
Équations de Navier-Stokes
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Examen de février 2025.

1 Exercice (5 pt.)

Soit θ0 : Rn −→ R une donnée initiale et soit b : [0,+∞[×Rn −→ R une fonction. On considère le problème suivant :
∂tθ = ∆θ +

[
(−∆)

1
2 θ
]2
∗ b,

θ(0, ·) = θ0.

(1)

a) Si on a θ0 ∈ Ḣ1(Rn) et si on suppose que b ∈ L1([0, T ∗[, Ḣ1(Rn)) avec 0 < T ∗ ≤ +∞, construire une solution
mild du problème (1) dans l’espace de résolution L∞([0, T [, Ḣ1(Rn)). Sous quelles conditions peut-on avoir
T = +∞ ?

b) Si on suppose maintenant que θ0 ∈ Ḣk(Rn) et que b ∈ L1([0, T ∗[, Ḣk(Rn)), montrer que la solution mild θ
obtenue dans le point précédent vérifie θ ∈ L∞t Ḣk

x .

c) Si l’on suppose que l’on a θ̂0(ξ) > 0 et b̂(t, ξ) > 0, montrer que la transformation de Fourier θ̂(t, ξ) de la solution

mild obtenue au point a) ci-dessus reste positive dans le temps, i.e. : θ̂(t, ξ) > 0.
d) On définit l’espace de Fourier-Herz Fs,p(Rn) par la condition

Fs,p(Rn) =
{
f : Rn −→ R, f ∈ S ′(Rn) : ‖f‖Fs,p =

∥∥∥|ξ|sf̂(·)
∥∥∥
Lp
< +∞

}
,

et on considère le problème

θ̂(t, ξ) = e−t|ξ|
2

θ̂0(ξ) +

∫ t

0

e−(t−s)|ξ|
2
[
(|ξ|θ̂(s, ξ)) ∗ (|ξ|θ̂(s, ξ))

]
b̂(s, ξ)ds. (2)

Si θ0 ∈ F1,2(Rn) et si b ∈ L1
tF

1,2
ξ , construire une solution mild du problème (2) dans l’espace L∞t F

1,2
ξ .

e) On note θR la solution mild du problème (1) obtenue dans la question a) et θC la solution mild du problème
(2) obtenue dans la question d). Quelle est la différence entre θR et θC ?

2 Exercice (10 pt.)

Soit ~u0 ∈ Ḣ
1
2 (R3) une donnée initiale à divergence nulle. On considère les équations de Navier-Stokes sous formulation

intégrale

~u(t, x) = gt ∗ ~u0(x)−
∫ t

0

gt−s ∗ P(div(~u⊗ ~u))(s, x)ds.

On fixe comme espace de résolution l’espace L∞t Ḣ
1
2
x ∩ L4

t Ḣ
1
x muni de la norme

‖~f(·, ·)‖
L∞

t Ḣ
1
2
x ∩L4

t Ḣ
1
x

= ‖~f(·, ·)‖
L∞

t Ḣ
1
2
x

+ ‖~f(·, ·)‖L4
t Ḣ

1
x
.

a) Montrer que l’on a
‖gt ∗ ~u0‖

L∞
t Ḣ

1
2
x

≤ ‖~u0‖
Ḣ

1
2

et ‖gt ∗ ~u0‖L4
t Ḣ

1
x
≤ ‖~u0‖

Ḣ
1
2
.

Pour la dernière estimation on pourra écrire

‖gt ∗ ~u0‖4L4
t Ḣ

1
x

=

∫ +∞

0

(∫
R3

e−2t|ξ|
2

|ξ|(|ξ||~̂u0(ξ)|2)dξ

)(∫
R3

e−2t|η|
2

|η|(|η||~̂u0(η)|2)dη

)
dt,

et on remarquera que l’on a |ξ||η|
|ξ|2+|η|2 ≤ C.
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b) En utilisant les lois de produits, obtenir l’estimation∥∥∥∥∫ t

0

gt−s ∗ P(div(~u⊗ ~u))(s, ·)ds
∥∥∥∥
L∞

t Ḣ
1
2
x

≤ C‖~u⊗ ~u‖
L2

t Ḣ
1
2
x

≤ C‖~u‖L4
t Ḣ

1
x
‖~u‖L4

t Ḣ
1
x
.

c) En admettant la propriété de régularité maximale du noyau de la chaleur suivante∥∥∥∥∆

∫ t

0

gt−s ∗ ~f(s, ·)ds
∥∥∥∥
L4

tL
2
x

≤ C‖~f‖L4
tL

2
x
,

démontrer la majoration ∥∥∥∥∫ t

0

gt−s ∗ P(div(~u⊗ ~u))(s, ·)ds
∥∥∥∥
L4

t Ḣ
1
x

≤ C‖~u⊗ ~u‖L4
tL

2
x

d) En déduire le contrôle ∥∥∥∥∫ t

0

gt−s ∗ P(div(~u⊗ ~u))(s, ·)ds
∥∥∥∥
L4

t Ḣ
1
x

≤ C‖~u‖
L∞

t Ḣ
1
2
x

‖~u‖L4
t Ḣ

1
x
.

e) A partir de tous les calculs précédents, montrer qu’il existe une solution mild des équations de Navier-Stokes

dans l’espace L∞t Ḣ
1
2
x ∩ L4

t Ḣ
1
x.

f) A quel espace appartient la pression p ?

3 Exercice (5 pt.)

Soit F = (fij)1≤i,j≤3 un tenseur tel que l’on ait fij ∈ Lp([0, T [, Lq(R3)) pour tout 1 ≤ i, j ≤ 3 , où 0 < T < +∞
est un temps fixé et les indices p, q vérifient 1 < p, q < +∞. On considère l’équation∂t~v = ∆~v + div(F),

~v(0, x) = 0, x ∈ R3.

a) Obtenir le contrôle

‖~v‖L∞
t L∞

x
≤ sup

0<t<T
C

∫ t

0

(t− s)−(
1+3/q

2 )‖F(s, ·)‖Lq
x
ds.

b) En déduire que si l’on a le contrôle ‖F‖Lp
tL

q
x
< +∞ avec 2

p + 3
q < 1, alors on a bien ~v ∈ L∞([0, T [, L∞(R3)).

c) Soit ~u une solution faible de Leray des équations de Navier-Stokes∂t~u = ∆~u− div(~u⊗ ~u)− ~∇p,

~u(0, x) = 0, x ∈ R3,

pour laquelle on suppose que l’on a l’information ~u ∈ Lp([0, T [, Lq(R3)) avec 2
p + 3

q <
1
2 . Vérifier que la pression

p appartient à l’espace L
p
2 ([0, T [, L

q
2 (R3)). Obtenir que l’on a ~u ∈ L∞([0, T [, L∞(R3)).

2


