Statistics for genomic data science in health

Cyril Dalmasso cyril.dalmasso@univ-evry.fr

Université d'Evry Val d'Essonne

2022-2023

・ 得 ト ・ ヨ ト ・ ヨ ト

1 Introduction to GWAS/WGS/WES

Data structure

- Single-marker analyses
- Multiple testing 4
- Multi-marker analyses

э

A B M A B M

< A

1 Introduction to GWAS/WGS/WES

- Multi-marker analyses

э

・ 得 ト ・ ヨ ト ・ ヨ ト

Statistics and genetics/genomics

Historical perspective

- Mendel (1866) and Morgan (1915) \rightarrow genetic heritability concept
- 1953 : DNA structure resolved \rightarrow Molecular genetics
- 1970s : Databases constitution \rightarrow Bioinformatics
- 1990 : Whole genome sequencing
- $\bullet~2000$: High throughput technologies \rightarrow massive genomic data

Genomics

Genomics is the study of genomes

Genetic factors in a medical context

Monogenic diseases

- One causal gene (mendelian entity)
 - Rare mutations / allelic heterogeneity
 - High penetrance (ℙ(phenotype|riskgenotype)) ⇒ multiple cases (familial aggregation)
- Environmental factors

Multifactorial diseases

V. Chaudru

Identification of causal genes and gene-environment interactions

- Is there familial aggregation? (epidemiological study)
- Is there a mendelian entity? (segregation analysis)
- In which genome regions can we find susceptibility genes ?
 → linkage analyses (family based) powerful in gene identification of mendelian diseases
- Which are the susceptibility genes?
 - \rightarrow association studies (population based)

powerful in gene identification of complex diseases

Linkage analyses and association studies are based on genetic markers

Association studies

Objectives of association studies

- to localize regions containing a causal gene
- to test association with potential candidate genes
- to characterize such genes

TH 16-

Association studies

Candidate gene

Use of pre-specified genes

Fine mapping

Specific region (1-10Mb; 100 SNPs)

Genome wide association studies (GWAS)

Use of genes all along the genome Remark : Association with polymorphisms that are not themselves causal risk factors can be used to localize the trait gene

Association studies

Population based studies

Use of unrelated individuals rather than families

э

- 4 周 ト - 4 日 ト - 4 日 ト

Case-control studies

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Genome wide association studies

Overall strategy

- O Calculate association statistics with the phenotype of interest
- Oerive p-values
- Apply a Multiple Testing Procedure
- Follow-up (report, meta-analysis, auxiliary analysis, ...)

· · · · · · · · ·

Data structure

- Single-marker analyses
- Multiple testing
- 5) Multi-marker analyses

A B A A B A

< 47 ▶

Introduction to GWAS/WGS/WES

Data structure

- Single Nucleotide Polymorphism
- Technologies
- Preprocessing
- 3 Single-marker analyses
- 4 Multiple testing
- Multi-marker analyses

(B)

Genetic markers

Definition

A genetic marker is a DNA sequence

- with a known location on a chromosome
- easily detectable
- can be described as a variation that can be observed

∃ ▶ ∢

Single nucleotide polymorphism (SNP)

Single nucleotide polymorphisms (SNP) are the most common polymorphisms (approx. 10 millions known SNPs).

If reverse strand is chosen as reference, genotype for this SNP can be CC, CT or TT (GG, GA or AA on direct strand), often recoded in 0, 1 2 in genetic data files.

Single Nucleotide polymorphism (SNP)

э

・ 何 ト ・ ヨ ト ・ ヨ ト

Single Nucleotide polymorphism (SNP)

Some numbers

- Average distance between two SNPs: 600bp
- Total number of SNPs: 10 millions (among 3.2 billions base pairs)

- 4 B b - 4 B b

Definition

Linkage disequilibrium is the tendency for pairs of alleles at nearby loci to be associated with each other more than expected by chance

・ 何 ト ・ ヨ ト ・ ヨ ト

LD measures

MarkerB MarkerA	В	b	
A	р _{АВ}	р _{Аb}	p_{A+}
а	p_{aB}	p_{ab}	p_{a+}
	p_{+B}	p_{+b}	

•
$$\mathcal{D} = p_{AB} - p_A p_B$$

• $\mathcal{D}' = \frac{\mathcal{D}}{\mathcal{D}_{max}}$ where

$$\mathcal{D}_{max} = \begin{cases} \min(p_A p_b; p_a p_B) & \text{if } \mathcal{D} > 0 \\ \min(p_a p_b; p_A p_B) & \text{if } \mathcal{D} < 0 \end{cases}$$

•
$$R^2 = \frac{D^2}{p_a p_A p_b p_B}$$
 (-> correlation coefficient)

æ

イロト イロト イヨト イヨト

Haplotype blocks

- Haplotype: set of SNPs that tend to occur together.
- Haplotype block: Islands of high linkage disequilibrium separated by regions of low linkge disequilibrium
- Recombination rates appear greater between blocks than within blocks
- Blocks exhibit low haplotypic diversity and most of the common haplotypes can be defined by a relatively small number of SNPs (3-5)

· · · · · · · · ·

Haplotype blocks

Guergnon J. et al, J Infect Dis, 2012

Data structure

- Single Nucleotide Polymorphism
- Technologies
- Preprocessing
- 3 Single-marker analyses
- 4 Multiple testing
- Multi-marker analyses

4 3 4 3 4 3 4

< 47 ▶

Genomic technologies

Technologies

- Whole genome sequencing (WGS)
- Whole exome sequencing (WES)
- SNP genotyping (microarrays)

Technologies

Microarrays

Key concept for GWAS

Exploiting the correlation structure in the genome to selectively genotype a reduced number of polymorphisms by providing a reasonable coverage of the genome.

TAG SNPs

3

Technologies

Illumina SNP arrays

26 / 192

Affymetrix SNP arrays 6.0

Affymetrix SNP Array 6.0

- 906,600 SNP
 - 482 000 SNP from SNP Array 5.0
 - 424 000 new tag-SNP
- 946,000 CNV
 - 202,000 probes targeting 5 677 regions from the 'Toronto Database of Genomic Variants'

<**A**₽ ► < **B** ► <

• 744,000 probes, evenly spaced along the genome

Intensity values for both alleles

æ

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Intensity values for both alleles

æ

(日) (四) (日) (日) (日)

Genome Studio (Illumina)

Cyril Dalmasso (UEVE)

M2 Data Science : Santé, Assurance, Financ

3

Preprocessing / normalization

Sources of variability

- Preparing the samples
 - MRNA preparation
 - Reverse transcription to cDNA
 - Dye labeling
- Spotting the chips
 - PCR amplification
 - Pin geometry and surface features
 - Amount of cDNA transported by pins
 - Amount of cDNA fixated on slide
- Hybridization process
 - Hybridization parameters (temperature, time, amount of sample)
 - Spatial dis-homogeneity of hybridization on the slide
 - Non-specific hybridization Image production and processing:
 - Non-linear transmission, saturation effects, variations in spot shape
 - Global background shining, local overshining from neighboring spots

Normalization - Example (Illumina)

www.illumina.com

Normalization - Example (Illumina)

- Outlier removal
- Background estimation
- 8 Rotational estimation
- Shear estimation
- Scaling estimation

∃ → < ∃ →</p>

Genotyping

Cyril Dalmasso (UEVE)

Objective

æ

(日) (四) (三) (三) (三)

Genotyping

Summary indexes

Cyril Dalmasso (UEVE)

/12 Data Science : Santé, Assurance, Finance

Technologies

Methods

Classification

- K-means, K-medoids Limits: sensitive to initial values, need for class number specification, similar group sizes, ...
- Mixture models
 - EM algorithm
 - Bayesian framework

Limits: sensitive to the model choice, need for class number specification, ...

۰

Comparison of genotying algorithms for Illumina's SNP arrays Ritchie et al BMC Bioinformatics 2011
Data structure

	$marker_1$	marker ₂	 marker _m	phenotype	age	sex	
sample ₁	0	2	0	<i>y</i> 1	42	М	
sample ₂	1	1	0	<i>y</i> 2	63	F	
 sample _n	0	1	2	Уn	27	F	

Ξ.

イロト イポト イヨト イヨト

Whole genome sequencing (WGS) and whole exome sequancing (WES)

from Smahane CHALABI (CNRGH)

Cyril Dalmasso (UEVE)

Whole genome sequencing (WGS) and whole exome sequancing (WES)

Data preprocessing

- Raw reads
- Quality check of raw reads
- Mapping

Variant calling

Call SNPs, indels and some SVs (separately or simultaneously)

★ ∃ →

Microarrays vs. Sequencing

Microarrays

- Data easily stored and analyzed
- Allele calling is standardized
- Experiment well understood
- Number of statistical tests known and carefully considered
- SNP interrogated directly and indirectly

Sequencing

- Requires massive storage capacity
- Allele and Structural Variation calling still in flux
- Experiment not clearly defined
- SNPs interogated at different depths

- 4 周 ト - 4 日 ト - 4 日

ntroduction to GWAS/WGS/WES

Data structure

- Single Nucleotide Polymorphism
- Technologies
- Preprocessing
- 3 Single-marker analyses
- 4 Multiple testing
- Multi-marker analyses

(B)

< 行い

Phenotypes Quality Controls

The phenotype is critical to good genetic studies

- Precise
- The closest to a gene product

4 A N

Phenotypes Quality Controls

In practice

- Create standard report with descriptive statistics
- Check distribution of quantitative traits
- Look for outliers
- If needed, impute missing phenotype

E 6 4

Genotypes Quality Controls

- Call rates
- Sex inconsistencies
- Hardy Weinberg Equilibrium test
- Minor alele frequencies
- Population stratification

E 6 4

Data filtering

Call rates

No consensual threshold. Typically:

- Individuals with more than 10% of missing SNPs are removed
- SNPs with more than 5% of mising samples are removed (depends on the sample size)

★ ∃ →

Sex inconsistency

Comparison between the reported sex and the predicted sex by from X-chromosome markers heterozygosity.

Data filtering

Hardy Weinberg Equilibrium test

HWE test is used to detect genotyping errors (usually at level $10^{-7},\,10^{-5},\,10^{-3},\,\ldots).$

· · · · · · · · ·

Hardy Weinberg disequilibrium test

Hardy-Weinberg principle

Both allele and genotype frequencies in a population remain constant

$$p^2 + 2pq + q^2 = 1$$

χ^2 test for deviation

$$\frac{(N_{AA} - n\hat{p}^2)^2}{n\hat{p}^2} + \frac{(N_{AB} - n\hat{p}(1-\hat{p}))^2}{n\hat{p}(1-\hat{p})} + \frac{(N_{BB} - n(1-\hat{p})^2)^2}{n(1-\hat{p})^2} \xrightarrow{\mathcal{L}} \chi_1^2$$

.

Data filtering

Minor Allele Frequency

Most GWAS studies (particularly microarrays based studies) are powered to detect a disease association with common SNPs (MAF \geq 0.05). Depending on the sample size, SNPs with MAF<0.01 or 0.05 are removed.

・ 何 ト ・ ヨ ト ・ ヨ ト

Data structure

Single-marker analyses

- Statistical tests
- Multiple testing
- Population stratification

4 Multiple testing

Multi-marker analyses

(B)

Data structure

Single-marker analyses Statistical tests

- Multiple testing
- Population stratification

Multiple testing

Multi-marker analyses

(B)

Case-Control association tests

Allelic tests

- Sampling unit: allele
- Hardy Weinberg equilibrium assumption

Genotypic tests

- Sampling unit: Individual
- Additive / dominant / recessive models

- **→ →** •

Allelic tests

Pearson's χ^2 test for association

Test for independance between trait and allele

• Table for a diallelic locus

	Cases	Controls	Total
Allele A	<i>n</i> ₁₁	<i>n</i> ₁₂	<i>n</i> ₁₊
Allele a	<i>n</i> ₂₁	n ₂₂	<i>n</i> ₂₊
Total	<i>n</i> ₊₁	<i>n</i> ₊₂	<i>n</i> ++

- Tested hypotheses:
 - H_0 : There is no association between trait and allele
 - H_1 : There is an association between trait and allele
- Test statistic:

$$X^{2} = \sum_{ij} \frac{(n_{ij} - \frac{n_{i+}n_{+j}}{n_{++}})^{2}}{\frac{n_{i+}n_{+j}}{n_{++}}} \xrightarrow{H_{0}} \chi_{1}^{2}$$

< 3

< 行い

Leber's Hereditary Optic Neuropathy (LHON) disease and marker rs6767450 (Phasukijwattana et al., 2010)

• Table for genotypes

	AA	Aa	аа
Cases	6	8	75
Controls	10	66	163

• Corresponding table for alleles

	Cases	Controls	Total
Allele a	158	392	550
Allele A	20	86	106
Total	178	478	656

from T. Thornton

・ 何 ト ・ ヨ ト ・ ヨ ト

Pearson's χ^2 test for association

Table for alleles

	Cases	Controls	Total
Allele A	158	392	550
Allele a	20	86	106
Total	178	478	656

Expected counts

	Cases	Controls	Total
Allele A	149.2378	400.7622	550
Allele a	28.7622	77.2378	106
Total	178	478	656

э

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Pearson's χ^2 test for association

Table for alleles

	Cases	Controls	Total
Allele A	158	392	550
Allele a	20	86	106
Total	178	478	656

• Test statistic:

$$X^{2} = \frac{(158 - 149.2378)^{2}}{149.2378} + \dots + \frac{(86 - 77.2378)^{2}}{77.2378} = 4.369$$

• p-value:

$$p = \mathbb{P}(X^2 \ge 4.369) = 0.037$$

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Allelic tests

Fisher's exact test for association

For contingency tables that have cells with small expected counts

• Table for a diallelic locus

	Cases	Controls	Total
Allele A	21	14	35
Allele a	3	10	13
Total	24	24	48

- Assumption: Marginal counts of the table are fixed
- Tested hypotheses:
 - H_0 : There is no association between trait and allele
 - H_1 : There is an association between trait and allele
- Test statistic: X the number of cas alleles of type A

$$X \underset{H_0}{\sim} \mathcal{H}(N, m, n)$$

Allelic tests

Fisher's exact test for association

• Table for a diallelic locus

	Cases	Controls	Total
Allele A	21	14	35
Allele a	3	10	13
Total	24	24	48

• Probability distribution for X:

x	11	12	13	14	15	16	17	18	19	20	21	22	
Px	10-5	3.10^{-4}	.004	.021	.072	.162	.241	.241	.162	.072	.021	.004	3.3

• Rejection region at level $\alpha = 5\%$:

$$\Gamma = \{11, 12, 13, 14, 21, 22, 23, 24\}$$

• Conclusion: $21 \in \Gamma$

Cyril Dalmasso (UEVE)

イロト イポト イヨト イヨト

A Fast Unbiased and Exact Allelic Test (fueatest)

- Classical allelic test are biased if the Hardy Weinberg assumption is not true (for both cases and controls)
- Table for genotypes

	AA	Aa	aa	Total
Cases	D0	D1	D2	nD
Controls	С0	C1	C2	n _C

Corresponding table for alleles

	Cases	Controls	Total
Allele A	$2D_0 + D_1$	$2C_0 + C_1$	$2n_0 + n_1$
Allele a	$2D_2 + D_1$	$2C_2 + C_1$	$2n_2 + n_1$
Total	2n _D	2n _C	2 <i>n</i>
		<u>ر</u>	

 The unbiased allelic test is based on the same statistic as the χ² allelic test but on the multinomial sampling of genotypes instead of alleles taken independently:

$$\begin{array}{l} (D_0, D_1, D_2) \sim & \mathcal{M}(n_D, p_{D_0}, p_{D_1}, p_{D_2}) \\ (C_0, C_1, C_2) \sim & \mathcal{M}(n_C, p_{C_0}, p_{C_1}, p_{C_2}) \end{array}$$

・ 何 ト ・ ヨ ト ・ ヨ ト

Genotypic test

Pearson's χ^2 test

	AA	Aa	аа	Total
Cases	<i>D</i> 0	D1	D2	n _D
Controls	<i>C</i> 0	<i>C</i> 1	<i>C</i> 2	n _C
Total	<i>n</i> 0	<i>n</i> ₁	<i>n</i> ₂	

Test statistic:

$$X^{2} = \sum_{ij} \frac{(n_{ij} - \frac{n_{i+} n_{+j}}{n_{++}})^{2}}{\frac{n_{i+} n_{+j}}{n_{++}}} \xrightarrow{H_{0}} \chi_{2}^{2}$$

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Pearson's χ^2 test

	AA	Aa	аа
Cases	6	8	75
Controls	10	66	163

• Test statistic: *X*² = 13.15

• p-value *p* = 0.001395

э

・ 伺 ト ・ ヨ ト ・ ヨ ト

Genotypic test

Cochran Armitage trend test for association

• The most used genotypic test for unrelated individuals

Let

- $Y_i = 1$ if *i* is a case (0 if *i* is a control)
- X_i the genotype (coded 0,1,2)
- Linear probability model :

$$\pi_i = \alpha + \beta X_i$$
 with $\pi_i = \mathbb{P}(Y = 1 | X = i)$

• Tested hypotheses :

$$H_0: \pi_0 = \pi_1 = \pi_2 \text{ vs } H_1: \pi_0 < \pi_1 < \pi_2$$

• Test statistic :

$$\frac{\beta}{Var(\hat{\beta})} \xrightarrow[]{}{\rightarrow} \chi_1^2$$

< 行ੋ

^

Genotypic test

Cochran Armitage trend test for association

Remarks

- The Cochran Armitage trend test has a better power than the Pearson's χ^2 test if the suspected trend is correct
- The test can be shown to be valid when the HWE does not hold

Cochran Armitage trend test for association

	AA	Aa	аа
Cases	6	8	75
Controls	10	66	163

• Test statistic:
$$X^2 = 3.74$$

• p-value: *p* = 0.053

э

(日) (四) (日) (日) (日)

Genotypic test

Logistic regression

- Let X_{1i} the genotype for the SNP of interest
- Let X_{ji} $(j \ge 2)$ adjustmnt variables
- Logistic model:

$$logit(\mathbb{P}(Y = 1|X)) = ln \frac{\mathbb{P}(Y = 1|X)}{1 - \mathbb{P}(Y = 1|X)}$$
$$= \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k$$
$$\Leftrightarrow \mathbb{P}(Y = 1|X) = \frac{e^{\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k}}{1 + e^{\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k}}$$

< A

- Tested hypotheses:
 - *H*₀ : β₁ = 0
 - $H_1: \beta_1 \neq 0$

Genotypic test

Logistic regression

- Let $\hat{eta_1}$ the maximum likelihood estimator of eta_1
- Classical tests
 - Wald test:

$$T=rac{\widehat{eta_1}}{\sqrt{\hat{V}(\widehat{eta_1})}} \stackrel{
ightarrow}{
ightarrow} N(0,1)$$

• Likelihood ratio test:

$$\mathit{LR} = -2\mathit{ln}(rac{\mathit{sup}(\mathcal{L}(eta_1=0))}{\mathit{sup}(\mathcal{L}(eta_1\in]-\infty;\infty[))}) \stackrel{
ightarrow}{
ightarrow} \chi_1^2$$

• Score test:

$$S = \frac{\frac{\partial \log \mathcal{L}(\beta_{1})}{\partial \beta_{1}} (\beta_{1} = 0)}{-\mathbb{E}(\frac{\partial^{2}}{\partial \beta_{1}^{2}} \log \mathcal{L}(\beta_{1} = 0) | \beta_{1} = 0)} \xrightarrow{H_{0}} \chi_{1}^{2}$$

Odds ratios

Genotypes

	AA	Aa	аа	Total
Cases	<i>D</i> 0	D1	D2	n _D
Controls	<i>C</i> 0	<i>C</i> 1	<i>C</i> 2	n _C

Typically choose a reference genotype (eg aa).

 $OR_{AA} = \frac{\text{odds of disease for an individual with the AA genotype}}{\text{odds of disease for an individual with the aa genotype}}$

 $OR_{Aa} = \frac{\text{odds of disease for an individual with the Aa genotype}}{\text{odds of disease for an individual with the aa genotype}}$

where

$$\mathsf{odd"} = \frac{\pi}{1-\pi}$$

п

Odds ratios

Genotypes

	AA	Aa	аа	Total
Cases	<i>D</i> 0	D1	D2	n _D
Controls	<i>C</i> 0	<i>C</i> 1	С2	n _C

For the logistic model:

- $OR = exp(\beta_1)$ (proportional odds assumption)
- 1α confidence interval :

$$\textit{IC}_{1-lpha} = [exp(\hat{eta}_{1} \pm q_{1-lpha/2} \sqrt{\hat{V}(\hat{eta}_{1})})]$$

э

・ 「「・ ・ 」 ・ ・ 」 ・

Quantitative trait

Quantitative Trait Loci (QTL) mapping aim at identifying genetic loci that influence the phenotypic variation of a quantitative trait

・ 何 ト ・ ヨ ト ・ ヨ ト

Genetic models

- Dominant
- Recessive
- Additive
- Multiplicative

э

Quantitative trait

Linear regression model

A (1) > A (1) > A

Family based association tests

Transmission Disequilibrium Test (TDT)

- Based on trio families (two parents and an affected offspring)
- All are genotypes for a diallelic marker A/a
- Only heterozygous parents are used (homozygous parents are not informative)
- Under the null hypothesis, A is transmited as often as a

Family based association tests

Transmission Disequilibrium Test (TDT)

Combination of transmitted and non-transmitted marker alleles A and a among 2n parents of n affected children.

Non-transmitted allele	A	а	Total
A	а	b	a+b
а	с	d	c+d
Total	a+c	b+d	2n

Test statistic:

$$X^{2} = \frac{(b - \frac{b+c}{2})^{2}}{\frac{b+c}{2}} + \frac{(c - \frac{b+c}{2})^{2}}{\frac{b+c}{2}} = \frac{(b-c)^{2}}{b+c} \xrightarrow{}_{H_{0}} \chi_{1}^{2}$$

Family based association tests

Transmission Disequilibrium Test (TDT)

・ 何 ト ・ ヨ ト ・ ヨ ト

Family based association tests

FBAT

Generalization of the TDT that can deal with

- general trait
- multi-allelic markers
- missing parents

・ 何 ト ・ ヨ ト ・ ヨ ト

Statistical tests

Family-based vs. Case-control

Family based methods

- robust to population substructure
- o robust to HWE failure
- more powerful for rare highly penetrant diseases

Case Control

- Test for HWE in controls
- More powerful in most other situations

Data structure

Single-marker analyses

- Statistical tests
- Multiple testing
- Population stratification
- Multiple testing
- Multi-marker analyses

∃ ► < ∃ ►</p>

Multiple testing

Problem

Under the complete null hypothesis (H_{0i} true for all i) selecting SNPs based on the usual 5% threshold would lead to a large number of false positives:

$$\mathbb{E}(\text{number of false positives}) = 10^6 \times 0.05 = 50,000$$

Cost

- False positives \Rightarrow laboratory cost
- False negatives \Rightarrow discovery/publication cost

FWER procedures

Strategy

- Choose an error criterion
- Apply a procedure targeting the criterion

Remark

Most procedures mainly focuse on false positives related error criteria (FWER, FDR, \dots)

- **→ →** •

FWER procedures

'Effective' number of independent tests

Due to the correlations among test statistics induced by linkage disequilibrium, the 'effective' number of independent tests is expected to be smaller than m ('genome wide significance' concept).

Classes of relaxation methods

- Permutation testing
- Principal component analysis
- Analysis of blocks of LD

To be used with caution!

) () ()

Results presentation

Manhattan plot

Estrada et al, Hum Mol Genet, 2009 .

э

・ 何 ト ・ ヨ ト ・ ヨ ト

Data structure

Single-marker analyses

- Statistical tests
- Multiple testing
- Population stratification
- Multiple testing
- Multi-marker analyses

(B)

Population stratification occur if the sample consists of different populations.

・ 何 ト ・ ヨ ト ・ ヨ ト

Population stratification

False positives due to admixture

• Population 1: p = 1

	Allele A	Allele B	Total
Affected	64	16	80
Unaffected	16	4	20
Total	80	20	

• Population 2:
$$p = 1$$

	Allele A	Allele B	Total
Affected	4	16	20
Unaffected	16	64	80
Total	20	80	

• Populations combination: $p = 6.6 \times 10^{-7}$

	Allele A	Allele B	Total
Affected	68	32	100
Unaffected	16	4	100
Total	100	100	

э

(日) (四) (三) (三)

False negatives due to admixture

• Population 1: $p = 4.4 \times 10^{-14}$

	Allele A	Allele B	Total
Affected	20	80	100
Unaffected	80	20	100
Total	100	100	

• Population 2:
$$p = 4.4 imes 10^{-14}$$

	Allele A	Allele B	Total
Affected	80	20	100
Unaffected	20	80	100
Total	100	100	

• Populations combination: p = 1

	Allele A	Allele B	Total
Affected	100	100	200
Unaffected	100	100	200
Total	200	200	

э

(日) (四) (三) (三)

Figure 1 | P-P plots for the visualization of stratification or other unusually differentiated markers: p-values exhibit modest genome-wide for genome-wide scans with no causal markers. a | No stratification: exhibit modest genome-wide inflation and severe inflation at a small p-values fit the expected distribution, b | Stratification without number of markers,

confounders. The figure shows simulated P-P plots under three scenarios inflation. c | Stratification with unusually differentiated markers: p-values

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Price et al. New approaches to population stratification in genome-wide association studies. Nat Rev Genet 2010

Population stratification

How to detect stratification - PCA Population structure within Europe

Novembre J et al. Genes mirror geography within Europe. Nature. 2008

Population stratification

How to detect stratification - PCA

Population structure within Europe

Novembre J et al. Genes mirror geography within Europe. Nature. 2008

< 67 ▶

TH 161

How to correct for stratification

- Family-based design :
 - TDT
- Population-based design :
 - Structured association testing
 - Genomic control
 - Regional admixture mapping
 - PCA
 - Multivariate regression models

Structured association

- Trim high quality SNPs to be in linkage equilibrium (eg $r^2 < 0.2$)
- Using the genotype data in a Bayesian clustering approach, assign each individual to a subgroup
- Number of subpopulations and their allele frequencies are estimated using a Markov Chain Monte-Carlo method

Pritchard et al, Am J Hum Genet, 2000

Genomic control

- Assumption: $Y^2 = \lambda \chi^2$
- Inflation factor estimation: $\hat{\lambda} = \frac{median(X_1^2,...,X_M^2)}{0.456}$ where M is the number of unlinked markers Devlin et al., Theor Popul Biol. 2001

・ 何 ト ・ ヨ ト ・ ヨ ト

Eigenstrat - PCA

а Genotypes Samples 0 0 0 2 2 2 0 1 1 1 PCA_ Axis of +0.7 +0.4 -0.1 -0.4 -0.5 SNPs variation 2 0 2 2 1 1 0 b Candidate SNP 1.0 1.4 1.6 0.8 Phenotype 0.3 0.6 0.1 0.4 0.5 С $\gamma^2 = 0.07 \implies$ no association

Price et al. Nature Genetics. 2006.

э

・ 何 ト ・ ヨ ト ・ ヨ ト

Eigenstrat - Cochran Armitage trend test

Generalization

$$(n-k-1) imes [Corr(G^*,P^*)]^2 \xrightarrow{\mathcal{L}} \chi_1^2$$

Cyril Dalmasso (UEVE)

< 67 →

PCA

Warning: not adapted to familial data

э

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

1 Introduction to GWAS/WGS/WES

Data structure

3 Single-marker analyses

Multiple testing

- General statistical setting
- Type I error criteria
- Unadjusted and adjusted p-values
- Classes of MTP procedures

Multi-marker analyses

3 🔺 🔸

Data structure

3 Single-marker analyses

Multiple testing

General statistical setting

- Type I error criteria
- Unadjusted and adjusted p-values
- Classes of MTP procedures

Multi-marker analyses

E 5 4

General statistical setting

Statistical model

- Let $(\mathcal{X}, \mathcal{F}, \mathcal{P})$ a statistical model where \mathcal{X} is the sample space, \mathcal{F} a σ -field and \mathcal{P} a family of probability measures.
- Let x an observation and X the corresponding random variable such that X ~ P ∈ P
- Often $\mathcal{P} = (P_{\theta})_{\theta \in \Theta}$ where θ is the target of the inference

Types of multiplicity

One or two samples problems with multiple endpoints

- Sample space: X = R^{m×n}
 The same n observational units are measured with respect to m different endpoints
- Number of tests: *m*
- Examples: Differential gene expression analysis Genome Wide Association Studies

Types of multiplicity

k-samples problems with localized comparisons

• Sample space:
$$\mathcal{X} = \mathbb{R}^{\sum_i n_i}$$

k groups of observational units are considered.

- Number of tests:
 - k-1 if there is one control group
 - $\frac{k(k-1)}{2}$ is all pairwise comparisons are considered

• Example: ANOVA

• • = • • = •

Tested hypotheses

Multiple testing problem

Let $(\mathcal{X}, \mathcal{F}, (P_{\theta})_{\theta \in \Theta}, \mathcal{H}_0)$ a multiple testing problem.

Family of tested hypotheses

$$\mathcal{H}_0 = \{H_{0i} : i \in I\}$$

defines a family of null hypotheses for an arbitrary index set I such that

$$|I| = m \in \mathbb{N}$$

Null and alternative hypotheses

- $H_{0i}: \theta \in \Theta_{0i}$
- $H_{1i}: \theta \in \Theta_i \setminus \Theta_{0i}$

Tested hypotheses

Complete null hypothesis

The "complete null hypothesis" (or "global null hypothesis") is defined by:

 $H_0^c = \cap_{i \in I} H_{0i}$

Remark

In the following, we will assume that H_0^c is non empty (ie: null hypotheses are compatible)

Multiple testing procedure

Definition

A multiple testing procedure for $(\mathcal{X}, \mathcal{F}, (P_{\theta})_{\theta \in \Theta}, \mathcal{H}_0)$ is a measurable mapping:

$$\varphi: \mathcal{X} \to \{0,1\}^m$$

such that

$$\varphi(x_i) = \begin{cases} 1 & \text{if } H_{0i} \text{ is rejected} \\ 0 & \text{if } H_{0i} \text{ is not rejected} \end{cases}$$

・ 何 ト ・ ヨ ト ・ ヨ ト

Rejection regions

Let $T = (T_i)_{i \in I}$ a *m*-vector of test statistics and let $(\alpha_1, \alpha_2) \in [0, 1]^2$. We consider multiple testing procedures based on nested rejection regions such that:

$$\forall i \in I, \alpha_1 \leq \alpha_2 \Rightarrow \mathsf{\Gamma}_{i,\alpha_1}(\mathsf{T}_i) \subset \mathsf{\Gamma}_{i,\alpha_2}(\mathsf{T}_i)$$

where $\Gamma_{i,\alpha_i}(T_i)$ is the rejection region for an α_i level.

Remark

In the following, we will consider rejection regions such that $\Gamma_{i,\alpha_1}(T_i) = [\gamma_i, +\infty[$

- 4 週 ト - 4 三 ト - 4 三 ト

Data structure

3) Single-marker analyses

Multiple testing

- General statistical setting
- Type I error criteria
- Unadjusted and adjusted p-values
- Classes of MTP procedures

Multi-marker analyses

H N

General decision pattern

Decision Reality	H ₀ not rejected	H_0 rejected	Total
H ₀ true	U	V	m_0
H_0 false	Т	5	m_1
Total	W	R	т

Let
$$I_0 = \{i \in I : heta \in \Theta_{0i}\}$$
 and $I_1 = I ackslash I_0$

•
$$R = |\{i \in I : \varphi_i = 1\}| = V + S$$

•
$$S = |\{i \in I_1 : \varphi_i = 1\}|$$

•
$$T = m_1 - S$$

•
$$V = |\{i \in I_0 : \varphi_i = 1\}|$$

•
$$U = m_0 - V$$

э

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Remarks

- U, V, T, S, m_0 and m_1 depend on the unknown value of θ and are not observable
- Only r, m and w can be observed
- R, S, T, U and V are random variables.
- $(m, m_0, m_1) \in \mathbb{N}^3$

Definitions

Let $(\mathcal{X}, \mathcal{F}, (P_{\theta})_{\theta \in \Theta}, \mathcal{H}_0)$ a multiple testing problem and $\varphi = \{\varphi_i : i \in I\}$ a *MTP*

• Family-wise error rate

$$\mathit{FWER}_{ heta}(arphi) = \mathbb{P}_{ heta}(\mathit{V} > \mathsf{0})$$

Generalized family-wise error rate

$$k - FWER_{\theta}(\varphi) = \mathbb{P}_{\theta}(V > k)$$

• False discovery proportion

$$\mathit{FDP}_{ heta}(arphi) = rac{V}{R \lor 1}$$

Remark: $FDP_{\theta}(\varphi)$ cannot be controled.

False discovery rate

$$\mathit{FDR}_ heta(arphi) = \mathbb{E}_ heta(\mathit{FDP}_ heta(arphi))$$

Positive false discovery rate

$$extsf{pFDR}_ heta(arphi) = \mathbb{E}_ heta\left(rac{V}{R}|R>0
ight)$$

Remark: $pFDR_{\theta}(\varphi)$ cannot be controled.

э

(日) (四) (三) (三)
Type I error criteria

• Per-family error rate

$$PFER_{\theta}(\varphi) = \mathbb{E}_{\theta}(V)$$

• Per-comparison error rate

$$PCER_{\theta}(\varphi) = \mathbb{E}_{\theta}\left(\frac{V}{m}\right) = \frac{PFER}{m}$$

• False discovery exceedance rate

$$\mathit{FDX}_ heta(arphi) = \mathbb{P}_ heta(\mathit{FDP}_ heta(arphi) > c); c \in (0,1)$$

TH 161

Strong control / Weak control

Definitions

Let $\mathcal{E}_{\theta}(\varphi)$ a type I error criterion.

• The *MTP* φ is said to control $\mathcal{E}_{\theta}(\varphi)$ in the strong sense at level $\alpha \in [0, 1]$ if

 $\sup_{\theta\in\Theta}\mathcal{E}_{\theta}(\varphi)\leq\alpha$

• The *MTP* φ is said to control $\mathcal{E}_{\theta}(\varphi)$ in the weak sense at level $\alpha \in [0, 1]$ if

 $\forall \theta \in \Theta_0; \mathcal{E}_{\theta}(\varphi) \leq \alpha$

Remark

Strong control implies weak control

・ 何 ト ・ ヨ ト ・ ヨ ト

Error criteria comparison

Lemma 1

- $FDR_{\theta}(\varphi) = pFDR_{\theta}(\varphi) \times \mathbb{P}_{\theta}(R > 0)$
- 2 If $m_0 = m$ then $FDR_{\theta}(\varphi) = FWER(\varphi)$

Proof

Exercice

3

- 4 周 ト - 4 日 ト - 4 日 ト

Power

Definitions

• Any power

anyPwr
$$_{ heta}(arphi)=\mathbb{P}(S>0)$$

• All power

$$\textit{allPwr}_{\theta}(\varphi) = \mathbb{P}(S = m_1)$$

Average power

$$avgPwr_{ heta}(arphi) = \mathbb{E}\left(rac{S}{m_1}
ight)$$

• True discovery rate

$$\mathit{TDR}_{ heta}(arphi) = \mathbb{E}\left(rac{\mathsf{S}}{\mathsf{R}}
ight)$$

3

- 4 周 ト - 4 日 ト - 4 日 ト

Exercice

Let consider three independent tests. Two null hypotheses are true, one is false. The following table give the joint distribution of (V, R).

r	0	1	1	2	2	2	3	3	3	3
v	0	0	1	0	1	2	0	1	2	3
$\square (R = r, V = v)$	0.2	0.4	0.02	_	0.2	0.1	-	-	_	-

Complete the table.

② Calculate the FDR value for this scenario.

Data structure

3) Single-marker analyses

Multiple testing

- General statistical setting
- Type I error criteria

Unadjusted and adjusted p-values

Classes of MTP procedures

Multi-marker analyses

TH 161

Unadjusted p-values

Definition

Let $(\mathcal{X}, \mathcal{F}, (P_{\theta})_{\theta \in \Theta})$ a statistical model and let φ a one-dimensional test for the single pair of hypotheses:

- $H_0: \theta \in \Theta_0$
- $H_1: \theta \in \Theta \setminus \Theta_0$

Assume that φ is based on a real valued test statistic $T : \mathcal{X} \to \mathbb{R}$ with a rejection region $\Gamma_{\alpha} \subset \mathbb{R}$ such that

$$\forall x \in \mathcal{X}, \varphi(x) = 1 \Leftrightarrow T(x) \in \Gamma_{\alpha}$$

The p-value of an observation $x \in \mathcal{X}$ with respect to φ is defined by

$$p_{\phi}(x) = \inf_{\alpha: T(x) \in \Gamma_{\alpha}} \left(\sup_{\theta \in \Theta_{0}} \mathbb{P}_{\theta}(T(x) \in \Gamma_{\alpha}) \right)$$

Unadjusted p-values

Remarks

- Rejection regions are such that $\alpha_1 \leq \alpha_2 \Rightarrow \Gamma_{\alpha_1} \subseteq \Gamma_{\alpha_2}$
- If Θ_0 contains only one single element θ_0 and if P_{θ_0} is continuous, then

$$p_{arphi}(x) = \inf(lpha \in [0,1]: T(x) \in \Gamma_{lpha})$$

• Let $\Omega_{\mathcal{X}}$ denote the domain of \mathcal{X} .

$$egin{array}{rcl} P_arphi & \colon & \Omega_\mathcal{X} o [0,1] \ & \omega \mapsto p_arphi(x(\omega)) \end{array}$$

can be regarded as a random variable. It is just a test statistic.

Let α ∈ (0, 1) a fixed given significance level and assume that P_{θ0} is continuous, then we have the duality φ(x) = 1 ⇔ p_φ(x) ≤ α

・ロト ・聞ト ・ヨト ・ヨト

Unadjusted p-values

Theorem

Consider the m-vector of test statistics $T = (T_1, ..., T_m)$ and define a collection of *m* rejection regions $\{\Gamma_{\alpha_i} : i = 1, ..., m\}$ based solely on the marginal null distribution and such that

• i)
$$\sup_{\theta \in \Theta_0} \mathbb{P}(T_i \in \mathsf{F}_{lpha_i}) \leq lpha$$

- ii) Nested assumption $\alpha_1 \leq \alpha_2 \Rightarrow \Gamma_{\alpha_1} \subseteq \Gamma_{\alpha_2}$
- The unadjusted p-values are stochastically larger than a uniform ditribution on the interval [0, 1], that is:

$$\sup_{\theta\in\Theta_0}\mathbb{P}_{\theta}(p_i\leq z)\leq z$$

② For a simple null hypothesis $(\Theta_0 = \{\theta_0\})$ and a continuousnull distribution \mathbb{P}_{θ_0}

$$p_{arphi} \sim \mathcal{U}([0,1])$$

Adjusted p-values

Definition

Consider any multiple testing procedure (MTP) with rejection regions Γ_{α} . Then, we can define an m-vector of adjusted p-values $P^* = (P_1^*, ..., P_m^*)$ such that

 $P_i^* = \inf\{\alpha \in (0,1) : H_{0i} \text{ is rejecte at nominal multiple testing level } \alpha\}$

Remarks

- The adjusted and unadjusted p-values can be calculated without prior specification of significance level α .
- Adjusted and unadjusted p-values reflect the strength of the evidence against each null hypothesis.

イロト イポト イヨト イヨト

Bootstrap estimation of the test statistic/p-value null distribution

Procedure

• Generate B bootstrap samples

$$X^{b} = \{X_{j}^{b} : j = 1, ..., n\}, b = 1, ..., B$$

For the b^{th} sample, the $X_j^b, j = 1, ..., n$ are n iid copies of a random variable $X^* \sim \mathbb{P}_{\theta}$

• For each bootstrap sample X^b compute an m-vector of test statistics (or p-values) $T^b = (T_i^b : i = 1, ..., m)$ that can be arranged in an $m \times B$ matrix T^B with rows corresponding to the *m* null hypotheses and columns to the *B* bootstrap samples.

・ 「「・ ・ 」 ・ ・ 」 ・

Bootstrap estimation of the test statistic/p-value null distribution

Procedure

• Define *m* marginal cumulative distributions functions p_i^B as the empirical CDF of the rows of the matrix T^B that is:

$$\hat{F}_{i}^{B}(z) = \frac{1}{B} \sum_{b=1}^{B} \mathbb{1}_{\{T_{i}^{b} \leq z\}}$$

.

Data structure

3) Single-marker analyses

Multiple testing

- General statistical setting
- Type I error criteria
- Unadjusted and adjusted p-values
- Classes of MTP procedures
- Multi-marker analyses

TH 161

Classes of MTP procedures

Margin-based procedures

For a margin-based MTP, each marginal test φ_i can be calibrated to keep a local significance level α_{loc} . The multiple test $\varphi = [\varphi_i : 1 \le i \le m]$ is then build up from these marginal tests by adjusting α_{loc} for the multiplicity of the problem.

Margin-based procedures

Single step procedure

Single step procedures carry out each individual test φ_i ; $1 \le i \le m$ at local significance level α_{loc} where α_{loc} is the result of a multiplicity correction of α

Example

The Bonferroni procedure consists in choosing $\alpha_{loc} = \frac{\alpha}{m}$

Margin-based procedures

Step-down procedures

Step-down procedures rely on an ordering of the hypothesis $H_{0(1)} \leq ... \leq H_{0(m)}$ which is induced by the order of the marginal p-values $p_{(1)} \leq ... \leq p_{(m)}$

Principle

- Order the hypotheses
- 2 Test $H_{0(i)}$ at level $\alpha_{(i)}$
- If H_{0(i)} is rejected, repeat step 2 for H_{0(i+1)} (tested at level α_(i+1))
 If H_{0(i)} is not rejected, STOP.

・ 何 ト ・ ヨ ト ・ ヨ ト

Margin-based procedures

Step-up procedures

Step-up procedures also rely on an ordering of the hypothesis $H_{0(1)} \leq ... \leq H_{0(m)}$.

Principle

- Order the hypotheses
- 2 Test $H_{0(m)}$ at level $\alpha_{(m)}$
- If $H_{0(m)}$ is is rejected, reject $H_{0(j)}$ for all $j \leq m$
 - If $H_{0(m)}$ is not rejected, repeat step 2 for $H_{0(m-1)}$.

Closed test procedures

Definition 1

The system $\mathcal{H}_m = \{H_{0i}\}, i \in I = \{1, ..., m\}$ is closed under intersection $(\cap - closed)$ if

$$\forall \emptyset \neq J \subseteq I, H_J = \cap_{j \in J} H_j = \emptyset \text{ or } H_J = \cap_{j \in J} H_j \in \mathcal{H}_m$$

Definition 2

The test φ is coherent if $\forall (i,j) \in I^2, H_i \subseteq H_j \Rightarrow \{\varphi_j = 1\} \subseteq \{\varphi_i = 1\}$

- 4 伊 ト - 4 三 ト - 4 三 ト

Closed test procedures

Theorem 1

Let $\mathcal{H} = \{H_i : i \in I\}$ a \cap - *closed* system of hypotheses and let $\phi = \{\varphi_i, i \in I\}$ a coherent multiple testing procedure at local level α , then ϕ is a strongly FWER controlling multiple test at level α for $(\mathcal{X}, \mathcal{F}, \mathcal{P}, \mathcal{H})$

Closed test procedures

Theorem 2

Let $\mathcal{H} = \{H_i : i \in I\}$ a \cap - closed system of hypotheses and let $\phi = \{\phi_i, i \in I\}$ a coherent multiple testing procedure at local level α , then we define the closed multiple test procedure (closed test) $\overline{\phi} = (\overline{\phi}_i : i \in I)$ based on ϕ by

$$\forall i \in I : \bar{\phi}_i(x) = \min_{\{j: H_j \subseteq H_i\}} \phi_j(x)$$

It holds

- **(**) The closed test $ar{\phi}$ strongly controls the FWER at level lpha
- Sor all Ø ≠ I' ⊂ I, the restricted closed test φ̄' = (φ̄ : i ∈ I') is a strongly (at level α) FWER controlling multiple test for H' = {H_i : i ∈ I'}
- $\textcircled{O} \quad \text{Both tests } \bar{\phi} \text{ and } \bar{\phi}' \text{ are coherent}$

イロト イポト イヨト イヨト

Multivariate procedures

Goal

To incorporate the dependency structure of the data explicitely into the mutiple testing procedure in order to optimize the power

Classes of multivariate procedures

- Resampling-based procedures
- Methods based on the Central Lmit Theorem

• ...

Adaptive procedures

Goal

To improve the power of a type I error rate controlling procedure by incorporating in it a part V of the underlying distribution P_{θ}

Remark

Adaptation can relate to

- Dependence structure ($\mathcal{V} = \Sigma$)
- π_0 the proportion of true null hypotheses
- Alternative hypotheses structure

Bonferroni procedure

The Bonferroni procedure is defined by

$$\hat{\varphi}_j^{Bonf} = \mathbb{1}_{\{P_j \leq \frac{\alpha}{m}\}}; 1 \leq j \leq m$$

Proposition

The Bonferroni procedure provides strong control of the FWER at level $\frac{m_0}{m}\alpha\leq\alpha$

Adjusted p-values

$$P_j^* = \alpha P_j$$

Remark

For large m values, the power of the Bonferroni procedure is very low.

Sidak procedure

The Sidak procedures is defined by

$$\hat{\varphi}_{j}^{Sid} = 1_{\{P_{j} \leq 1 - (1 - \alpha)^{\frac{1}{m}}\}}; 1 \leq j \leq m$$

Proposition

The Sidak procedure provides strong control of the *FWER* at level α if $(P_1, ..., P_m)$ are jointly stochastically independent

Adjusted p-values

$$P_j^* = 1 - (1 - P_j)^m$$

Holm procedure

The Holm procedure (step-down Bonferroni) is defined by

$$\hat{\varphi}_{j}^{Sid} = \mathbb{1}_{\{P_{j} \leq \frac{\alpha}{m-i+1}\}}; 1 \leq j \leq m$$

Proposition

The Holm procedure provides strong control of the FWER at level α .

Adjusted p-values

$$P_j^* = max((m - i + 1)P_i(i), P_{(i-1)}^*)$$

TH 161

Adaptation to the dependence structure

Let consider a Gaussian model

 $X \sim N(H\mu, \Sigma)$

where $H \in \{0,1\}^m$, $\mu \in \mathbb{R}^{*m}$, $p_j(X) = \Phi(x_j) \Sigma$ known.

Theorem

If
$$t_{\alpha}(\Sigma) = \inf \{t \in [0, 1] : F_{\Sigma}(t) \ge \alpha\}$$
 with
 $F_{\Sigma}(t) = \mathbb{P}_{X \sim N(0, \Sigma)}(\min_j(p_j(x)) \le t)$, then
• $\forall \theta \in \Theta, FWER_{\theta}(t_{\alpha}(\Sigma)) \le \alpha$

• for $\theta = (H, \mu)$ with $H_j = 0 \forall j$, $FWER_{\theta}(t_{\alpha}(\Sigma)) = \alpha$

- 4 周 ト - 4 日 ト - 4 日 ト

Westfall and Young procedure

The Westfall and Young's procedure is a multivariate resampling based method for estimating the adjusted p-values from a set of raw p-values:

$$p_i^* = \mathbb{P}_{\theta}(\min_{j \in I_0} P_j \leq p_i) \leq \mathbb{P}_{\theta}(\min_{j \in I} P_j \leq p_i)$$

Westfall and Young procedure

Principle:

- Calculate $p_i (i \in I)$
- **2** Calculate $p_i^b, i \in I, b \in \{1, ..., B\}$ (pour *B* bootstrap)

Stimate the adjusted p-values:

$$\hat{p}_{i}^{*} = \frac{\sum_{b=1}^{B} \mathbb{1}_{\{\min_{j \in I}(p_{j}^{b}) \leq p_{i}\}}}{B}$$

Exercice

Implement and apply the following MTP:

- Bonferroni
- Sidak
- Holm
- Westfall and Young
- Output: Check the results using the p.adjust function and the multtest package.

E 6 4

Benjamini and Hochberg

Denote $p_{(1)} \leq p_{(m)}$ the ordered p-values for a multiple testing problem $(\mathcal{X}, \mathcal{F}, (P_{\theta})_{\theta \in \Theta}, \mathcal{H}_m)$ and $H_{0(1)} \leq ... \leq H_{0(m)}$ the ordered null hypotheses. The linear step up test φ^{LSU} (often called Benjamini and Hochberg procedure vf^{BH}) rejects exactly the hypotheses $H_{(1)}, ..., H_{(k)}$ where

$$k = max(i \in I : p_{(i)} \leq \frac{i\alpha}{m})$$

If the maximum does not exists, then no hypothesis is rejected

・ 「「・ ・ 」 ・ ・ 」 ・

Theorem

Consider the following assumption:

- D1 $\forall \theta \in \Theta : \forall j \in I : \forall i \in I_0 : \mathbb{P}_{\theta}(R \ge j | p_i \le t)$ is non-increasing in $t \in]0; \alpha]$
- D2 p-values are stochastically larger than $\mathcal{U}([0,1])$
 - $\forall \theta \in \Theta$, the p-values $(p_i : i \in I_0)$ are iid
 - $\forall \theta \in \Theta$, the random vectors $(p_i; i \in I_0)$ and $(p_i; i \in I_1)$ are stochastically independent

Then,

• under D1:
$$FDR_{\theta}(\varphi^{BH}) \leq \frac{m_0}{m} \alpha$$

• under D2:
$$FDR_{\theta}(\varphi^{BH}) = \frac{m_0}{m}\alpha$$

</₽> < ∃> <

Remark

The adaptive procedure (adaptive to the proportion of true null hypotheses) is given by replacing α by $\frac{\alpha}{\hat{\pi}_0}$ where $\hat{\pi}_0$ is an estimation of the proportion of true null hypotheses $\frac{m_0}{m}$

Benjamini and Yekutieli procedure

For any dependency structure among $P_1, ..., P_m$, it holds:

$$orall heta \in \Theta: \textit{FDR}_{ heta}(arphi^{\textit{BH}}) \leq rac{m_0}{m} lpha \sum_{j=1}^m rac{1}{j}$$

The BH procedure with α replaced by $\frac{\alpha}{\sum_{j=1}^{m}}$ controls the *FDR* under arbitrary dependency among $P_1, ..., P_m$. This procedure is denoted φ^{BY}

(人間) トイヨト イヨト

Empirical Bayes procedures

Two-components mixture model

$$F(t) = \mathbb{P}(H = 0)F_0(t) + (1 - \mathbb{P}(H = 0))F_1(t)$$

э

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Empirical Bayes procedures

pFDR as a posterior probability

Under the two-components mixture model:

$$pFDR = \mathbb{P}(H = 0 | T \in \Gamma)$$

A (1) > A (1) > A

Empirical Bayes procedures

local false discovery rate

The local false discovery rate is a local version of the *pFDR*:

$$|fdr(t) = \mathbb{P}(H = 0|T = t)$$

<**A**₽ ► < **B** ► <

2) Data structure

- 3 Single-marker analyses
- 4 Multiple testing

5

Multi-marker analyses

- Gene and pathway level analysis
- Methods for combining information from single-marker coefficients
- Interaction detection

< ∃ > <

Power of association studies

Manolio et al. Finding the missing heritability of complex diseases. Nature. 2009.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Heritability

Quantitative trait

Quantitative genetic model from Ronald Fisher (1918):

$$P = \mu + G + E$$

where

- *G* is the total genome effect
- E is the environment effect

E 5 4

Heritability

Quantitative trait

If G and E are independent:

$$\sigma_P^2 = \sigma_G^2 + \sigma_E^2$$

where

 Heritability definition: Proportion of trait variance which is due to all genetic effects

$$H^2 = \frac{\sigma_G^2}{\sigma_P^2}$$

• • = • • = •

Missing heritability

Quantitative trait

The case of the missing heritability

When scientists opened up the human genome, they expected to find the genetic components of common traits and diseases. But they were nowhere to be seen. **Brendan Maher** shines a light on six places where the missing loot could be tashed away.

Cyril Dalmasso (UEVE)

149 / 192

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Missing heritability

Missing heritability

Significant GWAS SNPs explain a small proportion of disease heritability

Possible reasons

- GxG and GxE interactions
- A large number of causal variants, each with a small effect
- Epigenetics
- Rare variants

H N

Association studies

GWAS

Captures nearly all common variants

Sequencing (NGS)

Captures all common and rare variants

・ 何 ト ・ ヨ ト ・ ヨ ト

Genome sequencing

- Whole Genome Sequencing (WGS) -> sequencing of the entire genome
- Whole exome sequencing (WES) -> Sequencing only the coding regions of the genome (1% of tge genome contain 85% of variability)

Genome sequencing allows to capture rare and common variations

・ 何 ト ・ ヨ ト ・ ヨ ト

SNP arrays vs. Sequencing

SNP arrays

- Data easily stored and analyzed
- Allele calling is standardized
- Experiment well understtod
- Number of statistical tests known and carefully considered
- SNP interrogated directly and indirectly

Sequencing

- Requires massive storage capacity
- Allele and Structural Variation calling still in flux
- Experiment not clearly defined
- SNPs interogated at different depths
- Different error rates for different NGS platforms

Limitations of SNP level analyses

- Lack of power (multiple testing problem)
- Causal SNP in LD with multiple types SNPs
- Most common diseases are multifactorial
- Lack of reproducibility
- Biological interpretation

Multi-SNP analyses

- Idea: group SNPs to form SNP sets and test them as a unit
- SNP sets :
 - Genes
 - Pathways
 - Evolutionary conserved regions
 - Moving windows
 - Any group based on an outcome variable
- Databases : Ingenuity, MetaCore, Kegg, Gene ontology (GO), ...
- Use information on network structures

Advantages of multi-SNP analyses

- Dimentionality reduction
- Capture multi-SNP effects
- Biologically meaningful unit

H N

Linkage Disequilibrium (LD) - correlation structure

Example - LD block

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Example - pathway

æ

(日) (四) (三) (三) (三)

Question

How to test if the gene/pathway is associated with the phenotype?

- 4 周 ト - 4 国 ト - 4 国 ト

Statistical methods

- Gene level analysis
 - Minimum p-value tests (minP)
 - Combined p-value approaches
 - Average/collapsing tests
 - Variance component tests
- Pahway level analysis
 - Over-representation analysis (ORA)
 - Gene set enrichment analysis (GSEA)
 - minP, collapsing, combined p-value, VC tests
 - Graphical methods

\Rightarrow See rare variants analysis

Minimum p-value

- Idea: the smallest individual SNP p-value represents the entire group
- Advantage: easy to run
- Problem: How taking into account for having taken the smallest p-value? (Bonferroni, estimation of the effective number of tests,permutations,...)

Combined p-value approaches

- Idea: combine the p-values across the SNPs in the group
- Example: Fisher's method $(X_{2k}^2 = -2\sum_{i=1}^k ln(p_i))$
- Problem: p-values are supposed independent for most combination approaches

Averaging/Collapsing

- Idea: build a meta-SNP $C_i = \sum_{i=1}^{k} \omega_j x_{ij}$ and test association between C_i and the outcome
- Common approaches:
 - Simple average
 - Inverse of MAF
 - p-values from previous studies
 - PCA
 - Supervised approaches

Variance component tests

• Regression model:

$$\mathbb{E}(g(y_i)) = \alpha Z_i + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}$$

- Null hypothesis: $H_0: \beta_1 = \beta_2 = ... = \beta_p$
- Mixed model: if $\mathbb{E}(\beta) = 0$ and $V(\beta) = \tau^2$, then

$$H_0: \tau^2 = 0$$

・ 何 ト ・ ヨ ト ・ ヨ ト

Over-representation analysis (ORA)

- Idea: From a list of significant SNPs, look for an over-representation of the SNPs in the group
- Common approaches:
 - Fisher's exact test / Hypergeometric test

	Significant	Not significant	
In group	N ₁₁	N ₁₂	N_{1+}
Not in group	N ₂₁	N ₂₂	N ₂₊
Total	N ₊₁	N ₊₂	N

- χ^2 independance test
- Binomial test

Gene Set Enrichment Analysis (GSEA)

- Rank all SNPs based on their p-values
- **2** Calculate an enrichment score for the group G:

$$ES(G) = max_{1 \le j \le N} \sum_{i=1}^{j} X_i$$

where
$$X_i = \begin{cases} \sqrt{\frac{x_{1+}}{x_{s+}}} & \text{if } SNP_i \in G \\ -\sqrt{\frac{x_{s+}}{x_{1+}}} & \text{if } SNP_i \notin G \end{cases}$$

Sevaluate significance based on permutations

Rare variants

- No consensual threshold
- Most of human variants are rare
- Functional variants tend to be rare

・ 何 ト ・ ヨ ト ・ ヨ ト

Rare variants

Challenges

- Lots of rare variant \Rightarrow Large multiple testing problem
- Large sample size required to oberve one particular rare variant
- Individual power depends on allele frequency

→ ∃ →

Current strategy

Region based approach

Test the joint effect of pre-specified group of sequence variants

- Sequencing study unit: region (gene, moving window, exons, ...)
- Types of tests
 - Collapsing/burden tests
 - Variance component based tests
 - Omnibus tests

· · · · · · · · ·

Principle

Aggregate rare variant information in a region into a single summary measure

- CAST
- MZ
- Weighted Sum Tests
- ...

・ 何 ト ・ ヨ ト ・ ヨ ト

Multiple linear regression model

• Regression model:

$$\mathbb{E}(g(y_i)) = \alpha Z_i + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}$$

• Null hypothesis: $H_0: \beta_1 = \beta_2 = ... = \beta_p$

・ 何 ト ・ ヨ ト ・ ヨ ト

Model

Assume: $\beta_1 = \beta_2 = \dots = \beta_p = \beta$

$$\mathbb{E}(g(y_i)) = \alpha Z_i + \beta C_i$$

where $C_i = \sum X_{ij}$

3

Other possibilities

• CAST:
$$C_i = 1_{(\sum X_{ij} > 0)}$$

- MZ: $C_i = \sum \mathbb{1}_{(X_{ij} > 0)}$ (dominant model)
- Weigted burden test: $C_i = \sum \omega_j X_{ij}$
 - Unsupervised approaches
 - Supervised approaches (require permutation or bootstraping for significance)

Warning

Loss of power if:

- both protective and deleterious effects
- only a few variants have an effect

<**₩** > < **₩** > <

Sequence Kernel Association Test (SKAT)

Principle

- Compare pair-wise similarity in phenotype between subjects to pair-wise similarity in genotypes at the rare variants
- Similarity in genotypes is measured with a kernel $K(G_i, G_{i'})$

・ 何 ト ・ ヨ ト ・ ヨ ト

Sequence Kernel Association Test (SKAT)

Variance component tests

Regression model:

$$\mathbb{E}(g(y_i)) = \alpha Z_i + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}$$

- Null hypothesis: $H_0: \beta_1 = \beta_2 = ... = \beta_p$
- Mixed model: if $\mathbb{E}(\beta) = 0$ and $V(\beta) = \tau^2$, then

$$H_0: \tau^2 = 0$$

< 行い

< ∃ >

Sequence Kernel Association Test (SKAT)

Variance component tests

• Regression model:

$$\mathbb{E}(g(y_i)) = \alpha Z_i + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}$$

- Null hypothesis: $H_0: \beta_1 = \beta_2 = ... = \beta_p$
- Mixed model: if $\mathbb{E}(\beta) = 0$ and $V(\beta) = \omega_j \tau^2$, then

$$H_0:\tau^2=0$$

• Score test statistic: $Q_{skat} = (y - \mu_0)' K(y - \mu_0)$ where

$$K = GWWG'$$

with $W = diag(\omega_j)$

SKAT-O

Optimal unified strategy

$$Q_{optimal} =
ho Q_{collapse} + (1 -
ho) Q_{SKAT}$$

Principle

Use data to adaptively estimate ρ in order to maximize power

3 🔺 🔸

Additional concerns

- Quality controls
- Population stratification
- Accomodating common variants

∃ ► < ∃ ►</p>

Epistasis

Definitions

- Biological definition
- Statistical definition

글 > 글
Biological definition

- Originally in mendelian genetics
- One locus masks the effect of another locus
- No environmental contribution

→ ∃ →

 Table 1. Example of phenotypes (e.g. hair colour) obtained from

 different genotypes at two loci interacting epistatically, under

 Bateson's (1909) definition of epistasis

Genotype at locus B	Genotype at locus G			
	g/g	g/G	G/G	
b/b	White	Grey	Grey	
b/B	Black	Grey	Grey	
B/B	Black	Grey	Grey	

Cordell H, Human Molecular Genetics, 2002

э

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Biological definition

"situation in which the qualitative nature of the mechanism of action of a factor is affected by the presence or absence of the other" (Siemiatycki, 1981)

 Table 2. Example of penetrance table for two loci interacting epistatically in a general sense

Genotype at locus A	Genotype at locus B			
	b/b	b/B	B/B	
a/a	0	0	0	
a/A	0	1	1	
A/A	0	1	1	

Cordell H, Human Molecular Genetics, 2002

Statistical definition

$$g(\mathbb{E}(y)) = \sum_{i} \beta_{i} SNP_{i} + \sum_{i \neq j} \gamma_{ij} SNP_{i} \times SNP_{j}$$

Detection

- Exhaustive combination
- Main effects filter
- Biological based filter

э

< 472 > <

3 🔺 🔸

Exhaustive combination

- Pro: Allows to investigate all possible interactions
- Cons: Huge number of combinations (practically unfeasible)

Main effects filter

- Pro: Easy to interpretand computationally feasible
- Cons: Evaluates only genes with large main effects

Biological based filter

- Pro: Fewer statistical tests
- Cons: Limited by current state of knowledge

Modelling strategies

• Standard regression analyses

$$g(\mathbb{E}(y)) = \sum_{i} \beta_{i} SNP_{i} + \sum_{i \neq j} \gamma_{ij} SNP_{i} \times SNP_{j}$$

• -epistasis option in PLINK

э

・ 何 ト ・ ヨ ト ・ ヨ ト

Gene level analyses

Advantages:

- Results biologically interpretable
- Genetic effects more detectable
- Reduction of the variables number

Gene level analyses

Existing gene scale methods :

- For two or few genes
 - → PCA + logistic regression (He et al. 2011, Li et al. 2009, Zhang et al. 2008)
 - → PLS + logistic regression (Wang T et al. 2009)
- For a larger number of genes
 → PCA + LASSO (D'Angelo et al. 2009)
 - → PCA + pathway-guided penalized regression (Wang X et al. 2014)

From Stanislas V, 2016

・ 何 ト ・ ヨ ト ・ ヨ ト

Group modelling approach

	SNP1,1	SNP _{1,p1}	SNP _{G,1}	SNP _{G,PG}	Pheno	
Ind ₁	1	0	0	1	<i>y</i> 1	
Ind ₂	0	0	2	1	Y2	We note
	2	1	1	2		
	0	1	0	0		$SNP_{1,1} = X_{1,1}$
Indi	0	2	1	0	yi yi	r, s two genes
		~	<u> </u>	~~~~		
		gene ₁		geneG		
	1	a		a0		

q: # of interaction variables for a couple

From Stanislas V, 2016

Interaction variable construction

We consider $f_u(X^r, X^s)$ to represent the interaction between genes r, s.

 $\hat{\boldsymbol{u}} = \arg \max_{\boldsymbol{u}, \|\boldsymbol{u}\|=1} cov^2(\boldsymbol{y}, f_{\boldsymbol{u}}(\boldsymbol{X}^r, \boldsymbol{X}^s))$

We set :
$$f_{\boldsymbol{u}}(\boldsymbol{X}^{r}, \boldsymbol{X}^{s}) = \boldsymbol{W}^{rs}\boldsymbol{u}$$
 with $\boldsymbol{W}^{rs} = \{X_{ij}^{r}X_{ik}^{s}\}_{i=1\cdots,n}^{j=1\cdots,p,:k=1,\cdots,p_{s}}$
$$\max_{\boldsymbol{u},\|\boldsymbol{u}\|=1} ||c\hat{o}v[\boldsymbol{W}^{rs}\boldsymbol{u},\boldsymbol{y}]||^{2} = \max_{\boldsymbol{u},\|\boldsymbol{u}\|=1} \boldsymbol{u}^{T}\boldsymbol{W}^{rs^{T}}\boldsymbol{y}\boldsymbol{y}^{T}\boldsymbol{W}^{rs}\boldsymbol{u}$$
$$\boldsymbol{u}$$
: eigen vector associated to the largest eigenvalue of $\boldsymbol{W}^{rs^{T}}\boldsymbol{y}\boldsymbol{y}^{T}\boldsymbol{W}^{rs}$
$$\boldsymbol{u} = \boldsymbol{W}^{rs^{T}}\boldsymbol{y}$$

We then obtain for each couple $(r, s) \rightarrow Z^{rs} = W^{rs} U = W^{rs} W^{rs T} y$

From Stanislas V, 2016

Coefficients estimation

Group LASSO regression

$$\hat{\boldsymbol{\theta}} = (\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\gamma}}) = \underset{\boldsymbol{\beta}, \boldsymbol{\gamma}}{\operatorname{argmin}} \left(\sum_{i} (y_{i} - \boldsymbol{X}_{i}\boldsymbol{\beta} - \boldsymbol{Z}_{i}\boldsymbol{\gamma})^{2} + \lambda \left[\sum_{g} \sqrt{p_{g}} ||\boldsymbol{\beta}^{g}||_{2} + \sum_{r_{s}} \sqrt{p_{r}p_{s}} ||\boldsymbol{\gamma}^{rs}||_{2} \right] \right)$$

Limits of the groupLASSO regression :

•
$$P(S^* \subset \hat{S}) \xrightarrow[n \to +\infty]{} 1 \text{ but } |\hat{S}| >> |S^*|$$

Difficult to compute p-value or confidence interval

Adaptive-Ridge Cleaning Becu JM, 2015

- Use of a specific penalty for group LASSO
- Permutation test based on Fisher test approach for each group $P_k = \frac{1}{B} \# \{F_k^* \ge F_k\}$

From Stanislas V, 2016

Non prametric approaches

- Decision trees
- Multifactor-dimentionality reduction (MDR)
- Support vector machines

э

・ 何 ト ・ ヨ ト ・ ヨ ト