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1 Théorème de Kato (8 pt.)

On considère ici ~u0 une donnée initiale à divergence nulle telle que l’on ait ~u0 ∈ Lp(R3) où p = 3
ε avec

0 < ε < 1 un paramètre fixé une fois pour toutes.

1. Vérifier l’inégalité ‖gt ∗ ~u0‖L∞t Lpx ≤ ‖~u0‖Lp .
2. Démontrer l’estimation

‖(−∆)−
ε
2 ~f‖Lp ≤ C‖~f‖Lq ,

où ε+ 3
p = 3

q . On remarquera en particulier que l’on a 2q = p.

3. On étudie le problème suivant

~u(t, x) = gt ∗ ~u0(x)−
∫ t

0
gt−s ∗ P(div(~u⊗ ~u))ds.

Avec les estimations précédentes, appliquer un argument de point fixe pour obtenir une solution mild
des équations de Navier-Stokes dans l’espace L∞([0, T [, Lp(R3)) pour un certain temps T > 0 : pour
cela on démontrera que l’on a l’estimation∥∥∥∥∫ t

0
gt−s ∗ P(div(~u⊗ ~u)ds

∥∥∥∥
L∞t L

p
x

≤ CT
1−ε
2 ‖~u‖L∞t Lpx‖~u‖L∞t Lpx .

On pourra considérer par exemple l’expression∥∥∥∥∫ t

0
(−∆)

1+ε
2 gt−s ∗ (−∆)−

ε
2P(~u⊗ ~u)ds

∥∥∥∥
Lp
,

et on pourra utiliser l’estimation ‖(−∆)
1+ε
2 gt−s‖L1 ≤ C(t− s)−

1+ε
2 , puis on utilisera les inégalités de

Minkowski, de Young et les points précédents (on notera que l’on a 1+ε
2 < 1, ce qui rend la singularité

en temps produite par le noyau de la chaleur intégrable).

2 Solutions faibles pour l’équation quasi-géostrophique (12 pt.)

Pour une fonction θ : [0,+∞[×R2 −→ R on considère l’équation suivante∂tθ(t, x) = −(−∆)
1
2 θ(t, x) + ~∇ · (~vθ)(t, x)

θ(0, x) = θ0(x), x ∈ R2,
(1)

où θ0 : R2 −→ R est une donnée initiale telle que θ0 ∈ L2(R2) et où ~v : [0,+∞[×R2 −→ R2 est un champ
de vecteur défini par :

~v(t, x) = ~vθ(t, x) =

[
−R2(θ(t, x))

R1(θ(t, x))

]
,
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où R1, R2 sont les transformées de Riesz définies au niveau de Fourier par R̂j(ϕ)(ξ) = −i ξj|ξ| ϕ̂(ξ) pour
1 ≤ j ≤ 2.

1. Montrer que l’on a ‖~v(t, ·)‖L2 ≤ C‖θ(t, ·)‖L2 .

2. Vérifier que l’on a div(~v) = 0.

3. Pour ε > 0 on considère ϕε(x) = 1
ε2
ϕ(x/ε) avec ϕ une fonction régulière positive, à support dans la

boule B(0, 1). Montrer que div(ϕε ∗ ~v) = 0.

4. Pour ε > 0 on pose

∂tθ(t, x) = ε∆θ(t, x)− (−∆)
1
2 θ(t, x) + ~∇ ·

(
[ϕε ∗ ~v]θ

)
(t, x). (2)

Ecrire la formulation intégrale associée au problème (2).

5. Vérifier que pour 0 < t < T on a les estimations

• ‖gεt ∗ θ0‖L∞t L2
x
≤ ‖θ0‖L2 et ‖gεt ∗ θ0‖L2

t Ḣ
1
x
≤ C√

ε
‖θ0‖L2 .

•
∥∥∥∥∫ t

0
gε(t−s) ∗ (−∆)

1
2 θ(s, ·)ds

∥∥∥∥
L∞t L

2
x

≤ C
√
T

ε
‖θ‖L∞t L2

x
et∥∥∥∥∫ t

0
gε(t−s) ∗ (−∆)

1
2 θ(s, ·)ds

∥∥∥∥
L2
t Ḣ

1
x

≤ C
√
T

ε
‖θ‖L2

t Ḣ
1
x
.

•
∥∥∥∥∫ t

0
gε(t−s) ∗ ~∇ · ([ϕε ∗ ~v]θ)(s, ·)ds

∥∥∥∥
L∞t L

2
x

≤ C
√
T

ε
‖θ‖L∞t L2

x
‖ϕε‖L2

x
‖θ‖L∞t L2

x
et∥∥∥∥∫ t

0
gε(t−s) ∗ ~∇ · ([ϕε ∗ ~v]θ)(s, ·)ds

∥∥∥∥
L2
t Ḣ

1
x

≤ C
√
T

ε
‖θ‖L2

t Ḣ
1
x
‖ϕε‖L2

x
‖θ‖L∞t L2

x
.

en déduire que pour ε > 0, l’équation (2) admet une solution mild, notée θε, dans l’espace L∞([0, T [, L2(Rn))∩
L2([0, T [, Ḣ1(Rn)).

6. Vérifier que pour θε ∈ L∞t L2
x ∩ L2

t Ḣ
1
x on a l’égalité

d

dt
‖θε(t, ·)‖2L2 = −2ε‖~∇θε(t, ·)‖2L2 − 2‖(−∆)

1
4 θε(t, ·)‖L2 + 2

∫
Rn
~∇ · (~vθε)θε(s, x)dx.

et obtenir le contrôle

‖θε(t, ·)‖2L2 + 2ε

∫ t

0
‖θε(s, ·)‖2Ḣ1ds ≤ ‖θ0‖L2 .

7. Montrer qu’avec cette estimation et pour ε > 0 fixé on obtient des solutions mild θε, dans l’espace
L∞([0,+∞[, L2(Rn)) ∩ L2([0,+∞[, Ḣ1(Rn)) pour le problème (2).

8. Faire tendre ε → 0 pour obtenir une solution faible θ du problème (1) qui appartient à l’espace
L∞([0,+∞[, L2(Rn)) et montrer qu’elle vérifie le principe du maximum suivant

‖θ(t, ·)‖L2 ≤ ‖θ0‖L2 .
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