Equations de Navier—Stokes
(M2-AMS 2023-2024).

Examen de février 2024.

1 Probleme 1 (15 pt.)

L’objectif de cet exercice est de montrer que si 'on considére un opérateur qui posséde un effet suffisamment
régularisant, alors a partir de données initiales grandes et régulieres, on peut obtenir des solutions globales et uniques
pour des équations de type Navier-Stokes. Plus précisément, nous allons remplacer 'opérateur Laplacien usuel A par
I'opérateur (—A)7 et nous considérons le systéme suivant sur 'espace [0, +0o[xR? tout entier :

it = —(—A)id — (@- V)i — Vp, div(i@) =0,
(1)
4(0,x) = dp(x), div(idp) =0,

ol nous supposerons que l'on a @y € H%(R3) = L2(R3) N H 3 (R3).

On commence par étudier la formulation intégrale du probléme (1) :

t
it ) = pu v o(e) — [ oo Bldin( 9 7)) ds. (2)
0
) ) 5 gt . s ,[w]
On admettra que 'on a [|p||rr < C et que Pon a lestimation ||(—A)zpljr < Ct 5 , pour 0 < s et
1 <p < Ho0.
1. Si @) € H3(R3), obtenir les inégalités suivantes pour 0 < ¢ < T :

N - N - N PANTIEN
e * Tollzzz < Cliolle. lIpexoll oy < Cllallg, x5 < CTH|ol 5

2. Montrer que l'on a le controle suivant dans I'espace L> ([0, T], L?(R?)) :

3. Dans l'espace L>([0,T], H'(R?)), obtenir 'estimation

4. Pour f : [0, +00[xR3 — R? une fonction telle que f € L?L2%, démontrer 'estimation de régularité maximale

suivante ,
/ Pi_s * fds
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En déduire le controle

L"’H% < OH“”L;"’L% ”u”LfHﬁ .
t x



5. A Taide des estimations précédentes, montrer que le probleme intégral (2) admet un unique point fixe dans
I’espace ' .
L>([0, 7], L*(R?)) N L>=([0, T), H' (R*)) N L*([0, T), H1(R?)),
ol 'on explicitera le lien entre le temps d’existence 1" > 0 et la taille de la donnée initiale.
6. Montrer maintenant que la solution @ obtenue ci-dessus, qui vérifie la formulation intégrale (2) et qui appartient
. . 5 .
A lespace L°L2 N L H! N L2H.}, appartient également & lespace L2([0,T], H 3 (R3)). En déduire que l'on a
.3
p=(—A)"ldiv(div(d ® @) € L2 H .
7. Vérifier que (@ - V)@ € LIL2, en déduire que le terme (@ - V)@ - @ est défini bien au sens des distributions.
Montrer également que le terme Vp - ¢ est bien défini au sens des distributions. En utilisant la structure de
I’équation (1) obtenir, pour tout 0 < ¢ < T, I'identité d’énergie suivante

t
llat, )17 +2/ (s, )II%, 5 ds = ||t Z--
0

. .5 .9 5 B .1 - L1
8. Montrer quesi @ € L L2NLHINLZH NL?H,}  alors (—A)id € L?H, *, (i-V)i € L?H, * et Vp € L?H, *.
1 1
Obtenir que l'on a 0y € L?H, * puis que Aw € L?H; . En déduire que les termes 0yl - A, (fA)%ﬁV A,
(- V)i - At et Vp- At sont bien définis au sens des distributions.

9. A partir des informations de la question précédente, étudier 1’évolution dans le temps de ||@(t,-)|| ;. et obtenir
la majoration

t
e, < Daalieap ([ o012, yas).
0

en déduire que la norme L H! de i est controlée par les informations sur la donnée initiale .

10. Conclure que I’équation (1) admet une unique solution mild globale en temps qui est issue d’'une donnée initiale
quelconque.

2 Probleme 2 (9 pt.)

On considere les équations de Navier—Stokes

Oyl = —Ad — (@-V)id — Vp, div(@) =0,
(3)

(0, x) = dp(x), div(idp) =0,

. _1
ol nous supposerons que l'on a iy € H(R3). On sait qu’il existe Ty = Collto]| ;7 (pour une constante Co > 0) et

une solution @ de (3) définie sur [0, Tp] x R? avec @ € C([0, Tp], H'(R?)). On note U(t, €) la transformée de Fourier de
i(t, ). On veut montrer qu’il existe T assez petit tel que

2
[ ( sup eﬁé'w(t,sn) dé < +oo.
o<t<T

1. On note M (§) la matrice
& && L&
TR §i1& & &b
&6 L& &

Montrer que @ € C([0,T], H*(R?)) est solution de (3) si et seulement si sa transformée de Fourier U est solution
de

10 0
ME =010
00 1

U9 = T — g [ [ eI e M©U(s.€ ~n) @ Vs, dds 0

ou Uy est la transformée de Fourier de .



. On note Er 'espace des champs de vecteurs U(t,€) € C([0,T], L2(|¢]? d€)) tels que

My (€)= sup VU, €)| € L2(j¢ de)

0<t<T

muni de la norme
Ul Er = Mullzz(ie)2 ag)-

Pour U et V € Ep, on note

BUYILE = s [ [ i MU~ @ Vs s 5)
Montrer que W = B(U, V') vérifie, pour une constante C indépendante de T
T1/4
M (§) < KP/QMU*MV(O

Indication : On pourra commencer par vérifier que, pour 0 < s < t et £, € R3,

VHE] < VE—s|¢| +V/slE =l + Vsl

et

(= )l < 56— s)Iel? — VE—slel + 5.
. Montrer que pour une constante Cs on a
€12 (Mo + My)lz < Col| |l My l2|||E Mo 2
(on pourra par exemple utiliser les lois de produits dans les espaces de Sobolev) et en conclure que
IBU,V)ller < CLCT* U5, |V | 21

. Montrer que
e Uo (@)l < Vel Uo

2(1€12 &)+

. Montrer qu’il existe des constantes Cs,Cy > 0 telles que, pour T = CgHU()H i
une solution @ € C([0,T], H*(R?)) dont la transformée de Fourier U(t, &) vérifie

le probleme de Cauchy (3) a

2
[ e ( sup eﬁlflwu,m) dé < C3itoll..
o<t<T

. Montrer que pour tout ¢ €]0,T] et tout a € N3, on a 8%i(t,z) € H' et, pour une constante Cj (qui ne dépend
ni de ¢ ni de «), on a

|82(t, i < Cslal!t= % || o s



