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Introduction

Ce document présente une synthèse de mes travaux de recherche depuis l’obtention
de ma thèse. Ces travaux sont des tentatives de réponse à des problématiques issues
de trois champs d’application : la finance de marché, la finance d’entreprise et l’assu-
rance. Deux aspects fondamentaux des mathématiques appliquées sont abordés : la
formulation et la modélisation des problèmes étudiés, suivies du développement d’ou-
tils et d’analyse mathématiques pour donner ou améliorer des méthodes numériques
de résolution.
Mes travaux se basent sur des modélisations stochastiques, les problèmes étudiés
sont donc formulés comme des problèmes de contrôle stochastique. Leurs résolutions
mêlent des approches analytiques et probabilistes. J’ai choisi de regrouper mes tra-
vaux en quatre chapitres selon leurs champs d’applications : le risque de liquidité en
finance de marché, le risque de liquidité dans le cadre d’options réelles, la structure et
gestion de capital en finance d’entreprise et la valorisation de produits d’assurance.

Modélisation et gestion de la liquidité dans un marché financier

La première partie de ce chapitre correspond à un article écrit avec Vathana Ly
Vath, Mohamed Mnif (ENIT, Tunis) et leur étudiant en thèse M’hamed Gaigi (voir
(13)). Nous avons cherché à comprendre l’évolution des prix et en particulier du
bid-ask spread en nous plaçant du point de vue d’un animateur de marché, unique
fournisseur de liquidité sur le marché. La résolution de ce problème passe par une ca-
ractérisation mathématique rigoureuse de la fonction valeur comme l’unique solution
de viscosité d’un système d’équation d’Hamilton-Jacobi-Bellman (HJB). Beaucoup
de difficultés techniques apparaissent dans ce problème, à commencer par une forme
de discontinuité de l’opérateur hyperbolique apparaissant dans l’équation. Ces points
sont rigoureusement résolus et une méthode numérique pour approcher les stratégies
de tenue de marché optimales est présentée avant d’être mise en oeuvre pour obtenir
des illustrations numériques de nos résultats.
Le deuxième partie traite d’un travail réalisé avec V. Ly Vath, Alexandre Roch
(UQAM, Montréal) et Simone Scotti (Université Paris-Diderot) où l’on adopte cette
fois-ci le point de vue d’un market maker opérant dans un marché avec carnet d’ordre.
On s’intéresse à la stratégie de liquidation optimale d’un portefeuille. L’objectif est
de minimiser le cout d’exécution de la stratégie (appelé slippage par les praticiens).
Le problème est formulé comme un problème de contrôle régulier (le niveau de prix
des ordres limites) mêlé à du contrôle impulsionnel (les ordres de marchés) sur un
processus à sauts. En utilisant le caractère markovien du modèle, nous caractérisons
la fonction valeur comme l’unique solution de viscosité d’un système d’inégalités va-
riationnelles. Nous concluons notre étude par la calibration du modèle sur des données
réelles.
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Risque de liquidité et options réelles.
La première partie, issue d’un travail, réalisé avec V. Ly Vath, A. Roch et S. Scotti
(voir (9)), traite un problème d’optimisation de stratégie de sortie d’un projet d’in-
vestissement (ou de vente d’un actif) qui n’est pas profitable. L’objectif est de trouver
la date optimale de vente, l’investisseur ayant le choix entre attendre un acheteur ou
liquider le projet immediatement en payant des coûts de liquidités. Dans notre étude,
la valeur du projet et les coûts de liquidation sont modélisés par des processus de dif-
fusion subissant des changements de régimes. Notre problème d’optimisation est donc
formulé comme un problème d’arrêt optimal bi-dimensionnel de maturité aléatoire
avec changements de régimes exogènes. Après avoir caractériser la fonction valeur
comme unique solution de viscosité d’un système d’inéquations variationnelles, nous
étudions les conditions de liquidation optimale et trouvons des solutions explicites
dans les cas où la fonction d’utilité du gestionnaire est une fonction puissance ou
logarithmique.
La seconde partie résume un travail commun avec M. Gaigi et V. Ly Vath (voir
(12)). Nous combinons problème d’investissement optimal avec coûts de liquidité et
distribution optimale de dividendes. Nous supposons que les actifs de l’entreprise se
divisent en deux catégories : des actifs dits productifs dont la valeur unitaire évolue
selon un mouvement brownien géométrique et la réserve de cash. Toujours disponible
et infiniment divisible, elle est modélisée par un brownien arithmétique dont les carac-
téristiques (dérive et volatilité) dépendent de la quantité d’actifs productifs détenue
par l’entreprise. L’achat et la vente des actifs productifs sont soumis à des coûts
de liquidités fixes, proportionnels avec éventuellement un impact pour les grandes
transactions. Nous obtenons donc un problème de contrôle multi-dimensionnel mê-
lant contrôle singulier (les dividendes) et impulsionnel (les transactions sur les actifs
productifs). Nous montrons, via le principe de la programmation dynamique, que
la fonction valeur de l’entreprise est l’unique solution de viscosité d’une équation
d’Hamilton-Jacobi-Bellman multi-dimensionnelle et proposons une méthode numé-
rique itérative pour évaluer la fonction valeur et ainsi obtenir une approximation des
stratégies optimales d’achat, de vente et de distribution de dividendes que doit suivre
l’entreprise.

Structure et gestion optimales de capital sous contraintes.
Dans la continuité du chapitre précédent, nous présentons dans le troisième cha-

pitre des problèmes de finance d’entreprise centrés, non plus sur les risques liés à la
liquidité, mais sur la structure et la gestion du capital de la firme.
La première partie présente un article écrit avec V. Ly Vath et S. Scotti (voir (7)).
Nous nous intéressons à un problème combiné de distribution optimale de dividendes
et de décisions optimales d’investissements financés par de l’endettement. La for-
mulation mathématique nous amène à énoncer un problème combinant du contrôle
singulier sur les dividendes et du contrôle impulsionnel pour les changement de régime
d’endettement. Utilisant le caractère markovien de notre modèle, nous caractérisons
notre fonction valeur comme unique solution de viscosité d’une équation d’HJB et en
déduisons, dans des cas simples, les stratégies optimales associées.
La seconde partie résume un travail en collaboration avec Erhan Bayraktar (Univer-
sité du Michigan) et V. Ly Vath (voir (14)). Nous cherchons à déterminer la structure
optimale du capital d’une banque résultant de stratégies optimales d’investissement
et de distribution de dividendes sous contraintes de solvabilté et de liquidité. Nous
supposons que le capital de la banque pouvant être investi, est constitué des dépôts
des clients et des fonds propres apportés par les actionnaires. Le gérant de la banque
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a la possibilité d’investir soit dans une classe d’actifs risqués soit dans un actif sans
risque. Il doit cependant respecter certains critères définis dans les accords de Bâle.
Son objectif est donc de maximiser, sous contraintes de solvabilité, la valeur cumulée
des dividendes distribués aux actionnaires durant l’existence de la banque. Nous mo-
délisons également la possibilité pour la banque de se recapitaliser. La formulation
mathématique de ce problème mélange des problèmes de contrôle stochastique régulier
(gestion des actifs de la banque), impulsionnel (recapitalisation) et singulier (distri-
bution de dividendes). En réduisant la dimension de ce problème bi-dimensionnel,
nous obtenons des solutions quasi-explicites via une charactérisation de la fonction
objectif comme unique solution de viscosité d’une équation d’HJB. Nous en déduisons
les stratégies optimales associées.

Valorisation et couverture de produits d’assurance-vie.
Ce dernier chapitre présente mes travaux sur des produits d’assurance-vie appelés
contrats à annuités variables. Le détenteur de la police ou du produit, confie un capi-
tal initial à la compagnie d’assurance qui se charge de l’investir dans un portefeuille
ou fond de référence. En retour, la compagnie d’assurance distribuera, à partir d’une
date déterminée, des rentes (annuités) ou un capital dont le montant dépendra de la
performance réalisée par le portefeuille de référence et de clauses de garanties, parfois
très complexes.
La première partie de ce chapitre est dédiée à la construction d’un modèle général
d’étude de ces produits. En raison des risques venant du détenteur du contrat, le
marché est incomplet et nous devons choisir une méthode de valorisation adéquate.
Nous avons adopté une méthode de valorisation par indifférence d’utilité exponen-
tielle. Enfin, comme ces produits sont de longue maturité, nous avons choisi de ne pas
imposer d’hypothèse de markovianité à notre modèle. Par conséquent, nous mettrons
en place des méthodes numériques basées sur la discretisation d’équations différen-
tielles stochastiques rétrogrades (EDSR).
Dans la seconde partie, basée sur un travail commun avec Thomas Lim et notre
étudiant de thèse Ricardo Romo (voir (11)), nous supposons que l’assuré n’a pas né-
cessairement un comportement rationnel et modélisons ses retraits par un processus
aléatoire arbitraire dont la dynamique pourrait être précisée par calibration sur des
données réelles. En utilisant des outils de grossissement de filtration et des résultats
récents sur les EDSR, nous mettons en place une méthode numérique pour évaluer le
prix d’indifférence du produit.
La dernière partie résume un article co-écrit avec T. Lim, Idriss Karroubi et Christo-
phette Blanchet (voir (8)), nous adoptons une approche plus robuste en considérant
le pire des cas pour l’assureur : l’assuré suit la stratégie de retraits anticipés mini-
misant l’esperance de l’utilité de l’assureur. Cela nous amène à étudier un problème
d’optimisation stochastique de type max-min.
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Chapitre 1

Modelization and management of
market liquidity risks

The content of this chapter is based on :
(10) Optimal Execution Cost for Liquidation Through a Limit Order Market, with

V. Ly Vath, A. Roch and S. Scotti, International Journal of Theoritical and
Applied Finance, Vol. 19, No. 1, 2016

(13) Optimal dealing strategies under inventory constraints, with M.Gaigi, V. Ly
Vath and M. Mnif, preprint.

The study of market liquidity consists in quantifying the costs incurred by investors
trading in markets in which supply or demand is finite, trading counterparties are not
continuously available, or trading causes price impacts. Liquidity is a risk when the
extent to which these properties are satisfied varies randomly through time.
Liquidity and liquidity risk models vary considerably from one study to the next ac-
cording to the problem at hand or the paradigm considered. For instance, Back [9]
and Kyle [76] construct an equilibrium model for dealers markets with insider tra-
ding. Constantinides [36], Davis and Norman [41], and Shreve and Soner [104] study
the portfolio selection problem with first order liquidity costs, namely proportional
transaction costs arising from a bid-ask spread (see [51] for a model with jumps).
There has also been a number of studies on large trader models ([10], [84], [100]),
and dynamic supply curves ( [3], [33]), with a more recent emphasis on liquidation
problems with market orders ([2], [4], [94], [97] ). More recently, some studies model
the structural events in the order book, like market order arrivals, cancellations or
execution of limit orders (see [1] et [37]).
Classical models on financial markets assume that investors are price-takers, i.e. li-
quidity takers, in the sense that they trade any financial assets at the available prices
including a liquidity premium that must be paid for immediacy. The market liquidity
crunch of the financial crisis in 2008 created an important need of better understan-
ding, quantifying and managing the liquidity risk.
It is clear from the structure of financial markets that, in addition to the presence of
price-takers, there must necessarily exist market participants who are price-setters or
liquidity providers. In limit order book markets or order-driven markets such as the
NYSE (New York Stock Exchange), traders can post prices and quantities at which
they are willing to buy or sell while waiting for a counterparty to engage in that
trade. In dealers’ markets or quote-driven markets, for instance the Nasdaq or LSE
(London Stock Exchange), registered market makers quote bids/offers and serve as
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counterparties when an investor wishes to buy or sell the securities.
In the first section, we focus on a single market dealer acting as a liquidity provider by
continuously setting bid and ask prices for an illiquid asset in a quote-driven market.
The market dealer may benefit from the bid-ask spread but has the obligation to per-
manently quote both prices while satisfying some liquidity and inventory constraints.
The objective is to maximize the expected utility from terminal liquidation value
over a finite horizon and subject to the above constraints. We characterize the value
function as the unique viscosity solution to the associated HJB equation and further
enrich our study with numerical results. The contributions of our study, as compared
to previous studies [7, 64, 88] concern both the modelling aspects and the dynamic
structure of the control strategies.
The last section is devoted to a more classical problem, we study how optimally
liquidate a large portfolio position in a limit order book market. We allow for both
limit and market orders and the optimal solution is a combination of both types of
orders. Market orders deplete the order book, making future trades more expensive,
whereas limit orders can be entered at more favorable prices but are not guaranteed
to be filled. We model the bid-ask spread with resilience by a jump process, and
the market order arrival process as a controlled Poisson process. The objective is to
minimize the execution cost of the strategy. We formulate the problem as a mixed
stochastic continuous control and impulse problem for which the value function is
shown to be the unique viscosity solution of the associated system of variational
inequalities. We conclude with a calibration of the model on recent market data and
a numerical implementation.

1.1 Optimal market dealing strategies under inven-
tory constraints

In this section, we consider an equity quote-driven market with a single risky
equity assets. While most liquid equity markets have now migrated to order-driven
markets or hybrid markets, liquidity issues mainly arise for illiquid assets, which
coincide in general with small and mid-cap stocks. We may refer, for instance, to
the Stock Exchange Automated Quotation system (or SEAQ) which is a system for
trading small-cap stocks in the LSE. The SEAQ market is a pure quote-driven market
and is the type of markets which we are investigating. As such, in terms of practical
applications, it is mainly about finding optimal strategies for market makers dealing
in small and mid-cap market such as the SEAQ market.

In order to obtain the role of a market maker of an assigned security, a firm has
to sign an agreement with the stock exchange which contains many obligations that
the firm has to satisfy. The market maker has, in particular, a contractual obligation
to permanently quote bid and ask prices for the security and therefore to satisfy any
sell and buy market order from investors.

In the trading of equity assets, there are several registered market makers in com-
petition. In the SEAQ market, for instance, there are in general two or more registered
market makers. However, in our study, in order to better focus on the understanding
of the market making mechanism and of the trade-off between the gains that could be
obtained from the bid-ask spread and the potential loss due to inventory, we consider
there is only one “representative” registered market maker in the dealing of the assets.
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This assumption is inline with the literature on market making/dealing problems, see
for instance [7, 64, 88, 58].

In [7, 64], the authors consider a market making problem as described above but
within a financial market in which the risky asset has reference or fair price, assumed
to follow an arithmetic Brownian process. The market maker quotes her ask and
bid prices at some distances to the reference price. In our study, we do not assume
the existence of a reference price. The prices are therefore driven by the equilibrium
between buy and sell market orders.

The assumption made in [7, 64, 88] stating that the market maker may liquidate
her stock inventory at the reference price (or a constant price independent of the
inventory) means that the inventory risk is uniquely due to the market risk of the
reference price. However, from studies on liquidation costs and price impacts, see for
instance [22, 62, 76, 67], it is clear that the degree of ability to liquidate the stock
inventory at the reference price or the mid-price should not be neglected. Inline with
this literature, we assume that when the market maker has to liquidate her stock
inventory, she incurs a liquidity cost and the price per share received (paid) are lower
(higher) than the mid-price in the case of a long (short) position.

To further take into account the microstructure of the financial markets, we no
longer consider continuous price processes. Bid and ask prices quoted by the market
maker are realistically assumed to be discrete prices, and correspond to multiple of a
tick value.

The objective of our market maker is to maximize the expected utility of the
terminal wealth. Considering that the market maker should avoid, as much as possible,
violating the inventory risk constraint imposed by her firm, we introduce, in the
objective function, a penalty cost self-imposed by the market maker herself or her
firm, in order to reduce the inventory risk. It is worth noticing that this penalty cost,
together with some other features such as the presence of the liquidation costs, largely
prevent the market maker from being able to manipulate the stock price.

The contributions of our study, as compared to previous studies [7, 64, 88], concern
both the modelling aspects and the dynamic structure of the control strategies. Im-
portant features and constraints characterizing market making problems are no longer
ignored, turning therefore our market making problem into a non-standard control
problem under constraints with real modelling and mathematical challenges. We pro-
vide rigorous mathematical characterization and analysis to our control problem by
proving that our value functions are the unique viscosity solutions to the associated
HJB system. It is always a technical challenge when applying viscosity techniques
to non-standard control problems under constraints. In the proof of our comparison
theorem, a major problem is to circumvent the difficulty arising from the discontinuity
of our HJB operator on some parts of the solvency region boundary.

1.1.1 Dealer market model

Let (Ω,F ,P) be a probability space equipped with a right continuous filtration
F = (Ft)0≤t≤T where T is a finite horizon. We assume that F0 contains all the P-null
sets of F . We consider a financial market, in which there is a risky assets, operated
as a single market dealer. She has the obligation to permanently quote bid and ask
prices and to act as a counterparty to investors’ market orders.
Trading orders. We assume that investors, considered as price-takers, may only
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submit either buy or sell market orders. We denote by (θai )i≥1 (resp. (θbi )i≥1) the
sequence of non-decreasing F-stopping times corresponding to the arrivals of buy
(resp. sell) market orders. We denote by (ξi)i≥1 the sequence of these trading times.

Market making strategies. We define a strategy control as being a F-predictable
process α = (αt)(0≤t≤T ) = (εat , ε

b
t , η

a
t , η

b
t )0≤t≤T where the processes εa, εb, ηa, ηb take

values in {χmin, .., χmax}, with −χmin ∈ N and χmax ∈ N∗.
We assume that when a sell market order arrives at time θbj , the market maker may
either keep the bid and ask prices constant or decrease one or both of them by at
most χmax ticks or increase one or both of them by at most χmin ticks. Notice the
market maker may decide to change the bid/ask prices but transaction prices are
assumed to be based on the one quoted before the prices changes. In here, a tick
value is denoted by a strictly positive constant δ. On the opposite side, when a buy
market order arrives at time θak, the market maker may either keep the bid and ask
prices constant or increase one or both of them by at most χmax ticks or decrease one
or both of them by at most χmin ticks .

Bid-Ask spread modelling.

We denote by P a = (P a
t )0≤t≤T (resp. P b = (P b

t )0≤t≤T ) the price quoted by the market
maker to buyers (resp. sellers). When a buy (resp. sell) market order arrives at time
θai (resp. θbj), the market maker has to sell (resp. buy) an asset at the ask (resp. bid)
price denoted by P a (resp. P b). As in [64, 58], we assume here that transactions are
of constant size, scaled to 1.
The dynamics of Pw, where w ∈ {a, b}, evolves according to the following equations


dPw

t = 0, ξi ≤ t < ξi+1

Pw
θbj+1

= Pw
θb−j+1

− δεw
θbj+1

Pw
θak+1

= Pw
θa−k+1

+ δηwθak+1

where i is the number of transactions before time t, j the number of buy transactions
before time t for the market maker, k the number of sell transactions before time t,
and δ represents one tick.
We denote by P the mid-price and S the bid-ask spread of the stocks. The dynamics
of the process (P, S) is given by

dPt = 0, ξi ≤ t < ξi+1

Pθbj+1
= Pθb−j+1

− δ
2
(εa
θbj+1

+ εb
θbj+1

)

Pθak+1
= Pθa−k+1

+ δ
2
(ηaθak+1

+ ηbθak+1
),

and


dSt = 0, ξi ≤ t < ξi+1

Sθbj+1
= Sθb−j+1

− δ(εa
θbj+1
− εb

θbj+1
)

Sθak+1
= Sθa−k+1

+ δ(ηaθak+1
− ηbθak+1

).

Regime switching. We first consider the tick time clock associated to a Poisson
process (Rt)0≤t≤T with deterministic intensity λ defined on [0, T ], and representing
the random times where the intensity of the orders arrival jumps.
We define a discrete-time stationary Markov chain (Îk)k∈N, valued in the finite state
space {1, ...,m}, with probability transition matrix (pij)1≤i,j≤m, i.e. P[Îk+1 = j|Îk =
i] = pij s.t. pii = 0, independent of R. We define the process

It = ÎRt , t ≥ 0 (1.1.1)
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(It)t is a continuous time Markov chain with intensity matrix Γ = (γij)1≤i,j≤m, where
γij = λpij for i 6= j, and γii = −

∑
j 6=i

γij.

We model the arrivals of buy and sell market orders by two Cox processes Na and
N b. The intensity rate of Na

t and N b
t is given respectively by λa(t, It, Pt, St) and

λb(t, It, Pt, St) where λa and λb are continuous functions valued in R and defined on
[0, T ]× {1, ...,m} × δ

2
N× δN.

Remark 1 The dependency of intensity rate on the assets prices is inspired by [7]
and is used by many previous papers, see for instance [58, 15, 59].

We now define θak (resp. θbk) as the kth jump time of Na (resp. N b), which corresponds
to the kth buy (sell) market order.
We introduce the following stopping times ρj(t) = inf{u ≥ t, Iu = j} and ρ(t) =
inf{u ≥ t, Ru > Rt} for 0 ≤ t ≤ T .
Stock holdings. The number of shares held by the market maker at time t ∈ [0, T ]
is denoted by Yt, and Y satisfies the following equations

dYt = 0, ξi ≤ t < ξi+1

Yθbj+1
= Yθb−j+1

+ 1

Yθak+1
= Yθa−k+1

− 1,

As in [88, 58], we consider that the market maker has the obligation to respect the
risk constraint imposed upon her by her company. Concretely, the stock inventory of
the market maker is assumed to have upper and lower bounds which could be high
enough to allow some trading flexibility to the market maker. Let ymin < 0 < ymax.
We are therefore imposing the following inventory constraint

ymin ≤ Yt ≤ ymax a.s. 0 ≤ t ≤ T.

Cash holdings. We denote by r > 0 the instantaneous interest rate. The bank
account follows the below equation between two trading times

dXt = rXtdt, ξi ≤ t < ξi+1.

When a discrete trading occurs at time θbj+1 (resp. θak+1), the cash amount becomes

Xθbj+1
= Xθb−j+1

− P b
θb−j+1

and Xθak+1
= Xθa−k+1

+ P a
θa−k+1

.

State process. We define the state process as follows :

Z = (X, Y, P :=
P a + P b

2
, S := P a − P b).

Cost of liquidation of the portfolio. If the current mid-price at time t < T is p
and the market maker decides to liquidate her portfolio, then we assume that the
price she actually gets is

Q(t, y, p, s) = (p− sign(y)
s

2
)f(t, y), (1.1.2)
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where f is an impact function defined from [0, T ]× R into R+ satisfying

Assumption (H1) The impact function f is non-negative, non-increasing in y, and
satisfies the following conditions

f(t, y) ≤ f(t, y
′
) if y

′ ≤ y

yf(t
′
, y) ≤ yf(t, y) if t

′ ≤ t.

Liquidation value and Solvency constraints. A key issue for the market maker
is to maximize the value of the net wealth at time T. In our framework, we impose a
constraint on the spread i.e.

0 < St ≤ Kδ, 0 ≤ t ≤ T,

where K is a positive constant. We also impose that the bid price remains positive,
therefore the market maker has to use controls such that

Pt − St/2 > 0.

When the market maker has to liquidate her portfolio at time t, her wealth will be
L(t,Xt, Yt, Pt, St) where L is the liquidation function defined as follows

L(t, x, y, p, s) = x+ yQ(t, y, p, s),

with Q as defined in (1.1.2).
Furthermore, we assume that in the case that the cash held by the market maker

falls below a negative constant xmin, she has to liquidate her position. We may now
introduce the following state space

S =]xmin,+∞[×{ymin, ..., ymax} ×
δ

2
N× δ{1, ..., K}

and then the solvency region

S = {(t, x, y, p, s) ∈ [0, T ]× S : p− s

2
≥ δ}.

We denote its closure by cl(S) = S ∪ ∂xS where its boundary is defined by

∂xS =
{

(t, x, y, p, s) ∈ [0, T ]× cl(S) : x = xmin and p− s

2
≥ δ
}
.

Admissible trading strategies. Given (t, z) := (t, x, y, p, s) ∈ S, we say that
the strategy α = (εau, ε

b
u, η

a
u, η

b
u)t≤u≤T is admissible, if the F-predictable processes

εa, εb, ηa, ηb are valued in {χmin, ..., χmax} and for all u ∈ [t, T ], (u, Zt,i,z,α
u ) ∈ S.

Value functions.
We set g a non-negative penalty function defined on {ymin, ..., ymax}. This penalty

may be compared to the holding costs function introduced in [88].
We also consider an exponential utility function U i.e. there exists γ > 0 such that

U(x) = 1− e−γx for x ∈ R. We set UL = UoL.
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As such, we consider the following value functions (vi)i∈{1,...,m} which are defined on
S by

vi(t, z) := sup
α∈A(t,z)

Jαi (t, z) (1.1.3)

where we have set

Jαi (t, z) := Et,i,z
[
UL(T ∧ τ t,i,z,α, Zt,i,z,α

(T∧τ t,i,z,α)−)−
∫ T∧τ t,i,z,α

t

g(Y t,i,y,α
s )ds

]
,

τ t,i,z,α := inf{u ≥ t : X t,i,x,α
u ≤ xmin or Y t,i,y,α

u ∈ {ymin − 1, ymax + 1}}.

1.1.2 Analytical properties and viscosity characterization

We use a dynamic programming approach to derive the system of partial differen-
tial equations satisfied by the value functions. First, we state the following Proposition
in which we obtain some bounds of our value functions

Proposition 1 There exist non-negative constants, C1, C2 and C3, depending on the
parameters of our problem, such that

1− C1 − C2e
C3p ≤ vi(t, x, y, p, s) ≤ 1, ∀(i, t, x, y, p, s) ∈ {1, ...,m} × S.

For control problems, dynamic programming principle was frequently used by many
authors and strongly relies on regularity properties of the objective function. We
carefully establish the following result.

Proposition 2 Let (i, y, p, s) ∈ {1, ...,m} × {ymin, .., ymax} × δ
2
N∗ × δ{1, ..K} such

that p − s
2
> 0. The function (t, x) → vi(t, x, y, p, s) is locally uniformly continuous

on [0, T ]× [xmin,+∞[.

To characterize the objective function as a viscosity solution of an HJB equation,
we first define the following set :

A(p, s) :=
{
α = (εa, εb, ηa, ηb) ∈ {−χmin, ..., χmax}4 s.t. p− s

2
− δεb ≥ δ,

δ ≤ s− δ(εa − εb) ≤ Kδ, and δ ≤ s+ δ(ηa − ηb) ≤ Kδ
}
.

For all (i, t, x, y, p, s) := (i, t, z) ∈ {1, ...,m} × S and α := (εa, εb, ηa, ηb) belonging to
A(p, s), we introduce the two following operators :

Avi(t, z, α) =

{
UL(t, x, ymin, p, s) if y = ymin

vi(t, x+ p+ s
2
, y − 1, p+ δ

2
(ηa + ηb), s+ δ(ηa − ηb)) otherwise.

Bvi(t, z, α) =


UL(t, x, ymax, p, s) if y = ymax
UL(t, z) if x < xmin + p− s

2

UL(t, z) if x = xmin + p− s
2
< 0

vi(t, x− p+ s
2
, y + 1, p− δ

2
(εa + εb), s− δ(εa − εb)) otherwise.
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Notice here that a discontinuity appears in the operator B. Indeed, for any function
ψ defined on cl(S), any (t, x, y, p, s) := (t, z) ∈ [0, T ]×S such that y < ymax, and any
α ∈ A(t, z) \ {0}, we have

lim
x↓xmin+p− s2

Bψ(t, z, α) = UL(t, xmin, y + 1, p− δ

2
(εa + εb), s− δ(εa − εb))

6= UL(t, z) = lim
x↑xmin+p− s2

Bψ(t, z, α).

We want to show that (vi)1≤i≤m is a viscosity solution, on the open set {1, ...,m}×S,
of the following HJB equation :

−∂vi
∂t
−Hi(t, z, vi,

∂vi
∂x

) = 0, (t, z) ∈ S, (1.1.4)

where Hi is the Hamiltonian associated with state i and such that for a family of
smooth functions ψ :

Hi(t, z, ψi,
∂ψi
∂x

) = rx
∂ψi
∂x

+
∑
j 6=i

γij (ψj(t, x, y, p, s)− ψi(t, x, y, p, s))− g(y)

+ sup
α∈A(p,s)

[λai (t, p, s) (Aψi(t, x, y, p, s, α)− ψi(t, x, y, p, s))

+ λbi(t, p, s) (Bψi(t, x, y, p, s, α)− ψi(t, x, y, p, s))
]

= 0.

We now provide a rigorous characterization for the value function by means of vis-
cosity solutions to the HJB equation (1.1.4) together with the appropriate boundary
terminal conditions and dynamic programming principle. The uniqueness property is
particularly crucial to numerically solve the associated HJB. The following theorem
relates the value function vi to the HJB (1.1.4) for all 1 ≤ i ≤ m.

Theorem The family of value functions (vi)1≤i≤m is the unique family of functions
such that

i) Growth condition : There exist C1, C2 and C3 positive constants such that

1− C1 − C2e
C3p ≤ vi(t, x, y, p, s) ≤ 1, on {1, ..,m} × S.

ii) Boundary and terminal conditions :

vi(t, xmin, y, p, s) = UL(t, xmin, y, p, s)

vi(T, x, y, p, s) = UL(T, x, y, p, s).

iii) Viscosity solution : (vi)1≤i≤m is a viscosity solution of the system of varia-
tional inequalities (1.1.4) on {1, ...,m} × S.

Assertions i) and ii) follow from Proposition 1 and the the definition of the value
function. Proving that (vi)1≤i≤m is viscosity solution of variational inequalities (1.1.4)
on {1, ...,m}×S has become quite standard, however, in our case, one need to carefully
deal with the discontinuity in the operator B which leads to some technical difficulties,
especially for the uniqueness result which is a direct consequence of a comparison
Lemma.

.
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1.1.3 Numerical Results

To solve the HJB equation (1.1.4) arising from the stochastic control problem (1.1.3),
one can use either probabilistic or deterministic numerical method. Below, we present
some numerical results obtained by using a deterministic method based on a finite
difference scheme. The scheme has the monotonicity, consistency and stability pro-
perties. It is well known that these properties, added to a comparison result, ensure
the convergence of this scheme.

Figure 1.1 – Value function for y ≥ 0

Optimal market making strategies

Figure 1.2 describes the optimal control strategies for the market maker when a
sell market order arrives and when the market maker’s inventory is around zero.

Figure 1.2 – Optimal strategy when a sell market order arrives

From Figure 1.2, we may make the following observations :
— when the spread is very low, the market maker has to decrease the bid price

more than the ask price, see region where the spread value is below 0.07.
— when the spread is high and close to the maximum spread allowed, the market

maker should decrease the ask price. She should decrease the spread in order
to encourage trades.

Notice that the market maker may make a profit of 3 ticks in the favorable case, i.e.,
the next market order is a buy order.
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1.2 Optimal execution cost for liquidation in a limit
order book market

In limit order book markets, any public trader can play the role of liquidity provider
by posting prices and quantities at which he is willing to buy or sell while waiting for
a counterparty to engage in that trade. Limit orders can be entered at more favorable
prices but are not guaranteed to be filled. A market order is filled automatically
against existing limit orders, albeit at a less favorable price as it depletes the order
book, making additional trades more expensive. It is therefore desirable to consider
financial models with an enlarged set of admissible trading strategies by including the
possibility of making both limit orders and market orders. In this section, we consider
the liquidation problem of a large portfolio position from this perspective.

Many authors have investigated the liquidation and market making problems with
limit orders only, in particular [7], [15], [56], [57], [58] and [93]. In these models, the
arrival intensity of outside market orders that match the limit orders that are posted
is typically a function of the spread between the posted price and a reference price. In
a more complex model, Cartea et al. [32] develop a high-frequency limit order trading
strategy in a limit order market characterized by feedback effects in market orders
and the shape of the order book, and by adverse selection risk due to the presence of
informed traders who make influential trades. Kühn and Muhle-Karbe [74] provide
an asymptotics analysis for a small investor who sets bid and ask prices and seeks to
maximize expected utility when the spread is small.

Recently, some authors consider a limit order market in which both limit and
market orders are possible. Guilbaud and Pham [59] determine the optimal trading
strategy of a market maker who makes both types of trades and seeks to maximize
the expected utility over a short term horizon. Cartea and Jaimungal [30] determine
the optimal liquidation schedule in a limit order market in which the liquidity cost of
a market order is fixed, and the probability of passing a limit order depends on the
spread between the posted price and a reference price, modeled as a Brownian motion
plus drift. The investor’s value function includes a quadratic penalty defined in terms
of a target inventory schedule. We also consider a limit order market in which both
limit and market orders are allowed, and study the problem of optimally liquidating a
large portfolio position. Our contribution to the above literature is to consider spread
dynamics which are impacted by both limit and market order strategies. Market orders
that the investor places directly increase the observed bid-ask spread. As a result, past
market orders have a direct impact on future liquidity costs. Furthermore, limit orders
posted inside the bid-ask spread effectively decrease the observed spread and have an
impact on the future probability distributions of its jumps.

We model the bid-ask spread with resilience (mean reversion) and a jump process,
and the market order arrival process as a controlled Poisson process (see Section 1.2.1
for a description of the model). The objective is to liquidate a fixed number of shares
of a risky asset by minimizing the expected liquidity premium paid. We formulate
the problem in Section 1.2.2 as a mixed stochastic continuous control and impulse
problem for which the value function is shown to be the unique viscosity solution
of the associated system of variational inequalities. In Section 1.2.3, we numerically
implement the model and calibrate it to market data corresponding to four different
firms traded on the NYSE exchange through the ArcaBook.
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1.2.1 The limit order book market model

Let T < ∞ be a finite time horizon and (Ω,F ,F,P) a filtered probability space
supporting a random Poisson measureM on [0, T ]×R with mean measure γt dt m(dz)
where γ : [0, T ] → (0, γ̄] and m is a probability measure on R, with m(R) < ∞. We
consider a market with a risky asset that can be traded through a limit order book.
We consider a large investor whose goal is to liquidate a number N > 0 of shares
of this risky asset. The investor sets a date T before which the position must be
liquidated and attempts to minimize the price impact of the liquidation strategy.

Market orders. The investor can make market orders by controlling the time and
the size of his trades. This is modeled by an impulse control strategy β = (τi, ξi)i≤n
where the τi’s are stopping times representing the intervention times of the investor
and the ξi’s are Fτi-measurable random variables valued in N and giving the number
of shares sold by a market order at time τi.

Limit orders. The investor can also make limit orders. We denote by A0 a compact
subset of [0,∞) representing the set of possible spreads below the current best ask
price at which the investor can place a limit order to sell in the order book. We also
add the admissibility condition that the limit price is above the current best bid price,
otherwise the limit order would in fact be a market order. Since the effect of this new
limit order is that the best ask price can now be lower, we call the best ask price
excluding the investor’s limit order the otherwise best ask price. The spread below the
current best ask price is an A0-valued stochastic control denoted by α = (αt)t≤T .

Investor’s control.We define the investor’s control as a pair of processes δ = (α, β).

Bid-Ask spread. We denote by Xt the spread between the best bid and the best
ask price excluding the investor’s limit price at time t. Between the investor’s market
orders, we assume the spread X is impacted by α and follows

dXα
t = µ(t,Xα

t− , αt)dt+

∫
R
G(Xα

t−, αt, z)M̃(dt, dz). (1.2.1)

Under this construction, the limit order α sends a signal and modifies the distribution
of the jumps of X, represented by G. Here M̃ is the compensated random measure of
M , and µ is a deterministic and Lipschitz continuous function in the second argument,
satisfying a linear growth condition.

Liquidity cost. We summarize the information contained in the order book by a
function S(t, x, n) which gives the proceeds obtained for a sale of n shares at time t
done through market orders when the spread equals x. In the order book density case,
this corresponds to Equation 12 in [2]. Let At be a stochastic process representing
the best ask price. We may then define the liquidity cost due to a market sell order
of size n, denoted by L(t, x, n), in terms of the best ask price as follows

L(t, x, n) := nAt − S(t, x, n). (1.2.2)

The slippage of a market order of size n is then defined as a fixed transaction cost,
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k > 0, plus the liquidity cost, i.e.

K(t, x, n) = k + L(t, x, n). (1.2.3)

Example. The simplest example is a quadratic model with proportional transaction
costs :

S(t, x, n) = (At − x)n− ζtn2,

with At and ζt two stochastic processes representing the best ask price and a measure
of illiquidity. This model arises from a limit order book with constant density as
shown in [101]. In the quadratic model, L(t, x, n) = xn+ ζtn

2.

We introduce the set of functions from [0, T ]× R+ to R with at most polynomial
growth of degree p in the second argument, uniformly in the first, and denote it by
P . For technical reasons in the proof of a comparison principle, we assume that for
all n ∈ {0, .., N}, the function L(·, ·, n) belongs to P .

Impact on the best bid. During a transaction, the investor’s market orders are
matched with the existing limit orders in the order book so that the result is a shift
in the best bid price to the left by an amount denoted by I(t, x, n).

Dynamics of the controlled bid-ask spread. The dynamic for Xδ (with δ =
(α, β)) taking into account both α and β is{

dXδ
t = µ(t,Xδ

t , αt)dt+
∫
RG(Xδ

t−, αt−, z)M̃(dt, dz) if τn < t < τn+1

Xδ
τn = X̌δ

τ−n
+ I(τn, X̌

δ
τ−n
, ξn),

(1.2.4)

where X̌δ
t− = Xδ

t− + ∆Xδ
t , ∆Xδ

t is the jump of the measure M at time t. The super-
scripts in controlled processes will often be omitted to alleviate the notation.

Market orders arrival. We start with a time inhomogeneous Poisson process N ,
independent of W and M , with intensity λ(t, 0) ≥ λ > 0, t ≥ 0. The jumps of this
Poisson process are denoted θi, i ≥ 1. For all x > 0, we define intensity functions
λ(·, x) : [0, T ]→ [0,∞), and assume (λ(·, x))x>0 is an equicontinuous family of func-
tions, bounded below and above by constants λ, λ > 0. If the investor chooses to place
a limit order at a spread αt below the otherwise best ask price at time t, the likelihood
of the execution of this order depends on the observed spread Xt−αt and arrives with
an intensity λ(t,Xt − αt). At the time θi, the investor’s limit order will go through
for a random quantity equal to Yi, less or equal to n′ (the fixed size of the limit or-
der), and independent of Fθi−. The fact that the jump intensity is time-dependent is
particularly relevant in markets where there is well-known u-shaped trading volume
pattern during the day.

Let dPα
dP

∣∣∣
Ft

= Zα
t with Zα

0 = 1 and

dZα
t = Zα

t−

(
λ(t,Xt − αt)

λ(t, 0)
− 1

)
(dNt − λ(t, 0)dt) .

Then a control α changes the distribution of N under P to the distribution of N
under Pα, by changing the intensity of N from λ(t, 0) to λ(t,Xt − αt).
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The slippage of a limit order that is matched at time θi is then given by αθiYi.

Dynamics of the remaining number of shares to liquidate N δ,n,t.
To keep track of the portfolio through time, we define a pure jump process N δ,n,t re-
presenting the remaining number of shares in the portfolio (taking into consideration
transactions through both limit orders and market orders) when the portfolio starts
with n remaining shares at time t. The process N δ,n,t thus starts at N δ,n,t

t = n at time
t, is piecewise constant, and jumps by −(Yi ∧N δ,n,t

θi− ) at time θi and by −(ξi ∧N δ,n,t
τi− )

at time τi. This is understood to mean that the process jumps by −(Yi + ξj) ∧N δ,n,t
θi−

if θi = τj for some i, j ≥ 1.

Admissible control strategies. The limit orders control strategy α = (αs)0≤s≤T is
assumed to be a stochastic Markov control such that αt < Xδ

t− for all t ≤ T . We
denote the set of Markov control by A. Let Tt,T be the set of stopping times with
values in [t, T ]. The set of admissible strategies started at time t ∈ [0, T ] when the
investor has n shares remaining in the portfolio and that the spread is equal to x is
defined as

AB(t, n, x) = {δ = (α, β) : α ∈ A, β = (τi, ξi)i≤n, τi ∈ Tt,T ; ξi ≤ n

is an N-valued random variable Fτ−i −measurable s.t. τ δ,n,t ≤ T},

where τ δ,n,t = inf{s ≥ t : N δ,n,t
s = 0}.

The control problem. The investor’s goal is to minimize expected slippage by ba-
lancing his actions between market orders, which are more expensive due to imme-
diacy, and limit orders, for which the execution time is unknown and random but are
executed at more favorable prices. For a strategy δ = (α, β) ∈ AB(t, n, x) started at
time t, slippage is defined as

SδT =
n∑
i=1

K(τi, X̌
δ
τ−i
, ξi)1lτi≤τδ +

∑
i≥1

αθiYi1lθi≤τδ .

For (t, x, n) ∈ [0, T ]× [0,+∞)×N, we define the optimal expected slippage function
in the following way :

Cn(t, x) = inf
δ∈AB(t,x,n)

Et,x,n,αSδT , (1.2.5)

with Et,x,n,α the expectation under Pα, given thatNt = n andXt = x. For convenience,
we extend this function to negative values of n by letting C−i(t, x) = 0 for i ∈ N∗.
We have the following boundary condition :

Cn(T, x) = K(T, x, n) for all n ∈ N∗,

which follows readily from the fact that τ δ,n,T = T , so that the investor must neces-
sarily liquidate the remaining part of his portfolio with a market order at time T .

Penalty function. The maturity T is an urgency parameter. The shorter it is, the
more aggressive the strategy and the higher the liquidation cost. However, in order
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to impose more urgency in the liquidation, it is possible to include a penalty function
or a risk aversion parameter in the minimization problem. We may add a penalty
function π in terms of the number of remaining shares at time t :

Cn(t, x) = inf
δ∈AB(t,x,n)

Et,x,n,α
[
SδT +

∫ T

t

π(N δ
s , s)ds

]
. (1.2.6)

This penalty function can be used to target a specific liquidation schedule as in Cartea
and Jaimungal [30], it can be a proxy for the variance of the value of the remaining
shares in the portfolio when π is of the quadratic form (see Cartea and Jaimungal
[31]), or it can reflect a negative drift in the ask price or “short-term price signal" as
suggested by Almgren [4].

1.2.2 Characterization of the slippage function

In this section, we prove that the function Cn is the viscosity solution of an as-
sociated quasi-variational inequality. We first introduce the infinitesimal generator of
the process (t,Xt)t≥0 between two market orders :

Lau(t, x) =
∂u

∂t
+ µ(t, x, a)

∂u

∂x
+ γt

∫
R
(u(t, x+G(x, a, z))− u(t, x))m(dz),

and the limit orders operator :

∆a
nu(t, x) = λ(t, x− a)

[
f(a) +

∞∑
i=1

piCn−i(t, x)− u(t, x)

]
,

in which pi = P(Y1 = i) (i ≥ 1) and f(a) = a
∑∞

i=1 ipi, a ∈ A0. Finally, define the
impulse function for market orders :

Mn(t, x) = min
i∈{1,...,n}

[Cn−i(t, x+ I(t, x, i)) +K(t, i, x)] .

Notice that, for all (t, x, n) ∈ [0, T ]× R+ × N∗, we deduce from (1.2.5) that

0 ≤ Cn(t, x) ≤ K(t, x, n) = κ+ L(t, x, n).

Therefore, recalling that P is the set of functions from [0, T ]×R+ to R with at most
polynomial growth of degree p in the second argument, we have Cn ∈ P for all n ∈ N.

Our main result of this section is the following theorem.

Theorem 1 For all n ≥ 1, Cn is the unique continuous viscosity solution in P of
the following variational inequality :{

min (mina∈A0 Lau+ ∆a
nu; Mn − u) = 0 on [0, T )× [0,∞),

u(T, x) = K(T, n, x) for x ≥ 0. (1.2.7)

Proof of Theorem 1 : We know that C0 is continuous and it is the unique viscosity
solution of (1.2.7). By induction, suppose Ck is the unique continuous viscosity so-
lutions of (1.2.7) for k ≤ n − 1. We are then able, from a dynamic programming
principle, to deduce that Cn is a viscosity solution of (1.2.7) and that a comparison
result holds. It follows that Cn is the unique continuous viscosity solution of (1.2.7) .

2
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1.2.3 Numerical Results

We calibrated the model to market data corresponding to four different firms
traded on the NYSE exchange through the ArcaBook from February 28th to March
4th, 2011. The data files obtained from NYXdata.com contains all time-stamped limit
orders entered, removed, modified, filled or partially filled on the NYSE ArcaBook
platform. The firms considered are Google (GOOG), Air Products & Chemicals Inc.
(APD), International Business Machines Corp. (IBM), and J.P. Morgan Chase & Co.
(JPM). All four stocks are very liquid and were part of the S&P500 index in 2011.
Yet a major difference is that the empirical distribution of their bid-ask spreads differ
considerably, as seen in Figure1.3. This is due to the fact that their stock prices are
of a different order of magnitude with GOOG at an average price of 606.97, APD
at 91.15, IBM at 161.76 and JPM at 45.92 over the five days. In percentage, JPM
and IBM have smaller spreads (0.03% of stock price) than GOOG (0.073% of stock
price) and APD (0.075%). Since prices are quoted in cents, this offers a large array of
values of spreads for GOOG, for which the spread varied from $0.01 to $2.67 during
the five trading days considered. The resulting liquidation strategies are very different
quantitatively and qualitatively (see figure 1.4).
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Figure 1.3 – Distribution of bid-ask spread
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Figure 1.4 – Average Liquidation Schedule. Dashed lines represent 5th and 95th
percentiles.
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Chapitre 2

Optimal investment under liquidity
risks

The content of this chapter is based on :
(9) Optimal exit strategies for investment projects, with V. Ly Vath, A. Roch and

S. Scotti, Journal of Mathematical Analysis and Applications, Vol. 425, No. 2,
666-694, 2015.

(12) Liquidity risk and optimal investment/disinvestment strategies, with M.Gaigi
et V. Ly Vath, to appear in Mathematics and Financial Economics.

The theory of optimal stochastic control problem, developed in the seventies, has
over the recent years once again drawn a significance of interest with the main focus
on its applications in a variety of fields including economics and finance. For instance,
the use of powerful tools from stochastic control theory has provided new approaches
and sometimes the first mathematical approaches in solving problems arising from
corporate finance. It is mainly about finding the best optimal decision strategy for
managers whose firms operate under uncertain environment whether it is financial or
operational, see [25] and [45].

The strategy considered may be on firm’s investment decisions in stochastic envi-
ronments, see for instance [24], [44], [81], [87], [95] and [106]. In relation to the first
section, Dixit and Pindyck [45] consider various firm’s decisions problems with entry,
exit, suspension and/or abandonment scenarios in the case of an asset given by a
geometric Brownian motion. The firm’s strategy can then be described in terms of
stopping times given by the time when the value of the assets hits certain threshold
levels characterized as free boundaries of a variational problem. Duckworth and Zer-
vos [46], and Lumley and Zervos [82] solve an optimal investment decision problem
with switching costs in which the firm controls the production rate and must decide
at which time it exits and re-enters production. In the first section, we study the pro-
blem of an optimal exit strategy for an investment project which is unprofitable and
for which the liquidation costs evolve stochastically. The firm has the option to keep
the project going while waiting for a buyer, or liquidating the assets at immediate
liquidity and termination costs. The liquidity and termination costs are governed by a
mean-reverting stochastic process whereas the rate of arrival of buyers is governed by
a regime-shifting Markov process. We formulate this problem as a multidimensional
optimal stopping time problem with random maturity. We characterize the objective
function as the unique viscosity solution of the associated system of variational HJB
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equations. We derive explicit solutions and numerical examples in the case of power
and logarithmic utility functions when the liquidity premium factor follows a mean-
reverting CIR process.

Added to these investment decisions, firm’s manager may have to determine strategies
to distribute dividends to shareholders. The pionneering works on this subject model
dividend strategy as a singular control (see [68]) or a regular control (see [6]) on the
firm’s cash reserve dynamics which is assumed to follow a drifted brownian motion.
In the second section, we study the problem of determining an optimal control on the
dividend and investment policy of a firm operating under uncertain environment and
risk constraints. There are a number of research on this corporate finance problem.
In [44], Décamps and Villeneuve study the interactions between dividend policy and
irreversible investment decision in a growth opportunity and under uncertainty. We
may equally refer to [85] for an extension of this study, where the authors relax the
irreversible feature of the growth opportunity. In these models, the firm goes into
bankruptcy when its cash reserve reaches zero. The underlying financial assumption
behind the above model is to consider that the firm’s assets may be separated into
two types of assets, highly liquid assets which may be assimilated as cash reserve,
i.e. cash & equivalents, or infinitely illiquid assets, i.e. producing assets that may
not be sold. As such, when the cash reserve gets near the bankruptcy point, the
firm manager may not be able to inject any cash by selling parts of its non-liquid
assets. The assumptions made in the above models imply that the firm’s illiquid assets
correspond to producing assets which may be neither increased through investment
nor decreased through disinvestment.
We allow the company to make investment decisions by acquiring or selling producing
assets whose value is governed by a stochastic process. The firm may face liquidity
costs when it decides to buy or sell assets. We formulate this problem as a multi-
dimensional mixed singular and multi-switching control problem and use a viscosity
solution approach. We numerically compute our optimal strategies and enrich our
studies with numerical results and illustrations.

2.1 Optimal exit strategies for investment projects

The firm, we consider must decide between liquidating the assets of an underper-
forming project and waiting for the project to become once again profitable, in a
setting where the liquidation costs and the value of the assets are given by general
diffusion processes. We formulate this two-dimensional stochastic control problem as
an optimal stopping time problem with random maturity and regime shifting.

Amongst the large literature on optimal stopping problems, we may refer to some
related works including Bouchard, El Karoui and Touzi [20], Carr [29], Dayanik and
Egami [42], Dayanik and Karatzas [43], Guo and Zhang [61], Lamberton and Zervos
[78]. In [43] and [78], the authors study optimal stopping problems with general 1-
dimensional processes. Random maturity in optimal stopping problem was introduced
in [29] and [20]. It allowed to reduce the dimension of their problems as well as
addressing the numerical issues. We may refer to Dayanik and Egami [42] for a recent
paper on optimal stopping time and random maturity. For optimal stopping problem
with regime shifting, we may refer to Guo and Zhang [61], where an explicit optimal
stopping rule and the corresponding value function in a closed form are obtained.
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Our optimal stopping problem combines all the above features, i.e., random matu-
rity and regime shifting, in the bi-dimensional framework. We are able to characterize
the value function of our problem and provide explicit solution in some particular cases
where we manage to reduce the dimension of our control problem.

In the general bi-dimensional framework, the main difficulty is related to the proof
of the continuity property and the PDE characterization of the value function. Since
it is not possible to get the smooth-fit property, the PDE characterization may be
obtained only via the viscosity approach. To prove the comparison principle, one has
to overcome the non-linearity of the lower and upper bounds of the value function
when building a strict supersolution to our HJB equation.

In the particular cases where it is possible to reduce our problem to a one-
dimensional problem, we are able to provide explicit solution. Our reduced one-
dimensional problem is highly related to previous studies in the literature, see for
instance Zervos, Johnson and Alezemi [109] and Leung, Li and Wang [79].

2.1.1 The Investment Project

Let (Ω,F,P) be a probability space equipped with a filtration F = (Ft)t≥0, sa-
tisfying the usual conditions. It is assumed that all random variables and stochastic
processes are defined on the stochastic basis (Ω,F,P). We denote by T the collection
of all F−stopping times. Let W and B be two correlated F–Brownian motions, with
correlation ρ, i.e. d[W,B]t = ρdt for all t.

We consider a firm which owns assets that are currently locked up in an investment
project which currently produces no output per unit of time. Because the firm is
currently not using the assets at its full potential, it considers two possibilities. The
first is to liquidate the assets in a fire sale and recover any remaining value. The cash
flow obtained in the latter case is the fair value of the assets minus liquidation and
project termination costs. We denote by θ the moment at which the firm decides to
take this option. The second option is to wait for the project to become profitable
once again, or equivalently, to wait for an investor or another firm who will purchase
the assets as a whole at their fair value Sτ where τ is the moment when this happens,
so-called the recovery time.
Assets fair value. The fair value of the assets are given by S = exp(X), in which

dXt = µ(Xt)dt+ σ(Xt)dBt, t ≥ 0 (2.1.1)
X0 = x.

Assume that µ and σ are Lipschitz functions on R satisfying the following growth
condition

lim
|x|→∞

|µ(x)|+ |σ(x)|
|x|

= 0. (2.1.2)

Liquidation and Termination Costs. Should the firm decide to terminate the pro-
ject operations and liquidate the assets, the resulting cash flow is Stf(Yt). where f
is strictly decreasing C2 function defined on R+ → [0, 1], and satisfies the following
conditions :

f(0) = 1 and ∃ c > 0, such that lim
y→∞

f(y) exp(yc) = 0. (2.1.3)
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The liquidation costs, given by f(Yt) at time t, is defined in terms of the mean-
reverting non-negative process Y which is governed by the following SDE :

dYt = α(Yt)dt+ γ(Yt)dWt, (2.1.4)
Y0 = y,

where α is a Lipschitz function on R+ and, for any ε > 0, γ is a Lipschitz function
on [ε,∞). We assume that α and γ satisfy a linear growth condition. Furthermore,
to insure the mean-reverting property, we assume that there exists β > 0 such that
(β − y)α(y) is positive for all y ≥ 0.

The recovery time. We model the arrival time of a buyer, denoted by τ , or equiva-
lently the time when the project becomes profitable again, by means of an intensity
function λi depending on the current state i of a continuous-time, time-homogenous,
irreducible Markov chain L, independent ofW and B, with m+1 states. The states of
the chain represent liquidity states of the assets. The generator of the chain L under
P is denoted by A = (ϑi,j)i,j=0,...m. Here ϑi,j is the constant intensity of transition
of the chain L from state i to state j (0 ≤ i, j ≤ m). Without loss of generality we
assume

λ0 > λ1 > . . . > λm > 0. (2.1.5)

Utility function. We denote by U the utility function which satisfies :

Assumption 1 U : R+ → R is non-decreasing, concave and twice continuously dif-
ferentiable, and satisfies

lim
x→0

x U ′(x) < +∞. (2.1.6)

Assumption 2 U is supermeanvalued w.r.t. S, i.e.

U(St) ≥ E[U(Sθ)|Ft], for any θ ∈ T . (2.1.7)

The financial interpretation of the supermeanvalued property of U w.r.t. S is as
follows : it is always better to accept right away an offer to buy the assets at their fair
value then to wait for a later one. For more details on the supermeanvalued property,
which is closely related to the concept of superharmonicity, we may refer to Dynkin
[48] and Oksendal [96].

Objective function. The objective of the firm is to maximize the expected profit
obtained from the sale of the illiquid asset, either through liquidation or at its fair
value at the exogenously given stopping time τ . As such, we consider the following
value function :

v(i, x, y) := sup
θ∈T

Ei,x,y
[
h(Xθ, Yθ)1θ≤τ + U(eXτ )1θ>τ

]
, x ∈ R, y ∈ R+, i ∈ {0, . . . ,m}

where h(x, y) = U(exf(y)).
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2.1.2 Characterization of the value functions

We first obtain some descriptive properties of these functions including the mo-
notonicity and continuity of the functions vi. We highlight two main difficulties that
need a no-standard treatment. The first one comes from the SDE satisfied by Y (2.1.4)
since we do not assume the standard hypothesis of Lipschitz coefficients. We over-
come this drawback showing that the local Lipschitz property is satisfied until the
smallest optimal exit time from the investment. The second difficulty is related to the
bi-dimensional setting where the classical arguments used to show the regularity of
value function are not longer available. We then need to show the continuity in term
of limits of sequences and to distinguish different sub-sequences with ad-hoc proofs.

The complexity of the proof of the continuity suggests that a direct proof of diffe-
rentiability, i.e. smooth-fit property, of the value function is probably out of reach in
our setting. We will then turn to the viscosity characterization approach to overcome
the impossibility to use a verification approach.

Theorem 2.1.1 The value functions vi, i ∈ {0, . . . ,m}, are continuous on R× R+,
and constitute the unique viscosity solution on R× R+ with growth condition

|vi(x, y)| ≤ |U(ex)|+ |U(ex)f(y)|,

and boundary condition
lim
y↓0

vi(x, y) = U(ex),

to the system of variational inequalities :

min
[
− Lvi(x, y)− Giv.(x, y)− Jivi(x, y) , vi(x, y)− U(exf(y))

]
= 0,

∀ (x, y) ∈ ×R× R+
∗ , and i ∈ {0, . . . , n},

(2.1.8)

where the operators Gi and Ji are defined as

Giϕ(., x, y) =
∑
j 6=i

ϑi,j (ϕ(j, x, y)− ϕ(i, x, y))

Jiϕ(i, x, y) = λi (e
x − ϕ(i, x, y)) ,

and L is the second order differential operator associated to the state processes (X, Y ).

The uniqueness result relies on a comparison principle. The main difficulty in
proving this principle is to deal with the non-linearity of the bounds of the value
function when building a strict super-solution

Liquidation and continuation regions

We now prove useful qualitative properties of the liquidation regions of the optimal
stopping problem. We introduce the following liquidation and continuation regions :

LR =
{

(i, x, y) ∈ {0, ...,m} × R× R+ | v(i, x, y) = h(x, y)
}

CR = {0, ...,m} × R× R+ \ LR.

Clearly, outside the liquidation region LR, it is never optimal to liquidate the assets
at the available discounted value. Moreover, the smallest optimal stopping time θ∗ixy
verifies

θ∗ixy = inf
{
u ≥ 0 |

(
Liu, X

x
u , Y

y
u

)
∈ LR

}
.
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We define the (i, x)−sections for every (i, x) ∈ {0, ...,m} × R by

LR(i,x) = {y ≥ 0 | v(i, x, y) = h(x, y)} and CR(i,x) = R+ \ LR(i,x).

Proposition 2.1.2 (Properties of liquidation region)
i) E is closed in {0, ...,m} × R× (0,+∞),
ii) Let (i, x) ∈ {0, ...,m} × R.

- If Ei,x[U(eXτ )] = U(ex), then, for all y ∈ R+, v(i, x, y) = U(ex) and
E(i,x) = {0}.

- If Ei,x[U(eXτ )] < U(ex), then there exists x0 ∈ R such that E(i,x0) \ {0} 6= ∅
and ȳ∗(i, x) := sup E(i,x) < +∞.

2.1.3 Logarithmic utility

Throughout this section, we assume that the diffusion processes X and Y are
governed by the following SDE, which are particular cases of (2.1.1) and (2.1.4)

dXt = µdt+ σ(Xt)dBt; X0 = x
dYt = κ (β − Yt) dt+ γ

√
YtdWt; Y0 = y

The following theorem shows that in the logarithmic case, we can reduce the di-
mension of the problem by factoring out the x-variable. For this purpose, we define
TL,W the set of stopping times with respect to the filtration generated by (L,W ), and
the differential operator Lφ(y) := 1

2
γ2y ∂

2φ
∂y2

+ κ(β − y)∂φ
∂y

+ µ, for φ ∈ C2(R+).

Theorem 2.1.3 On {0, ...,m} × R× R+, we have v(i, x, y) = x+ w(i, y) where

w(i, y) = sup
θ∈TL,W

Ei,y[µ(θ ∧ τ) + ln (f(Yθ)) 1l{θ≤τ}] on {0, ...,m} × R+.

Moreover, w is the unique viscosity solution to the system of equations :

min
[
−Lw(i, y)+λiw(i, y)−

∑
j 6=i

ϑi,j (w(j, y)− w(i, y)) , w(i, y)−g(y)
]

= 0, (2.1.9)

where g(y) := ln(f(y)). The functions w(i, .) are of class C1 on R+ and C2 on C(i,x)∪
Int(E(i,x)).

In the logarithmic case, the liquidation region can be characterized in more details.

Proposition 2.1.4 Let i ∈ {0, ...,m} and set

ŷi = inf{y ≥ 0 : Hig(y) ≥ 0} with Hig(y) = Lg(y)−λig(y)+
∑
j 6=i

ϑi,j (w(j, y)− g(y)) .

There exists y∗i ≥ 0 such that [0, y∗i ] = LR(i,.) ∩ [0, ŷi]. Moreover, w(i, ·) − g(·) is
non-decreasing on [y∗i , ŷi].

Remark 1 When Lg(y) is non-decreasing in y, the previous result can be specified
further. Indeed, in that case, for all i ∈ {0, ...,m}, w(i, ·)− g(·) is non-decreasing on
R+ and we have LR(i,·) = [0, y∗i ], with y∗i > 0.
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Explicit solutions in the two regimes case

We assume that there are two regimes (i.e., m = 1) and ϑ0,1ϑ1,0 6= 0. We also
assume that, for both i = 0, 1, there exists y∗i > 0 such that LR(i,·) = [0, y∗i ].
Let Λ be the matrix

Λ =

(
λ0 + ϑ0,1 −ϑ0,1

−ϑ1,0 λ1 + ϑ1,0

)
.

As ϑ0,1ϑ1,0 > 0 it is easy to check that Λ has two eigenvalues λ̃0 and λ̃1 < λ̃0. Let
Λ̃ = P−1ΛP be the diagonal matrix with diagonal (λ̃0, λ̃1). The transition matrix P
is denoted by

P =

(
p00 p01
p10 p11

)
.

Without loss of generality, we shall assume that p00 + p01 = 1 = p10 + p11, indeed
(1,−1) is not an eigenvector of Λ as λ0 > λ1. With the above assumptions, we obtain
y∗0 ≤ y∗1 and the value function can be written in terms of the confluent hypergeometric
functions.

Proposition 2.1.5 The function w is given by

w(0, y) =



g(y) y ∈ [0, y∗0]

ĉΦ

(
λ0 + ϑ0,1

κ
,
2κβ

γ2
,
2κ

γ2
y

)
+ d̂Ψ

(
λ0 + ϑ0,1

κ
,
2κβ

γ2
,
2κ

γ2
y

)
y ∈ (y∗0, y

∗
1]

+I
(

2κ

γ2
, β,−2

λ0 + ϑ0,1

γ2
, 2
ϑ0,1g(·) + µ

γ2

)
(y)

p00

[
êΨ

(
λ̃0
κ
,
2κβ

γ2
,
2κ

γ2
x

)
+
µ

λ̃0

]
y ∈ (y∗1,∞)

+p01

[
f̂Ψ

(
λ̃1
κ
,
2κβ

γ2
,
2κ

γ2
x

)
+
µ

λ̃1

]

w(1, y) =



g(y) y ∈ [0, y∗1]

p10

[
êΨ

(
λ̃0
κ
,
2κβ

γ2
,
2κ

γ2
y

)
+
µ

λ̃0

]
y ∈ (y∗1,∞)

+p11

[
f̂Ψ

(
λ̃1
κ
,
2κβ

γ2
,
2κ

γ2
y

)
+
µ

λ̃1

]
,

where Φ and Ψ denote respectively the confluent hypergeometric function of first and
second kind, and I is a particular solution to the non-homogeneous confluent diffe-
rential equation. Moreover, (y∗0, y

∗
1, ĉ, d̂, ê, f̂) are such that w(0, y) and w(1, y) belong

to C1(R+).

Numerical Simulation

In Figure 2.1, we represent the value functions in the two-regime case, for the cases
µ = −.05 and µ = −0.3.
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Figure 2.1 – Value functions in the two-regime case, for the cases µ = −0.05 (solid
line) and µ = −0.3 (dashed line). Regime 0 is presented in blue and regime 1 in red.

2.2 Liquidity risk and optimal investment strategies

In [68], [6], [34], the authors study an optimal dividend problem and consider a
single stochastic process which represents the cash reserve of the firm.

We no longer simplify the optimal dividend and investment problem by assuming
that firm’s assets are either infinitely illiquid or liquid. For the same reason as high-
lighted in financial market problems, it is necessary to take into account the liquidity
constraints. More precisely, investment (for instance acquiring producing assets) and
disinvestment (selling assets) should be possible but not necessarily at their fair value.
The firm may have to face some liquidity costs when buying or selling assets. While
taking into account liquidity constraints and costs has become the norm in recent
financial markets problems, it is still not the case in the corporate finance, to the
best of our knowledge, in particular in the studies of optimal dividend and invest-
ment strategies. In our model, we consider the company’s assets may be separated in
two categories, cash & equivalents, and risky assets which are subjected to liquidity
costs. The risky assets are assimilated to producing assets which may be increased
when the firm decides to invest or decreased when the firm decides to disinvest. We
assume that the price of the risky assets is governed by a stochastic process. The
firm manager may buy or sell assets but has to bear liquidity costs. The objective of
the firm manager is to find the optimal dividend and investment strategy maximizing
its shareholders’ value, which is defined as the expected present value of dividends.
Mathematically, we formulate this problem as a combined multidimensional singular
and multi-regime switching control problem.

The studies that are most relevant to our problem are the one investigating com-
bined singular and switching control problems [60], [85], and (7). By incorporating
uncertainty into illiquid assets value, we no longer have to deal with a uni-dimensional
control problem but a bi-dimensional singular and multi-regime switching control pro-
blem. In such a setting, it is clear that it will be no longer possible to easily get explicit
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or quasi-explicit optimal strategies. Consequently, to determine the four regions com-
prising the continuation, dividend and investment/disinvestment regions, numerical
resolutions are required.

2.2.1 Problem Formulation

Let (Ω,F,P) be a probability space satisfying the usual conditions. Let W and B
be two correlated F-Brownian motions, with correlation coefficient c.
We consider a firm which has the ability to make investment or disinvestment by
buying or selling producing assets, for instance, factories. We assume that these pro-
ducing assets are risky assets whose value process S is solution of the following equa-
tion :

dSt = St (µdt+ σdBt) , S0 = s,

where µ and σ are positive constants.
We denote by Qt ∈ N the number of units of producing assets owned by the company
at time t.
We consider a control strategy : α = ((τi, qi)i≥1, Z) where τi are F-stopping times, cor-
responding to the investment decision times of the manager, and qi are Fτi-measurable
variables valued in Z and representing the number of producing assets units bought
(or sold if qi ≤ 0) at time τi. When qi is positive, it means that the firm decides to
make investment to increase the assets quantity. Each purchase or sale incurs a fixed
cost denoted κ > 0. The non-decreasing càdlàg process Z represents the total amount
of dividends distributed up to time t. Starting from an initial number of assets q and
given a control α, the dynamics of the quantity of assets held by the firm is governed
by : 

dQt = 0 for τi ≤ t < τi+1,
Qτi = Qτ−i

+ qi,

Q0 = q,

for i ≥ 1.

Similarly, starting from an initial cash value x and given a control α, the dynamics
of the cash reserve (or more precisely the firm’s cash and equivalents) process of the
firm is governed by :

dXt = rXtdt+ h(Qt)(bdt+ ηdWt)− dZt, for τi ≤ t < τi+1

Xτi = Xτ−i
− Sτif(qi)qi − κ,

X0 = x,

for i ≥ 1.

where b, r and η are positive constants and h a non-negative, non-decreasing and
concave function satisfying h(q) ≤ H with h(1) > 0 and H > 0. The function
f represents the liquidity cost function (or impact function with the impact being
temporary) and is assumed to be non-negative, non-decreasing, such that f(0) = 1.
We denote by Y y

t = (Xx
t , S

s
t , Q

q
t ) the solution to previous equations with initial condi-

tion (Xx
0 , S

s
0, Q

q
0) = (x, s, q) := y. At each time t, the firm’s cash value and number of

units of producing assets have to remain non-negative i.e. Xt ≥ 0 and Qt ≥ 0, for all
t ≥ 0.

The bankruptcy time is defined as

T := T y,α := inf{t ≥ 0, Xt < 0}.
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We define the liquidation value as L(x, s, q) := x + (sf(−q)q − κ)+ and notice that
L ≥ 0 on R+ × (0,+∞)× N. We introduce the following notation

S := R+ × (0,+∞)× N.

The optimal firm value is defined on S, by

v(y) = sup
α∈A(y)

Jα(y), (2.2.1)

where Jα(y) = E[
∫ T
0
e−ρudZu], with ρ being a positive discount factor and A(y) is the

set of admissible strategies defined by

A(y) = {α = ((τi, qi)i≥1, Z) : Z is a predictable and non-decreasing process,
(τi)i≥1 is an increasing sequence of stopping times such that lim

i→+∞
τi = +∞

and qi are Fτi −measurable, and such that (Xx,α
t , Qq,α

t ) ∈ R+ × N}.

We may identify the trivial cases where the value function is infinite.

Proposition 2.2.1 If we have r > ρ or µ > ρ then v(y) = +∞ on S.

From this point, we shall assume that the parameters satisfy :

ρ ≥ max(r, µ) (2.2.2)

2.2.2 Characterization of auxiliary functions

The aim of this section is to provide an implementable algorithm of our problem.
To tackle the stochastic control problem as defined in (2.2.1), one usual way is to first
characterize the value function as a unique solution to its associated HJB equation.
One would expect here that v is solution of the following HJB equation

min{ρv(y)− Lv(y);
∂v

∂x
(y)− 1; v(y)−Hv(y)} = 0 on (0,+∞)2 × N, (2.2.3)

where we have set

Lϕ =
η2h(q)2

2

∂2ϕ

∂x2
+
σ2s2

2

∂2ϕ

∂s2
+ cσηsh(q)

∂2ϕ

∂s∂x
+ (rx+ bh(q))

∂ϕ

∂x
+ µs

∂ϕ

∂s
.

Hv(x, s, q) = sup
n∈a(x,s,q)

v (Γ(y, n)) with Γ(y, n) = (x− n(f(n))s− κ, s, q + n), and

a(x, s, q) =

{
n ∈ Z : n ≥ −q and n(f(n)) ≤ x− κ

s

}
,

with the convention that the supremum of an empty set is equal to -∞.
The second step is to deduce the optimal strategies from smooth-fit properties

and more generally from viscosity solution techniques. The optimal strategies may
be characterized by different regions of the state-space, i.e. the continuation region,
the dividend region as well as the investment and disinvestment regions. In such
cases, the solutions may be either of explicit or quasi-explicit nature. However, in a
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non-degenerate multidimensional setting such as in our problem, getting explicit or
quasi-explicit solutions is out of reach.
As such, to solve our control problem, we characterize our value function as the limit
of a sequence of auxiliary functions. The auxiliary functions are defined recursively
and each one may be characterized as a unique viscosity solution to its associated HJB
equation . The use of approximating function will allow us to use a classical dynamic
programming principle for optimal stopping problem and to get an implementable
algorithm approximating our problem.

An approximating sequence of functions

We recall the notation y = (x, s, q) ∈ S. We now introduce the following subsets of
A(y) :

AN(y) := {α = ((τk, ξk)k≥1, Z) ∈ A(y) : τk = +∞ a.s. for all k ≥ N + 1}

and the corresponding value function vN , which describes the value function when the
investor is allowed to make at most N interventions (investments or disinvestments) :

vN(y) = sup
α∈AN (y)

Jα(y), ∀N ∈ N (2.2.4)

We shall show in Proposition 2.2.6 that the sequence (vN)N≥0 goes to v when N goes
to infinity, but we first have to carefully study some properties of this sequence.

In the next Proposition, we recall explicit formulas for v0 and the optimal strategy
associated to this singular control problem. This problem is indeed very close to the
one solved in the pioneering work of Jeanblanc and Shirayev ( see [68] ). The only
difference in our framework is due to the interest r 6= 0 and therefore the cash process
X does not follow exactly a Bachelier model. However, proofs and results can easily
be adapted to obtain Proposition 2.2.2 and we will skip the proof.

Proposition 2.2.2 There exists x∗(q) ∈ [0,+∞) such that

v0(x, s, q) :=

{
Vq(x) if 0 ≤ x ≤ x∗(q)
x− x∗(q) + Vq(x

∗(q)) if x ≥ x∗(q),

where Vq is the C2 function, solution of the following differential equation

η2h(q)2

2
y′′ + (rx+ bh(q))y′ − ρy = 0; y(0) = 0, y′(x∗(q)) = 1 and y′′(x∗(q)) = 0.

Notice that x → v0(x, s, q) is a concave and C2 function on [0,+∞) and that if
h(0) = 0, it is optimal to immediately distribute dividends up to bankruptcy therefore
v0(x, s, 0) = x.

We now are able to characterize our impulse control problem as an optimal stopping
time problem, defined through an induction on the number of interventions N.

37



Proposition 2.2.3 (Optimal stopping)
For all (x, s, q,N) ∈ S × N, we have

vN(x, s, q) = sup
(τ,Z)∈T ×Z

E[

∫ T∧τ

0

e−ρu dZu + e−ρτGN−1(X
x
τ− , S

s
τ , q)1l{τ<T}], (2.2.5)

where T is the set of stopping times, Z the set of predictable and non-decreasing
càdlàg processes, G−1 = 0, and, for N ≥ 1,

GN−1(x, s, q) :=

{
sup

n∈a(x,s,q)
vN−1 (Γ(y, n)) , if a(x, s, q) 6= ∅

−∞, if a(x, s, q) = ∅

with a(x, s, q) :=

{
n ∈ Z : n ≥ −q and nf(n) ≤ x− κ

s

}
,

and Γ(y, n) := (x− nf(n)s− κ, s, q + n).

Bounds and convergence of (vN)N≥0

We begin by stating a standard result which says that any smooth function, which is
supersolution to the HJB equation, is a majorant of the value function.

Proposition 2.2.4 Let N ∈ N and φ = (φq)q∈N be a family of non-negative C2
functions on R+× (0,+∞) such that ∀q ∈ N (we may use both notations φ(x, s, q) :=
φq(x, s)), φq(0, s) ≥ 0 for all s ∈ (0,∞) and

min
[
ρφ(y)− LNφ(y), φ(y)−GN−1(y),

∂φ

∂x
(y)− 1

]
≥ 0 (2.2.6)

for all y ∈ (0,+∞)× (0,+∞)× N, where we have set

LNϕ =
η2h(q)2

2

∂2ϕ

∂x2
+ (rx+ bh(q))

∂ϕ

∂x

+1l{N>0}

[
σ2s2

2

∂2ϕ

∂s2
+ cσηsh(q)

∂2ϕ

∂s∂x
+ µs

∂ϕ

∂s

]
.

then we have vN ≤ φ.

Corollary 2.2.5 Bounds :
For all N ∈ N and (x, s, q) ∈ S, we have

L(x, s, q)1l{N≥1} + x1l{N=0} ≤ vN(x, s, q) ≤ x+ sq +K where ρK = bH.

We are able to conclude on the asymptotic behavior of our approximating sequence
of functions. The next Proposition shows that this sequence of functions goes to our
value function v when N goes to infinity.

Proposition 2.2.6 (Convergence) For all y ∈ S, we have

lim
N→+∞

vN(y) = v(y).
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Viscosity characterization of vN

Let N ≥ 1. This subsection is devoted to the characterization of the function vN as
the unique function which satisfies the boundary condition

vN(y) = GN−1(y) on {0} × (0,+∞)× N. (2.2.7)

and is a viscosity solution of the following HJB equation :

min{ρv
N

(y)− Lv
N

(y);
∂v

N

∂x
(y)− 1; v

N
(y)−GN−1(y)} = 0 on (0,+∞)2 × N,(2.2.8)

where we have set

Lϕ =
η2h(q)2

2

∂2ϕ

∂x2
+
σ2s2

2

∂2ϕ

∂s2
+ cσηsh(q)

∂2ϕ

∂s∂x
+ (rx+ bh(q))

∂ϕ

∂x
+ µs

∂ϕ

∂s
.

It relies on the following Dynamic Programming Principle.
Let θ ∈ T , y := (x, s, q) ∈ S and set ν = T ∧ θ, we have

vN(y) = sup
(τ,Z)∈T ×Z

E[

∫ (ν∧τ)−

0

e−ρs dZs + e−ρ(ν∧τ)vN

(
Xx

(ν∧τ)− , S
s
ν∧τ , q

)
1l{τ<ν}].

We are now able to establish the main results of this section.

Theorem 2.2.7 For all N ≥ 1 and q ∈ N, the value function vN(·, ·, q) is continuous
on (0,+∞)2. Moreover vN is the unique viscosity solution on (0,+∞)2×N of the HJB
equation (2.2.8) satisfying the boundary condition (2.2.7) and the following growth
condition

|vN(x, s, q)| ≤ C1 + C2x+ C3sq, ∀(x, s, q) ∈ S,
for some positive constants C1, C2 and C3.

2.2.3 Numerical Results

To approximate the solution of the HJB equation (2.2.8) arising from the stochastic
control problem (2.2.4), we choose to use a finite difference scheme which leads to the
construction of an approximating Markov chain. The convergence of the scheme can
be shown using standard arguments as in [75]. We may equally refer to [27], [63], and
[70] for numerical schemes involving singular control problems.
We plot the shape of the optimal regions in function of (x, s) for a fixed number of
producing assets q2 > q1 > q0. We may distinguish four regions : buy, sell, dividend
and continuation regions. We may clearly make the following observations

- As the assets price gets higher, the dividend region shrinks in favor of the buy
region. Indeed, the firm has to hold sufficient amount of cash in order to be able to
invest in more expensive assets.

- However, for very high assets price, the buy region does not exist any more.
Financially, it means that for very high assets price, it is no longer optimal to invest
in the assets and it is preferable to distribute dividend as if investment opportunities
no longer exist.

- The sell region appears as the firm’s cash reserve gets close to zero. Indeed, the
firm has to make a disinvestment decision in order to inject cash into its balance,
therefore avoiding bankruptcy.
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Figure 2.2 – Description of different regions, in (x, s) for a fixed q0.

Figure 2.3 – Description of different regions, in (x, s) for q1 > q0.

Figure 2.4 – Description of different regions, in (x, s) for q2 > q1.
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Chapitre 3

Optimal capital structure

The content of this chapter is based on :
(7) An Optimal Dividend and Investment Control Problem under Debt Constraints,

with V. Ly Vath and S. Scotti, SIAM Journal on Financial Mathematics, Vol.
4, No. 1, 297-326, 2013.

(14) An optimal capital structure control problem under uncertainty, with E. Bay-
raktar and V. Ly Vath, working paper.

The capital structure of a firm has two main aspects that are interconnected :
the firm’s liabilities at the one hand and its assets on the other hand. The main
components of liabilities are shareholder’s equity and debt. Since the pionneering work
of Modigliani-Miller (see [92]), a large part of the literature in corporate finance is
devoted to optimal capital structure and especially to the management of liabilities.
To simplify and summarize the problem, debt value depends on the firm’s capital
structure and on its dividend policy which have strong impact on shareholder’s equity
and on the probability of the firm’s bankruptcy. However, it is necessary to know the
debt value to determine optimal capital structure and dividend policy.
In the first section, we assume that the debt value is exogeneously determined and
compute an optimal control on the dividend and investment policy of a firm. We allow
the company to make investment by increasing its outstanding indebtedness, which
would impact its capital structure and risk profile, thus resulting in higher interest
rate debts. Moreover, a high level of debt is also a challenging constraint to any firm
as it is no other than the threshold below which the firm value should never go to
avoid bankruptcy. It is equally possible for the firm to divest parts of its business in
order to decrease its financial debt owed to creditors. In addition, the firm may favor
investment by postponing or reducing any dividend distribution to shareholders. We
formulate this problem as a combined singular and multi-switching control problem
and use a viscosity solution approach to get qualitative descriptions of the solution.
We further enrich our studies with a complete resolution of the problem in the two-
regime case.
In the second section, we study the capital structure problem for a bank. We assume
that the debt, composed of the clients’ deposit, has a stochastic dynamic which is not
controlled. We no longer neglect assets management to determine the optimal capital
structure under solvency constraints. The managers of the bank may invest in either
risky assets or in risk-free assets. The objective of the manager is to optimize the
bank shareholders’ value, ie. the cumulative dividend distributed over the life time of
the bank while controlling its solvability. Indeed, the bank is considered to operate
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under an uncertain environment and is obliged to respect a number of constraints,
in particular solvency ratio constraints as defined under the Basle frameworks. We
allow the bank to seek recapitalization or to issue new capital should they fall under
financial difficulties. We formulate this problem as a combined impulse control, regular
and singular control problem. We will see how this bi-dimensional control problem
may be reduced to a one-dimensional one and how quasi-explicit solution may be
obtained.

3.1 Optimal dividend and investment under debt
constraints

We aim at determining the optimal control on the dividend and investment policy
of a firm under debt constraints. As in the Merton model, we consider that firm value
follows a geometric Brownian process and more importantly we consider that the firm
carries a debt obligation in its balance sheet. However, as in most studies, we still
assume that the firm assets is highly liquid and may be assimilated to cash equivalents
or cash reserve. We allow the company to make investment and finance it through
debt issuance/raising, which would impact its capital structure and risk profile. This
debt financing results therefore in higher interest rate on the firm’s outstanding debts.
More precisely, we model the decisions to raise or redeem some debt obligations as
switching decisions controls where each regime corresponds to a specific debt level.

Furthermore, we consider that the manager of the firm works in the interest of
the shareholders, but only to a certain extent. Indeed, in the objective function,
we introduce a penalty cost P and assume that the manager does not completely
try to maximize the shareholders’ value since it applies a penalty cost in the case
of bankruptcy. This penalty cost could represent, for instance, an estimated cost of
the negative image upon his/her own reputation due to the bankruptcy under his
management leadership. Mathematically, we formulate this problem as a combined
singular and multiple-regime switching control problem. Each regime corresponds
to a level of debt obligation held by the firm. The studies that are most relevant
to our problem are the one investigating combined singular and switching control
problems. Recently an interesting connection between the singular and the switching
problems was given by Guo and Tomecek [60]. In [85], the authors studied an optimal
dividend problem with reversible technology switching investment and used Bachelier
process to model the firm’s cash reserve. The firm may decide to switch from an old
technology to a new technology in order to increases the drift of the cash without
affecting the volatility. They proved that the problem can be decoupled in two pure
optimal stopping and singular control problems and provided results which are of
quasi-explicit nature.

However, none of the above papers on dividend and investment policies, which
provides qualitative solutions, has yet moved away from the basic Bachelier model or
the simplistic assumption that firms hold no debt obligations. In our model, unlike
[86], switching from one regime, i.e. debt level, to another directly impacts the state
process itself. Indeed, the drift of the stochastic differential equation governing the
firm value would equally switch as the results of the change in interest rate paid on the
outstanding debt. A given level of debt is no other than the threshold below which
the firm value should never go to avoid bankruptcy. As such, debt level switching
also signifies a change of default constraints on the state process in our optimal
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control problem. Further original contributions in terms of financial studies of our
paper include the feature of the conflicts of interest for firm manager through the
presence of the penalty cost in the event of bankruptcy. Studying a mixed singular
and multi-switching problem combining with the above financial features including
debt constraints and penalty cost turns out to be a major mathematical challenge,
especially when our objective is to provide quasi-explicit solutions. In addition, it
is always tricky to overcoming the combined difficulties of the singular control with
those of the switching control, especially when there are multiple regimes, for instance,
building a strict supersolution to our HJB system in order to prove the comparison
principle.

3.1.1 The model

We consider an admissible control strategy α = (Zt, (τn)n≥0, (kn)n≥0), where the non-
decreasing càd-làg process Z represents the dividend policy, the nondecreasing se-
quence of stopping times (τn) the switching regime time decisions, and (kn), which
are Fτn-measurable valued in {1, ..., N}, the new value of debt regime at time t = τn.
Let denote the process Xx,i,α as the cash reserve of the firm with initial value of x
and initially operating with a debt level Di and which follow the control strategy α.

We assume that the cash-reserve process, denoted by X when there is no ambiguity,
and associated to a strategy α = (Zt, (τn)n≥0, (kn)n≥0), is governed by the following
stochastic differential equation :

dXt = bXtdt− rItDItdt+ σXtdWt − dZt + dKt (3.1.1)

where It =
∑
n≥0

kn1τn≤t<τn+1 , I0− = i, kn ∈ IN := {1, ..., N}. (Di)i∈IN and (ri)i∈IN

represent respectively increasing levels of debt and their associated increasing interest
rates paid on those debts.
The process K represnts the cash-flow due to the change in the firm’s indebtedness
and satisfyies : Kt =

∑
n≥0

(
Dκn+1 −Dκn − g

)
1τn+1≤t where g represents the additional

cost associated with the change of firm’s level of debt.
For a given control strategy α, the bankruptcy time is represented by the stopping
time Tα defined as

Tα = inf{t ≥ 0, Xx,i,α
t ≤ DIt}. (3.1.2)

We equally introduce a penalty or a liquidation cost P > 0, in the case of a holding
company looking to liquidate one of its own affiliate or activity. In the case of the
penalty, it mainly assumes that the manager does not completely try to maximize
the shareholders’ value since it applies a penalty cost in the case of bankruptcy.
We define the value functions which the manager actually optimizes as follows

vi(x) = sup
α∈A

E(i,x)

[∫ T−

0

e−ρtdZt − Pe−ρT
]
, x ∈ R, i ∈ {1, ..., N}, (3.1.3)

where A represents the set of admissible control strategies, and ρ the discount rate.
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3.1.2 Viscosity characterization of the value functions

Using the dynamic programming principle, we obtain the main result

Theorem 3.1.1 The value functions vi, i ∈ IN , are continuous on [Di,∞), and are
the unique viscosity solutions on (Di,∞) with linear growth condition and boundary
data vi(Di) = −P , to the system of variational inequalities :

min

[
−Aivi(x) , v′i(x)− 1 , vi(x)−max

j 6=i
vj(x+Dj −Di − g)

]
= 0, x > Di.(3.1.4)

where Ai is defined by Aiφ = Liφ− ρφ, and Liϕ = [bx− riDi]ϕ
′(x) + 1

2
σ2x2ϕ′′(x).

Actually, we obtain some more regularity results on the value functions.

Proposition 3.1.2 The value functions vi, i ∈ IN , are C1 on (Di,∞). Moreover, if
we set for i ∈ IN :

Si =

{
x ≥ Di , vi(x) = max

j 6=i
vj(x+Dj −Di − g),

}
(3.1.5)

Di = int ({x ≥ Di , v′i(x) = 1}), (3.1.6)
Ci = (Di,∞) \ (Si ∪ Di), (3.1.7)

then vi is C2 on the open set Ci ∪ int(Di) ∪ int(Si) of (Di,∞), and we have in the
classical sense

ρvi(x)− Livi(x) = 0, x ∈ Ci.

Si, Di, and Ci respectively represent the switching, dividend, and continuation
regions when the outstanding debt is at regime i.

3.1.3 Qualitative results on the dividend and switching regions

For i, j ∈ IN and x ∈ [Di,+∞), we introduce some notations :

δi,j = Dj −Di, ∆i,j = (b− rj)Dj − (b− ri)Di and xi,j = x+ δi,j − g.

We set x∗i = sup{x ∈ [Di,+∞) : v′i(x) > 1} for all i ∈ IN
We equally define Si,j as the switching region from debt level i to j.

Si,j = {x ∈ (Di, +∞), vi(x) = vj(xi,j)}.

From the definition (3.1.5) of the switching regions, we have the following elementary
decomposition property :

Si = ∪j 6=iSi,j, i ∈ IN .

In the following Lemma, we state that there exists a finite level of cash such that
it is optimal to distribute dividends up to this level.
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Lemma 3.1.3 For all i ∈ IN , we have x∗i := sup{x ∈ [Di,+∞) : v′i(x) > 1} < +∞.

We now establish an important result in determining the description of the swit-
ching regions. The following Theorem states that it is never optimal to expand its
operation, i.e. to make investment, through debt financing, should it result in a lower
“drift” ((b−ri)Di) regime. However, when the firm’s value is low, i.e. with a relatively
high bankruptcy risk, it may be optimal to make some divestment, i.e. sell parts of
the company, and use the proceedings to lower its debt outstanding, even if it results
in a regime with lower “drift”. In other words, to lower the firm’s bankruptcy risk, one
should try to decrease its volatility, i.e. the diffusion coefficient. In our model, this
clearly means making some debt repayment in order to lower the firm’s volatility, i.e.
σXt.

Theorem 3.1.4 Let i, j ∈ IN such that (b−rj)Dj > (b−ri)Di.We have the following
results :

1) x∗j 6∈ Sj,i and D̊j = (x∗j , +∞).
2) S̊j,i ⊂ (Dj + g, x∗j). Furthermore, if Dj < Di, then S̊j,i = ∅.

From the above Theorem, we may obtain the two following results on the determina-
tion of the different strategies. We will see in the next section how, we may deduce
from these results, complete description of optimal strategies in the two regime case.

Corollary 3.1.5 Let m ∈ IN such that (b− rm)Dm = maxi∈IN (b− ri)Di.

1) x∗m 6∈ Sm and D̊m = (x∗m, +∞).
2) For all i ∈ IN − {m}, we have :
i) If Dm < Di, S̊m,i = ∅.
ii) If Di < Dm, S̊m,i ⊂ (Dm + g, x∗m). Furthermore, if b ≥ ri, then S̊m,i ⊂

(Dm + g, (a∗i + δi,m + g) ∧ x∗m), where a∗i is the unique solution of the
equation ρvi(x) = (bx− riDi)v

′
i(x). We further have a∗i 6= x∗i .

We now turn to the following results ordering the left-boundaries (x∗i )i∈IN of the
dividend regions (Di)i∈IN .

Proposition 3.1.6 Consider i, j ∈ IN , such that (b− ri)Di < (b− rj)Dj. We always
have x∗i +δi,j−g ≤ x∗j unless there exists a regime k such that (b−rj)Dj < (b−rk)Dk

and x∗i ∈ Si,k, then we have x∗j − δi,j + g < x∗i < x∗k − δi,k + g.

3.1.4 The two regime-case

Throughout this section, we now assume that N = 2, in which case, we will get
a complete description of the different regions. We will see that the most important
parameter to consider is the so-called “drifts” ((b− ri)Di)i=1,2 and in particular their
relative positions. To avoid cases with trivial solution, i.e. immediate consumption, we
will assume that −ρP < (b−ri)Di, i = 1, 2. Throughout Theorem 3.1.7 and Theorem
3.1.8, we provide a complete resolution to our problem in each case.

Theorem 3.1.7 We assume that (b− r2)D2 < (b− r1)D1.
We have

C1 = [D1, x
∗
1), D1 = [x∗1, +∞), and S̊1 = ∅ where ρv1(x∗1) = bx∗1 − r1D1.
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1) If S2 = ∅ then we have

C2 = [D2, x
∗
2), and D2 = [x∗2, +∞) where ρv2(x∗2) = bx∗2 − r2D2.

2) If S2 6= ∅ then there exists y∗2 such that S2 = [y∗2, +∞) and we distinguish
two cases
a) If x∗2 + δ2,1 − g < x∗1, then y∗2 > x∗2, y∗2 = x∗1 + δ1,2 + g and

C2 = [D2, x
∗
2), and D2 = [x∗2, +∞) where ρv2(x∗2) = bx∗2 − r2D2.

b) If x∗2 + δ2,1 − g = x∗1 then y∗2 ≤ x∗2, ρv2(x∗2) = bx∗2 − r2D2 + ∆2,1 − bg.
We define a∗2 as the solution of ρv2(a∗2) = ba∗2 − r2D2 and have two cases
i) If a∗2 6∈ D2, we have

D2 = [x∗2, +∞) and C2 = [D2, y
∗
2).

ii) If a∗2 ∈ D2, there exists z∗2 ∈ (a∗2, y
∗
2) such that

D2 = [a∗2, z
∗
2 ] ∪ [x∗2, +∞) and C2 = [D2, a

∗
2) ∪ (z∗2 , y

∗
2).

Figure 3.1 – Switching regions : case (b− r1)D1 > (b− r2)D2.
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We now turn to the case where (b− r1)D1 < (b− r2)D2.

Theorem 3.1.8 We assume that (b− r1)D1 < (b− r2)D2,
1) we have

D2 = [x∗2, +∞) where ρv2(x∗2) = bx∗2 − r2D2

S̊2 = ∅ or there exist s∗2, S
∗
2 ∈ (D2 + g, x∗2) such that S̊2 = (s∗2, S

∗
2).

2) If S̊1 = ∅ then we have

C1 = [D1, x
∗
1), and D1 = [x∗1, +∞) where ρv1(x∗1) = bx∗1 − r1D1.

3) If S̊1 6= ∅ there exists y∗1 such that S̊1 = (y∗1, +∞)
a) If x∗1 + δ1,2 − g < x∗2, then y∗1 > x∗1, y∗1 = x∗2 + δ2,1 + g and

C1 = [D1, x
∗
1), and D1 = [x∗1, +∞) where ρv1(x∗1) = bx∗1 − r1D1.
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b) If x∗2 + δ2,1 − g = x∗1, then y∗1 ≤ x∗1, ρv1(x∗1) = bx∗1 − r1D1 + ∆1,2 − bg.
We define a∗1 as the solution of ρv1(a∗1) = ba∗1 − r1D1 and have two cases.
i) If a∗1 6∈ D1, we have

D1 = [x∗1, +∞) and C1 = [D1, y
∗
1).

ii) If a∗1 ∈ D1, there exists z∗1 ∈ (a∗1, y
∗
1) such that

D1 = [a∗1, z
∗
1 ] ∪ [x∗1, +∞) and C1 = [D1, a

∗
1) ∪ (z∗1 , y

∗
1).

Figure 3.2 – Switching regions : case (b− r1)D1 < (b− r2)D2.
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3.2 Capital structure optimization under constraints

We investigate the problem of determining an optimal control on the capital struc-
ture, dividend and investment policy of a bank operating under solvability constraints.
We assume that the bank collects deposits from its customers and pays interest on
their deposits. We may assume that the bank’s liabilities consist of both clients’ de-
posits and shareholders’ equity.

The primary objective of the bank is to use customers’ deposit and its equity to
make investments while controlling its solvency and liquidity risk. We assume that
the manager of the bank may invest either in risky assets or in risk-free assets. The
bank is considered to operate under an uncertain financial and economic environment
and is obliged to respect a number of constraints, in particular solvency constraints
as defined under the Basel frameworks. One such constraint is the capital adequacy
constraint. A ratio constraint that banks have to satisfy is Tier 1 capital ratio, i.e.
the ratio between Tier 1 capital to risk-adjusted assets. Another constraint is the
liquidity coverage constraints. The idea is to oblige banks to keep enough cash or
equivalent to face its short term financial obligations. The third important constraint
worth mentioning is the leverage ratio. The adequate levels of these ratios are under
heavy discussion between regulators, in particular under the Basel framework. The
on-going rounds of discussion concern the Basel III agreements which are scheduled
to be implemented over the next few years. The implementation of stricter financial
ratios may drive many financial institutions to seek recapitalization.

Within this regulatory context, in our study, we allow the bank to seek recapitali-
zation or to issue new capital should they fall under financial difficulties. As such, the
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company will have to either raise new equity or reduce its exposure to risky invest-
ment in the case that its financial strengths deteriorate and capital adequacy ratios
decrease towards the minimum threshold established by the regulators.

The objective of the manager is to optimize the bank shareholders’ value, ie. the
cumulative dividend distributed over the life time of the company while controlling
its solvability. We formulate this problem as a combined impulse and singular control
problem.

3.2.1 Bank capital structure

Let (Ω,F,P) be a probability space equipped with a filtration F = (Ft)t≥0, sa-
tisfying the usual conditions. It is assumed that all random variables and stochastic
processes are defined on the stochastic basis (Ω,F,P). LetW and B be two correlated
F–Brownian motions, with correlation c, i.e. d[W,B]t = cdt for all t.

We consider a bank and denote by Lt the amount of its liabilities which correspond
to customers deposits at time t. We assume that the process L is governed by the
following S.D.E. {

dLt = Lt (µ
L
dt+ σ

L
dWt) ,

L0 = l,

where σ
L
is a positive constant and µ

L
:= γ + r

L
, with γ ∈ R being the growth rate

of the bank portfolio and rL ≥ 0 the interest rate paid by the bank to its clients. The
bank may invest in a risk-free asset with a constant interest rate r > 0 or in a risky
asset whose value process S is solution to the following S.D.E.

dSt = St (µdt+ σdBt) , (3.2.1)

where µ ∈ R, σ > 0.
We denote by Xt the total wealth of the assets held by the bank at time t, by πt

the proportion of this wealth invested in the risky asset. Obviously (1− πt)Xt is the
amount of money invested in the risk-free asset and πtXt is the amount of money
invested in the risky asset by the bank at time t. Notice that from the balance sheet
of the bank, we have

Xt = Ft + Lt ∀t ≥ 0,

where Ft correspond to shareholders’ equity at time t.
The manager of the bank controls the assets allocation of capital between risk-free
and risky assets and she controls bank capital through issues of new capital or di-
vidend payments. We then consider a control strategy α̂ = ((τn)n∈N∗ , (ξ̂n)n∈N∗ , Ẑ, π),
where the F-adapted cád-lág nondecreasing process Ẑ represents the total amount
of dividend distributed, with Ẑ−

0
= 0. The nondecreasing sequence of stopping times

(τn) represents the decisions time at which the manager decides to issue new capital,
and ξ̂n, which is Fτ−n -measurable valued in (0,+∞), the amount of capital issue at
(τn). The process π is the proportion of the whole wealth invested in the risky asset.
The equity process associated to a control α̂ has then the following dynamic :{

dFt = −r
L
Ltdt− dẐt + (1− πt)Xtrdt+ πtXt (µdt+ σdBt) for τi < t < τi+1

Fτi = (1− κ)Fτ−i + (1− κ′)ξ̂i
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where κ′, κ > 0 are fixed proportional costs to issue new capital. More precisely,
when issuing capital at time t, we assume that one has to pay a cost proportional to
the capital issued and κFt− is the cost due to compensation for existing (prior to the
issue of capital) shareholders (against dilution). We also should assume that ξ̂i is big
enough to insure that Fτi > Fτ−i i.e. ξ̂i > κ

1−κ′Fτ−i . Notice that if it is not the case,
the manager had better avoid costs and distribute dividend to the shareholders. It
follows that the wealth process X has the following dynamic, for τi < t < τi+1,

dXt = ((1− πt)rXt + πtµXt + γLt) dt+ πtσXtdBt + σLLtdWt − dẐt.

and
Xτi = Xτ−i

+ (1− κ′)ξ̂i − κFτ−i .

We first define the most basic bankruptcy time by

T = inf{t ≥ 0 : Ft < 0}

We assume that when the liquidation time is reached, the bank stops its activity and
goes bankrupt as there is no equity left. Given an initial liability level l > 0 and an
initial wealth x > 0, the equity value of the bank under policy α̂ to its shareholders
may then be defined as

J α̂(l, x) = El,x
[ ∫ T α̂

0

e−ρtdẐt −
+∞∑
n=1

e−ρτn(ξ̂n − κFτ−n )1l{τn≤T α̂}
]
,

However, in order to take into account the specific characteristics of the banking
sector, we now have to introduce some regulatory contraints that the bank has to
satisfy. The first constraint is the solvency ratio. The solvency ratio reflects the ability
of the bank to bear losses without defaulting on its obligations in term of remuneration
and repayment of the collected resources. The solvency ratio is calculated by dividing
the bank’s capital by the aggregate of its risky assets. In our problem, it corresponds
to the ratio between shareholders’ equity and its risky investments

Ft
πtXt

> a1 i.e. 1− 1

Yt
> a1πt,

where we have set Yt = Xt
Lt

Another important constraint that we are considering in this paper is the Liquidity
Coverage Ratio (LCR), which is defined as the ratio between High Quality Liquid As-
sets (HQLA) and cash outflow during 30 days. In our model, cash outflows comprises
two components

- run-off of proportion of retail deposits (around 3 percents)
- the potential loss on risky investments.

(1− πt)Xt

a2Lt + a3πtXt

> 1 for all t ≥ 0, i.e.1− a2
Yt
> (1 + a3)πt,

where a1, a2 and a3 are positive and lower than 1.
At this point, we introduce the function π defined on [1,+∞) by

π(y) = min

(
1

a1
(1− 1

y
);

1

1 + a3
(1− a2

y
)

)
.
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The set of admissible policies, denoted by Â, is then defined by

Â = {α̂ = ((τn)n∈N∗ , (ξ̂n)n∈N∗ , Ẑ, π) : ∀0 ≤ t ≤ T α̂, 0 ≤ πt ≤ π(
Xt

Lt
), ∀n ≥ 0 : ξ̂n >

κ

1− κ′
Fτ−n }.

Hence, our objective function is defined by

v̂(l, x) = sup
α̂∈Â

J α̂(l, x) for (l, x) ∈ S := {(l, x) ∈ [0,+∞)2 : x ≥ l}. (3.2.2)

We now state a result which transforms our initial constraint bi-dimensional problem
into a uni-dimensional control problem.

Theorem 3.2.1 Let α := ((τn)n∈N∗ , (ξn)n∈N∗ , Z, π) where (τn)n∈N∗ is an increasing
sequence of stopping times going to +∞, (ξn)n∈N∗ a sequence of Fτ−n -measurable and
positive variable and Z an increasing process. We define the process Y α as a solution
of the following stochastic differential equation :

dY α
t = (Y α

t [µ(πt)− µL] + γ) dt
+πtY

α
t σdBt + σL(1− Y α

t )dWt − dZt for τn < t < τn+1

Yτn = (1− κ)Yτ−n + (1− κ′)ξn + κ,

where µ(π) = (1− π)r + πµ.
We also define the stopping time Tα = inf{t ≥ 0 : Y α

t < 1}. We have

v̂(l, x) = lv(
x

l
), for all l > 0 and x ≥ l,

where

v(y) = sup
α∈A

Ey
[ ∫ Tα

0

e−ρLtdZt −
+∞∑
n=1

e−ρLτn(ξn − κ(Y α
τ−n
− 1))1l{τn≤Tα}

]
,

with ρL = ρ− µL and the set A is defined as follows

A = {α = ((τn)n∈N∗ , (ξn)n∈N∗ , Z, π) : ∀t ≥ 0 : 0 ≤ πt < π(Y α
t ), ∀n ≥ 0 : ξn >

κ

1− κ′
(Y α

τ−n
−1)}.

3.2.2 Analytical properties of the value function

The main result of this section is the characterization of the function v as the
unique viscosity solution of the following HJB equation :

0 = min{ρLv(y)− sup
0≤π≤π(y)

Lπv(y); v′(y)− 1; v(y)−Hv(y)},

0 = max (v(1), v(1)−Hv(1)) .

where we have set

Lπϕ(y) =
(
π2σ2y2 + πcσσLy(1− y) + σ2

L(1− y)2
)
ϕ′′ + (y [µ(π)− µL] + γ)ϕ′

where µ(π) = (1− π)r + πµ

Hϕ(y) = sup
ξ> κ

1−κ′ (y−1)

[
v((1− κ)y + (1− κ′)ξ + κ)− ξ + κ(y − 1)

]
.

We start with making assumptions on parameters to avoid trivial cases.
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Proposition 3.2.2 If ρ < max(µL, r,
µ+a3r
1+a3

), we have v(y) = +∞ on [1,+∞)

Throughout the end of the section, we will assume that

ρ > max(µL, r,
µ+ a3r

1 + a3
). (3.2.3)

Lower and upper bounds for the value function

We first introduce some notations by setting

ŷ =
1 + a3 − a1a2
1 + a3 − a1

,

and the optimal strategy and drift :

π∗(y) = π(y)1l{µ≥r} and µ∗(y) := r+π∗(y)(µ−r) = max{(1−π)r+πµ : 0 ≤ π ≤ π(y)}.

Notice that for an initial state y ≥ 1, one can distribute dividend up to bankruptcy
then we obviously have

v(y) ≥ y − 1, for y ≥ 1. (3.2.4)

Now, we will construct an upper bound for v. This will rely on the following result.

Proposition 3.2.3 Let ϕ ∈ C2([1,+∞)) such that max(ϕ(1), ϕ(1) − Hϕ(1)) ≥ 0
and

min

[
ρLϕ(y)− sup

π∈[0,π(y)]
Lπϕ(y);ϕ′(y)− 1;ϕ(y)−Hϕ(y)

]
≥ 0, for any y > 1(3.2.5)

then we have v ≤ ϕ on [1,+∞).

Corollary 3.2.4 Let y ∈ [1,+∞). We have

y − 1 ≤ v(y) ≤ y +
1

ρL
max (−ρL, A+ γ,B + γ) ,

where we have set

A :=

(
r +

(µ− r)+

1 + a3
− ρ
)
ŷ − a2(µ− r)+

1 + a3

B :=

(
r +

(µ− r)+

a1
− ρ
)+

ŷ −
(
r +

(µ− r)+

a1
− ρ
)−
− (µ− r)+

a1

Especially, if −ρL ≥ max(A,B) + γ, v(y) = y − 1 and the optimal policy is to
immediately distribute dividends up to bankruptcy.

At this point, we will assume that the parameters satisfy :

ρ > max(µL, r,
µ+ a3r

1 + a3
) and − ρL < max(A,B) + γ. (3.2.6)
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Viscosity characterization of the value function

Theorem 3.2.5 The value function v is the unique continuous function on [1,+∞),
which satisfies a linear growth condition and is a viscosity solution on (1,+∞) to the
following variational inequality :{

min{ρLv(y)− sup
0≤π≤π(y)

Lπv(y); v′(y)− 1; v(y)−Hv(y)} = 0, ∀y > 1,

max (v(1), v(1)−Hv(1)) = 0

Actually, we obtain some more regularity results on the value functions.

Proposition 3.2.6 The value function v is C1 on (1,+∞). Moreover, if we set :

K = {y ≥ 1 , v(y) = Hv(y)} (3.2.7)
D = int ({y ≥ 1 , v′(y) = 1}), , (3.2.8)
C = (1,+∞) \ (K ∪D) (3.2.9)

then v is C2 on the open set C∪ int(D)∪ int(K) of (1,∞), and we have in the classical
sense

ρLv(y)− sup
0≤π≤π(y)

Lπv(y) = 0, y ∈ C.

K, D, and C respectively represent the capital issuing, dividend, and continuation
regions.

3.2.3 Qualitative results on the regions

Proposition 3.2.7 Optimal dividend strategy
The following equation admits a unique solution y∗ on [1,+∞) :

ρLv(y) = γ − (µL − µ∗(y))y. (3.2.10)

We have
1 ≤ y∗ <

ρL + γ

ρ− µ∗(y∗)
and D = [y∗,+∞).

Moreover, v is a concave function on [1,+∞).

Proposition 3.2.8 Optimal capital issuance strategy

If K 6= ∅ then K = {1}.

Moreover, if K 6= ∅, we have v′(1+) > 1
1−κ′ , then there exists a unique solution ξ∗ to

the equation v′(y) = 1
1−κ′ . We have

v(1) = v(ξ∗)− 1

1− κ′
(ξ∗ − 1) .
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Chapitre 4

Variable annuities

The content of this chapter is based on :
(8) Max-min optimization problem for variable annuities pricing, with C.Blanchet-

Scalliet, I. Kharroubi and T. Lim, International Journal of Theoritical and
Applied Finance„ Vol. 18, No. 08, 2015

(11) Indifference fees for variable annuities, with T. Lim, et R. Romo Romero, to
appear in Applied Mathematical Finance

Introduced in the 1970s in the United States (see [105]), variable annuities are
equity-linked contracts between a policyholder and an insurance company. The poli-
cyholder gives an initial amount of money to the insurer. This amount is then invested
in a reference portfolio until a preset date, until the policyholder withdraws from the
contract or until he dies. At the end of the contract, the insurance pays to the policy-
holder or to his dependents a pay-off depending on the performance of the reference
portfolio. In the 1990s, insurers included put-like derivatives which provided some
guarantees to the policyholder. The most usual are guaranteed minimum death bene-
fits (GMDB) and guaranteed minimum living benefits (GMLB). For a GMDB (resp.
GMLB) contract, if the insured dies before the contract maturity (resp. is still alive
at the maturity) he or his dependents obtain a benefit corresponding to the maximum
of the current account value and of a guaranteed benefit. There exist various ways to
fix this guaranteed benefit and we refer to [14] for more details.

These products mainly present three risks for the insurer. First, as the insurer offers
a put-like derivative on a reference portfolio to the client, he is considerably exposed
to market risk. Moreover, variable annuity policies could have very long maturities
so the pricing and hedging errors due to the model choice for the dynamics of the
reference portfolio and the interest rates could be very important. The second risk
faced by the insurer is the death of his client, this leads to the formulation of a problem
with random maturity. Finally, the client may decide at any moment to withdraw,
totally or partially, from the contract.

With the commercial success of variable annuities, the pricing and hedging of
these products have been studied in a growing literature. Following the pioneering
work of Boyle and Schwartz (see [23]), non-arbitrage models allow to extend the
Black-Scholes framework to insurance issues. Milvesky and Posner (see [89]) are, up
to our knowledge, the first to apply risk neutral option pricing theory to value GMDB.
Withdrawal options are studied in [35] and [103], and a general framework to define
variable annuities is presented in [14]. Milevsky and Salisbury (see [91]) focus on the
links between American put options and dynamic optimal withdrawal policies. This
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problem is studied in [40] where an HJB equation is derived for a singular control
problem where the control is the continuous withdrawal rate. The GMDB pricing
problem is described as an impulse control problem in [16]. The authors model the
GMDB problem as a stochastic control problem, derive an HJB equation and solve it
numerically. The assumptions needed to get these formulations are the Markovianity
of the stochastic processes involved and the existence of a risk neutral probability. The
variable annuity policies with GMDB and GMLB are long term products therefore
models for assets and interest rates have to be as rich as possible. Moreover, as we
obviously face an incomplete market model, the price obtained strongly depends on
the arbitrary choice of a risk neutral probability.

This chapter attempts to get an answer to these issues. We present a detailled
framework, common to our two articles on this subject (see (8) and (11)), in the
first section. In the second section we assume that the insured’s withdrawals follow
an arbitrary stochastic process. In the last section, we consider the worst case for
the insured’s withdrawal strategy from the insurer point of view. We begin with a
description of our model.

4.1 The model

We shall not make restrictive assumptions on the reference portfolio and the inter-
est rate dynamics. As a result, our problem is not Markovian and we will not be able
to derive HJB equations to characterize our value functions. We overcome this dif-
ficulty thanks to backward stochastic differential equations (BSDEs) following ideas
from [65] and [102].

We shall not use non-arbitrage arguments to price and hedge variable annuities
policies. We will assume that the fees, characterized by a preset fee rate, are conti-
nuously taken by the insurer from the policyholder’s account and we will define an
indifference fee rate for the insurer. Indifference pricing is a standard approach in
mathematical finance to determine the price of a contingent claim in an incomplete
market. This is a utility-based approach that can be summarized as follows. On the
one hand, the investor may maximize his expected utility under optimal trading, in-
vesting only in the financial market. On the other hand, he could sell the contingent
claim, optimally invest in the financial market and make a pay-off at the terminal
time. The indifference price of this contingent claim is then the price such that the
insurer gets the same expected utility in each case. For more details, we refer to the
monograph [28].

Finally, an important risk faced by the seller of a variable annuities contract
concerns the characteristics of the buyer. The insurer has to take into account the
behavior of the insured, i.e. her withdrawals, and her exit time from the contract, i.e.
her death time. Concerning the death time, we allow the death time intensity to be
uncertain and to depend, for instance, on fundamental medical breakthroughs or na-
tural disasters. This kind of unpredictable event could impact even large portfolios of
policies and therefore this part of mortality risk is not diversifiable (see, for instance,
[90]). Moreover, insured’s withdrawals strategies may modify the mortality risk pro-
file of the product (see [12] and [13]). Finally, in the case of indifference exponential
utility pricing, it has been shown in [19] that diversification may not be consistent.
Hence, we model the death time as a random time enlarging the initial filtration re-
lated to the market information which is a classical approach in credit risk. As such
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contracts are generally priced for a class of insured, we suppose that this random time
corresponds to the death time of a representative agent in a specific class of clients
that satisfy several conditions (age, job, wealth,...). We shall assume that such a class
is small enough to be unable to affect the market. From a probabilistic point of view,
this justifies that the well known assumption (H) holds true, i.e. any martingale for
the initial filtration remains a martingale for the initial filtration enlarged by the exit
time. In our case, we then will have to solve BSDEs with random terminal time. For
that we apply very recent results on BSDEs with jump (see for example [5] and [72]).

4.1.1 The financial market model

Let (Ω,G,P) be a complete probability space. We assume that this space is equip-
ped with a one-dimensional standard Brownian motion B and we denote by F :=
(Ft)t≥0 the right continuous complete filtration generated by B. We consider a finan-
cial market on the time interval [0, T ] where T > 0 corresponds to the expiration date
of the variable annuities studied.
Financial assets. We suppose that the financial market is composed by a riskless
bond with an interest rate r and a reference portfolio of risky assets underlying the
variable annuity policy. The price processes Ŝ0 of the riskless bond and Ŝ of a share
of the underlying risky portfolio are assumed to be solution of the following linear
stochastic differential equations

dŜ0
t = rtŜ

0
t dt , ∀t ∈ [0, T ] , Ŝ0

0 = 1 ,

dŜt = Ŝt(µtdt+ σtdBt) , ∀t ∈ [0, T ] , Ŝ0 = s > 0 ,

where µ, σ and r are bounded and F-adapted processes.
We shall denote by St the discounted value of Ŝt at time t ∈ [0, T ], i.e.

St := e−
∫ t
0 rsdsŜt , ∀t ∈ [0, T ] .

Insurer’s investment strategies and utility function. Assuming that the stra-
tegy of the insurer is self-financed and denoting by Xx,π

t the discounted value of the
insurer portfolio at time t with initial capital x ∈ R+ and following the strategy π,
we have

Xx,π
t = x+

∫ t

0

πs(µs − rs)ds+

∫ t

0

πsσsdBs , ∀t ∈ [0, T ] .

If the initial capital is null we denote Xπ
t the wealth instead of X0,π

t .
We consider that the insurer wants to maximize the expected value of the utility

of his terminal wealth U(Xx,π
T ) on an admissible strategies set, where

U(x) := − exp(−γx) with γ > 0.

In the following definition, we define the set of admissible strategies for the insurer,
making usual restrictions that ensure some integrability properties for the processes
involved.

Definition 4.1.1 (F-admissible strategy). Let u and v be two F-stopping times such
that 0 ≤ u ≤ v ≤ T . The set of admissible trading strategies AF[u, v] consists of all
F-predictable processes π = (πt)u≤t≤v which satisfy E

[ ∫ v
u

∣∣πt∣∣2dt] <∞ and{
exp(−γXx,π

θ ), θ is an F-stopping time such that u ≤ θ ≤ v
}
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is uniformly integrable.

4.1.2 Exit time of the policy

We consider two random times θd and θw which respectively represent the death
time of the insured and the time of early closure of the insured account. We denote by
τ = θd∧θw. The random time τ is not assumed to be an F-stopping time. We therefore
use in the sequel the standard approach of filtration enlargement by considering G
the smallest right continuous extension of F that turns τ into a G-stopping time (see
e.g. [17, 72]). More precisely G := (Gt)t≥0 is defined by

Gt :=
⋂
ε>0

G̃t+ε ,

for all t ≥ 0, where G̃s := Fs ∨ σ(1τ≤u , u ∈ [0, s]), for all s ≥ 0 .
We impose the following assumptions, which are usual in filtration enlargement

theory (see for example [17, Section 6.1.1]).

Hypothesis 4.1.2 (H)-hypothesis. The process B remains a G-Brownian motion.

In the sequel, we introduce the process H defined by H =
(
1{τ≤t}

)
0≤t≤T .

Hypothesis 4.1.3 The process H admits an F-compensator of the form
∫ .∧τ
0

λtdt,
i.e. H −

∫ .∧τ
0

λtdt is a G-martingale, where λ is a bounded F-adapted process.

M denotes the G-martingale defined by Mt := Ht −
∫ t∧τ
0

λsds , for all t ≥ 0.
If the investment strategy of the insurer depends on this exit time, we shall enlarge

the set of admissible strategies through the following definition.

Definition 4.1.4 (G-admissible strategy). Let u and v be two G-stopping times such
that 0 ≤ u ≤ v ≤ T . The set of admissible trading strategies AG[u, v] consists of all
G-predictable processes π = (πt)u≤t≤v which satisfy E

[ ∫ v
u

∣∣πt∣∣2dt] <∞ and

{
exp(−γXx,π

θ ), θ is a G-stopping time with values such that u ≤ θ ≤ v
}

is uniformly integrable.

4.2 Arbitrary withdrawals process

Throughout this section we shall assume that there is a rate of partial withdrawal
that could be stochastic or not but we do not assume that it results from an optimal
strategy of the insured as, for example, in [16], [40], [91] or (9) which is presented in
the next section. In case of total withdrawal, the insured may pay some penalties and
will receive the maximum of the account facial value and of a guaranteed benefit
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4.2.1 The policy model

Let T := (ti)0≤i≤n be the set of policy anniversary dates, with t0 = 0 and tn = T .

Discounted account value Ap :The total amount on the account is invested on
the market, fees and withdrawals are assumed to be continuously taken from the
account therefore the dynamic of the process Ap is as follow

dApt = Apt
[
(µt − rt − ξt − p)dt+ σtdBt

]
, ∀t ∈ [0, T ] ,

with initial value A0, p is the fee rate taken by the insurer from the account of the
insured and the process ξ is a G-predictable, non-negative and bounded process. ξt
represents the withdrawal rate chosen by the insured at time t ∈ [0, T ]. ξ is then an
exogenous process and no additional hypothesis on the policyholder behavior has to
be made in this section. We may refer to the [14, Section 3.4] for different policyholder
behavior models.
Pay-off of the variable annuities. Let p ≥ 0, the pay-off is paid at time T ∧ τ to
the insured or his dependents and is equal to the following random variable

F̂ (p) := F̂L
T (p)1{T<τ} + F̂D

τ (p)1{τ=θd≤T} + F̂W
τ (p)1{τ=θw<θd ; τ≤T} .

F̂L
T (p) is the pay-off if the policyholder is alive at time T and has not totally withdrawn

his money from his account. F̂D
τ (p) is the pay-off if the policyholder is dead at time τ .

F̂W
τ (p) is the pay-off if the policyholder totally withdraws his money from his account

at time τ . We suppose that F̂L(p), F̂D(p) and F̂W (p) are bounded, non-negative and
G-adapted processes.

Including partial withdrawals in the pay-off, we shall use the following notations

FD,W
τ (p) := e−

∫ τ
0 rudu

(
F̂D
τ (p)1{τ=θd≤T} + F̂W

τ (p)1{τ=θw<θd ; τ≤T}

)
+

∫ τ

0

ξsA
p
s ds , (4.2.1)

FL
T (p) := e−

∫ T
0 ruduF̂L

T (p) +

∫ T

0

ξsA
p
s ds , (4.2.2)

F (p) := e−
∫ T∧τ
0 ruduF̂ (p) +

∫ T∧τ

0

ξsA
p
s ds . (4.2.3)

Usual examples. There exist ĜD(p) and ĜL(p) non-negative processes such that,
for any Q ∈ {D,L}, we have

F̂Q
t (p) = Âpt ∨ Ĝ

Q
t (p) , where Âpt = e

∫ t
0 rs dsApt .

The usual guarantee functions used to define GMDB and GMLB are listed below (see
[14] for more details).

— Constant guarantee : we have ĜQ
t (p) = A0 −

∫ t
0
ξsÂ

p
s ds on [0, T ], and

F (p) = ApT∧τ ∨ e
−

∫ T∧τ
0 rsds

(
A0 −

∫ T∧τ

0

ξsÂ
p
s ds
)

+

∫ T∧τ

0

ξsA
p
s ds ,

then, setting ApT∧τ (0) = ApT∧τ +
∫ T∧τ
0

ξsA
p
s ds and βt = 1 − e−

∫ T∧τ
t rsds for

t ∈ [0, T ∧ τ ], we get

F (p) = ApT∧τ (0) ∨
(
e−

∫ T∧τ
0 rsdsA0 +

∫ T∧τ

0

ξsA
p
sβs ds

)
.
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— Roll-up guarantee : As an interest rate η > 0 is paid on the guarantee minus the

previous withdrawals, we have ĜQ
t (p) = (1 + η)t

(
A0 −

∫ t
0

ξsÂ
p
s

(1+η)s
ds
)
on [0, T ].

We obtain

F (p) = ApT∧τ ∨ e
−

∫ T∧τ
0 rsdsĜQ

T∧τ (p) +

∫ T∧τ

0

ξsA
p
s ds

= ApT∧τ ∨ e
−

∫ T∧τ
0 rsds(1 + η)T∧τ

(
A0 −

∫ T∧τ

0

ξsÂ
p
s

(1 + η)s
ds
)

+

∫ T∧τ

0

ξsA
p
s ds ,

setting rηt = rt − ln(1 + η) for all t ∈ [0, T ] and βηt = 1 − e−
∫ T∧τ
t rηsds for

t ∈ [0, T ∧ τ ], we get

F (p) = ApT∧τ (0) ∨
(
e−

∫ T∧τ
0 rηs dsA0 +

∫ T∧τ

0

ξsA
p
sβ

η
s ds

)
. (4.2.4)

— Ratchet guarantee : The guarantee depends on the path of A in the following
way : ĜQ

t (p) = max(âp0(t), . . . , â
p
k(t)) on [tk, tk+1), for all 0 ≤ k ≤ n, where we

have set âpk(t) = Âptk −
∫ t
tk
ξsÂ

p
s ds. We get

F (p) = ApT∧τ ∨ e
−

∫ T∧τ
0 rsds max

0≤i≤n

(
âpi (T ∧ τ)1{ti≤T∧τ}

)
+

∫ T∧τ

0

ξsA
p
s ds ,

setting Âpti(0) = Âpti +
∫ ti
0
ξsÂ

p
s ds for all i ∈ {0, .., n}, we get that

F (p) = ApT∧τ (0) ∨
(

max
0≤i≤n

[
e−

∫ T∧τ
0 rsdsÂpti(0)1{ti≤T∧τ}

]
+

∫ T∧τ

0

ξsA
p
sβs ds

)
.

(4.2.5)

4.2.2 Indifference pricing

The optimal fee rate p∗ is defined as the smallest p such that

sup
π∈AF[0,T ]

E
[
U
(
Xx,π
T

)]
= sup

π∈AG[0,T ]

E
[
U
(
Xx+A0,π
T − F (p)

)]
. (4.2.6)

A solution of the (4.2.6) will be called an indifference fee rate.
Notice that if there exist solutions to the previous equation, they will not depend on
the initial wealth invested by the insurer but only on the initial deposit A0 made by
the insured since U(y) = − exp(−γy). Therefore, solve (4.2.6) is equivalent to solve

VF := sup
π∈AF[0,T ]

E
[
U
(
Xπ
T

)]
= sup

π∈AG[0,T ]

E
[
U
(
A0 +Xπ

T − F (p)
)]

:= VG(p) .

VF is a classical optimization problem, that has been solved in [65] and [102].

Utility maximization with variable annuities

We study the case in which the insurance company proposes the variable annuity
policy and solve the optimal control problem VG(p). The following lemma allows us
to rewrite the problem with a terminal date equal to T ∧ τ .
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Lemma 4.2.1 For any p ∈ R, we have

VG(p) = sup
π∈AG[0,T∧τ ]

E
[
− exp

(
− γ
(
XA0,π
T∧τ − H(p)

))]
, (4.2.7)

with
H(p) := F (p) +

1

γ
ln
{

ess inf
π∈AG[T∧τ,T ]

E
[

exp
(
− γ∆Xπ

τ,T

)∣∣GT∧τ]} ,
where we have set ∆Xπ

τ,T :=
∫ T
T∧τ πs(µs − rs)ds+

∫ T
T∧τ πsσsdBs .

We now state a verification theorem which is the main result of this section.

Theorem 4.2.2 The value function of the optimization problem (4.2.7) is given by

VG(p) = − exp(γ(Y0(p)− A0)) ,

where Y0(p) is defined by the initial value of the first component of the solution of the
following BSDE

Yt(p) = H(p) +

∫ T∧τ

t∧τ

(
λs
eγUs(p) − 1

γ
− ν2s

2γ
− νsZs(p)

)
ds−

∫ T∧τ

t∧τ
Zs(p)dBs

−
∫ T∧τ

t∧τ
Us(p)dHs , ∀t ∈ [0, T ] , (4.2.8)

which admits a solution in S∞G × L2
G × L2

G(λ) given for any t ∈ [0, T ] by
Yt(p) = Y 0

t (p)1t<τ + FD,W
τ (p)1τ≤t ,

Zt(p) = Z0
t (p)1t≤τ ,

Ut(p) =
(
FD,W
t (p)− Y 0

t (p)
)
1t≤τ ,

(4.2.9)

where (Y 0(p), Z0(p)) is the unique solution in S∞G × L2
G of the following BSDE−dY 0

t (p) =
{
λt

eγ(F
D,W
t (p)−Y 0

t (p))−1
γ

− ν2t
2γ
− νtZ0

t (p)
}
dt− Z0

t (p)dBt ,

Y 0
T (p) = FL

T (p) .
(4.2.10)

Moreover there exists an optimal strategy π∗ ∈ AG[0, T ] and this one is defined by

π∗t :=
νt
γσt

+
Zt(p)

σt
1t≤T∧τ +

Z
(τ)
t

σt
1t>T∧τ , ∀t ∈ [0, T ] , (4.2.11)

with Z(τ)) defined as component of the solution (Y (τ), Z(τ)) of the following BSDE{
dY

(τ)
t =

[
ν2t
γ

+ νtZ
(τ)
t

]
dt+ Z

(τ)
t dBt ,

Y
(τ)
T = 0 .

Remark 2 Existence of a solution to the BSDE (4.2.8), defined by (4.2.9), follows
from Theorem 4.3 in [72]. From Theorem 2.1 in [26] and Theorem 1 in [52], we know
that there is a unique solution (Y 0(p), Z0(p)) ∈ S∞G × L2

G to the BSDE (4.2.10).
To apply Theorem 2.1 in [26] or Theorem 1 in [52] and get existence result for a
solution of the BSDE (4.2.10), the terminal condition FL

T (p) must be bounded and the
process FD,W (p) must be also bounded.
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Indifference fee rate

Our goal is now to determine indifference fee rates It follows from previous results
that our problem, stated in equation (4.2.6), can be rewritten in the following way

Y0(p
∗)− A0 = y0 .

To study this equation we introduce the function ψ : R→ R defined as follows

ψ(p) := Y0(p)− y0 − A0 , ∀p ∈ R .

There may exist three cases depending on the coefficients values.
i) For any p ∈ R, we have ψ(p) > 0. That means that, for any fee rate p, we have

VG(p) < VF .

Therefore, the insurer’s expected utility is always lower if he sells the variable
annuities. Thus, he should not sell it.

ii) For any p ∈ R, we have ψ(p) < 0. That means that, for any fee rate p, we have

VG(p) > VF .

Therefore, the insurer’s expected utility is always higher if he sells the variable
annuities. Thus, he should sell it whatever the fees are.

iii) There exist p1 and p2 such that ψ(p1)ψ(p2) < 0. In this case, we prove in the
remainder of this section that there exist indifference fee rates thanks to the
intermediate value theorem applied to the function ψ.

We now give useful analytical properties of the function ψ.

Proposition 4.2.3 The function ψ is continuous and non-increasing on R.

We now consider the cases of usual guarantees.

Corollary 4.2.4 Ratchet guarantee.
Let m > A0. Recalling notations of (4.2.5), we assume that

F (p) = m ∧
[
ApT∧τ (0) ∨

(
max
0≤i≤n

[
e−

∫ T∧τ
0 rsdsÂpti(0)1{ti≤T∧τ}

]
+

∫ T∧τ

0

ξsA
p
sβs ds

)]
.

There exists p∗ ∈ R∪ {−∞} such that for p ≥ p∗ we have VG(p) ≥ VF and for p < p∗

we have VG(p) < VF.

Corollary 4.2.5 Roll-up guarantee.
Let m > A0. Recalling notations of (4.2.4), we assume that

F (p) = m ∧
[
ApT∧τ (0) ∨

(
e−

∫ T∧τ
0 rηs dsA0 +

∫ T∧τ

0

ξsA
p
sβ

η
s ds

)]
.

There exists η∗ ≥ 0 such that for any η ∈ [0, η∗], there exists p∗ ∈ R ∪ {−∞} such
that for p ≥ p∗ we have VG(p) ≥ VF and for p < p∗ we have VG(p) < VF.
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4.2.3 Numerical illustrations

We conclude this section with numerical illustrations of parameters sensibility for
indifference fee rates. Figure 4.1 plots the indifference fee rates when the volatility σ
ranged from 0.1 to 0.4.
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Figure 4.1 – Indifference fee rate with respect to σ

The financial interpretation of the monotonicity of the fees w.r.t. market volatility.
The bigger is the volatility the more useful are the guarantees, then the fees payed
to get these guarantees have to increase. Figure 4.2 plots the indifference fee rates
sensibility to λ.
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Figure 4.2 – Indifference fee rate with respect to λ

Figure 4.3 plots the indifference fee rates when the withdrawal rate ξ is constant
and ranged from 0 to 0.3.
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Figure 4.3 – Indifference fee rate with respect to ξ
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4.3 The worst case of withdrawals

4.3.1 The policy model

We consider a variable annuities product with a maturity T > 0. Let T := (ti)0≤i≤n
be the set of policy anniversary dates, with t0 = 0 and tn = T . By convention we set
tn+1 = +∞. We still denote by A0 the initial capital invested, by the insured, in the
fund related to this product (also called insured account) at time t = 0.
Withdrawals. At any date ti, for i ∈ {1, . . . , n − 1}, the insured is allowed to
withdraw an amount of money. This should be lower than a bounded non-negative
Gti-measurable random variable Ĝi.
We define Ŵ as a finite subset of [0, 1] which contains 0 and 1 and introduce the set
of admissible withdrawal policies

Ê =
{

(αiĜi)1≤i≤n−1 : αi is a Gti-measurable random variable such that

αi ∈ Ŵ for all i ∈ {1, . . . , n− 1}
}
.

For ξ̂ ∈ Ê and i ∈ {1, . . . , n− 1}, ξ̂i is the withdrawal made by the insured at time ti
and we introduce the family (ξi)1≤i≤n−1 such that ξi := e−

∫ ti
0 rs dsξ̂i is the discounted

withdrawal made at time ti. We define by E the admissible discounted withdrawal
policies with ξ ∈ E if and only if the vector ξ̂ ∈ Ê . For any k ∈ {0, . . . , n − 2} and
i ∈ {1, . . . , n− k − 1}, we also define the set E ik by

E ik =
{
ξ ∈ E s.t. ξj = 0 for all j /∈ {k + 1, . . . , k + i}

}
.

E ik is the set of admissible withdrawal policies such that all withdrawals are made
between times tk+1 and tk+i.
Discounted account value. We denote by Apt the discounted value at time t of the
fund related to the variable annuities contract sold at fee rate p. If the insured follows
the withdrawal policy ξ̂ ∈ Ê , we have{

dApt = Apt
[
(µt − rt − p)dt+ σtdBt

]
, for t 6∈ T ,

Apti =
(
Ap
t−i
− fi

)
∨ 0 , for 1 ≤ i ≤ n− 1 , (4.3.1)

where fi is a Gti-measurable random variable greater than ξi for any i ∈ {1, . . . , n−1}
and depending on previous withdrawals, on previous account values and on some
guarantees determined in the policy. We give details in the next paragraph.
Penalties and guarantees. We now focus on the dependencies between fi and Ĝi,
and begin with introducing two sets of functions defined on [0, T ]× Rn+1 × Rn−1.
Let I (resp. J ) be the set of bounded, non-negative functions φ (resp. ψ) defi-
ned on [0, T ] × Rn+1 × Rn−1 such that for any i ∈ {1, . . . , n − 1} and (t, x, e) ∈
[0, T ] × Rn+1 × Rn−1, the function y 7→ φ(t, x, e1, . . . , ei−1, y, ei+1, . . . , en−1) is non-
increasing (resp. y 7→ ψ(t, x, e1, . . . , ei−1, y, ei+1, . . . , en−1) is non-decreasing) and for
any j ∈ {1, . . . , n+ 1}, the function y 7→ φ(t, x1, . . . , xj−1, y, xj+1, . . . , xn+1, e) is non-
decreasing (resp. y 7→ ψ(t, x1, . . . , xj−1, y, xj+1, . . . , xn+1, e) is non-increasing).

Ĝi is the maximum amount that can be withdrawn at time ti, hence it decreases
with respect to previous withdrawals and increases with previous values of the fund
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related to the variable annuities contract. We assume that there exists ĝ ∈ I such
that, for any i ∈ {1, . . . , n− 1}, we have

Ĝi = ĝ(ti, Â
p
t0 , . . . , Â

p
ti−1

, Âp
ti−
, 0, . . . , 0, ξ̂1, . . . , ξ̂i−1, 0, . . . , 0) ,

where Âpt = e
∫ t
0 rs dsApt for all t ∈ [0, T ].

In the same vein, the random variables (fi)1≤i≤n−1 corresponds to penalties for early
withdrawals. It seems reasonable to assume that they increase with previous with-
drawals and, for marketing considerations, decrease with previous values of the fund.
We assume that there exists f̂ ∈ J such that, for any i ∈ {1, . . . , n− 1},

fi := f(ti, Â
p
t0 , . . . , Â

p
ti−1

, Âp
ti−
, 0, . . . , 0, ξ̂1, . . . , ξ̂i, 0, . . . , 0)

= e
∫ ti
0 rs dsf̂(ti, Â

p
t0 , . . . , Â

p
ti−1

, Âp
ti−
, 0, . . . , 0, ξ̂1, . . . , ξ̂i, 0, . . . , 0) .

We give concrete examples of functions ĝ and f in a next paragraph.

Pay off contract. Let F̂L and F̂D belong to I, the pay off is paid at time T ∧ τ to
the insured or her dependents, and is equal to the following random variable

F̂ (p, ξ̂) := F̂L(T, âp, ξ̂)1l{T<τ} + F̂D(τ, âp, ξ̂)1l{τ≤T} ,

where âp :=
(
Âpti∧τ

)
0≤i≤n. F̂

L is the pay-off if the policyholder is alive at time T and
F̂D is the pay-off if the policyholder is dead at time τ . In the following, we denote by
F (p, ξ̂) the discounted pay-off.

Usual examples. In the usual case of GMDB and GMLB, we may precise guaran-
tees. We introduce ĜD, ĜL and ĜW belonging to I such that, for any Q ∈ {D,L},
on [0, T ]× Rn+1 × Rn−1, we have

F̂Q(t, x, e) = xn+1 ∨ ĜQ(t, x, e) ,

and, on [0, T ]× Rn+1 × Rn−1,

ĝ(t, x, e) =
n∑
i=0

[
xi+1 ∨ ĜW (t, x0, . . . , xi+1, 0, . . . , 0, e1, . . . , ei−1, 0, . . . , 0)

]
1l{ti≤t<ti+1} .

In that case, the penalty function f is often given by

f(ti, x, e) =

{
ei if ei ≤ Gi ,
Gi + κ(ei −Gi) if ei > Gi ,

where κ > 1 and Gi := GW (ti, x0, . . . , xi+1, 0, . . . , 0, e1, . . . , ei−1, 0, . . . , 0). The insurer
takes a fee if the insured withdraws more than the guarantee Gi, this fee is equal to
(κ− 1)(ei −Gi).

The usual guarantee functions used to define GMDB and GMLB are listed below (see
[14] for more details).

— Constant guarantee. For i ∈ {0, . . . , n} and ti ≤ t < ti+1, we set

ĜQ(t, x, e) = x1 −
i∑

k=1

f̂(tk, x, e) on [0, T ]× Rn+1 × Rn−1 .
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Hence, following the withdrawal strategy ξ ∈ E , the insured will get

F (p, ξ̂) = ApT∧τ ∨
(
e−

∫ T∧τ
0 rs ds

n∑
i=0

(
A0 −

i∑
k=1

f̂(tk, â
p, ξ̂)

)
1l{ti≤T∧τ<ti+1}

)
.

— Roll-up guarantee. For η > 0, i ∈ {0, . . . , n} and ti ≤ t < ti+1, we set

ĜQ(t, x, e) = x1(1 + η)i −
i∑

k=1

f̂(tk, x, e)(1 + η)i−k on [0, T ]× Rn+1 × Rn−1 ,

and then if the insured follows the withdrawal strategy ξ ∈ E , she will get

F (p, ξ̂) = ApT∧τ ∨
(
e−

∫ T∧τ
0 rs ds

n∑
i=0

(
A0(1 + η)i −

i∑
k=1

f̂(tk, â
p, ξ̂)(1 + η)i−k

)
1l{ti≤T∧τ<ti+1}

)
.

— Ratchet guarantee. The guarantee depends on the path of A in the following
way

ĜQ(t, x, e) =
n∑
i=0

max
(
x1 −

i∑
k=1

f̂(k, x, e), . . . , xi − f̂(ti, x, e), xi+1

)
1l{ti≤T∧τ<ti+1} ,

for any (t, x, e) ∈ [0, T ]× Rn+1 × Rn−1. The insured will get

F (p, ξ̂) = ApT∧τ ∨
(
e−

∫ T∧τ
0 rs ds

n∑
i=0

max
(
âp0 −

i∑
k=1

f̂(tk, â
p, ξ̂), . . . , âpi

)
1l{ti≤T∧τ<ti+1}

)
.

4.3.2 Indifference pricing

The optimal fee rate p∗ is then the smallest p such that

V 0 := sup
π∈A[0,T ]

E
[
U
(
Xπ
T

)]
≤ sup

π∈A[0,T ]
inf
ξ∈E

E
[
U
(
A0 +Xπ

T −
n−1∑
i=1

ξi1lti≤τ − F (p, ξ̂)
)]

:= V (p) .

The quantity V 0 corresponds to the maximal expected utility at time T when the
insurance company has not sold the variable annuities policy. We can characterize
this value function V 0 and the optimal strategy π∗ by mean of BSDEs as done by
[65]. To this end we define the following spaces.

— S∞F (resp. S∞G ) is the set of càdlàg F (resp. G)-adapted essentially bounded
processes.

— L2
F (resp. L2

G) is the set of P(F) (P(G))-measurable processes z such that
E
∫ T
0
|zs|2ds <∞.

— L2(λ) is the set of P(G)-measurable processes u such that E
∫ T∧τ
0

λs|us|2ds <
∞.

We then have the following result which is a consequence of Theorem 7 in [65].

Proposition 4.3.1 The value function V 0 := supπ∈A[0,T ] E
[
U
(
Xπ
T

)]
is given by

V 0 = − exp(γy0) ,
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where (y, z) is the solution in S∞F × L2
F to the BSDE{

dyt =
(
θ2t
2γ

+ θtzt

)
dt+ ztdBt ,

yT = 0 .
(4.3.2)

Moreover, the optimal strategy associated to this problem is defined by

π∗t :=
θt
γσt

+
zt
σt
, ∀t ∈ [0, T ] .

In the usual indifference pricing setting, we can isolate p and get a semi-explicit
formula for the indifference price. A difficulty with our approach is that fees are
continuously payed by the insured and that the fee rate p appears in the pay-off
F (p, ξ̂). Therefore, one cannot use algebraic properties of the utility function to get
semi-explicit formula for indifference fees. Nevertheless, we can prove some monotoni-
city results on the value function V which will be used to prove that the indifference
fee rate exists or not, and to compute it.

Proposition 4.3.2 The value function V is non-decreasing on R.

This monotonicity property of the function V allows to conclude the existence of
indifference fees.

— If V (−∞) < V 0 < V (+∞), then there exists p∗ such if p < p∗, the insurance
company has no interest to sell the contract, and if p ≥ p∗ then the company
has interest to sell the contract.

— If V (−∞) > V 0, the insurance should always sell the contract.
— If V (+∞) < V 0, the insurance should never sell the contract.

The asymptotic behavior of V is then studied for usual guarantees.

Proposition 4.3.3 (Ratchet guarantee) Let m > A0. We assume that

F (p, ξ̂) = m ∧
[
ApT∧τ ∨

(
e−

∫ T∧τ
0 rs ds

n∑
i=0

max
(
âp0 −

i∑
k=1

f̂(tk, â
p, ξ̂), . . . , âpi

)
1l{ti≤T∧τ<ti+1}

)]
for (p, ξ) ∈ R × E. Then, there exists p∗ ∈ R ∪ {−∞} such that V (p) ≥ V 0 for all
p ≥ p∗ and V (p) < V 0 for all p < p∗.

Proposition 4.3.4 (Roll-up guarantee) Let m > A0 and η ≥ 0. Assume that

F (p, ξ̂) = m ∧
[
ApT∧τ ∨

(
e−

∫ T∧τ
0 rs ds

n∑
i=0

(
A0(1 + η)i −

i∑
k=1

f̂(tk, â
p, ξ̂)(1 + η)i−k

)
1l{ti≤T∧τ<ti+1}

)]
,

for all (p, ξ) ∈ R × E. There exists η∗ ≥ 0 such that for all η ∈ [0, η∗], there exists
p∗ ∈ R ∪ {−∞} such that V (p) ≥ V 0 for all p ≥ p∗ and V (p) < V 0 for all p < p∗.

In order to find the indifference fees, we shall compute the following quantities

V 0 := sup
π∈A[0,T ]

E
[
U
(
Xπ
T

)]
, (4.3.3)
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and

V (p) := sup
π∈A[0,T ]

inf
ξ∈E

E
[
U
(
A0 +Xπ

T −
n−1∑
i=1

ξi1lti≤τ − F (p, ξ̂)
)]

= −e−γA0w(p) , p ∈ R , (4.3.4)

where w is defined for any p ∈ R by

w(p) := inf
π∈A[0,T ]

sup
ξ∈E

E
[
u
(
Xπ
T −

n−1∑
i=1

ξi1lti≤τ − F (p, ξ̂)
)]

, (4.3.5)

with u(y) := e−γy for all y ∈ R.

4.3.3 Min-Max optimization problem

We determine now a numerical procedure to obtain w(p) defined by V (p) =
−e−γA0w(p). In the sequel we use the following notations. For x ∈ Rn and 1 ≤ k ≤ n
we denote by x(k) the vector of Rk defined by x(k) := (x1, . . . , xk) . For y ∈ Rk we
denote by ŷ the vector ŷ :=

(
y1e

∫ t1
0 rsds, . . . , yke

∫ tk
0 rsds

)
.

Sequential utility maximization

Proposition 4.3.5 (Initialization) For any p ∈ R, we have

w(p) = inf
π∈A[0,T∧τ ]

sup
ξ∈E

E
[
u
(
Xπ
T∧τ −

n−1∑
i=1

ξi1lti≤τ −H(p, ξ̂)
)]
,

with

H(p, ξ̂) := F (p, ξ̂) +
1

γ
Log

[
ess inf

π∈A[T∧τ,T ]
E
[
u
(
XT∧τ ,π
T

)∣∣GT∧τ]] ,
where XT∧τ ,π

T is the wealth at time T when we follow the strategy π by starting at time
T ∧ τ with the wealth 0.

We now decompose the initial problem in n subproblems.

Theorem 4.3.6 The value function w is given by

w(p) = inf
π∈A[0,t1∧τ ]

E
[
u
(
Xπ
t1∧τ
)
v(1)

]
,

where
— v(i, ξ(i−1)) is defined recursively for any i ∈ {2, . . . , n} and ξ ∈ E by v(n, ξ(n−1)) := eγH(p,ξ̂(n−1)) ,

v(i, ξ(i−1)) := ess sup
ζ∈E1i−1

ess inf
π∈A[ti∧τ,ti+1∧τ ]

J(i, π, ξ(i−1), ζ) ,

with for any i ∈ {1, . . . , n− 1}, π ∈ A[ti ∧ τ, ti+1 ∧ τ ] and ζ ∈ E1i−1

J(i, π, ξ(i−1), ζ) := E
[
u
(
X ti∧τ,π
ti+1∧τ − ζ1lti<τ

)
v
(
i+ 1, (ξ(i−1), ζ)

)∣∣∣Gti∧τ] ,
— v(1) := ess sup

ζ∈E10
ess inf

π∈A[t1∧τ,t2∧τ ]
E
[
u
(
X t1∧τ,π
t2∧τ − ζ1lt1<τ

)
v
(
2, ζ
)∣∣∣Gt1∧τ].
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Optimal investment and worst withdrawals for the insurer

In the following result, we provide the withdrawal ξ∗i and the investment strategy
π∗,i that attain the value functions v(i, .) for any i ∈ {1, . . . , n}.

Proposition 4.3.7 For any i ∈ {1, . . . , n − 1}, there exists a strategy π∗,i ∈ A[ti ∧
τ, ti+1 ∧ τ ], a withdrawal ξ∗i ∈ E1i−1, and a map y(i),∗ from Ŵ i−1 to L∞(Ω,Gti∧τ ,P)
such that

v(i, ξ(i−1)) = E
[
u
(
X ti∧τ,π∗,i
ti+1∧τ − ξ

∗
i 1lti<τ

)
v
(
i+ 1, (ξ(i−1), ξ∗i )

)∣∣∣Gti∧τ]
= exp

(
γy(i),∗(ξ̂(i−1))

)
.

Moreover there exists y(0) such that the value function v of the initial problem (4.3.5)
is given by w(p) = exp(γy(0)) .

4.3.4 Numerical resolution

Max-min problem. We first propose a scheme to solve the problem w(p) by using
Theorem 4.3.6. We may describe the procedure in an inductive way. The step 0 cor-
responds to the initialization given by Proposition 4.3.5 and we may characterize
H(p, ξ̂) thanks to a linear BSDE. Step i corresponds to the computation of the func-
tion v(n − i, .), the optimal strategy π∗,n−i and the worst withdrawal ξ∗n−i once the
previous steps have been done. This computation will rely on characterization of
v(n− i, .) throught solutions to BSDE’s with random terminal date. We would then
be able to give optimal strategies and worst withdrawal processes.

Indifference price. As, we now know how to calculate V 0 and V (p) for any p ∈ R
and V is continuous, we may approximate p∗ by bisection or dichotomy method.

Simulations In this section we present numerical illustrations of parameter sensi-
tivity for indifference fee rates. We use the method described in [71] to decompose
BSDEs with a jump in a recursive system of two Brownian BSDEs. Brownian BSDEs
involved are then simulated thanks to the discretization scheme studied in [21]. For the
computation of the conditional expectations, we use a parametric regression method
with polynomial basis.
Dependence with respect to the interest rate is complex. We notice that indifference
fee rates increase when the absolute value of the difference between drift and interest
rate increases. On the one hand, if r is smaller than µ, when it increases the discoun-
ting on future payments make them to become worth less and the price of guarantees
decreases. On the other hand, when r is greater than the drift, an exponential utility
maximizer should not expose its portfolio to the market volatility. Hence, she should
receive a bigger compensation to do so. If the insurer sell its product, she has to hedge
her portfolio against volatility and to have a non-zero position on the risky assets. She
will sell her product at a bigger price if interest rate is greater than µ and increases.
Since the utility function is an exponential one, indifference fee rates will not depend
on the initial wealth invested by the insurer but strongly on the initial deposit A0

made by the insured (see inequality (4.2.6)). As fees are proportional, the more the
insured invests, the more the insurer will get from the contract. Therefore, indiffe-
rence fee rates will decrease when the initial deposit A0 increases.
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Chapitre 5

Research projects

5.1 Optimal liquidation in order book with stochas-
tic resilience

With Sergio Pulido, V. Ly Vath and our Ph. D. student Florian Rasamoely (see
(15)), we study the recent problem of optimal liquidation of several assets before a
maturity (see, for instance, [2], [4], [94],[97]). We assume that there exists a Limit
Order Book (LOB) in which we can trade, restraining our strategies to market sel-
ling orders. In [76], it is asserted that the liquidity in LOB markets has the following
characteristics : depth, resilience and tightness. Tightness is the distance between ask
and bid prices and induces proportionnal liquidity costs. As we restrict our trading
strategy to only one side of the LOB, tightness is irrelevant for our problem. Depth
of LOB is the current shape of the LOB which will induce price impact and therefore
non-proportionnal costs. Our framework will correspond to the general model of LOB
shape studied in [97]. The resilience could be defined as the dynamic of trades impacts
on the LOB shape. We assume that resilience is a mean-reverting process following
an Ornstein-Uhlenbeck dynamic type. We formulate a stochastic singular control in
a bi-dimensionnal setting and characterize optimal values and policies throught HJB
equations and viscosity techniques.

Probability space.
We work on a filtered probability space (Ω,F , (Ft)t∈[0,T ],P) satisfying the standard

conditions of right-continuity and completeness. We assume that this filtered proba-
bility space supports a standard P-Brownian motion W and M a random Poisson
measure on R+ ×R with mean measure γtdtm(dz) where γ : [0, T ]→ (0, γ̄] and m is
a probability measure on R.
Reference price and initial limit order book.

Let (At) be the reference price of the assets, which we assume to be a continuous
P-martingale At. In our model, we assume that, in the absence of trading, the number
of available shares at time t in the price interval [At, At + a) is F (a). F is a nonde-
creasing and left-continuous function.

Investor’s strategies. A financial agent wants to buy X shares of an illiquid as-
set over the time interval [0, T ]. Without loss of generality we will assume that all
quantities are discounted.The strategies of the agent are given by nondecreasing right-
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continuous adapted processes (Xt)0≤t≤T with XT = X. We assume that X0− = 0 and
denote by ∆Xt = Xt −Xt− the jump at time t.

The dynamics of the volume effect process (Yt). We assume that the strategy
of our investor has impact on the price. When the financial agent follows strategy X,
we assume that at time t, the ask price is no longer the reference price but is given
by At+Dt where Dt := ψ(Yt), with Yt representing the dynamics of the volume effect
process

dYt = dXt − h(Yt−)dt+ σ(Yt−)dWt +

∫
R
Yt−q(Yt− , z)M̄(dt, dz);Y0− = y. (5.1.1)

and the left-continuous function ψ given by follows

ψ(y) := sup{a ≥ 0|F (a) < y}, for y > 0 and ψ(0) := 0. (5.1.2)

We denote
Y̌t− := Yt− + ∆MYt

where ∆MYt is the jump of the mesure M at time t.

Liquidation cost of a strategy. We now can write the cost of the strategy X =
(Xt)0≤t≤T as

C(X) :=

∫ T

0

(At + Ďt−)dXc
t +

∑
0≤t≤T

[At∆Xt + (Φ(Yt)− Φ(Y̌t−))],

=

∫ T

0

ψ(Y̌t−)dXc
t +

∑
0≤t≤T

(Φ(Yt)− Φ(Y̌t−)) +

∫ T

0

AtdXt.

Control Problem. For 0 ≤ t < T and x ∈ [0, X] and y ≥ 0, after an integration by
part, we define our control problem as the infimum on all strategies of the expected
cost :

v(t, x, y) = inf
X∈A(t,x)

E

[∫ T

t

ψ(Y̌ t,y,X
s− )dXc

s +
∑
t≤s≤T

(Φ(Y t,y,X
s )− Φ(Y̌ t,y,X

s− ))

]
,

where Y t,y,X
s for t ≤ s ≤ T denotes the solution of (5.1.1) with Y t,y,X

t− = y and the set
of admissible controls A(t, x) is given by

A(t, x) := {X : X ↗; Xt− = x; XT = X}. (5.1.3)

The value function at terminal time T is given by

v(T, x, y) = Φ(y +X − x)− Φ(y). (5.1.4)

Notice that
v(t,X, y) = 0. (5.1.5)

HJB characterization. We define the infinitesimal generator L of the process Y
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Lu :=
σ2(y)

2

∂2u

∂y2
− h(y)

∂u

∂y
+ γt

∫
R

(u(t, x, y − q(y, z))− u(t, x, y))m(dz);

and get the following characterization of the value function.
The value function v is the unique continuous viscosity solution on S to the variational

inequality :

max

(
−∂v
∂t
− Lv, −∂v

∂x
− ∂v

∂y
− ψ

)
= 0, (5.1.6)

satisfying the following growth condition :

0 ≤ v(t, x, y) ≤ Φ(y +X − x)− Φ(y) on [0, T )× [0, X]× [0,+∞),

and with boundary data v(t,X, y) = 0 and v(T, x, y) = Φ(y +X − x)− Φ(y),

5.2 Optimal dividend and capital injection policy
with external audit

In this work, written with V. Ly Vath and A. Roch (see (17)), we focus our study
on the bankruptcy rules for a firm. In the seminal papers [68] and [6], the firm goes to
bankruptcy when its cash reserves are below 0. We extended this conditions in (12),
(7) and (14), respectively taking into account illiquid assets, debt level and capital
issuance. In this new study, we want to give to the firm a grace period. The firm can
issue capital at any time and pay out dividend when it is not in financial difficulty,
situation that is in force when the cash reserve is greater than a level, called debt
level. When the firm is in financial difficulty, when its cash reserve is below this level,
it can be audited at any time. If it happens, bankruptcy is defined in term of a grace
period, denoted δ : the firm is declared bankrupt when its cash reserve has spent a
continual period of time δ under the debt level.
Let (Ω,F,P) be a probability space with a filtration F = (F)t≥0 satisfying the usual
conditions.
Dividend and capital issuance strategies. The cumulative sum that has been
injected into the firm at time t is denoted by Kt, whereas the total amount of divi-
dends paid at time t is Zt.

Audit time. When the firm is in financial difficulty, it can be audited at any time.
The probability of being audited in the time interval [t, t + dt) is λdt. Let N be a
Poisson process with intensity parameter λ, F-adapted.

Audit and Cash Processes. We define the situation of the firm thanks to the
audit process which is equal to 1 when the firm is under audit and 0 else. Its dynamic
is given by

dIt = 1{Xt<D}(1− It)dNt − Itd1{Xt≥D}
in which D is the fixed amount of debt D holded by the firm and X is assumed to
satisfy the following stochastic differential equation :

dXt = µ(Xt)dt+ σ(Xt)dWt + (1− κIt)dKt − (1 + κ′)dZt − ca1{Xt<D}(1− It)dNt,
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with κ0 ≤ κ1, κ
′ are constants in (0, 1) and ca > 0. The constants κ0, κ1 and κ′ re-

present proportional transaction costs that must be paid to inject capital in favorable
and defavorable cases and to payout dividends. The constant ca is the fixed penalty
cost of being audited during financial distress

Bankruptcy time. We define the time of financial distress under audit process as

τt = t− sup{s ≤ t : Is = 0}, with the convention sup ∅ = 0.

The bankruptcy times are then given by

T x0 := inf{t ≥ 0 : Xx
t < 0 or τt > δ}

T
(t,x)
1 = inf{u ≥ t : X(t,x)

u < 0 or τu > δ − t1l{inft≤s≤u Iu=1}}.

State spaces. We define the state space as S = S0 ∪ S1, with

S0 = [0,+∞) and S1 = [0, δ]× [0, D].

The firm is in financial distress and audited (It = 1) when (t,Xt) ∈ S1\({0} × [0, D)) .
Note that when (t,Xt) ∈ {0} × [0, D) both It = 1 and It = 0 are possible.

Value functions. Value functions of the problem are then defined by

v0(x) := sup
(Z,K)∈A

Ex,0

∫ Tx0

0

e−ρs d(Zs −Ks), x ∈ S0,

v1(t, x) := sup
(Z,K)∈A

Et,x,1

∫ T
(t,x)
1

t

e−ρs d(Zs −Ks), (t, x) ∈ S1,

in which ρ > 0 is a discount rate, and

A = {(Z,K) ∈ I2F : ∀u ≥ 0, Zu − Zu− ≤ (Xu− −D)+ and
∫ +∞

0

1l{Iu=1}dZu = 0}

is the set of admissible dividend and capital injection policies. IF denotes the set of
non decreasing and F-predictable processes.

Characterization as viscosity solution.
The value functions vi will be shown be the unique solution of the following system
of variational inequalities :

0 = min

(
−Lv0 − J (v0, v1), 1l[0,D) + 1l[D,+∞)

[
v′0 −

1

1 + κ′

]
,

1

1− κ0
− v′0

)
on S̊0,

0 = min

(
−Lv1 −

∂v1
∂t

,
1

1− κ1
− ∂v1
∂x

)
on S̊1,

0 = min

(
v1,

1

1− κ1
− ∂v1
∂x

)
on [0, δ]× {0},

0 = min

(
v0(0),

1

1− κ0
− v′0(0)

)
,
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where we have set

Lv = −ρv + µ(x)
∂v

∂x
+

1

2
σ2(x)

∂2v

∂x2
and J (v, w) = λ1l[0,D]

[
w(· − ca, 0)1l[ca,D] − v

]
,

with the following boundary conditions :

lim
x↑D

v1(t, x) = v0(D) for t ∈ (0, δ], (5.2.1)

lim
t↑δ

v1(t, x) = g(x) := max(v0(D)− (D − x)/(1− κ1), 0) for x ∈ [0, D].(5.2.2)

lim
x↑∞

v0(x+ 1)− v0(x) =
1

1 + κ′
(5.2.3)

We may deduce from the previous result a description of optimal strategies and
compute them thanks to discretization of the Hamilton-Jacobi-Bellman equation.

5.3 Path-dependent American options

To enrich models in market or corporate finance, we would like to have more ma-
thematical tools to build numerical methods for non-markovian control problems.
In this context the characterisation of objective functions as solutions of HJB equa-
tions was not longer possible. Some recent studies have formalized the links between
some stochastic control problems and path-dependent variational inequality (PDVI).
In a work, summarized below and made with V. Ly Vath and M. Mnif (see (16)),
we characterize the value function of an optimal stopping problem as the unique
viscosity solution of a Path Dependent Variational Inequality (PDVI) in the class of
uniformly bounded and continuous processes in (t, ω). We propose a monotone, stable
and consistent numerical scheme. We show that the solution of the numerical scheme
converges to the unique viscosity solution of the associated PDVI.
We then provide and analyze a discrete-time approximation scheme for the solution
of the PDVI :

min
[
u(t, ω)− h(t, ω); −∂tu(t, ω)− 1

2
Tr(σσ∗∂2ωωu)(t, ω)− λ(t, ω)∂ωu(t, ω)− f(t, ω)

]
= 0,

on [0, T ), where T is a given terminal time, ω ∈ Ω is a continuous path from [0, T ] to
Rd starting from the origin, the diffusion coefficient σ is a mapping from [0, T ]×Ω to
Rd×d with σ∗ denotes its transpose, the drift coefficient λ is a mapping from [0, T ]×Ω
to Rd. The unkown process {u(t, w), t ∈ [0, T ]} is required to be continuous in (t, ω).
Dupire [47] gives the definition of the derivatives ∂tu, ∂ωu and ∂2ωωu which appear
in the PDVI and proves a functional Itô’s formula. The smoothness requirement of
u assumed is not realistic in our case. The derivatives should be interpreted in the
viscosity sense. Ekren, Keller, Touzi and Zhang [49] and later Ren, Touzi and Zhang
[98] proposed the notion of viscosity solution of path dependent semi-linear PDEs.
It is also viewed as viscosity solutions of non-Markovian Backward Stochastic Diffe-
rential Equations (BSDEs). It is a powerful tool for this type of problems since the
derivatives are interpreted in a weaker sense. This theory is an extension of the vis-
cosity solutions in finite dimensional spaces introduced by Crandall and Lions [38].
In the infinite dimensional case, we lose the property of local compacity of R and the
stopping times will play a key role. The set of tested processes is enlarged since we
consider all the smooth processes wich are tangent in mean and not pointwise as in
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the finite dimensional case.
In our case we relate the PDVI to a Reflected BSDE. It is well-known that the solution
of a RBSDE is the value function of an optimal stopping problem which is useful to
prove that the value function is a viscosity solution of the associated PDVI. We prove
also a comparison result which is easier to obtain than in the finite dimension case
since the set of test processes is enlarged. We notice that the optimal stopping pro-
blem is a degenerate optimal control problem since we have only the choice between
stopping and receiving the pay-off or keeping the system evolving. As a consequence,
we don’t need to the nonlinear expectations to catch all the possible controls which
make the proofs less technical then in Ekren [50] who studied viscosity solutions of
obstacle problems for fully nonlinear path dependent PDEs.
The main contribution of our work is to propose an efficient numerical scheme for
the path dependent optimal stopping problem, the convergence of which is ensured
by the uniqueness result. It is an extension of the convergence theorem of Barles and
Souganidis [11]. The main difficulty is that the space Ω is no longer local compact.
Recently, convergence of numerical schemes for path dependent PDEs are studied by
Zhang and Zhuo [107] and Ren and Tan [99].
In our case, we propose a convergent numerical scheme to price American fixed strike
lookback option whose pay-off is path-dependent.
To our knowledge, in the litteraure, we find only numerical procedures which show
empirically the convergence of numerical schemes solutions to such path dependent
American options. Dai and Kwok [39] and Lai and Lim [77] examine the early exer-
cice policies and pricing behaviours of one asset American option with lookback payoff
structures. They give the variational inequality satisfied by the path-dependent value
function. Implicitly, they assumed that the classical Itô’s calculus and the dynamic
programming principle hold as in the Markovian context. Hull and White [66] show
how binomial and trinomial tree methods can be extended to value many types of
options with path-dependent payoffs. As an example, they determine thanks to their
discrete model, the price of a Lookback put option, whose payoff is a function of the
maximum stock price realized during the option’s life. Babs [8] adapts the binomial
scheme to investigate the impact on the value of these options.
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