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Introduction to GWAS/WGS/WES

Statistics and genetics/genomics

Historical perspective
e Mendel (1866) and Morgan (1915) — genetic heritability concept
@ 1953 : DNA structure resolved — Molecular genetics
@ 1970s : Databases constitution — Bioinformatics
@ 1990 - : Whole genome sequencing
@ 2000 - : High throughput technologies — massive genomic data

Genomics
Genomics is the study of genomes
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Introduction to GWAS/WGS/WES

Genetic factors in a medical context

Monogenic diseases

@ One causal gene (mendelian entity)

e Rare mutations / allelic heterogeneity
o High penetrance (P(phenotype|riskgenotype)) = multiple cases
(familial aggregation)

@ Environmental factors

Multifactorial diseases

Multiple-cases ... Families with 2 cases  Sporadic cases

Mendelian entity Susceptibility gene

with gene-gene and gene-
environment interactions

V. Chaudru
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Introduction to GWAS/WGS/WES

|dentification of causal genes and gene-environment
interactions

o Is there familial aggregation? (epidemiological study)

@ Is there a mendelian entity? (segregation analysis)

@ In which genome regions can we find susceptibility genes ?
— linkage analyses (family based)
powerful in gene identification of mendelian diseases

@ Which are the susceptibility genes?
— association studies (population based)
powerful in gene identification of complex diseases

Linkage analyses and association studies are based on genetic markers J
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Introduction to GWAS /WGS/WES
Association studies

Objectives of association studies

@ to localize regions containing a causal gene

@ to test association with potential candidate genes
@ to characterize such genes
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Introduction to GWAS/WGS/WES

Association studies

Candidate gene
Use of pre-specified genes

Fine mapping
Specific region (1-10Mb; 100 SNPs)

Genome wide association studies (GWAS)

Use of genes all along the genome
Remark : Association with polymorphisms that are not themselves causal
risk factors can be used to localize the trait gene
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Introduction to GWAS /WGS/WES
Association studies

Population based studies

Use of unrelated individuals rather than families
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Introduction to GWAS /WGS/WES
Case-control studies

Patients \
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4 / Non-patients
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Patient DNA Non-patient DNA
Compare
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to discover
SNPs associated
with diseases
Disease-specific SNPS Non-disease SNPS
© Pasieka, Science Photo Library
v
=} = = E E
Cyril Dalmasso (UEVE) M2 Data Science : Santé, Assurance, Finance




Introduction to GWAS/WGS/WES

Genome wide association studies

Overall strategy
@ Calculate association statistics with the phenotype of interest
@ Derive p-values
© Apply a Multiple Testing Procedure

© Follow-up (report, meta-analysis, auxiliary analysis, ...)
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© Data structure
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© Data structure

@ Single Nucleotide Polymorphism
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Genetic markers

Definition

A genetic marker is a DNA sequence
@ with a known location on a chromosome
o easily detectable

@ can be described as a variation that can be observed
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Single Nucieoide Polymorphism
Single nucleotide polymorphism (SNP)

Single nucleotide polymorphisms (SNP) are the most common
polymorphisms (approx. 10 millions known SNPs).

TTCCCTAGGTG

If reverse strand is chosen as reference, genotype for this SNP can be CC,
CT or TT (GG, GA or AA on direct strand), often recoded in 0, 1 2 in
genetic data files.

v
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Single Nucleotide polymorphism (SNP)

Sample1 Sample2  Sample3
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Single Nucleotide polymorphism (SNP)

Some numbers
@ Average distance between two SNPs: 600bp

@ Total number of SNPs: 10 millions (among 3.2 billions base pairs)
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Linkage disequilibrium

Definition

Linkage disequilibrium is the tendency for pairs of alleles at nearby loci to
be associated with each other more than expected by chance
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Linkage disequilibrium

LD measures

Marker. A‘MarkerB B b
PAB  PAb PA+
a PaB  Pab  Pa+
P+B  P+b
® D = pag — paps
o D = % where
—— {min(pApb;paps) if D >0
max — . .
min(papp; papg) if D <0

o R2=_D _ (-> correlation coefficient)

" PaPAPbLPB
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Linkage disequilibrium

Haplotype blocks
@ Haplotype: set of SNPs that tend to occur together.

@ Haplotype block: Islands of high linkage disequilibrium separated by
regions of low linkge disequilibrium

@ Recombination rates appear greater between blocks than within
blocks

@ Blocks exhibit low haplotypic diversity and most of the common
haplotypes can be defined by a relatively small number of SNPs (3-5)

v
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Haplotype blocks

CaA

caB

TNF

HCP5

PSORS1C1

TNXB

MICB

=S ———

$ZS66LELSI

€L18612181

66989865\

60591528)
29v8Yzzs)

zLe8Y2TS)

\ N
ezogeezss X X

£0069v6S)

PGGv8YOLSI

L02v682S)

g-values

0.02 0.04

0.00

0.0 02 04 06 08 1.0

Guergnon J. et al, J Infect Dis, 2012

T

Santé, Assurance, Finance

M2 Data Science :

Cyril Dalmasso (UEVE)



© Data structure

@ Technologies
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Genomic technologies

Technologies

e Whole genome sequencing (WGS)

@ Whole exome sequencing (WES)
@ SNP genotyping (microarrays)
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IDEIERS I[N  Technologies

Microarrays

Key concept for GWAS

Exploiting the correlation structure in the genome to selectively genotype a
reduced number of polymorphisms by providing a reasonable coverage of
the genome.
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TAG SNPs

Data structure

Frequency

Disease SNP

Tag SNP
MAF> 0.05 - Common SNP

Non Tag SNP
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Data structure

lllumina SNP arrays
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[t
Affymetrix SNP arrays 6.0

Affymetrix SNP Array 6.0

@ 906,600 SNP
e 482 000 SNP from SNP Array 5.0
e 424 000 new tag-SNP
@ 946,000 CNV
e 202,000 probes targeting 5 677 regions from
the "Toronto Database of Genomic Variants'
e 744,000 probes, evenly spaced along the
genome

Cyril Dalmasso (UEVE) M2 Data Science : Santé, Assurance, Finance 27 /192



Data structure

Intensity values for both alleles

Sample1 Sample2 Sample3 Array1 Array2 Array3
c Intensities
|C
SNP1 [GD SNP1
T GT GT GT
|A|
SNP2 A SNP2 I n I
C AC AC AC
G
A
T
| A
SNP3 G SNP3 m I I
C
P TG TG TG
C
C
o & = = = vae
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Data structure

Intensity values for both alleles

Sample1 Sample2 Sample3 Array1 Array2 Array3
Intensities

SNP1 8] (A B] SNP1

AB AB AB
SNP2 [A] [B] [B)  SNP2 I n I

AB AB AB
SNP3 B|) B B)) SNP3 | I I

AB AB AB

o = = = = 9Dae

Cyril Dalmasso (UEVE) M2 Data Science : Santé, Assurance, Finance



IDEIERS I[N  Technologies
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IDEIERS I[N  Technologies

Preprocessing / normalization

Sources of variability

@ Preparing the samples

o MRNA preparation

o Reverse transcription to cDNA

e Dye labeling
@ Spotting the chips

o PCR amplification

e Pin geometry and surface features

e Amount of cDNA transported by pins

e Amount of cDNA fixated on slide
@ Hybridization process

o Hybridization parameters (temperature, time, amount of sample)
Spatial dis-homogeneity of hybridization on the slide
Non-specific hybridization Image production and processing:
Non-linear transmission, saturation effects, variations in spot shape
Global background shining, local overshining from neighboring spots
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Data structure

Normalization - Example (lllumina)

A B Cc

x10' Onginal %10 Offset Removed x10 Rotated

Sheared Normalized
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Data structure

Normalization - Example (lllumina)

@ Outlier removal

@ Background estimation
© Rotational estimation
@ Shear estimation

@ Scaling estimation
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Genotyping
Objective
Array1

Array2

Array3
Intensities
SNP1
AB

Array1
AB

Array2 Array3
2
m I m SNP1
AB
SNP2 I . I SNP2
AB AB

AB

1 2 3
SNP3 m I I SNP3
AB AB

AB

1 = AA (homozygous)
2 = AB (heterozygous)
3=
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Genotyping

Summary indexes
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Technologies
Methods

Classification

o K-means, K-medoids
Limits: sensitive to initial values, need for class number specification,

similar group sizes, ...
@ Mixture models

o EM algorithm
o Bayesian framework

Limits: sensitive to the model choice, need for class number
specification, ...

o ...
4

Comparison of genotying algorithms for Illumina’s SNP arrays
Ritchie et al. BMC Bioinformatics. 2011. )
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Data structure

marker;  marker> . marker,, | phenotype age sex

sample; 0 2 0 )1 42 M
sampley 1 1 0 ¥ 63 F

sample, 0 1 2 Vn 27 F
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Whole genome sequencing (WGS) and whole exome

sequancing (WES)

| A run (=realization of a full process by the machine) products a large number of reads (=strings of bases), corresponding to DNA/RNA sequences. |

+long read length
- low throughput: only 10° reads per
run

&

Roche/454 GS FLX
read length: 700bp

read number: 1M

run time: 23 hours

> )
\ e

lon Torrent Proton
read length: ~200bp

read number: 80M
run time: 2-4 hours

+ very high throughput: 10° reads /run + absence of amplification of the input genomic
- short read length material to sequence
- low throughput

Illumina HiSeq Helicos HeliScope
read length: 100bp read length: 35bp

read number: 6G read number: 1G

run time: 11 days run time: 8 days

=

Life SOLID 3 Pacific Biosciences RS
read length: 75bp read length: ~3000bp

read number: 3G read number: 150K/smrt cell

run time: 14 days run time: 10 hours

from Smahane CHALABI (CNRGH)
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Data structure

Whole genome sequencing (WGS) and whole exome
sequancing (WES)

Data preprocessing
@ Raw reads
@ Quality check of raw reads

o Mapping

Variant calling

Call SNPs, indels and some SVs (separately or simultaneously)
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IDEIERS I[N  Technologies

Microarrays vs. Sequencing

Microarrays

@ Data easily stored and analyzed
Allele calling is standardized
Experiment well understood

Number of statistical tests known and carefully considered

SNP interrogated directly and indirectly

Sequencing
@ Requires massive storage capacity
@ Allele and Structural Variation calling still in flux
@ Experiment not clearly defined
@ SNPs interogated at different depths

Cyril Dalmasso (UEVE) M2 Data Science : Santé, Assurance, Finance 40/192



© Data structure

@ Preprocessing
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Preprocessing

Phenotypes Quality Controls
The phenotype is critical to good genetic studies
@ Precise

@ The closest to a gene product

Cyril Dalmasso (UEVE)
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Data structure Preprocessing

Preprocessing

Phenotypes Quality Controls

In practice
o Create standard report with descriptive statistics
@ Check distribution of quantitative traits
@ Look for outliers

o If needed, impute missing phenotype
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Data structure

Preprocessing

Genotypes Quality Controls
Call rates

@ Sex inconsistencies

o Hardy Weinberg Equilibrium test
@ Minor alele frequencies
°

Population stratification

[m] = =
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iz
Data filtering

Call rates
No consensual threshold. Typically:
@ Individuals with more than 10% of missing SNPs are removed

@ SNPs with more than 5% of mising samples are removed (depends on
the sample size)
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Preprocessing

Sex inconsistency

Comparison between the reported sex and the predicted sex by from
X-chromosome markers heterozygosity.
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Data filtering

Hardy Weinberg Equilibrium test
1073, ).

HWE test is used to detect genotyping errors (usually at level 1077, 1072,

Cyril Dalmasso (UEVE)
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Data structure

Hardy Weinberg disequilibrium test

Hardy-Weinberg principle

Both allele and genotype frequencies in a population remain constant

p>+2pq+q° =1

x? test for deviation

(Naa — np?)*  (Nag — n2p(1—p))> | (Ng — n(1 - ﬁ)z)zé
np? n2p(1— p) n(1— p)> a
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iz
Data filtering

Minor Allele Frequency

Most GWAS studies (particularly microarrays based studies) are powered
to detect a disease association with common SNPs (MAF> 0.05).
Depending on the sample size, SNPs with MAF<0.01 or 0.05 are removed.
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Single-marker analyses

© Single-marker analyses
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Single-marker analyses

© Single-marker analyses
@ Statistical tests
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Case-Control association tests

Allelic tests

@ Sampling unit: allele

o Hardy Weinberg equilibrium assumption
Genotypic tests

@ Sampling unit: Individual

e Additive / dominant / recessive models

Cyril Dalmasso (UEVE)
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SINACENECCEENEWVEEI  Statistical tests

Allelic tests

Pearson’s x? test for association
Test for independance between trait and allele
@ Table for a diallelic locus

Cases | Controls | Total
Allele A ni nio ni4+
Allele a no1 Ny Noy
Total ni1 Nyo Ny

@ Tested hypotheses:

e Hy: There is no association between trait and allele
e Hy: There is an association between trait and allele

@ Test statistic:

( _ hignyj )2

2 N4+ 2

X - Z njynyj ;; X].
ij ni+
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SINACENECCEENEWVEEI  Statistical tests

Example

Leber’s Hereditary Optic Neuropathy (LHON) disease and marker

rs6767450 (Phasukijwattana et al., 2010)

@ Table for genotypes

AA | Aa | aa

Cases 6 8 | 75

Controls | 10 | 66 | 163

o Corresponding table for alleles

Cases | Controls | Total
Allele a | 158 392 550
Allele A | 20 86 106
Total 178 478 656

from T. Thornton
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SINACENECCEENEWVEEI  Statistical tests

Example

Pearson’s x2 test for association

Table for alleles

Expected counts

Cases | Controls | Total
Allele A | 158 392 550
Allele a 20 86 106
Total 178 478 656
Cases Controls | Total
Allele A | 149.2378 | 400.7622 | 550
Allele a | 28.7622 | 77.2378 | 106
Total 178 478 656

Cyril Dalmasso (UEVE)
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SINACENECCEENEWVEEI  Statistical tests

Example

Pearson’s x2 test for association

Table for alleles

Cases | Controls | Total

Allele A | 158 392 550

Allele a 20 86 106
Total 178 478 656

@ Test statistic:

(158 — 149.2378)? (86 — 77.2378)?

2
X 149.2378 ot 77.2378

= 4.369

@ p-value:
p =P(X? > 4.369) = 0.037
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Statistical tests
Allelic tests

Fisher's exact test for association
For contingency tables that have cells with small expected counts

@ Table for a diallelic locus

Cases | Controls | Total
Allele A 21 14 35
Allele a 3 10 13
Total 24 24 48

@ Assumption: Marginal counts of the table are fixed
@ Tested hypotheses:

e Hy: There is no association between trait and allele
o Hy: There is an association between trait and allele

@ Test statistic: X the number of cas alleles of type A
X ~ H(N, m,n)
Ho
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SINACENECCEENEWVEEI  Statistical tests

Allelic tests

Fisher's exact test for association

@ Table for a diallelic locus

Cases | Controls | Total
Allele A 21 14 35
Allele a 3 10 13
Total 24 24 48
@ Probability distribution for X:
[(x [ 11 2 3 14 15 7 18 19 20 21 22 23
[ A [ 107° 3107* 004 021 .072 241 241 162 072 .021 _ .004  3.10
@ Rejection region at level a = 5%:
M= {11,12,13,14,21,22,23,24}
@ Conclusion: 21 € )
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Statistical ests
A Fast Unbiased and Exact Allelic Test (fueatest)

@ Classical allelic test are biased if the Hardy Weinberg assumption is
not true (for both cases and controls)
@ Table for genotypes

AA Aa aa Total
Cases DO D1 D2 np
Controls C0 Cl C2 nc

@ Corresponding table for alleles

Cases Controls Total

Allele A 2Dg + Dy 2C + G 2ng + ny
Allele a 2D, + Dy 20+ G 2ny + mp
Total 2np 2nc 2n

@ The unbiased allelic test is based on the same statistic as the y?
allelic test but on the multinomial sampling of genotypes instead of
alleles taken independently:

(Do, D1, D) g M(np, Ppy» PDy » PD,)

(Go, G, @) ~ Mnc, pcys Py » PCy)
Ho
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Single-marker analyses

Genotypic test

Pearson's x? test

AA | Aa | aa | Total

Cases DO | D1 | D2| np
Controls | CO | C1 | C2 | nc¢

Total no n no

Test statistic:
(nj — 72,
X? =3 = X2
ij Nyt
[m] (=) = =
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Example

Pearson’s y? test

AA | Aa | aa
Cases 6 8 75
Controls | 10 | 66 | 163
o Test statistic: X? = 13.15
@ p-value p = 0.001395
Cyril Dalmasso (UEVE)
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SR
Genotypic test

Cochran Armitage trend test for association
@ The most used genotypic test for unrelated individuals

@ Let

o Y;=1if iis acase (0if i is a control)
e X; the genotype (coded 0,1,2)

@ Linear probability model :

wi = o+ BX; with 7; :P(Y = ].‘X: I)
@ Tested hypotheses :

H0:7T0=71'1=7r2VSH1:7r0<7T1<7TQ
@ Test statistic : R

p
— = X3
Var((3) Ho

o
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Genotypic test

Cochran Armitage trend test for association

N_case / N_total
/
o

Q

Genotype

Remarks

@ The Cochran Armitage trend test has a better power than the
Pearson’s x? test if the suspected trend is correct

@ The test can be shown to be valid when the HWE does not hold

= = - —eT

Cyril Dalmasso (UEVE) M2 Data Science : Santé, Assurance, Finance



Example

Cochran Armitage trend test for association

AA | Aa | aa
Cases 6 8 75
Controls | 10 | 66 | 163
o Test statistic: X2 = 3.74
@ p-value: p=0.053
Cyril Dalmasso (UEVE)
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SR
Genotypic test

Logistic regression

@ Let Xj; the genotype for the SNP of interest

o Let Xj (j > 2) adjustmnt variables

o Logistic model:

P(Y =1|X)
1-P(Y =1|X)

= Bo + f1X1 + B2 Xo + ... + BuXk
eBo+B1X14B2 X0+ 4B Xk
SP(Y =1[X) = 1 4+ efotBiXa+P2Xo+... 4Bk Xk

logit(P(Y = 1|X)) = In

@ Tested hypotheses:
° Ho : Bl =0
° H1 : ﬁl 7é 0

v
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SR
Genotypic test

Logistic regression

o Let BAl the maximum likelihood estimator of (37
@ Classical tests

o Wald test: R
T= —5 L N(0,1)
V V(ﬁl)
o Likelihood ratio test:
_ sup(L(B1 = 0))
R = 2051 €] = o1 D)

o Score test:

Iog,C B1 (5 _ O)

S:

_>
) X

—> X
E( 3B2 IOg,C(,B]_ = 0)|,81 = 0)

1

= i
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SINACENECCEENEWVEEI  Statistical tests

Odds ratios

Genotypes

AA | Aa | aa | Total
Cases DO | D1 | D2
Controls | CO | C1 | C2

np
nc

Typically choose a reference genotype (eg aa).

ORn — odds of disease for an individual with the AA genotype
AA ™ "5dds of disease for an individual with the aa genotype

OR». — odds of disease for an individual with the Aa genotype
A3 ™ 5dds of disease for an individual with the aa genotype

where

T
n ddll —
° 1—7

Cyril Dalmasso (UEVE)
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Statistical tests
Odds ratios

Genotypes

AA | Aa | aa | Total
Cases DO | D1 | D2| np
Controls | CO | C1 | C2 | nc¢

For the logistic model:
@ OR = exp(f1) (proportional odds assumption)

@ 1 — o confidence interval :

ICGi_o = [eXp(B) + d1—a/2 \A/(Bl))]
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Quantitative trait

Quantitative Trait Loci (QTL) mapping aim at identifying genetic loci that
influence the phenotypic variation of a quantitative trait

J
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Single-marker analyses

Genetic models

@ Dominant

@ Recessive

o Additive

o Multiplicative

[m] = =
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Single-marker analyses

Quantitative trait

Linear regression model

DNAinc

E(Y)

= Bo + B1X1 + BaXo + ... + B X

Cyril Dalmasso (UEVE)
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SINACENECCEENEWVEEI  Statistical tests

Family based association tests

Transmission Disequilibrium Test (TDT)
@ Based on trio families (two parents and an affected offspring)
@ All are genotypes for a diallelic marker A/a

@ Only heterozygous parents are used (homozygous parents are not
informative)

@ Under the null hypothesis, A is transmited as often as a

o
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SINACENECCEENEWVEEI  Statistical tests

Family based association tests

Transmission Disequilibrium Test (TDT)

Combination of transmitted and non-transmitted marker alleles A and a
among 2n parents of n affected children.

Transmitted aIIeIe‘Non—transmltted allele A a Total
A a b a+b
a c d c+d
Total a+c | b+d 2n
Test statistic:

Xz_([’_%)2_1_@_[)5”2_(b—‘?)z_> 2
T Be T bhtc m
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SINACENECCEENEWVEEI  Statistical tests

Family based association tests

Transmission Disequilibrium Test (TDT)

Example

*Ngp=5
-nD|d=0
«TDT-chisq=5
*P-value=.025
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Family based association tests

FBAT

Generalization of the TDT that can deal with
o general trait
@ multi-allelic markers

@ missing parents

Cyril Dalmasso (UEVE)
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SINACENECCEENEWVEEI  Statistical tests

Family-based vs. Case-control

Family based methods
@ robust to population substructure
@ robust to HWE failure

@ more powerful for rare highly penetrant diseases

Case Control
@ Test for HWE in controls

@ More powerful in most other situations

Cyril Dalmasso (UEVE) M2 Data Science : Santé, Assurance, Finance
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Single-marker analyses

© Single-marker analyses

@ Multiple testing

Cyril Dalmasso (UEVE)
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IR0
Multiple testing

Problem

Under the complete null hypothesis (Hp; true for all i) selecting SNPs

based on the usual 5% threshold would lead to a large number of false
positives:

E(number of false positives) = 10° x 0.05 = 50,000

Cost
o False positives = laboratory cost

o False negatives = discovery/publication cost
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FWER procedures
Strategy

@ Choose an error criterion

@ Apply a procedure targeting the criterion
Remark

(FWER, FDR, ...)

Most procedures mainly focuse on false positives related error criteria

Cyril Dalmasso (UEVE)
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e
FWER procedures

'Effective’ number of independent tests

Due to the correlations among test statistics induced by linkage
disequilibrium, the 'effective’ number of independent tests is expected to
be smaller than m ('genome wide significance’ concept).

Classes of relaxation methods
@ Permutation testing
@ Principal component analysis
@ Analysis of blocks of LD

To be used with caution! )
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Single-marker analyses

Results presentation

Manhattan plot

2 DLEUTY
NPR3  GpR1ZE GOFS
“1 zeB3s | HMGA1| COKE CABLES1

- . | , :
a w b *
1
g 4

Lo ! '

W
~
a
- o~ 5_.
Estrada et al, Hum Mol Genet, 2009 .
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Single-marker analyses

© Single-marker analyses

@ Population stratification

Cyril Dalmasso (UEVE)
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Population stratification

populations.

Population stratification occur if the sample consists of different

Cyril Dalmasso (UEVE)
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Single-marker analyses Population stratification

Population stratification

False positives due to admixture

@ Population 1: p=1
Allele A | Allele B | Total

Affected 64 16 80
Unaffected 16 4 20
Total 80 20

@ Population 2: p=1
Allele A | Allele B | Total

Affected 4 16 20
Unaffected 16 64 80
Total 20 80

e Populations combination: p = 6.6 x 10~/
Allele A | Allele B | Total

Affected 68 32 100
Unaffected 16 4 100
Total 100 100
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Single-marker analyses Population stratification

Population stratification

False negatives due to admixture

e Population 1: p =4.4 x 10714
Allele A | Allele B | Total

Affected 20 80 100
Unaffected 80 20 100
Total 100 100

e Population 2: p = 4.4 x 10714
Allele A | Allele B | Total

Affected 80 20 100
Unaffected 20 80 100
Total 100 100

@ Populations combination: p =1
Allele A | Allele B | Total

Affected 100 100 200
Unaffected 100 100 200
Total 200 200
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Single-marker analyses

Population stratification

How to detect stratification - QQ plot
Inflation factor

a Nostratification b Stratification without unusually € Stratification with unusually
differentiated markers differentiated markers

8
5 5 5
i g g
3
¢ 3
[} o o
2
! T r ) ! T T )
o 2 4 6 o 2 4 6
Expected (-logP) Expected (logP) Expected (-logP)
Figure 1| P-P plots for the of or other ydifferentiated markers: p-values exhibit modest g id
The fi P plots under three inflation. c | Stratifi i i i p-values
for genome-wide scans with no causal markers. a | No st exhibit modest g ide inflation and severe inflation at a small

p-values fit the expected distribution. b | Stratification without  number of markers.

Price et al. New approaches to population stratification in genome-wide association studies. Nat
Rev Genet 2010.
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Single-marker analyses

Population stratification

How to detect stratification - PCA
Population structure within Europe

\

Novembre J et al. Genes mirror geography within Europe. Nature. 2008

= =y - -

c
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Single-marker analyses

Population stratification

How to detect stratification - PCA
Population structure within Europe

e © 0020

g 003 UK Germany ’

g g 80 § 1

& oo Se83 £

S . ]

g oo1 5

14 e

= 1. &
L 5

'Ig -0.01 1 +France: EPYNDS >

3 . ot §

£ 002 ™ H

2 Shain Ttal

0,03 {Portugal ad ~0.010 .
-003-002-001 0 001 002 0.03

East-west in PC1-PC2 space y Y .
0 1,000 2000 3,000

O French-speaking Swiss w French Goographic distance between
© German-speaking Swiss German populations (km)
A Italian-speaking Swiss talian

Novembre J et al. Genes mirror geography within Europe. Nature. 2008
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T G
Population stratification

How to correct for stratification
o Family-based design :
o TDT
@ Population-based design :

e Structured association testing
e Genomic control

e Regional admixture mapping
o PCA

o Multivariate regression models
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Single-marker analyses Population stratification

Population stratification

Structured association
e Trim high quality SNPs to be in linkage equilibrium (eg r? < 0.2)

@ Using the genotype data in a Bayesian clustering approach, assign
each individual to a subgroup

@ Number of subpopulations and their allele frequencies are estimated
using a Markov Chain Monte-Carlo method
Pritchard et al, Am J Hum Genet, 2000
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Single-marker analyses

Population stratification

Genomic control

e Assumption: Y? = \y?

. . . 2 dian(X2,..., X2 .
@ Inflation factor estimation: A = W where M is the
number of unlinked markers

Devlin et al., Theor Popul Biol. 2001
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Population stratification

Eigenstrat - PCA

a Genotypes Samples

111
12
11

0 1 PCA_ Axisof 407 +04 —01 —0.4 —05

variation

SNPs

o M o = o
o M = N o

N o N O N o
o

b

CandidateSNP 2 2 1 1 0 — 10 14 11 16 08
Phenotype 1 1 0 0 0 — 03 06 01 04 05
S —

%% = 0.07 => no association

Price et al. Nature Genetics. 2006.

[m] = =
Cyril Dalmasso (UEVE) M2 Data Science : Santé, Assurance, Finance

il
it
S
»
i)



Single-marker analyses

Population stratification

Eigenstrat - Cochran Armitage trend test

1
3 So©
i
8
: ©
€]
0-
} 1 }
0 1 2
Genotype

Generalization

(n—k — 1) x [Corr(G*, P)P-55x2
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Population stratification

PCA

Warning: not adapted to familial data
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Multiple testing

@ Multiple testing
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Multiple testing

@ Multiple testing

o General statistical setting
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Multiple testing General statistical setting

General statistical setting

Statistical model

o Let (X, F,P) a statistical model where X" is the sample space, F a
o-field and P a family of probability measures.

@ Let x an observation and X the corresponding random variable such
that X~ PeP

o Often P = (Py)gco where 0 is the target of the inference
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e
Types of multiplicity

One or two samples problems with multiple endpoints
@ Sample space: X = R™"
The same n observational units are measured with respect to m
different endpoints
@ Number of tests: m
o Examples: Differential gene expression analysis - Genome Wide
Association Studies
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e
Types of multiplicity

k-samples problems with localized comparisons

@ Sample space: X = R ™
k groups of observational units are considered.
@ Number of tests:
e k — 1 if there is one control group

k(k—1) . o . .
° % is all pairwise comparisons are considered

@ Example: ANOVA

Cyril Dalmasso (UEVE) M2 Data Science : Santé, Assurance, Finance
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Tested hypotheses

Multiple testing problem
Let (X, F,(Ps)oco, Ho) a multiple testing problem.

Family of tested hypotheses
HOZ{H();SiG/}
defines a family of null hypotheses for an arbitrary index set / such that

[l|=meN

Null and alternative hypotheses
@ Hp;: 0 € Og;
) Hl,' 10 ¢ @,-\@o,-
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e
Tested hypotheses

Complete null hypothesis
The "complete null hypothesis" (or "global null hypothesis") is defined by:

Hg = NierHoi

Remark

In the following, we will assume that H§ is non empty (ie: null hypotheses
are compatible)
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\NERIERESE-S  General statistical setting

Multiple testing procedure

Definition
A multiple testing procedure for (X, F, (Pp)oco,Ho) is a measurable
mapping:
p: X —{0,1}"
such that
1 if Hp; is rejected
0 if Hp; is not rejected

p(xi) = {
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Multiple testing General statistical setting

Rejection regions

Let T = (T;)ic; a m-vector of test statistics and let (ag, ) € [0,1]%. We

consider multiple testing procedures based on nested rejection regions such
that:

Viel,ag <ax= ri,al(Ti) C Fiay(TH)

where I'; o, (T;) is the rejection region for an «; level.

Remark

In the following, we will consider rejection regions such that
ri,al(Ti) = [7”7 +OO[
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Multiple testing

@ Multiple testing

@ Type | error criteria
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(TSR3 Type | error criteria

Type | error criteria

General decision pattern

Reality Decision | Hy not rejected | Hp rejected | Total
Hp true U %4 mg
Hp false T S my
Total w R m
Let Iy = {f el:0¢e @0,’} and h = I\/o

e R=|{iel:pi=1}=V+S

) 5=‘{i€llig0;=1}’

o T = my — S

o V=[{iclh:pi=1}

o U= mg — %

Cyril Dalmasso (UEVE) M2 Data Science : Santé, Assurance, Finance
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(TSR3 Type | error criteria

Type | error criteria

Remarks
e U, V, T,S, myg and m; depend on the unknown value of 6 and are

not observable
@ Only r, m and w can be observed
@ RS, T, Uand V are random variables.

° (ma mo, ml) € N3

106 /192
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(TSR3 Type | error criteria

Type | error criteria

Definitions

Let (X, F, (Ps)oco, Ho) a multiple testing problem and ¢ = {p;: i€/} a
MTP

o Family-wise error rate
FWERy(p) = Pp(V > 0)

o Generalized family-wise error rate

k — FWERy(p) = Py(V > k)
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(TSR3 Type | error criteria

Type | error criteria

o False discovery proportion

%4

FDPy(¢) = RV1

Remark: FDPy(p) cannot be controled.

o False discovery rate
FDRy() = Eo(FDPy(¢))

@ Positive false discovery rate

VvV
PFDRy(2) = Eg <§|R > 0)

Remark: pFDRy(¢) cannot be controled.

v
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(TSR3 Type | error criteria

Type | error criteria

@ Per-family error rate
PFERy(ip) = Eo(V)

@ Per-comparison error rate

V\  PFER

PCER(¢) =B (1) ==

@ False discovery exceedance rate

FDXy(p) = Po(FDPy(p) > c); c € (0,1)

Cyril Dalmasso (UEVE) M2 Data Science : Santé, Assurance, Finance
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Type | eror citeia
Strong control / Weak control

Definitions
Let E»(p) a type | error criterion.
@ The MTP ¢ is said to control () in the strong sense at level

a € [0,1] if
sup &) < o
0cO
@ The MTP ¢ is said to control &(y) in the weak sense at level
a € [0,1] if
Vo € eo;gg(go) <«
Remark

Strong control implies weak control
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Error criteria comparison

Lemma 1

O FDRy(p) = pFDRp(¢) x Py(R > 0)

@ If mg = m then FDRy(yp) = FWER(y)
Q Vo €, FDRQ(QO) < FWERQ(QO)
Proof

Exercice

Cyril Dalmasso (UEVE)
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Power
Definitions

@ Any power
anyPwry(p) =P(S > 0)

o All power

@ Average power

allPwryg(p) = P(S = my)

avgPwry(p)
@ True discovery rate

2(3)

TDRy(p) = E (%)

M2 Data Science : Santé, Assurance, Finance
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(TSR3 Type | error criteria

Exercice

Let consider three independent tests. Two null hypotheses are true, one is
false. The following table give the joint distribution of (V. R).

r 0o 1 1 2 2 2 3 3
v 0 0 1 0 1 2 0 1
P(R=r,V=v)|02 04 002 - 02 01 - - - -

N W
w|w

@ Complete the table.
@ Calculate the FDR value for this scenario.
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Multiple testing

@ Multiple testing

@ Unadjusted and adjusted p-values
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Multiple testing Unadjusted and adjusted p-values

Unadjusted p-values

Definition

Let (X, F,(Pp)oco) a statistical model and let ¢ a one-dimentional test
for the single pair of hypotheses:

@ Hy:0€ 0
OH1:9€@\@0

Assume that ¢ is based on a real valued test statistic T : X — R with a
rejection region I, C R such that

Vxe X, p(x) =1 T(x)el,

The p-value of an observation x € X with respect to ¢ is defined by

a:T(x)ely 0€0,

ps(x) = _inf (sup Py(T(x) € I'a)>

Cyril Dalmasso (UEVE) M2 Data Science : Santé, Assurance, Finance
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N L LG q) racisted and adjusted prvalues
Unadjusted p-values

Remarks
@ Rejection regions are such that a; < ax =T, Cl,,

o If ©g contains only one single element ¢ and if Py, is continuous,
then

po(x) =inf(a € [0,1] : T(x) € T4)
o Let Q4 denote the domain of X.
P, : Qx—[0,1]
w = po(x(w))

can be regarded as a random variable. It is just a test statistic.

o Let a € (0,1) a fixed given significance level and assume that Py, is
continuous, then we have the duality ¢(x) =1 < p,(x) < «
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Multiple testing Unadjusted and adjusted p-values

Unadjusted p-values

Theorem

Consider the m-vector of test statistics T = (T1,..., Tm) and define a

collection of m rejection regions {[',, : i = 1,..., m} based solely on the
marginal null distribution and such that

° i) SUPgco, P(Tiel,) <a
@ ii) Nested assumption ag < ap = o, C Ty,

© The unadjusted p-values are stochastically larger than a uniform
ditribution on the interval [0, 1], that is:

sup Py(pi < z) <z
0cOq

@ For a simple null hypothesis (@9 = {6p}) and a continuousnull
distribution [Py,
pe ~ U([0,1])

M2 Data Science : Santé, Assurance, Finance
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Dbl
Adjusted p-values

Definition

Consider any multiple testing procedure (MTP) with rejection regions I,.
Then, we can define an m-vector of adjusted p-values P* = (P5, ..., P};)
such that

P = inf{a € (0,1) : Ho; is rejecte at nominal multiple testing level a}

Remarks
@ The adjusted and unadjusted p-values can be calculated without prior
specification of significance level a.
@ Adjusted and unadjusted p-values reflect the strength of the evidence
against each null hypothesis.

Cyril Dalmasso (UEVE) M2 Data Science : Santé, Assurance, Finance 118 /192




Multiple testing Unadjusted and adjusted p-values

Bootstrap estimation of the test statistic/p-value null
distribution

Procedure
@ Generate B bootstrap samples

Xb={XP:j=1,.,n,b=1..B

For the bt sample, the ij,j =1,...,n are n iid copies of a random
variable X* ~ Py

o For each bootstrap sample X? compute an m-vector of test statistics
(or p-values) T? = (TP :i=1,..., m) that can be arranged in an
mxB matrix T with rows correponding to the m null hypotheses and
columns to the B bootstrap samples.
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Multiple testing Unadjusted and adjusted p-values

Bootstrap estimation of the test statistic/p-value null
distribution

Procedure

@ Define m marginal cumulativedistributions functions p,B as the
empirical CDF of the rows of the matrix T& that is:

. 1 &
FI-B(Z) = § Z 1{-’-le2}
b=1
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Multiple testing

@ Multiple testing
o Classes of MTP procedures
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e G DR (e
Classes of MTP procedures

Margin-based procedures

For a margin-based MTP, each marginal test ¢; can be calibrated to keep
a local significance level ayoc. The multiple test ¢ = [p; : 1 < i< m]is
then build up from these marginal tests by adjusting «, for the
multiplicity of the problem.

Cyril Dalmasso (UEVE) M2 Data Science : Santé, Assurance, Finance 122 /192



\ERIERES A Classes of MTP procedures

Margin-based procedures

Single step procedure

Single step procedures carry out each individual test ¢;;1 < i < m at local
significance level aj,c where o is the result of a multiplicity correction of

«
y

Example

The Bonferroni procedure consists in choosing ajoc =
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\ERIERES A Classes of MTP procedures

Margin-based procedures

Step-down procedures

Step-down procedures rely on an ordering of the hypothesis
Ho1) < ... < Ho(m) which is induced by the order of the marginal p-values
P) < - < P(m)

Principle
© Order the hypotheses
© Test Hy(; at level oy

© o If Hy is rejected, repeat step 2 for Hy(iy1) (tested at level oyit1))
o If Hy(; is not rejected, STOP.
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\ERIERES A Classes of MTP procedures

Margin-based procedures

Step-up procedures

Step-up procedures also rely on an ordering of the hypothesis
H0(1) <. < HO(m)-

Principle
@ Order the hypotheses
© Test Hy(m) at level oy

(8] o If Ho(m) is is rejected, reject Ho(;) for all j < m
o If Hy(m) is not rejected, repeat step 2 for Hy(m—1).

Cyril Dalmasso (UEVE)
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Closed test procedures

Definition 1

(N — closed) if

The system Hp, = {Hoi},i € I ={1,..., m} is closed under intersection

V0 #£ JC /,HJ=ﬂj€JHj=@Or HJ:mJ'eJHjeHm
Definition 2

The test ¢ is coherent if V(i,)) € I?, H; C H; = {¢; = 1} C {¢; = 1}

Cyril Dalmasso (UEVE)
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\ERIERES A Classes of MTP procedures

Closed test procedures

Theorem 1

Let X = {H;:i € I} a N — closed system of hypotheses and let
¢ = {yi,i € I} a coherent multiple testing procedure at local level «, then
¢ is a strongly FWER controlling multiple test at level « for (X, F, P, H)
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WERIERES-A  Classes of MTP procedures

Closed test procedures

Theorem 2

Let H={H;: i€ l} an — closed system of hypotheses and let
¢ = {¢i,i € I} a coherent multiple testing procedure at local level «, then

we define the closed multiple test procedure (closed test) ¢ = (¢; : i € 1)
based on ¢ by

Viel: (;_S;(x) = min{j:ngHi}qu(x)
It holds
© The closed test ¢ strongly controls the FWER at level o

@ Forall ) # I C I, the restricted closed test ¢/ = (¢ : i€ I') is a
strongly (at level &) FWER controlling multiple test for
H’:{H,-:iel’}

© Both tests ¢ and ¢ are coherent
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\ERIERES A Classes of MTP procedures

Multivariate procedures

Goal

To incorporate the dependency structure of the data explicitely into the
mutiple testing procedure in order to optimize the power

Classes of multivariate procedures
@ Resampling-based procedures

@ Methods based on the Central Lmit Theorem
° ...
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\ERIERES A Classes of MTP procedures

Adaptive procedures

Goal

To improve the power of a type | error rate controlling procedure by
incorporating in it a part V of the underlying distribution Py

Remark
Adaptation can relate to
@ Dependence structure (V = X))
@ 7o the proportion of true null hypotheses

@ Alternative hypotheses structure
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FWER control

Bonferroni procedure

The Bonferroni procedure is defined by

PP = Lipcayl<j<m

Proposition

The Bonferroni procedure provides strong control of the FWER at level
Mo <a

Adjusted p-values

Remark
For large m values, the power of the Bonferroni procedure is very low.

= - - =
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Multiple testing

FWER control

Sidak procedure
The Sidak procedures is defined by

~Sid __ . :
Tl pa gk SIS m

Proposition

The Sidak procedure provides strong control of the FWER at level « if
(P1, ..., Pm) are jointly stochastically independent

Adjusted p-values

Pr=1-(1-P)"

o F = E E DA
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FWER control
Holm procedure

The Holm procedure (step-down Bonferroni) is defined by

ASid __
R GEE
Proposition

pl<j<m

The Holm procedure provides strong control of the FWER at level «.
Adjusted p-values

Pj‘ = max

((m— i+ 1)P), Pi_y)

Cyril Dalmasso (UEVE)
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Classes of MTP procedures
FWER control

Adaptation to the dependence structure
Let consider a Gaussian model

X ~ N(Hp, ¥)

where H € {0,1}", € R*™, p;(X) = ®(x;) X known.

Theorem
If to(X) = inf{t € [0,1] : Fx(t) > a} with
Fs(t) = Pxn(o,5)(minj(pj(x)) < t), then
o VO € ©, FWERy(t.(Y)) < «
o for § = (H, ) with H; = 0V, FWERy(to(X)) = «

Cyril Dalmasso (UEVE) M2 Data Science : Santé, Assurance, Finance 134 /192



Classes of MTP procedures
FWER control

Westfall and Young procedure

The Westfall and Young's procedure is a multivariate resampling based
method for estimating the adjusted p-values from a set of raw p-values:

p;k = IF’g(minJ-e,OPj < p,') < Pg(minjeIPj < pi)
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Classes of MTP procedures
FWER control

Westfall and Young procedure

Principle:
@ Calculate pi(i € 1)
@ Calculate p?,i € I,b € {1,...,B} (pour B bootstrap)
© Estimate the adjusted p-values:

B
o 2b=1 Ymine () <pi)

Pi B
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Classes of MTP procedures
FWER control

Exercice

@ Implement and apply the following MTP:

Bonferroni
o Sidak
e Holm
e Westfall and Young

@ Check the results using the p.adjust function and the multtest
package.
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Classes of MTP procedures
FDR control

Benjamini and Hochberg

Denote p(1) < p(m) the ordered p-values for a multiple testing problem
(X, F,(Pa)oco, Hm) and Hy1y < ... < Hy(m) the ordered null hypotheses.
The linear step up test Y (often called Benjamini and Hochberg
procedure vfBH) rejects exactly the hypotheses Hys -, Hiky where

io
k= e l:ppy < —
max(i € 1: p(jy < m)

If the maximum does not exists, then no hypothesis is rejected
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Classes of MTP procedures
FDR control

Theorem

Consider the following assumption:

D1 VOe©:Vjel:Viely:Py(R>j|lpi <t)is non-increasing in
t €]0; o]
D2 e p-values are stochastically larger than 2([0, 1])
o VO € ©, the p-values (p; : i € lp) are iid
e VO € ©, the random vectors (p;; i € Ip) and (p;; i € I) are
stochastically independent

Then,
o under D1: FDRy(pBH) < Mg

m

o under D2: FDRy(pB") = ™q

Cyril Dalmasso (UEVE)
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Classes of MTP procedures
FDR control

Remark

The adaptive procedure (adaptive to the proportion of true null
hypotheses) is given by replacing « by % where 7 is an estimation of the
proportion of true null hypotheses ¢
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Classes of MTP procedures
FDR control

Benjamini and Yekutieli procedure

For any dependency structure among P4, ..., P, it holds:

BH Mo
. < — —
VO € © : FDRy(¢"") Q E

The BH procedure with a replaced by E controls the FDR under

arbitrary dependency among P, ..., Pp,. ThIS procedure is denoted BY
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Empirical Bayes procedures

Two-components mixture model

F(t) =P(H = 0)Fo(t) + (1 —P(H = 0))F1(t)

Cyril Dalmasso (UEVE)
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Empirical Bayes procedures

pFDR as a posterior probability

Under the two-components mixture model:

pFDR =P(H =0|T €T)

Cyril Dalmasso (UEVE)
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Empirical Bayes procedures

local false discovery rate

The local false discovery rate is a local version of the pFDR:

Ifdr(t) = P(H = 0| T = t)

Cyril Dalmasso (UEVE)
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Multi-marker analyses

© Multi-marker analyses

Cyril Dalmasso (UEVE)
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Power of association studies
Effect size

Low-frequency
variants with
Rare variants of

Allele frequency

intermediate effect
small effect
very hard to identify
1.1 by genetic means
Low
0.001 . .
Nature. 2009.

Cyril Dalmasso (UEVE)
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Multi-marker analyses

Heritability

Quantitative trait

Quantitative genetic model from Ronald Fisher (1918):

P=p+G+E

where

@ G is the total genome effect

@ E is the environment effect
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Heritability

\IEENECCEENEWSEM  Gene and pathway level analysis.

Quantitative trait

If G and E are independent:
0',23 = 0% + 0',2:—
where

@ Heritability definition: Proportion of trait variance which is due to all
genetic effects

Cyril Dalmasso (UEVE)
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Gene and pathway level analysi
Missing heritability

Quantitative trait

NEWS FEAT! SONAL GENOMES

3

The case of the missing heritability

When scientists opened up the human genome, they expected to find the genetic components of
common traits and diseases. But they were nowhere to be seen. Brendan Maher shines a lighton
six places where the missing loot could be stashed away.
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e S
Missing heritability

Missing heritability
Significant GWAS SNPs explain a small proportion of disease heritability

v

Possible reasons
@ GxG and GxE interactions
@ A large number of causal variants, each with a small effect

o Epigenetics

@ Rare variants
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Multi-marker analyses

Association studies

GWAS

Captures nearly all common variants

Sequencing (NGS)

Captures all common and rare variants

[m] (=) =
M2 Data Science : Santé, Assurance, Finance
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\IEENECCEENEWSEM  Gene and pathway level analysis.

Genome sequencing

@ Whole Genome Sequencing (WGS) -> sequencing of the entire
genome

@ Whole exome sequencing (WES) -> Sequencing only the coding
regions of the genome ( 1% of tge genome contain  85% of
variability)

Genome sequencing allows to capture rare and common variations

Cyril Dalmasso (UEVE) M2 Data Science : Santé, Assurance, Finance 152 /192



e S
SNP arrays vs. Sequencing

SNP arrays

Data easily stored and analyzed
Allele calling is standardized
Experiment well understtod

Number of statistical tests known and carefully considered

SNP interrogated directly and indirectly

Sequencing
@ Requires massive storage capacity
@ Allele and Structural Variation calling still in flux
@ Experiment not clearly defined
@ SNPs interogated at different depths
o Different error rates for different NGS platforms

= = = = Tyt
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\IEENECCEENEWSEM  Gene and pathway level analysis.

Gene and pathway level analysis

Limitations of SNP level analyses
o Lack of power (multiple testing problem)
@ Causal SNP in LD with multiple types SNPs
@ Most common diseases are multifactorial
@ Lack of reproducibility

@ Biological interpretation
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\IEENECCEENEWSEM  Gene and pathway level analysis.

Gene and pathway level analysis

Multi-SNP analyses
@ Idea: group SNPs to form SNP sets and test them as a unit

@ SNP sets :

Genes

Pathways

Evolutionary conserved regions

Moving windows

Any group based on an outcome variable

e Databases : Ingenuity, MetaCore, Kegg, Gene ontology (GO), ...

@ Use information on network structures
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Gene and pathway level analysis

Advantages of multi-SNP analyses
@ Dimentionality reduction

o Capture multi-SNP effects
o Biologically meaningful unit

Cyril Dalmasso (UEVE)
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Multi-marker analyses

Gene and pathway level analysis

Linkage Disequilibrium (LD) - correlation structure

00 02 04 06 08 1.0 0.00 0.02 0.04
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Example - LD block

F Calor Ky
I ]
l W oasoon oas i
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Example - pathway

Multi-marker analyses

hosy
dependence

il Dalmasso
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Gene and pathway level analysis

Question

How to test if the gene/pathway is associated with the phenotype?

Cyril Dalmasso (UEVE)
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\IEENECCEENEWSEM  Gene and pathway level analysis.

Gene and pathway level analysis

Statistical methods

@ Gene level analysis

o Minimum p-value tests (minP)
o Combined p-value approaches
o Average/collapsing tests

e Variance component tests

e Pahway level analysis

o Over-representation analysis (ORA)

o Gene set enrichment analysis (GSEA)

e minP, collapsing, combined p-value, VC tests
o Graphical methods

= See rare variants analysis J
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\IEENECCEENEWSEM  Gene and pathway level analysis.

Gene and pathway level analysis

Minimum p-value
@ ldea: the smallest individual SNP p-value represents the entire group
@ Advantage: easy to run

@ Problem: How taking into account for having taken the smallest
p-value? (Bonferroni, estimation of the effective number of
tests,permutations,...)
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\IEENECCEENEWSEM  Gene and pathway level analysis.

Gene and pathway level analysis

Combined p-value approaches
o ldea: combine the p-values across the SNPs in the group
o Example: Fisher's method (X3, = —23°% ; In(p;))
@ Problem: p-values are supposed independent for most combination
approaches
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\IEENECCEENEWSEM  Gene and pathway level analysis.

Gene and pathway level analysis

Averaging/Collapsing

o Idea: build a meta-SNP C; = "% ; wjx; and test association between
C; and the outcome
@ Common approaches:

e Simple average

o Inverse of MAF

e p-values from previous studies
e PCA

o

Supervised approaches
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\IEENECCEENEWSEM  Gene and pathway level analysis.

Gene and pathway level analysis

Variance component tests

@ Regression model:

E(g(yi)) = aZi + Bixi1 + Poxio + ... + BpXip

@ Null hypothesis: Hy : 51 = B2 = ... = 3p
o Mixed model: if E(8) = 0 and V() = 72, then

Ho: 7% =0
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\IEENECCEENEWSEM  Gene and pathway level analysis.

Gene and pathway level analysis

Over-representation analysis (ORA)
o Idea: From a list of significant SNPs, look for an over-representation
of the SNPs in the group
@ Common approaches:
o Fisher's exact test / Hypergeometric test

Significant  Not significant
In group Ny Nio Ny
Not in group N21 N22 N2+
Total N+]_ N+2 N

o X2 independance test
o Binomial test
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\IEENECCEENEWSEM  Gene and pathway level analysis.

Gene and pathway level analysis

Gene Set Enrichment Analysis (GSEA)
@ Rank all SNPs based on their p-values

@ Calculate an enrichment score for the group G:

J
ES(G) = maxli,-SNZX;
i=1

Xt if SNP € G
— /== ifSNP; ¢ G

X1+

where X; =

© Evaluate significance based on permutations

Cyril Dalmasso (UEVE) M2 Data Science : Santé, Assurance, Finance

167 /192



Rare variants

@ No consensual threshold
@ Most of human variants are rare

@ Functional variants tend to be rare

Cyril Dalmasso (UEVE)
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WITTEENECEEELENES  Methods for combining information from single-marker coefficients

Rare variants

Challenges
@ Lots of rare variant = Large multiple testing problem
@ Large sample size required to oberve one particular rare variant

@ Individual power depends on allele frequency
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Methods for combining information from single-marker coefficients
Current strategy

Region based approach

Test the joint effect of pre-specified group of sequence variants
e Sequencing study unit: region (gene, moving window, exons, ...)
@ Types of tests

o Collapsing/burden tests
e Variance component based tests
e Omnibus tests
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Collapsing tests

Principle

Aggregate rare variant information in a region into a single summary
measure

o CAST
o MZ
@ Weighted Sum Tests
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Collapsing tests

Multiple linear regression model
@ Regression model:

E(g(yi)) = aZi + Pixit + Poxiz + ... + BpXip
@ Null hypothesis: Hy : 81 = 62 = ...

:IBP

Cyril Dalmasso (UEVE)
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Collapsing tests

Model

Assume: 1 =fr=..=0p,=0

E(g(yi)) = aZi + BC
where C; = Xj;

Cyril Dalmasso (UEVE)
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Methods for combining information from single-marker coefficients
Collapsing tests

Other possibilities
o CAST Ci = 1(ZX’J>O)
o MZ: C; = 3" 1(x;>0) (dominant model)
o Weigted burden test: C; = > w;Xj;
e Unsupervised approaches

e Supervised approaches (require permutation or bootstraping for
significance)

Warning
Loss of power if:
@ both protective and deleterious effects

@ only a few variants have an effect
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Methods for combining information from single-marker coefficients
Sequence Kernel Association Test (SKAT)

Principle

@ Compare pair-wise similarity in phenotype between subjects to
pair-wise similarity in genotypes at the rare variants

@ Similarity in genotypes is measured with a kernel K(G;, Gj/)
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Methods for combining information from single-marker coefficients
Sequence Kernel Association Test (SKAT)

Variance component tests

@ Regression model:

E(g(yi)) = aZi + Bixi1 + Poxio + ... + BpXip

@ Null hypothesis: Hy : 51 = B2 = ... = 3p
o Mixed model: if E(8) = 0 and V() = 72, then

Ho: 7% =0
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Methods for combining information from single-marker coefficients
Sequence Kernel Association Test (SKAT)

Variance component tests

@ Regression model:
E(g(yi)) = aZi + Pixi1 + Poxiz + ... + BpXip

@ Null hypothesis: Hy : 81 = B2 = ... = f3p
e Mixed model: if E(3) = 0 and V(B) = w;72, then

Ho: 7> =0
@ Score test statistic: Qskar = (v — po)'K(y — o) where

K = GWWG'

with W = diag(wj)

v
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SKAT-O

Optimal unified strategy

Principle

Qoptimal = cholIapse + (1 - p) QskaT

Use data to adaptively estimate p in order to maximize power

Cyril Dalmasso (UEVE)
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Additional concerns

@ Quality controls
@ Population stratification

@ Accomodating common variants

Cyril Dalmasso (UEVE)
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Epistasis

Definitions

@ Biological definition

@ Statistical definition

Cyril Dalmasso (UEVE)
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Epistasis

Biological definition

@ Originally in mendelian genetics

@ One locus masks the effect of another locus
@ No environmental contribution

Cyril Dalmasso (UEVE)

[m]

M2 Data Science : Santé, Assurance, Finance

=



el
Epistasis

Table 1. Example of phenotypes (e.g. hair colour) obtained from
different genotypes at two loci interacting epistatically, under
Bateson’s (1909) definition of epistasis

Genotype at locus G

Genotype at locus B g/g gG G/G
b/b White Grey Grey
b/B Black Grey Grey
B/B Black Grey Grey

Cordell H, Human Molecular Genetics, 2002
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el
Epistasis

Biological definition

"situation in which the qualitative nature of the mechanism of action of a

factor is affected by the presence or absence of the other" (Siemiatycki,
1981)

Table 2. Example of penetrance table for two loci interacting
epistatically in a general sense

Genotype at locus B

Genotype at locus A b/b b/B B/B
ala 0 0 0
a/d 0 1 1
A/A 0 1 1

Cordell H, Human Molecular Genetics, 2002
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Epistasis

Statistical definition

g(E(y)) = BiSNP; + Y 7 SNPixSNP;
i i#j

Detection

@ Exhaustive combination

@ Main effects filter

@ Biological based filter

Cyril Dalmasso (UEVE)
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el
Epistasis

Exhaustive combination
@ Pro: Allows to investigate all possible interactions

e Cons: Huge number of combinations (practically unfeasible)

Main effects filter
@ Pro: Easy to interpretand computationally feasible

@ Cons: Evaluates only genes with large main effects

Biological based filter
@ Pro: Fewer statistical tests

@ Cons: Limited by current state of knowledge
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Epistasis

Modelling strategies

@ Standard regression analyses

g(E(y)) = Z BiSNP; +

@ -epistasis option in PLINK

> i SNP;xSNP;
i#j

Cyril Dalmasso (UEVE)
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Epistasis
Gene level analyses

Advantages:

@ Results biologically interpretable

@ Genetic effects more detectable

@ Reduction of the variables number

Cyril Dalmasso (UEVE)
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el
Epistasis

Gene level analyses

Existing gene scale methods :

@ For two or few genes
2 PCA + logistic regression (He et al. 2011, Li et al. 2009, Zhang et al. 2008)

> PLS + logistic regression (Wang T et al. 2009)

@ For a larger number of genes
-+ PCA + LASSO (D’'Angelo et al. 2009)

> PCA + pathway-guided penalized regression (Wang X et al. 2014)

From Stanislas V, 2016
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Epistasis

Group modelling approach

| SNPis . SNPig . SNPga .. SNPg,_ | Pheno
Indy 1 0 0 1 »
Inda 0 0 2 1 Y2
. 2 1 1 2 ‘g';spncte7 X
. 0 1 0 0 ) 11 =X11
Ind; 0 2 1 0 Yi r,s two genes
geney geneg

g(E[y\X)—EEﬂ”‘ gpe T E"lr; rs

8 Pe
Main effects Interaction effects
T
B=|hB1a:B12, Brey, 5B Bepg T=| Y1z Y16 -~ Y(6-1)6
—_— —_— ~
geney. geneg 16,10 " M16,q

q : # of interaction variables for a couple

From Stanislas V, 2016
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el
Epistasis

Interaction variable construction

We consider f,(X", X°) to represent the interaction between genes r,s.

it =arg max cov?(y, £, (X", X?))

uy[|uf|=1

We set : (X", X*) = W™u  with W™ = {X[X§ }o) 1 prik=tr e

max_||cov[W o, y]|2 = max u’ W™ yyT W=u
u, [lul|=1 u|lu]=1

u : eigen vector associated to the largest eigenvalue of W"TnyW's

u= W(sTy

We then obtain for each couple (r,s) » 2" = W"u = W"W" Ty

From Stanislas V, 2016

v
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el
Epistasis

Coefficients estimation

Group LASSO regression
8=(8,%) = afg"_;i" (E (i—XiB—Zr2+ 2> vreellBEllz+ 3 \/PrPsH‘t'sl\z] )
: i z s

Limits of the groupLASSO regression :
e P(s*C 8 2 Lhbut 15 >> [5*]

@ Difficult to compute p-value or confidence interval

Adaptive-Ridge Cleaning Becu JM, 2015
@ Use of a specific penalty for group LASSO

@ Permutation test based on Fisher test approach for each group
Py = g#{Fi > Fi}

From Stanislas V, 2016
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Epistasis

Non prametric approaches
@ Decision trees
e Multifactor-dimentionality reduction (MDR)
@ Support vector machines
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