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1 Unicité des solutions Mild de Fujita-Kato (5 pt.)

Soit ~u0 ∈ H1(R3) une donnée initiale et soit ~f ∈ L2([0, T [, L2(R3)) une force extérieure. Soient ~u et ~v
deux solutions mild sur l’ensemble [0, T [×R3 de l’équation de Navier-Stokes issues de la même condition
initiale ~u0 et qui appartiennent à l’espace C([0, T [, H1(R3)) ∩ L2([0, T [, Ḣ2(R3)).

L’objectif de cet exercice est de montrer, qu’indépendamment du processus de construction de ces solu-
tions, dans ce cadre de travail il y a unicité des solutions.

1. On note ~w = ~u− ~v, vérifier que l’on a bien ~w(0, x) = 0.

2. Montrer l’identité : ~w = −B(~w,~v)−B(~u, ~w), où B(·, ·) est l’application bilinéaire définie par

B(~u,~v) =

∫ t

0
gt−s ∗ P

(
div(~u⊗ ~v)

)
(s, x)ds

3. Soit T ∗ ∈ [0, T [ le temps maximal tel que l’on ait ~w = 0 sur l’ensemble [0, T ∗[×R3. Démontrer que si
l’on a T ∗ < T et si T ∗ < T0 < T alors on a la majoration

‖~w ⊗ ~v + ~u⊗ ~w‖L∞([0,T0[,H1(R3)) ≤ C(T0 − T ∗)1/4‖~w‖L∞([0,T0[,H1(R3))

×(‖~u‖L∞([0,T0[,H1(R3)) + ‖~v‖L∞([0,T0[,H1(R3)).

4. A partir de l’estimation précédente obtenir le contrôle

‖~w‖L∞([0,T0[,H1(R3)) ≤ C(T0 − T ∗)1/4(1 + T
1/2
0 )(‖~u‖L∞([0,T0[,H1(R3)) + ‖~v‖L∞([0,T0[,H1(R3))

×‖~w‖L∞([0,T0[,H1(R3)).

5. Vérifier que si la quantité T0 − T ∗ est suffisamment petite, alors on a ‖~w‖L∞([0,T0[,H1(R3)) = 0, en
déduire que l’on a ~w = 0 sur l’ensemble [0, T0[×R3. Obtenir une contradiction afin de conclure que
l’on a bien ~u = ~v sur tout l’ensemble [0, T [×R3.

2 Solutions Mild pour une équation fractionnaire (6 pt.)

Pour u : [0,+∞[×Rn −→ R une fonction réelle, on considère l’équation
∂tu(t, x) = −(−∆)

α
2 u(t, x) +

(
(−∆)

1
2u(t, x)

)2
∗ f(t, x), (1 < α ≤ 2)

u(0, x) = u0(x), x ∈ Rn,
(1)

où u0 ∈ H1(Rn), f ∈ L∞([0,+∞[, L2(Rn)) et où l’opérateur (−∆)
α
2 avec 1 ≤ α ≤ 2 est la puissance frac-

tionnaire du Laplacien ( ̂(−∆)
α
2 ϕ(ξ) = |ξ|αϕ̂(ξ)). Le semi-groupe associé à l’opérateur −(−∆)

α
2 sera noté
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e−t(−∆)
α
2 avec t > 0 et son action est donnée au niveau de Fourier par

(
e−t(−∆)

α
2 ϕ
)̂

(ξ) = e−t|ξ|
α
ϕ̂(ξ). On

a la formule e−t(−∆)
α
2 (ϕ) = pαt ∗ ϕ et pour le noyau pαt on admettra les points suivants :

• pour tout t > 0 on a ‖pαt ‖L1 = 1,

• pour tout t > 0 et s > 0 on a ‖(Id−∆)
s
2 pαt ‖L1 ≤ C max{1, t−

s
α } où C > 0 est une constante qui ne

dépend que de la dimension.

On considère la formulation intégrale suivante

u(t, x) = e−t(−∆)
α
2 u0(x) +

∫ t

0
e−t(−∆)

α
2
(

(−∆)
1
2u
)2
∗ f(s, x) ds, (1 < α ≤ 2).

1. Montrer que l’on a l’estimation
∥∥∥e−t(−∆)

α
2 u0

∥∥∥
L∞
t H

1
x

≤ ‖u0‖H1 .

2. Vérifier l’inégalité

‖Bf (u, u)‖L∞
t H

1
x
≤ C sup

0<t≤T0

∫ t

0
max{1, (t− s)−

1
α }
∥∥∥∥((−∆)

1
2u
)2

(s, ·)
∥∥∥∥
L1

‖f(s, ·)‖L2 ds

3. Conclure que l’équation (1) admet une unique solution mild dans l’espace L∞t ([0, T0[, H1
x(Rn)) où

l’on donnera une borne supérieure pour le temps d’existence T0 en fonction des données du problème.

3 Solutions faibles pour l’équation quasi-géostrophique linéaire (11 pt.)

On considère sur Rn l’équation suivante∂tθ(t, x) = −(−∆)
1
2 θ(t, x) + ~∇ · (~vθ)(t, x)

θ(0, x) = θ0(x),
(2)

où θ0 ∈ L2(Rn) est une donnée initiale et ~v : [0,+∞[×Rn −→ Rn est un champ de vecteur à divergence
nulle (div(~v) = 0) tel que ~v ∈ L∞t L∞x .

1. Pour ε > 0 on pose

∂tθ(t, x) = ε∆θ(t, x)− (−∆)
1
2 θ(t, x) + ~∇ · (~vθ)(t, x),

et on considère sa formulation intégrale :

θ(t, x) = gεt ∗ θ0(x)−
∫ t

0
gε(t−s) ∗ (−∆)

1
2 θ(s, x)ds+

∫ t

0
gε(t−s) ∗ ~∇ · (vθ)(s, x)ds. (3)

Vérifier que pour 0 < t < T on a les estimations

• ‖gεt ∗ θ0‖L∞
t L

2
x
≤ ‖θ0‖L2 et ‖gεt ∗ θ0‖L2

t Ḣ
1
x
≤ C√

ε
‖θ0‖L2 .

•
∥∥∥∥∫ t

0
gε(t−s) ∗ (−∆)

1
2 θ(s, ·)ds

∥∥∥∥
L∞
t L

2
x

≤ C
√
T

ε
‖θ‖L∞

t L
2
x

et∥∥∥∥∫ t

0
gε(t−s) ∗ (−∆)

1
2 θ(s, ·)ds

∥∥∥∥
L2
t Ḣ

1
x

≤ C
√
T

ε
‖θ‖L2

t Ḣ
1
x
.
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•
∥∥∥∥∫ t

0
gε(t−s) ∗ ~∇ · (~vθ)(s, ·)ds

∥∥∥∥
L∞
t L

2
x

≤ C
√
T

ε
‖θ‖L∞

t L
2
x
‖~v‖L∞

t L
∞
x

et∥∥∥∥∫ t

0
gε(t−s) ∗ ~∇ · (~vθ)(s, ·)ds

∥∥∥∥
L2
t Ḣ

1
x

≤ C
√
T

ε
‖θ‖L2

t Ḣ
1
x
‖~v‖L∞

t L
∞
x

.

en déduire que pour ε > 0, l’équation (3) admet une solution mild, notée θε, dans l’espace L∞([0, T [, L2(Rn))∩
L2([0, T [, Ḣ1(Rn)).

2. Vérifier que pour θε ∈ L∞t L2
x ∩ L2

t Ḣ
1
x on a l’égalité

d

dt
‖θε(t, ·)‖2L2 = −2ε‖~∇θε(t, ·)‖2L2 − 2‖(−∆)

1
4 θε(t, ·)‖L2 + 2

∫
Rn
~∇ · (~vθε)θε(s, x)dx.

et en utilisant la propriété de divergence nulle de ~v obtenir le contrôle

‖θε(t, ·)‖2L2 + 2ε

∫ t

0
‖θε(s, ·)‖2Ḣ1ds ≤ ‖θ0‖L2 .

3. Montrer qu’avec cette estimation et pour ε > 0 fixé on obtient des solutions mild θε, dans l’espace
L∞([0,+∞[, L2(Rn)) ∩ L2([0,+∞[, Ḣ1(Rn)) pour le problème (3).

4. Faire tendre ε → 0 pour obtenir une solution faible θ du problème (2) qui appartient à l’espace
L∞([0,+∞[, L2(Rn)) et montrer qu’elle vérifie le principe du maximum suivant

‖θ(t, ·)‖L2 ≤ ‖θ0‖L2 .

5. Peut-on obtenir une solution faible dans l’espace L∞([0,+∞[, L2(Rn)) ∩ L2([0,+∞[, Ḣ
1
2 (Rn)) ?

3


