
Équations de Navier–Stokes

(M2-AMS 2022-2023).

Examen de février 2023.

1 Solutions stationnaires de Navier—Stokes

On considère le problème

∆ ~W + ∆~F − div ( ~W ⊗ ~W )− ~∇P = 0, div ~W = 0, (1)

avec une donnée ~F ∈ H1(R3).
a) Montrer que ‖ 1

∆Pdiv (~u⊗ ~v)‖H1 ≤ C‖~u‖H1‖~v‖H1 .

b) Montrer qu’il existe ε0 > 0 et C0 > 0 tels que, si ‖~F‖H1 < ε0, le problème (1) admet une solution
~W ∈ H1(R3) avec ‖ ~W‖H1 ≤ C0‖~F‖H1 .

2 Solutions de Leray de Navier—Stokes

Préliminaires : Régularité maximale du noyau de la chaleur
On admettra le résultat suivant : si 1 < p < +∞, 1 < q < +∞, f ∈ Lp(]0,+∞[, Lq(R3)) alors

G =

∫ t

0

gt−s ∗∆f ds,

vérifie G ∈ Lp
tL

q
x et on a ‖G‖Lp

t L
q
x
≤ Cp,q‖f‖Lp

t L
q
x
.

Dans cette partie et les suivantes, on se donne ~u0 ∈ L2(R3) (à divergence nulle) et ~F ∈ H1(R3) avec
‖~F‖H1 < ε0 et on considère une solution ~u de

~u(t, x) = gt ∗ ~u0(x) +

∫ t

0
gt−s ∗ P∆~F ds−

∫ t

0
gt−s ∗ P(div(~u⊗ ~u))ds, (2)

ou encore de {
∂t~u = ∆~u− ~u · ~∇~u− ~∇p+ ∆~F div ~u = 0,

~u(0, .) = ~u0.

a) Montrer (on pourra invoquer un théorème du cours) qu’il existe une solution ~u1 du problème de Navier–
Stokes (2) telle que

~u1 ∈
⋂
T>0

L∞(]0, T [, L2) ∩ L2(]0, T [, Ḣ1)

et ~u1 vérifie l’inégalité forte de Leray : pour presque tout t0 > 0 et pour t0 = 0 et pour tout t ≥ t0

‖~u1(t, .)‖22 + 2

∫ t

t0

‖~∇⊗ ~u1‖22 ds ≤ ‖~u(t0, .)‖22 − 2

∫ t

t0

∫
R3

(~∇⊗ ~u1) · (~∇⊗ ~F ) dx ds. (3)

b) On pose ~v1 = ~u1− ~W , où ~W est la solution du problème stationnaire (1). Montrer que ~v1 est une solution
de

~v(t, x) = gt ∗ (~u0 − ~W )−
∫ t

0
gt−s ∗ P(div(~v ⊗ ~v + ~v ⊗ ~W + ~W ⊗ ~v))ds, (4)
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ou encore de 
∂t~v =∆~v − ~v · ~∇~v − ~v · ~∇ ~W − ~W · ~∇~v − ~∇(p− P )

div~v =0

~v(0, .) =~u0 − ~W.

Montrer que ~v1 vérifie

~v1 ∈
⋂
T>0

L∞(]0, T [, L2(R3)) ∩ L2(]0, T [, Ḣ1(R3)),

et, pour presque tout t0 > 0 et pour t0 = 0 et pour tout t ≥ t0, l’inégalité

‖~v1(t, .)‖2L2 + 2

∫ t

t0

‖~∇⊗ ~v1‖2L2 ds ≤ ‖~v(t0, .)‖2L2 + 2

∫ t

t0

∫
R3

(~∇⊗ ~v1) · (~v1 ⊗ ~W ) dx ds. (5)

c) Montrer que ‖(~∇⊗ ~v) · (~v ⊗ ~W )‖L1
x
≤ C‖~∇⊗ ~v‖2L2

x
‖ ~W‖L3

x
≤ C1‖~∇⊗ ~v‖2L2

x
‖~F‖H1 .

Dans la suite, on supposera que

C1‖~F‖H1 ≤
1

2
.

d) Montrer que
~v1 ∈ L∞([0,+∞[, L2(R3)) ∩ L2([0,+∞[, Ḣ1(R3)). (6)

3 Solutions mild de Navier—Stokes

On pose E = L∞(]0,+∞[, L2(R3))∩L2(]0,+∞[, Ḣ1(R3))∩L4(]0,+∞[, Ḣ1(R3)). On munit E de la norme

‖~u‖E = ‖~u‖L∞t L2
x

+ ‖~u‖L2
t Ḣ

1
x

+ ‖~u‖L4
t Ḣ

1
x
.

a) Pour ~u, ~v dans E on pose

B(~u,~v) =

∫ t

0
gt−s ∗ P(div(~u⊗ ~u))ds.

Montrer qu’il existe C tel que, pour tous ~u, ~v dans E, on a

‖~u⊗ ~v‖L2
tL

2
x
≤ C‖~u‖L4

t Ḣ
1
x
‖~v‖

L4
t Ḣ

1/2
x

et
‖~u⊗ ~v‖

L2
t Ḣ

1/2
x
≤ C‖~u‖L4

t Ḣ
1
x
‖~v‖L4

t Ḣ
1
x
.

En déduire qu’il existe C2 tel que, pour tous ~u, ~v dans E, on a

‖B(~u,~v)‖E ≤ C2‖~u‖L4
t Ḣ

1
x
‖~v‖E + C2‖~v‖L4

t Ḣ
1
x
‖~u‖E

et
‖B(~u,~v)‖L4Ḣ1 ≤ C2‖~u‖L4Ḣ1‖~v‖L4Ḣ1 .

b) Pour α > 0, on pose ‖~u‖E,α = ‖~u‖L4Ḣ1 +α‖~u‖E. Montrer que les normes ‖ · ‖E,α et ‖ · ‖E sont équivalentes
sur E et que pour tous ~u, ~v dans E et tout α > 0, on a

‖B(~u,~v)‖E,α ≤ C2‖~u‖E,α‖~v‖E,α.

c) Pour ~w0 ∈ H1(R3), on pose
~U0(t, x) = gt ∗ ~w0(x).
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Montrer que ~U0 appartient à E.
d) Pour ~W ∈ H1(R3) et ~v ∈ E, on pose

L(~v) =

∫ t

0
gt−s ∗ P(div(~v ⊗ ~W + ~W ⊗ ~v))ds.

Montrer que

‖ 1√
−∆

P(div(~v ⊗ ~W + ~W ⊗ ~v))‖L2 ≤ C‖ ~W‖Ḣ1/2‖~v‖Ḣ1

et

‖ 1

∆
P(div(~v ⊗ ~W + ~W ⊗ ~v))‖Ḣ1 ≤ C‖ ~W‖Ḣ1/2‖~v‖Ḣ1

et en conclure qu’il existe une constante C2 telle que

‖L(~v)‖L∞t L2
x

+ ‖L(~v)‖L2
t Ḣ

1
x
≤ C3‖ ~W‖Ḣ1/2‖~v‖L2

t Ḣ
1
x

et (en utilisant la régularité maximale L4L2 du noyau de la chaleur)

‖L(~v)‖L4
t Ḣ

1
x
≤ C3‖ ~W‖Ḣ1/2‖~v‖L4

t Ḣ
1
x
.

e) Montrer que pour tout α > 0, on a

‖L(~v)‖E,α ≤ C3‖ ~W‖H1‖~v‖E,α.

f) Montrer que si ‖~U0‖L4
t Ḣ

1
x
< 1

8C2
et ‖ ~W‖H1 < 1

2C3
, le problème

~v(t, x) = gt ∗ ~w0(x)−
∫ t

0
gt−s ∗ P(div(~u⊗ ~u))ds−

∫ t

0
gt−s ∗ P(div(~v ⊗ ~W + ~W ⊗ ~v))ds,

a une solution ~v ∈ E.

4 Comportement au temps l’infini des solutions de Leray

On se donne donc ~u0 ∈ L2(R3) (à divergence nulle) et ~F ∈ H1(R3) avec ‖~F‖H1 < min(ε0,
1

2C1
, 1

2C0C3
) et

on considère une solution ~u1 du le problème de Navier–Stokes (2) telle que telle que

~u1 ∈
⋂
T>0

L∞(]0, T [, L2) ∩ L2(]0, T [, Ḣ1)

et ~u1 vérifie l’inégalité forte de Leray. On pose ~v1 = ~u1 − ~W , où ~W est la solution du problème stationnaire
(1).
a) Déduire de (6) qu’il existe t1 > 0 tel que

• ~u1(t1, .) ∈ H1

• pour le problème de Navier–Stokes (avec F est un tenseur suffisamment régulier)

~u(t, x) = gt−t1 ∗ ~u(t1, .) +

∫ t

t1

gt−s ∗ P(div(F− ~u⊗ ~u))ds, (7)

~u1|[t1,+∞[
est une solution de (7) qui vérifie l’inégalité de Leray

‖~u1(t, .)‖2L2 + 2

∫ t

t1

‖~∇⊗ ~u1‖2L2 ds ≤ ‖~u1(t1, .)‖2L2 + 2

∫ t

t1

∫
R3

~u1 · divF dx ds,
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• en particulier, ~v1|[t1,+∞[ est une solution de

~v(t, x) = gt ∗ ~v1(t1, .)−
∫ t

t1

gt−s ∗ P(div(~v ⊗ ~v + ~v ⊗ ~W + ~W ⊗ ~v)) ds (8)

qui vérifie, pour tout t ≥ t1, l’inégalité

‖~v1(t, .)‖2L2 + 2

∫ t

t1

‖~∇⊗ ~v1‖2L2 ds ≤ ‖~v(t1, .)‖2L2 + 2

∫ t

t1

∫
R3

(~∇⊗ ~v1) · (~v1 ⊗ ~W ) dx ds. (9)

• il existe une solution ~w1 de (8) qui vérifie ~w1 ∈ L∞(]t1,+∞[, L2(R3)) ∩ L2(]t1,+∞[, Ḣ1(R3)) ∩
L4(]t1,+∞[, Ḣ1(R3)).

b) Soit t1 < T < +∞. Montrer que

~u1 ∈ L2(]t1, T [, H1(R3)), ∂t~u1 ∈ L4/3(]t1, T [, Ḣ−1(R3)),

~W + ~w1 ∈ L4(]t1, T [, H1(R3)), ∂t( ~W + ~u1) ∈ L2(]t1, T [, Ḣ−1(R3)).

En conclure que ∂t(~u1 · ( ~W + ~w1)) = (∂t~u1) · ( ~W + ~w1)) + ~u1 · ∂t( ~W + ~w1)).
c) Montrer que, pour t > t1,

‖~v1 − ~w1(t, .)‖2L2 + 2

∫ t

t1

‖~∇⊗ (~v1 − ~w1)‖2L2 ds ≤2

∫ t

t1

∫
( ~W + ~w1) · ((~v1 − ~w1) · ~∇(~v1 − ~w1)) ds

≤C
∫ t

t1

‖ ~W + ~w1‖Ḣ1‖~v1 − ~w1‖Ḣ1/2‖~v1 − ~w1‖Ḣ1ds

≤
∫ t

t1

‖~∇⊗ (~v1 − ~w1)‖2L2 ds+ C ′
∫ t

t1

‖ ~W + ~w1‖4Ḣ1‖~v1 − ~w1‖2L2ds.

En conclure que ~v1 = ~w1.
e) Montrer pour t1 < t2 < t que

~v1(t, x) = gt−t2 ∗ ~v1(t2, .)−
∫ t

t2

gt−s ∗ P(div((~v1 ⊗ ~v1 + ~v1 ⊗ ~W + ~W ⊗ ~v1)) ds,

et que

lim sup
t→+∞

‖~v1(t, .)‖L2 ≤ C(

∫ +∞

t2

‖F(s, .)‖2L2 + ‖~v1(s, .)‖L2‖~v1(s, .)‖3
Ḣ1 + ‖~v1(s, .)‖2

Ḣ1‖ ~W‖2Ḣ1/2 ds)
1/2.

f) Montrer que limt→+∞ ‖~u1(t, .)− ~W‖L2 = 0.
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