑

i=1

Yi(w), (1.2)

where Yi(w) equals 1 if and only if an occurrence of w starts at position i
in the sequence and 0 otherwise. Therefore, to get the mean and variance of
the count, we need to study the distribution of the random indicators Yi(w)’s,
namely their expectation, variance and covariances.

Random indicator of an occurrence The position of an occurrence of w
is defined by the position of its first letter w1. We define the random indicator
Yi(w) of an occurrence of w at position i, 1 ≤ i ≤ n − h + 1, in S by:

Yi(w) =

{
1 if (Xi,Xi+1, . . . ,Xi+h−1) = (w1, w2, . . . wh),
0 otherwise.

It is a random Bernoulli variable with parameter P(Yi(w) = 1) given by

P(Yi(w) = 1) = P(Xi = w1, . . . ,Xi+h−1 = wh)

= µ(w1) × π(w1, w2) × · · · × π(wh−1, wh).

For convenience, µ(w) will denote the probability for the word w to appear at
a given position in the sequence. The Yi(w)’s are then Bernoulli variables with
expectation µ(w) and variance µ(w)[1 − µ(w)], with

µ(w) = µ(w1) ×
h∏

j=2

π(wj−1, wj). (1.3)

However, these random indicators Yi(w) are not independent, not only because
the sequence is Markovian but most importantly because occurrences of a given
word may overlap in a sequence. Consequently, their sum over the positions
i = {1, . . . , n − h + 1} (namely the number of occurrences – or count – of the
word) is not distributed according to a binomial distribution.
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Overlaps Occurrences of a given word may overlap in a sequence. For in-
stance, w = aataa occurs 4 times in the sequence given in Figure 1.1, at
positions i = 2, 11, 15 and 18. The third occurrence overlaps both the second
and the fourth occurrences leading to a clump of 3 overlapping occurrences of
aataa starting at position 11.

S g a a t a a t g a g a a t a a a t a a t a a g

2

a a t a a

11 15 18

a a t a a

a a t a a

a a t a a

Figure 1.1: Four occurrences of aataa in sequence S leading to two clumps of
aataa, the first one of size 1 and the second one of size 3.

The overlapping structure of a word can be described by two equivalent quan-
tities: the overlapping indicators or the periods.

Overlapping indicators The overlapping indicator εu(w), for 1 ≤ u ≤ h, is
equal to 1 if two occurrences of w can overlap on u letters, meaning the last u
letters of w are identical to its first u letters, and 0 otherwise:

εu(w) =

{
1 if (wh−u+1, wh−u+2, . . . , wh) = (w1, w2, . . . , wu),
0 otherwise.

By definition, εh(w) = 1. A non-overlapping word w is such that εu(w) = 0
for all 1 ≤ u ≤ h − 1.

Periods of a word An integer p ∈ {1, . . . , h−1} is said to be a period of w if
and only if two occurrences of w can start at a distance p apart (εh−p(w) = 1).
It implies the following periodicity: wj = wj+p for all j ∈ {1, . . . , h − p}.
We denote by P(w) the set of periods of the word w; For instance P(aataataa) =
{3, 6, 7}. Periods that are not a strict multiple of the smallest period are said to
be principal since they will be more important, as we will see later. P ′(w) de-
notes the set of the principal periods of w; For instance P ′(aataataa) = {3, 7}.

In the remainder, we will use the periods rather than the overlapping in-
dicators because this simplifies formulas. We will denote by wpw the word
composed of two overlapping occurrences of w starting at a distance p apart:

wpw = w1 · · ·wpw1 · · ·wh.
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Dependence between occurrences The variables Yi(w) and Yi+d(w), d >
0, are not independent. Their covariance is defined by

C[Yi(w), Yi+d(w)] = E[Yi(w) × Yi+d(w)] − E[Yi(w)] × E[Yi+d(w)]

= P(Yi(w) = 1, Yi+d(w) = 1) − [µ(w)]2. (1.4)

To calculate the probability P(Yi(w) = 1, Yi+d(w) = 1), we distinguish two
cases: 1 ≤ d < h (two overlapping occurrences) and d ≥ h (two disjoint occur-
rences).

• The probability that w occurs both at positions i and i + d, 1 ≤ d < h,
is different from 0 only if d is a period of w. In this case, it is equal to
µ(wdw).

• The probability that two disjoints occurrences of w are separated by d−h
letters (d ≥ h) is given by µ(w)πd−h+1(wh, w1)µ(w)/µ(w1), where πℓ(·, ·)
denotes ℓ-step transition probabilities in S.

The covariance between two random indicators of occurrence is thus:

C[Yi(w), Yi+d(w)] =





−[µ(w)]2 if 0 < d < h, d∈/ P(w),
µ(wdw) − [µ(w)]2 if d ∈ P(w),

[µ(w)]2
[
πd−h+1(wh, w1)

µ(w1)
− 1

]
if d ≥ h.

(1.5)

Mean and variance of the count Finally, we get the following expression
for the expectation and the variance of N(w):

E[N(w)] =

n−h+1∑

i=1

E[Yi(w)] = (n − h + 1)µ(w) (1.6)

V[N(w)] =

n−h+1∑

i=1

V[Yi(w)] + 2

n−h+1∑

i=1

n−h+1∑

j=i+1

C[Yi(w), Yj(w)]. (1.7)

= (n − h + 1)µ(w)
(
1 − µ(w)

)
+ 2

n−h+1∑

i=1

n−h−i+1∑

d=1

C[Yi(w), Yi+d(w)]

where µ(w) is given by Eq. (1.3), p. 7 and the covariance term is given by Eq.
(1.5).

1.2.3 Word count distribution

We will now focus on the statistical distribution of the count N(w). Several
methods have been proposed to derive the exact distribution of N(w) in a
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sequence of independent letters (model M0) or in model M1. Most of them
use pattern matching principles or language theory (see for instance chapter 7
from Lothaire (2005)). The most probabilistic approach is probably the one
consisting in using the following duality principle: P(N(w) ≥ j) = P(Tj ≤ n)
where Tj denotes the position of the j-th occurrence of the word w along a
random sequence S of length n. The distribution of Tj can be obtained via the
distribution of the distance between two successive occurrences of w (see Robin
and Daudin (1999)). However, all these methods are fastidious to implement,
with many technical limitations as soon as the sequence is long, or as the
order of the Markov model is greater than 1, or the motif is complex. In
practice, approximate distributions are used. In this section, we will present
two approximations of the word count distribution that have been theoretically
proved under some asymptotic framework: the Gaussian approximation which
is valid if the expected count is far enough from zero (Section 1.2.3) and a
compound Poisson approximation which is adapted for the count of rare and
clumping events (Section 1.2.3). The quality of these approximations have been
studied in Robin and Schbath (2001) and Nuel (2006). No theoretical result
exists so far on the binomial approximation that would result from neglecting
the dependence between the occurrences.

Gaussian approximation

Recall that N(w) is a sum of (n−h+1) random Bernoulli variables Yi(w) with
mean µ(w) and variance µ(w)[1 − µ(w)].

Asymptotic normality If the Bernoulli variables Yi(w)’s were independent,
then the classical Central Limit Theorem would ensure that the count converges
in distribution to a Gaussian variable. But the Yi(w)’s are not independent for
two reasons: the occurrences of w can overlap and the letters of the sequence are
not independent. Nonetheless, by using a Central Limit Theorem for Markov
chains, the asymptotic normality of the count can be established:

N(w) − E[N(w)]√
V[N(w)]

D−→ N (0, 1) as n → +∞. (1.8)

Estimating the parameters In the previous convergence, both expecta-
tion and variance of the count depend on the model parameters which are
not known in practice. Let us estimate the expected count by its plug-in es-
timator, i.e. by replacing the transition probabilities π(a, b) by their MLE
π̂(a, b) = N(ab)/N(a+) and the probability µ(w1) by µ̂(w1) = N(w1)/n in
equation (1.6). We then consider the following estimator:

Ê[N(w)] =
N(w1w2) × · · · × N(wh−1wh)

N(w2) × · · · × N(wh−1)
. (1.9)
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Because the estimator Ê1[N(w)] is expressed like a function of several asymp-
totically Gaussian counts, the δ-method ensures that there exists a constant
v2(w) such that

N(w) − Ê[N(w)]√
(n − h + 1)v2(w)

D−→ N (0, 1) as n → +∞. (1.10)

However, since Ê[N(w)] is random, the variance of {N(w) − Ê[N(w)]} is dif-
ferent from V[N(w)] and (n− h + 1)v2(w) is therefore not related to V[N(w)].

Asymptotic variance Several approaches have been used to derive the
asymptotic variance (n − h + 1)v2(w). The first one is the δ-method in Lund-
strom (1990): it uses the fact that n−1/2{N(w)− Ê[N(w)]} is a function of the
asymptotically Gaussian vector

(
N(w),N(w1w2), . . . ,N(wh−1wh), N(w2), . . . ,

N(wh−1)
)

from (1.8). However, the function and the size of this vector depends
both on the length and on the 2-letter composition of w, so it does not give a
unified formula for the asymptotic variance.
Prum et al. (1995) proposed a second method: they showed that the estimator
Ê[N(w)] is asymptotically equivalent to E[N(w) | S2], the expected count of
N(w) under the 2-letter word permutation model, and that v2(w) is the limit
of n−1

V[N(w) | S2]. They obtained:

v2(w) = µ(w) + 2
∑

p∈P(w), p<h−1

µ(wpw)

+ [µ(w)]2



∑

a

[Nw(a+)]2

µ(a)
−
∑

a,b

[Nw(ab)]2

µ(ab)
+

1 − 2Nw(w1+)

µ(w1)


 ,

(1.11)

where Nw(·) stands for the count inside the word w. The overlaps of w on two
or more letters explicitly appear in this formula (p < h − 1); The overlap on a
unique letter is taken into account in the [µ(w)]2 term.

Since model M1 allows more variability than the corresponding permutation
model, one expects the variance (n−h+1)v2(w) to be smaller than the variance
V[N(w)]. This is not difficult to show it in the Bernoulli model (m = 0); For
higher models, it has been numerically verified.

Generalizations to m > 1 and to phased models can be found in Schbath
et al. (1995) and Schbath (1995b). When m = h − 2, i.e. in the Markov
chain model fitting the counts of all the (h−1)-letter words (we call this model
the maximal model regarding the analysis of h-letter words), a third approach
can be used to derived the asymptotic variance. This approach is based on
martingale theory and provides a simpler expression for the asymptotic variance
(see Prum et al. (1995) or Reinert et al. (2000)).
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Compound Poisson approximation

Poisson approximations can also be used for the count of rare events, i.e. when
E[N(w)] = O(1). Note that this condition implies that log n = O(h) (long
enough words). In this paragraph, we will assume the rare event condition but
also that h = o(n).

A nice method to establish Poisson approximations of counts is the Chen-
Stein method (see Arratia et al. (1990) for an introduction and Barbour et al.
(1992b) for a more general presentation). This method gives a bound on the to-
tal variation distance between the distribution of a sum of dependent Bernoulli
variables and the Poisson distribution with same expectation. Lower the de-
pendence, better the Poisson approximation quality. Unfortunately, the local
dependence between occurrences of an overlapping word w is too important
and a Poisson approximation of the distribution of N(w) generally does not
hold. One can clearly show that the bound provided by the Chen-Stein method
does not converge to zero (it is of order µ(wp0w) with p0 the minimal period of
w, see Schbath (1995a)). But one can also show that a geometric distribution
(discrete version of the exponential distribution) does not fit the distribution of
the distance between two successive occurrences of an overlapping word [Robin
and Daudin (1999)].

The solution is to take advantage of the clump structure (clumps do not
overlap) and to use the following relations between the number of occurrences
N(w) and the clumps (size and count). Indeed we have

N(w) =

eN(w)∑

i=1

Ki(w) (1.12)

where Ñ(w) is the number of clumps of w and Ki(w) is the size of the i-th
clump, but we also have

N(w) =
∑

k>0

kÑk(w) (1.13)

where Ñk(w) is the number of clumps of w of size k in S. Since a compound
Poisson variable is defined like

∑
k>0 k Zk with Zk’s independent Poisson vari-

ables, or like
∑Z

i=1 Ci with Z a Poisson variable and Ci’s i.i.d. variables, the
Poisson approximation of the number of clumps (of any size or of size k) is the
core of the compound Poisson approximation of the word count. In the remain-
der of this section we will then explicitly define the clumps and give some of
their probabilistic properties.

Random indicator of a clump occurrence A clump of a word w in a
sequence S is a maximal succession of overlapping occurrences of w. The size
of a clump is the number of occurrences of w the clump is composed of. For
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instance, in Figure 1.1, there are two clumps of aataa: one of size 1 starting
at position 2, the other one of size 3 starting at position 11. The position
of a clump of w in the sequence is defined by the position (start) of the first
occurrence of w in the clump. Let us define Ỹi(w) the random indicator that
an occurrence of a clump of w starts at position i in S. A clump of w occurs
at position i if and only if an occurrence of w occurs at position i without
overlapping a previous occurrences of w. Therefore, if we neglect end effects
(i.e. when i < h), we can write

Ỹi(w) = Yi(w)[1 − Yi−1(w)] × · · · × [1 − Yi−h+1(w)]. (1.14)

(End effects are corrected by considering an infinite sequence). Now an occur-
rence of w which overlaps a previous occurrence of w is necessarily preceded by
a prefix w1 · · ·wp of w, where p is a period of w. If we restrict ourselves to prin-
cipal periods, this is a necessary and sufficient condition [Schbath (1995a)]. For
instance, an occurrence of aataataa overlaps a previous occurrence of aataataa
if and only if it is preceded either by aat (prefix of size 3) or by aataata (prefix
of size 7). If it was preceded by aataat (prefix of size 6), it would also be
preceded by aat.

Therefore, we have

Ỹi(w) =
∑

p∈P ′(w)

[1 − Yi−p(w1 · · ·wp)] × Yi(w).

Clump probability Let denote by µ̃(w) the probability that a clump of w
occurs at a given position, i.e. µ̃(w) = E[Ỹi(w)]. The previous equation gives

µ̃(w) = [1 − a(w)] × µ(w), (1.15)

where a(w) is the probability that an occurrence of w overlaps a previous
occurrence of w and is given by

a(w) =
∑

p∈P ′(w)

p∏

j=1

π(wj , wj+1). (1.16)

Symmetrically, the probability that an occurrence of w overlaps a next occur-
rence of w is also equal to a(w); Therefore, a(w) will be simply called the
probability of self-overlap of w. Note that a(w) = 0 if and only if w is a non-
overlapping word (we assumed that all transition probabilities were non zero).
In that case we also have Ỹi(w) = Yi(w) and µ̃(w) = µ(w).

Poisson approximation for the number of clumps Let define the number
of clumps of w by Ñ(w) :=

∑n−h+1
i=1 Ỹi(w). The mean number of clumps is
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then equal to (n − h + 1)µ̃(w) = [1 − a(w)]E[N(w)] from (1.15). The Poisson
approximation of Ñ(w) follows from a direct application of the Chen-Stein
method to the Bernoulli variables Ỹi(w) [Schbath (1995a)]. The error bound is
indeed of order (ρh + hµ(w)) where 0 < ρ < 1 is the second largest eigenvalue
(in modulus) of the transition matrix Π. Recall that nµ(w) = O(1) from the
rare event condition and that h = o(n).

The exact distribution of the number of clumps of w in model M1 has been
recently derived through its generating function [Stefanov et al. (2007)] and
compared to the Poisson distribution; The conclusion was that the Poisson
approximation is as better than the expected count of the word is small.

Size of a clump A clump is of size k if and only if the first occurrence
of w in the clump overlaps from the right a second occurrence (probability
a(w)), the second occurrence of w in the clump overlaps a third occurrence
(probability a(w)), . . . , the (k − 1)-th occurrence overlaps a k-th occurrence of
w (probability a(w)), and this k-th occurrence of w does not overlap a next
occurrence (probability 1− a(w)). Thus, if we denote by Ki(w) the size of the
i-th clump of w in the sequence, the random variable Ki(w) is geometrically
distributed:

P(Ki(w) = k) = [1 − a(w)] × [a(w)](k−1). (1.17)

Compound Poisson approximation for rare word counts As previ-
ously said, the Poisson approximations of the number of clumps of any size
and more particularly of size k for k ≥ 1 are the key ingredients for the com-
pound Poisson approximation of N(w). Indeed, let denote by CP(λk, k ≥>)
the compound Poisson distribution of

∑
k>0 kZk with Zk ∼ P(λk). Since

N(w) =
∑

k>0 kÑk(w), the total variation distance properties give

dTV(L(N(w)), CP(E[Ñk(w)], k ≥ 1)) ≤ dTV(L(Ñk(w), k ≥ 1),⊗P(E[Ñk(w)])).

The joint Poisson approximation of (Ñk(w), k ≥ 1) is a little more involved to
get than the one for Ñ(w) [Schbath (1995a)] but the error bound is of the same
order and

E[Ñk(w)] = [1 − a(w)]2[a(w)](k−1)
E[N(w)].

The above formula means that the limiting compound Poisson distribution
CP(E[Ñk(w)], k ≥ 1) is in fact a Pólya-Aeppli distribution (also called Geometric-
Poisson distribution) with parameter (E[Ñ(w), a(w)) [Johnson et al. (1992)].

Direct compound Poisson approximation methods exist and can be alter-
natively applied to the word count [Erhardsson (1999), Erhardsson (2000)].
Their advantage is to provide better error bounds but it gives the same limiting
compound Poisson distribution as above (see Lothaire (2005), chapter 6).
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Generalization to Mm and phased models Like for the Gaussian approx-
imation, the generalization to the phased Markov model of order 1 is done by
rewriting the sequence with the new alphabet A× {1, 2, 3} (see page 5). How-
ever, note that the occurrence of a single word w in sequence S corresponds
to the occurrence of a word family composed of three phased words in the new
sequence. Therefore, one has to use the compound Poisson approximation for
the count of a set of words in M1 presented in Section 1.4.1.

When one changes the alphabet (see page 5) to generalize the compound
Poisson approximation in model M1 to model Mm, m > 1, one has to be very
careful with the word overlaps. Indeed, there is no one-to-one transformation
between clumps of w in S and clumps of w⋆ (word w written on Am) in the
new sequence S⋆. Let us take an example with m = 2. Put w = aataa and let
S be the following sequence on the A alphabet:

S = gaataatgagaataaataataag.

S contains 4 occurrences of w and two clumps of w (one of size 1, the other
one of size 3). Now, we write the word and the sequence in the new alphabet
A2. For this, we put ga = γ, aa = α, at = β, ta = τ , tg = δ, ag = κ. We have

w⋆ = αβτα and S⋆ = γαβταβδγκγαβτα αβταβτακ.

We can see that the word w⋆ still appear four times in the sequence S⋆ (N(w) is
equal to the count of w⋆ in S⋆) but there are now three clumps of w⋆ in S⋆ (two
of size 1 and one of size 2). This is due to the fact that w⋆ has just a unique
period (P(αβτα) = {3}) whereas w has two periods (P(aataa) = {3, 4}).
Therefore, when the results for the word w⋆ in M1 will be “translated” into
the alphabet A, some overlaps will not appear explicitly in the formulas. In
Mm, only the overlaps on m letters or more will be taken into account since the
principal periods of w⋆ are the periods of w that are less or equal to (h − m).
The word w⋆ is non-overlapping as soon as w is not enough self-overlapping.

1.2.4 p-values and scores of exceptionality

The significance of the over-representation of a word w in a given DNA sequence
is measured by the p-value p(w):

p(w) = P{N(w) ≥ Nobs(w)}

where Nobs(w) is the observed count of w in the DNA sequence. If p(w) is close
to 0 then the word is exceptionally frequent: there is no chance to observe it
so many times in random sequences. On the other hand, the significance of an
under-representation is measured by the p-value p′(w) = P{N(w) ≤ Nobs(w)}.
If p′(w) is close to 0 then w is exceptionally rare under the model: there
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is no chance that w occurs so rarely in random sequences. Since the exact
distribution of the count N(w) is rarely available in practice, approximate p-
values are calculated to detect exceptional words and usually converted into
scores of exceptionality.

Approximate p-values A natural way of approximating p-values is to use
an approximate distribution of N(w), for instance a Gaussian distribution for
highly expected words or a compound Poisson distribution for rarely expected
words, as we have seen in Section 1.2.3. Calculating approximate p-values re-
quires just to compute tail of Gaussian or compound Poisson distributions. An
efficient algorithm to compute tails of Geometric-Poisson distributions has been
proposed by Nuel (2008).
For exceptional words, i.e. words whose count strongly deviates from what
is expected, large deviation theory is probably the most accurate way to ap-
proximate p-values. This approach has been studied in Nuel (2004). Since
it requires sophisticated numerical analysis and longer computation time, this
method should be restricted to the most exceptional words (filtered from Gaus-
sian or compound Poisson approximations for instance).

Score of exceptionality In practice, it is often more convenient to manipu-
late scores from R than probabilities of the form p(w) = P{N(w) ≥ Nobs(w)},
especially when the ones we are interested in are very close to 0 or very close to
1. For symmetrical reasons we prefer to use the probit transformation rather
that the − log transformation. Therefore, to each probability p(w) we associate
the score u(w) such that:

P{N (0, 1) ≥ u(w)} = p(w).

Therefore, words with a high positive score are exceptionally frequent whereas
words with a negative but high absolute value score are exceptionally rare in
the observed sequence.

The Gaussian approximation of N(w) has a great practical advantage: it
allows to directly calculate the score of exceptionality u(w) without calculating
the associated p-value. Indeed, if we put

u(w) =
N(w) − Ê[N(w)]√

σ̂2(w)
(1.18)

where Ê[N(w)] is the estimator of the expected count given by Eq. (1.9), p. 10
and σ̂2(w) is a plug-in estimator of (n − h + 1)v2(w) (cf. Eq. (1.11), p. 11),
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namely

σ̂2(w) = Ê[N(w)] + 2
∑

p∈P(w),p<h−1

Ê[N(wpw)] (1.19)

+{Ê[N(w)]}2



∑

a

[Nw(a+)]2

N(a)
−
∑

a,b

[Nw(ab)]2

N(ab)
+

1 − 2Nw(w1+)

N(w1)


 ,

then we have

P{N(w) ≥ Nobs(w)} ≃ P{N (0, 1) ≥ u(w)}.

1.2.5 Example of DNA motif discovery

Chi motifs in bacterial genomes Chi motifs have been identified in several
bacterial genomes and they are not conserved through species. Their identifi-
cation in a new species is still a challenge. They are involved in the repair of
double-strand DNA breaks by homologous recombination. More precisely, they
interact specifically with an enzyme that processes along the DNA and degrades
it (exonuclease activity): when the enzyme encounters a Chi site, its exonucle-
ase activity is strongly reduced and altered but it still continues to separate
the two DNA strands forming then a substrate for homologous pairing and re-
pair of the deleted DNA parts. Since Chi motifs protect the bacterial genome
from degradation and stimulate its repair, it seems important that these motifs
were as much frequent as possible along the bacterial genome. Biologists expect
them to be significantly over-represented.

Moreover, Chi activity is strongly orientation-dependent; The Chi motif is
only recognized when the enzyme enters a double-strand DNA molecule from
the right side of the motif. In many bacterias for which the Chi motif has been
identified, Chi orientation is correlated with the direction of DNA replication,
meaning that it occurs preferentially on the leading strand [El Karoui et al.
(1999), Halpern et al. (2007)]. The over-representation of Chi should then be
important on the leading strands. Biologists classically measure the asymmetry
strand of a motif by calculating its skew. The skew of a motif w is simply the
ratio N(w)/N(w) where w is the reverse complementary of the word w; In other
words N(w) is simply the count of w in the complementary strand. Therefore,
biologists expect Chi to be relatively skewed, i.e. with a skew far from one.

E. coli as a learning case The Chi motif of E. coli has been known for long
time: it is the 8-letter word gctggtgg. If we study the statistical properties of
Chi frequency along E. coli genome, we can note some significant characteris-
tics. First of all, its 762 occurrences in the complete genome (concatenation of
both leading stands, n = 4.6 106) are significantly high whatever the model we
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choose; In other words, its high frequency cannot be explained by the genome
composition. As we can see on Table 1.2, Chi has very high over-representation
scores and is always among the 5 most exceptionally frequent 8-letter words.
Second, if we restrict the analysis to the E. coli backbone1 (n = 3.7 106), Chi
becomes the most exceptional 8-letter words in 5 models, especially in the max-
imal model M6 (see Table 1.2). Analyzing only the backbone seems therefore
to reduce the noise produced by the regions which are either highly variable
or specific to one or few strains (mobile elements); Indeed, there is a priori no
biological reason for Chi to occur in such regions.

complete genome backbone
762 occurrences 675 occurrences

m Êm[N ] σ̂2
m um rank Êm[N ] σ̂2

m um rank

0 85.9 85.8 72.96 3 73.10 73.02 70.44 3
1 84.9 84.8 73.54 1 71.47 71.32 71.46 1
2 206.8 203.9 38.88 1 186.68 183.82 36.02 1
3 355.5 338.9 22.08 5 315.26 299.68 20.78 1
4 355.3 314.4 22.94 2 309.79 272.90 22.11 2
5 420.9 298.0 19.76 1 376.68 262.42 18.42 1
6 610.1 203.3 10.65 3 539.09 176.02 10.24 1

Table 1.2: Statistics of gctggtgg in the complete genome (left) and in the
backbone genome (right) of E. coli K12 under various models Mm. The rank
is obtained while sorting the 65,536 scores by decreasing order.

The choice of the model does not seem to affect the significance of the Chi
frequency (it is always exceptional), but this is not a general picture. Note
that, when the order of the Markov model increases, the model better fits the
sequence composition and less exceptional words are found. This is illustrated
by the boxplots of Figure 1.2. Moreover, in a high order model we have a more
accurate knowledge about the sequence composition than in a low order model:
the significance of a word frequency has then no reason to be the same. This
point is illustrated by the plot of Figure 1.2 which compares scores in models
M1 and M6. We recognize the Chi motif which is clearly outside the cloud but
let us take the case of the word ggcgctgg. It occurs 761 times in the E.coli
backbone, it has a significantly high score of 62.4 in model M1 (it is the second
most exceptional word) but has a score of 0.8 in model M6 (rank 17100). It
simply means that its high frequency can be explained by the composition of
7-letter words; Indeed it is expected about 749 times in M6.

1The backbone of a bacterial genome is composed of the genomic regions conserved in

several strains of the bacteria. Here, we used the backbone obtained from the alignment of the

three strains K12, O157:H7 and CFT and available at http://genome.jouy.inra.fr/mosaic/
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Figure 1.2: Exceptionality scores for the 65,536 8-letter words in the E.coli
backbone. Left: Boxplots of the scores under models M0 to M6. Right: Scores
under models M1 (x-axis) and M6 (y-axis).

The third characteristics of Chi in the E.coli backbone is that it is significantly
skewed. Its skew is equal to 3.20 and the method described in Section 1.4.1 to
assess skew significance gives a score of 6.53 in M6 (p-value of 3.3 10−11).

Identification of Chi motif in S. aureus We will describe here the strategy
used in Halpern et al. (2007) to identify the Chi motif in the bacteria S. aureus.
The first step has been to extract the backbone of the S. aureus genome by
comparing the genome of six strains of the bacteria. The obtained backbone
contains about 2.44 106 letters.

The second step was to search for motifs which are frequent enough, excep-
tionally frequent and relatively skewed. They start by analyzing 8-letter words
(like for E. coli) but none of the most over-represented and skewed motifs were
frequent enough to be retained as potential Chi candidates. They thus focused
on 7-letter words. Scores of exceptionality were calculated with the Gaussian
approximation and in the maximal model, namely model M5. 6 motifs have an
exceptionality score greater than 11 (see Table 1.3 or Figure 1.3 for a global
view). Two of them have a negative skew score so they were not retained. A
biological experiment has then been done to test for S. aureus Chi activity of
the four candidates: gaaaatg, ggattag, gaagcgg and gaattag. The conclusion
was that gaagcgg is necessary and sufficient to confer Chi activity in S. aureaus.
This strategy has also been successfully used to predict and validate the Chi
motif of three species of the Streptococcus genus [Halpern et al. (2007)].
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w Nobs(w) Ê5[N(w)] σ̂2
5(w) u5(w) Skew Score

taaaaaa 1542 1214.3 603.4 13.34 1.61 -1.28
gaaaatg 1067 789.9 454.2 13.00 2.48 1.13
taaaatt 1356 1062.6 552.8 12.48 1.04 -1.53
ggattag 266 143.2 97.5 12.43 2.53 1.52
gaagcgg 272 162.4 88.1 11.67 7.56 2.91
gaattag 614 420.7 274.4 11.67 3.89 7.23
gaaaaag 1177 942.1 518.0 10.32 3.52 2.53
taagatt 316 201.3 130.9 10.03 1.07 -2.98
ttaaaag 1059 856.5 431.6 9.75 2.00 3.85
gatttag 657 488.1 305.9 9.66 2.16 4.25

Table 1.3: The 10 most exceptionally frequent 7-letter words under model M5
in the S. aureaus complete genome. Columns correspond respectively to the
word, its observed count, its estimated expected count, its normalizing factor,
its score of over-representation under model M5, its observed skew and its skew
score under model M0.

1.3 Words With Exceptional Distribution

The way the occurrences of a given motif w are spread along a sequence or
among different sequences or sub-sequences may provide functional informa-
tions. When the motif (and its functional properties) is known, this gives hints
about the function of the regions where it occurs (or where it is avoided). Con-
versely, new interesting motifs may be discovered by comparing their relative
frequencies in different well defined sequences or sub-sequences (e.g. regions of
a genome).

1.3.1 Compound Poisson process

For both problems, we need a probabilistic model describing the motif occur-
rences process to assess the significance of the observed results. In this section,
we will focus on the (compound) Poisson process which is simple and provides
a surprisingly good approximation of the distribution of the word count [Robin
and Schbath (2001)].
In this model, the sequence is viewed as a continuous line. To account for possi-
ble overlaps between occurrences, the word is assumed to occur in clumps along
the sequence. We assume that the counting process of the clumps {C(x)}x≥0 is
an homogeneous Poisson process with intensity λ (in the entire Section 1.3, we
will avoided to index the quantities by (w) because there will be no ambiguity).
Each clump contains a random number of occurrences, referred to as the clump
size. The clump sizes {K1,K2, . . . } are supposed to be i.i.d. with distribution
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Figure 1.3: Over-representation scores under M5 and skew scores under M0 for
the most over-represented 7-letters words (over-representation scores greater
than 5) in the complete genome of S. aureus. The four best candidates (motifs
A to D) are indicated. Motif C (gaagcgg) is the functional Chi site of S. aureus.

p(k). The counting process {N(x)}x≥0 is hence the compound Poisson process
defined as

N(x) =
∑

c=1...C(x)

Kc.

In the case of a single fixed word, the clump size has a geometric distribution:
p(k) = (1 − a)ak−1, where a stands for the overlapping probability of the word
(see page 14). In the case of more complex motif, p(k) may have a more com-
plicated form [Robin (2002)]. The estimates of parameters λ and a depends on
the biological question: empirical estimates will fit the observed word frequency
(and clumping), while estimates based on a Markov chain model will account
for the sequence composition.

1.3.2 Words significantly unbalanced between two sequences

We first consider the detection of motifs having different frequencies between
two sequences S1 and S2. Two avoid artifacts and spurious detections, the
testing procedure must account for the different lengths and composition of the
sequences, and for the fact that the word may have an unexpected frequency
in one or both of them.
We only consider here the non-overlapping case (i.e. a = 0). In sequence Si



22 Sophie Schbath and Stéphane Robin

(i = 1, 2), the count Ni of w is supposed to have a Poisson distribution

Ni ∼ P(λi), λi = kiℓiµi

where ℓi is the length of Si, µi = µi(w) is the occurrence probability of w
under a Markov model fitted to the composition of Si (see Section 1.2.2) and
ki is the exceptionality coefficient of w in Si. This framework is described in
Robin et al. (2007).

Our purpose is to test if the counts of w in both sequences deviate from
their expected values in the same way; We hence want to test the hypothesis
H0 : {k1 = k2} versus {k1 6= k2}. A test procedure can be derived from
the following property: for two independent Poisson variables N1 and N2 with
respective means λ1 and λ2, the conditional distribution of N1 given the sum
N1 + N2 is binomial B(N1 + N2, λ1/(λ1 + λ2)). Hence we have under H0:

N1|(N1 + N2) ∼ B (N1 + N2, ℓ1µ1/[ℓ1µ1 + ℓ2µ2]) .

The distribution of the counts of overlapping words is characterized by two
parameters (λ and a). For such words, the frequency comparison must be stated
in both terms. Assuming that the overlapping probability is the same in the
two sequences leads to define the same binomial test procedure as above on
the number of clumps (rather than the number of occurrences itself), that is
supposed to have a Poisson distribution (see Section 1.2.3).
To illustrate this procedure, we consider the occurrences of the Chi motif w =
gctggtgg in the genome of E. coli. This genome can be split into a very
conserved part (called ’backbone’) that is common to various strains of E. coli
and a remaining part (called ’loops’) that is specific to the strain under study:
K12. The occurrences of Chi actually never overlap in the whole genome, the
number of clumps is the number of occurrences. Chi occurs 691 in the backbone2

and 66 times in the loops, while the expected numbers of clumps ℓiµ̃i under
model M1 are 73.6 and 11.3, respectively, so ℓ1µ1/(ℓ1µ1 + ℓ2µ2) = 86.7%. It
seems therefore more frequent in the backbone than in the loops. To assess
the significance of this difference, we calculate the p-value Pr{B(757, 86.7%) ≥
691} = 5.12 10−5, which shows that Chi is significantly more frequent in the
most conserved region of the genome, which is consistent with its favorable
function.

Testing the equality of the two overlapping probabilities (H0 : {a1 = a2})
leads to an hyper-geometric test (see Robin et al. (2007)).

2Contrarily to Section 1.2.5, page 1.2.5, the backbone is here the one obtained from the

alignment of two strains: K12 and 0157:H7
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1.3.3 Detecting regions significantly enriched or devoid of a

word

We now want to detect genome regions where the occurrences of a given word
w are unexpectedly frequent (or rare). The standard strategy in such a sit-
uation is to use scan statistics, i.e. distances between successive occurrences.
This strategy was first proposed in a genomic context by Karlin and Macken
(1991). In this setting, the occurrences are supposed to occur according to an
homogeneous Poisson process, which actually corresponds to a non-overlapping
word.
Overlapping words can be studied in the compound Poisson model. Since
the clump size has a geometric distribution, the distance D between two suc-
cessive occurrence is either (i) 0 (if the two occurrences belong to the same
clump) or (ii) exponential (if they belong to two successive clumps). (i) occurs
with probability a and (ii) with probability (1 − a). The cdf of D is hence
F (y) = 1 − (1 − a)e−λy. The analogous exact distribution is derived in Robin
and Daudin (2001) in the Markov chain model. Because the occurrence process
is a renewal process, the cdf Fr of the r-scan, i.e. the cumulated distance Dr be-
tween the ith occurrence and the (i+r)-th is simply the r times self-convolution
of F : Fr = F⊗r.

Let Dr
1,D

r
2, . . . denote the successive r-scans; The richest region in terms

of occurrences is characterized by the smallest Dr
min = mini D

r
i . To check if

the observed minimum distance dr
min is significantly small, we need to evaluate

Pr{Dr
min ≤ dr

min}. A Poisson approximation strategy is proposed by Dembo
and Karlin (1992):

Pr{Dr
min ≤ dr

min} ≈ 1 − exp[−(N − r)Fr(dmin)].

where N is the total number of occurrences; Chen-Stein bounds for this ap-
proximation are provided. These results can be applied for both compound
Poisson process [Robin (2002)] and Markov chain [Robin and Daudin (2001)]
frameworks.
As an illustration, we consider the occurrences of the Chi motif in the genome of
Haemophilus influenzae, and study their distribution using 3-scans (see page 17
to get the description of the Chi motif). The x-axis of Fig. 1.4 gives the po-
sitions in Mbps, the y-axis gives the intensity 3/D3 multiplied by 103 (in log
scale); Peaks correspond to rich regions. We observe several peaks, the highest
one being near the center, i.e. near the terminus of repliaction. Chi motifs are
expected to be frequent here because this region is crucial in the replication
mechanism of the cell. The four horizontal lines give, in ascending order, the
theoretical mean intensity, the lower bound of the Chen-Stein approximation,
the Chen-Stein threshold and the upper bound. We see that several peaks
are significant under the M1 model, but the mean intensity of the occurrence



24 Sophie Schbath and Stéphane Robin

process is highly underestimated by this model. Using maximum-likelihood es-
timates, the compound Poisson model fits the observed mean intensity; In this
model, even the highest peak turns out to be non-significant any-more.

First order Markov chain Compound Poisson process

Figure 1.4: Significance of the intensity peaks for the occurrences of the Chi
site of H. influenzae.

1.4 More Sophisticated Patterns

Biological motifs are not always exact and simple words. They often contain
some uncertainties (so-called degenerated motifs) like the Chi motif gntggtgg
of H. influenzae (the n stands for any of the four DNA letters). In this case,
we have to consider the occurrences of a set of words rather than a single word.
In the case of transcription factor binding sites, we have to deal with several
(exact or not) words that should occur at a constrained distance apart (so-
called structured motifs). In Section 1.4.1, we give major extensions required
to generalize the results on simple words presented in the previous sections to
set of words. Then, we will present some results for structured motifs (Section
1.4.2).

1.4.1 Family of words

Let W be a set (family) of r words: W = {w1, . . . ,wr}. To simplify the
exposition, we will assume that all of the r words have the same length h.
In the general case, one would just make the assumption that no word from
the family is part of another word of the family and the results can be easily
generalized.
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Distribution of the count of a word family (model M1) The number
of occurrences of the word family, denoted by N(W), is simply the sum of the
counts of each word taken from W:

N(W) =
r∑

j=1

N(wj).

The expected count E[N(W)] is then simply the sum of the r expected counts
E[N(wj)], j = 1, . . . , r. For the variance, we have V[N(W)] =

∑r
j=1 V[N(wj)]+

2
∑

j<j′ C[N(wj), N(wj′)] so we just need to derive the covariance between two
word counts (see below). The Gaussian approximation of N(W) is immediate
and it is easy to derive a score of exceptionality for any family of words. For
the compound Poisson approximation, it is much more involved. A first strat-
egy could be to approximate separately the clumps of each word, and then to
combine the associated Poisson variables [Reinert and Schbath (1998)]. Un-
fortunately, words from W can overlap each other and this will lead to a bad
approximation for overlapping families. The alternative is to consider clumps
of the word family itself, i.e. clumps composed of overlapping occurrences of
W [Roquain and Schbath (2007)]. This leads to a compound Poisson distri-
bution, whose parameters are derived from an overlapping probability matrix
(A(wj , wj′))1≤j,j′≤r, but which is not a geometric Poisson distribution. Tails of
general compound Poisson distribution can be calculated by using the algorithm
from Barbour et al. (1992a).

Covariance between two word counts in M1 Let two different words w
and w′ of length h. The covariance C[N(w),N(w′)] is given by

C[N(w), N(w′)] = −E[N(w)] E[N(w′)] +
∑

i6=j

E[Yi(w)Yj(w
′)].

Thanks to symmetry, let us restrict ourself to the calculation of E[Yi(w)Yi+d(w
′)]

for d > 0. If 0 < d < h, an occurrence of w′ at position i + d would overlap
an occurrence of w at position i. We then need to introduce the possible lags
between an occurrence of w and a following overlapping occurrence of w′.

w′

w′
1 w′

h

w1 wp
︸ ︷︷ ︸

p∈P(w,w′)

wh

w

Let P(w,w′) be the set of these possible lags, namely

p ∈ P(w,w′) ⇐⇒ w′
j = wj+p, ∀j ∈ {1, . . . , h − p}.
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Overlaps are not necessarily symmetric so P(w,w′) 6= P(w′,w). For instance,
atcg can be overlapped from the right by cgct after a lag of 2 (P(atcg, cgct) =
{2}), whereas cgct cannot be overlapped from the right by atcg (P(cgct, atcg) =
∅).
If p ∈ P(w,w′), let wpw′ be the word composed of two overlapping occurrences
of w and w′: wpw′ = w1 · · ·wpw

′
1 · · ·w′

h.
By analogy with Equation (1.5), p. 9, one can show that

E[Yi(w), Yi+d(w
′)] =





0 if 0 ≤ d < h, d∈/ P(w,w′),
µ(wdw′) if d ∈ P(w,w′),

µ(w)µ(w′)
πd−h+1(wh,w′

1)
µ(w′

1
)

if d ≥ h

which finally leads to the following expression for the covariance:

C[N(w), N(w′)] = − E[N(w)] E[N(w′)] +
∑

p∈P(w,w′)

(n − h − p + 1)µ(wpw′)

+
∑

p∈P(w′,w)

(n − h − p + 1)µ(w′pw)

+ µ(w)µ(w′)

n−2h+1∑

t=1

(n − 2h − t + 2)

[
πt(wh, w′

1)

µ(w′
1)

+
πt(w′

h, w1)

µ(w1)

]
.

Note that it is also possible to calculate the asymptotic variance of N(W) −∑
j Ê[N(wj)] by using the conditional covariances of (N(wj),N(wℓ)) in the

permutation model (see Schbath et al. (1995)).

Skew distribution As we have seen in Section 1.2.5, biologists may be inter-
ested in the statistical significance of the skew of a word w. The skew is defined
like the ratio N(w)/N(w) where w is the reverse complementary3 word of w
(for instance if w = gctggtgg then w = ccaccagc). To calculate the sig-
nificance of the skew one then has to get (or to approximate) the following
p-value:

P

(
N(w)

N(w)
≥ b

)

where b is the observed skew. This requires at least the joint distribution of
(N(w), N(w)).
If we assume that (N(w), N(w)) can be approximated by a Gaussian vector
with mean (Ê[N(w)], Ê[N(w)]) and covariance matrix Σ, the above p-value can
be approximated by

P

(
N (0, 1) ≥ bÊ[N(w)] − Ê[N(w)]√

Σ11 − 2bΣ12 + b2Σ22

)
.

3a is the complement of t whereas c is the complement of g
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The right term of the above inequality will then be considered like a score
to measure the significance of the skew. Typically, Σ11 and Σ22 are given by
Eq. (1.20), p. 17 and Σ12 can be obtained similarly thanks to the conditional
covariances between counts.
If N(w) and N(w) are more likely to be (compound) Poisson distributed, no
solution exists for now. If w and w do not overlap each other, their counts can
be approximated by two independent geometric Poisson variables [Reinert and
Schbath (1998)] but it does not help to derive an asymptotic distribution for
the skew.

Distances between multiple words Because of the possible overlaps be-
tween words of the family, the distribution of the inter-site distances between
two word family occurrences depends on which word actually occurs first and
which word occurs next [Robin (2002)]. Therefore, in the general case, the oc-
currences of a set of words do not constitute a renewal process and the method-
ology described in Section 1.3.3 cannot be used to get the r-scan distribution.
In the Markov chain framework, the occurrences of a set of words turns out to
be a semi-Markov process.

1.4.2 Structured motifs

A structured motif is composed of several words which should occur in a given
order and at some distances apart from each other. Let consider the simple
case of two fixed words u and v. We define a structured motif m like a pattern
whose u is a prefix, v is a suffix and whose length is |u| + d + |v|, d ≥ 0.
Moreover we impose that d1 ≤ d ≤ d2. Since d1 can be large (typically 12 to 20
for transcription factor binding sites), it is not reasonable to view a structured
motif like a set of words (i.e. a very degenerated word). Dedicated methods
should then be provided. The two main questions related to structured motif
occurrences are: (i) what is the probability that a random sequence contains at
least one occurrence of a given structured motif? (ii) Is this structured motif
more over-represented in front of genes than along the whole chromosome? For
the first question, an approximate probability has been derived by assuming
that the random indicator of occurrence Yi(m) only depends on Yi−1(m) [Robin
et al. (2002)]; More recently the generating function of the waiting time for
the first occurrence of a structured motif has been proposed [Stefanov et al.
(2007); See also Stefanov’s chapter]. For the second question, one can use the
test described in Section 1.3.2 which just requires to compute µ(m) = E[Yi(m)]
the occurrence probability of m; An example of transcription factor binding
site discovery method can be found in Touzain et al..
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Occurrence probability The probability for m to occur at a given position
in a random sequence X1,X2, . . . ,Xn (model M1) is given by:

µ(m) = µ(u)

d2∑

d=d1

P(Du,v = d)µ(v)/µ(v1)

where Du,v is the random distance between an occurrence of u and the next
occurrence of v, and v1 is the first letter of v. The distribution of Du,v is given
in Robin and Daudin (2001) (see also Stefanov’s chapter).

1.5 Ongoing Research And Open Problems

Multiple testing problem Multiple testing problems immediately arise in
motif detection studies: looking for exceptional 8-letter words leads to perform
thousands of tests at the same time. The control of the false discovery rate
(FDR, Benjamini and Hochberg (1995)) has received a huge attention in the
last few years in the gene expression context, but it is still neglected in most
motif statistic studies. The main difficulty comes from the dependency between
the counts – and hence between the tests – of all words under study. Under the
null (Markov) model, all word counts are correlated, since they are observed
on the same sequence. The covariance between any pair of counts is actually
known (see Section 1.4.1), but is difficult to account for in multiple testing
procedures, partly because of high dimensionality problems.

Sequence classification Many genomes, e.g. bacterial ones, can be char-
acterized in terms of oligo-nucleotides composition; This phenomenon is often
refered to as ’genome signature’. Several new genomic approaches aim at clas-
sifying sequences with similar origins: comparative genomics aims at finding
similarities between complete genomes, typically in an evolutionary perspective;
Meta-genome analysis consider sets of hundreds of species living in the same
environment (soil, human intestine) and deal with mixtures of sub-sequences
coming from these different species.
As seen before, the Mm Markov chain model accounts for the composition of a
sequence in (m + 1)-letter works. Mixture models [McLachlan and Peel (2000)]
provide a natural framework to classify objects into unknown groups. Such a
model assumes that the sequences actually come from Q groups, each char-
acterized by one transition matrix; Sequence i coming from group number q
is a random path with transition matrix Πq. The Expectation-Maximization
(E-M) algorithm is the standard way to estimate both group proportions and
matrices Πq, which make (Q − 1) + 3Q4m independent parameters. However,
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mixture models generally lead to model selection problems, typically to choose
the unknown number of groups Q. In the case of sequences, this problem turns
out to be very complex because of different sequence lengths: long sequences
tend to discriminate very easily from each other, while small sequences have
almost no influence on the global model. Combinatorial arguments are needed
to evaluate the number of ’efficient’ parameters, i.e. the number of transition
probabilities for which some information can actually be derived from the data.

High throughput sequencing This new technology is likely to be used in
many biological experiments in the next decade, typically in place of micro-
arrays. It consists in sequencing a huge number (40 millions) of small DNA
fragments (25 nucleotides) in one run. It can be used to count the number of
copies of the transcripts of a given gene, to evaluate its expression level, or to
explore the meta-genome of a given ecosystem. Dealing with such large datasets
is an open problem. Markov models and motif statistics can probably help to
organize all these information, be we have to admit that we still do not really
know how.
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