
Équations de Navier–Stokes

(M2-AMS 2023-2024).

Examen de février 2024.

1 Problème 1 (15 pt.)

L’objectif de cet exercice est de montrer que si l’on considère un opérateur qui possède un effet suffisamment
régularisant, alors à partir de données initiales grandes et régulières, on peut obtenir des solutions globales et uniques
pour des équations de type Navier-Stokes. Plus précisément, nous allons remplacer l’opérateur Laplacien usuel ∆ par
l’opérateur (−∆)

5
4 et nous considérons le système suivant sur l’espace [0,+∞[×R3 tout entier :∂t~u = −(−∆)

5
4 ~u− (~u · ~∇)~u− ~∇p, div(~u) = 0,

~u(0, x) = ~u0(x), div(~u0) = 0,
(1)

où nous supposerons que l’on a ~u0 ∈ H
5
4 (R3) = L2(R3) ∩ Ḣ 5

4 (R3).

On commence par étudier la formulation intégrale du problème (1) :

~u(t, x) = pt ∗ ~u0(x)−
∫ t

0

pt−s ∗ P(div(~u⊗ ~u))ds. (2)

On admettra que l’on a ‖pt‖L1 < C et que l’on a l’estimation ‖(−∆)
s
2 pt‖Lp ≤ Ct−[ 2s+6(1−1/p)

5 ], pour 0 ≤ s et
1 ≤ p < +∞.

1. Si ~u0 ∈ H
5
4 (R3), obtenir les inégalités suivantes pour 0 < t < T :

‖pt ∗ ~u0‖L∞t L2
x
≤ C‖~u0‖L2 , ‖pt ∗ ~u0‖L∞t Ḣ1

x
≤ C‖~u0‖Ḣ1 , ‖pt ∗ ~u0‖

L2
t Ḣ

5
4
x

≤ CT 1
2 ‖~u0‖

Ḣ
5
4
.

2. Montrer que l’on a le contrôle suivant dans l’espace L∞([0, T ], L2(R3)) :∥∥∥∥∫ t

0

pt−s ∗ P(div(~u⊗ ~u))ds

∥∥∥∥
L∞t L

2
x

≤ CT 2
5 ‖~u‖L∞t L2

x
‖~u‖L∞t Ḣ1

x
.

3. Dans l’espace L∞([0, T ], Ḣ1(R3)), obtenir l’estimation∥∥∥∥∫ t

0

pt−s ∗ P(div(~u⊗ ~u))ds

∥∥∥∥
L∞t Ḣ

1
x

≤ CT 2
5 ‖~u‖L∞t Ḣ1

x
‖~u‖L∞t Ḣ1

x
.

4. Pour ~f : [0,+∞[×R3 −→ R3 une fonction telle que ~f ∈ L2
tL

2
x, démontrer l’estimation de régularité maximale

suivante ∥∥∥∥(−∆)
5
4

∫ t

0

pt−s ∗ ~fds
∥∥∥∥
L2
tL

2
x

≤ C‖~f‖L2
tL

2
x
.

En déduire le contrôle ∥∥∥∥∫ t

0

pt−s ∗ P(div(~u⊗ ~u))ds

∥∥∥∥
L2
t Ḣ

5
4
x

≤ C‖~u‖L∞t L2
x
‖~u‖

L2
t Ḣ

5
4
x

.
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5. A l’aide des estimations précédentes, montrer que le problème intégral (2) admet un unique point fixe dans
l’espace

L∞([0, T ], L2(R3)) ∩ L∞([0, T ], Ḣ1(R3)) ∩ L2([0, T ], Ḣ
5
4 (R3)),

où l’on explicitera le lien entre le temps d’existence T > 0 et la taille de la donnée initiale.

6. Montrer maintenant que la solution ~u obtenue ci-dessus, qui vérifie la formulation intégrale (2) et qui appartient

à l’espace L∞t L
2
x ∩ L∞t Ḣ1

x ∩ L2
t Ḣ

5
4
x , appartient également à l’espace L2([0, T ], Ḣ

9
4 (R3)). En déduire que l’on a

p = (−∆)−1div(div(~u⊗ ~u)) ∈ L2
t Ḣ

3
4
x .

7. Vérifier que (~u · ~∇)~u ∈ L1
tL

2
x, en déduire que le terme (~u · ~∇)~u · ~u est défini bien au sens des distributions.

Montrer également que le terme ~∇p · ~u est bien défini au sens des distributions. En utilisant la structure de
l’équation (1) obtenir, pour tout 0 < t < T , l’identité d’énergie suivante

‖~u(t, ·)‖2L2 + 2

∫ t

0

‖~u(s, ·)‖2
Ḣ

5
4
ds = ‖~u0‖2L2 .

8. Montrer que si ~u ∈ L∞t L2
x∩L∞t Ḣ1

x∩L2
t Ḣ

5
4
x ∩L2

t Ḣ
9
4
x , alors (−∆)

5
4 ~u ∈ L2

t Ḣ
− 1

4
x , (~u·~∇)~u ∈ L2

t Ḣ
− 1

4
x et ~∇p ∈ L2

t Ḣ
− 1

4
x .

Obtenir que l’on a ∂t~u ∈ L2
t Ḣ
− 1

4
x puis que ∆~u ∈ L2

t Ḣ
1
4
x . En déduire que les termes ∂t~u · ∆~u, (−∆)

5
4 ~u · ∆~u,

(~u · ~∇)~u ·∆~u et ~∇p ·∆~u sont bien définis au sens des distributions.

9. A partir des informations de la question précédente, étudier l’évolution dans le temps de ‖~u(t, ·)‖Ḣ1 et obtenir
la majoration

‖~u(t, ·)‖2
Ḣ1 ≤ ‖~u0‖2Ḣ1exp

(∫ t

0

‖~u(s, ·)‖2
Ḣ

9
4
ds

)
,

en déduire que la norme L∞t Ḣ
1
x de ~u est contrôlée par les informations sur la donnée initiale ~u0.

10. Conclure que l’équation (1) admet une unique solution mild globale en temps qui est issue d’une donnée initiale
quelconque.

2 Problème 2 (9 pt.)

On considère les équations de Navier–Stokes∂t~u = −∆~u− (~u · ~∇)~u− ~∇p, div(~u) = 0,

~u(0, x) = ~u0(x), div(~u0) = 0,
(3)

où nous supposerons que l’on a ~u0 ∈ Ḣ1(R3). On sait qu’il existe T0 = C0‖~u0‖
− 1

4

Ḣ1
(pour une constante C0 > 0) et

une solution ~u de (3) définie sur [0, T0]×R3 avec ~u ∈ C([0, T0], Ḣ1(R3)). On note U(t, ξ) la transformée de Fourier de
~u(t, x). On veut montrer qu’il existe T assez petit tel que∫

|ξ|2
(

sup
0<t<T

e
√
t|ξ||U(t, ξ)|

)2

dξ < +∞.

1. On note M(ξ) la matrice

M(ξ) =

1 0 0
0 1 0
0 0 1

− 1

|ξ|2

 ξ21 ξ1ξ2 ξ1ξ3
ξ1ξ2 ξ22 ξ2ξ3
ξ1ξ3 ξ2ξ3 ξ23

 .

Montrer que ~u ∈ C([0, T ], Ḣ1(R3)) est solution de (3) si et seulement si sa transformée de Fourier U est solution
de

U(t, ξ) = e−t|ξ|
2

U0(ξ)− 1

(2π)3

∫ t

0

∫
e−(t−s)|ξ|

2

iξ ·M(ξ)U(s, ξ − η)⊗ U(s, η) dη ds (4)

où U0 est la transformée de Fourier de ~u0.

2



2. On note ET l’espace des champs de vecteurs U(t, ξ) ∈ C([0, T ], L2(|ξ|2 dξ)) tels que

MU (ξ) = sup
0<t<T

e
√
t|ξ||U(t, ξ)| ∈ L2(|ξ|2 dξ)

muni de la norme
‖U‖ET = ‖MU‖L2(|ξ|2 dξ).

Pour U et V ∈ ET , on note

B(U, V )(t, ξ) =
1

(2π)3

∫ t

0

∫
e−(t−s)|ξ|

2

iξ ·M(ξ)U(s, ξ − η)⊗ V (s, η) dη ds. (5)

Montrer que W = B(U, V ) vérifie, pour une constante C1 indépendante de T ,

MW (ξ) ≤ C1
T 1/4

|ξ|1/2
MU ∗MV (ξ).

Indication : On pourra commencer par vérifier que, pour 0 < s < t et ξ, η ∈ R3,

√
t|ξ| ≤

√
t− s|ξ|+

√
s|ξ − η|+

√
s|η|

et

−(t− s)|ξ|2 ≤ −1

2
(t− s)|ξ|2 −

√
t− s|ξ|+ 1

2
.

3. Montrer que pour une constante C2 on a

‖|ξ|1/2(MU ∗MV )‖2 ≤ C2‖|ξ|MU‖2‖|ξ|MU‖2

(on pourra par exemple utiliser les lois de produits dans les espaces de Sobolev) et en conclure que

‖B(U, V )‖ET ≤ C1C2T
1/4‖U‖ET ‖V ‖ET .

4. Montrer que

‖e−t|ξ|
2

U0(ξ)‖ET ≤
√
e‖U0‖,2(|ξ|2 dξ).

5. Montrer qu’il existe des constantes C3, C4 > 0 telles que, pour T = C3‖~u0‖
− 1

4

Ḣ1
, le problème de Cauchy (3) a

une solution ~u ∈ C([0, T ], Ḣ1(R3)) dont la transformée de Fourier U(t, ξ) vérifie∫
|ξ|2

(
sup

0<t<T
e
√
t|ξ||U(t, ξ)|

)2

dξ ≤ C2
4‖~u0‖2Ḣ1 .

6. Montrer que pour tout t ∈]0, T ] et tout α ∈ N3, on a ∂αx ~u(t, x) ∈ Ḣ1 et, pour une constante C5 (qui ne dépend
ni de t ni de α), on a

‖∂αx ~u(t, .)‖Ḣ1 ≤ C5|α|! t−
|α|
2 ‖~u0‖Ḣ1 .
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