Quelques développements statistiques et algorithmiques pour l'analyse de données génomiques Soutenance d'HDR

G. RIGAILL

IPS2 (Gnet) et LaMME (Stat & Genome)

Septembre 2020

1/46

Plan

- Plan du mémoire
- Détection de ruptures multiples
- Récurrence fonctionnelle
 - Pour la détection de ruptures dans la moyenne
 - Pour des modèles plus complexes
- Modélisation et interprétation de données transcriptomiques
 - Des ruptures, des fluctuations locales et de l'auto-corrélation
 - Prédictions et interprétation
- Conclusion

G. Riggill Septembre 2020 2/46

Structure du mémoire

Bilan comptable et résumé de mes recherches

Chap. 1 Production scientifique

Chap. 2 Tour d'horizon

J'ai essayé de maintenir l'équilibre entre méthodologie et application

4 axes de recherche

Chap. 3 Détection de ruptures multiples

Chap. 4 Analyse de jeux de données omiques

Chap. 5 Classification régularisée

Chap. 6 Évaluation de méthodologies omiques

G. Rigaill Septembre 2020 3/46

Structure du mémoire

4 axes de recherche à l'interface

Chapitre 3 - Détection de ruptures multiples

- Présentation d'algorithmes pour maximiser une vraisemblance
- Présentation « plus intuitive » de l'élagage fonctionnel
 - Formalisme des chaînes de Markov cachées
 - Algorithme de Viterbi sur un espace d'états continu

Chapitre 4 - Analyse de jeux de données omiques

- Conduire l'analyse est complexe
 - Des choix de modélisation et de pré-traitement
 - Des choix d'interprétation biologique
 - Interdisciplinarité...

G. Rigaill Septembre 2020 4/46

Structure du mémoire

4 axes de recherche à l'interface

Chapitre 5 - Classification régularisée

- Je décris quelques contributions méthodologiques
- Idées : relaxation convexe et intégration de classifications

Chapitre 6 - Évaluation de méthodologies omiques

- Il n'est pas facile de choisir/justifier une stratégie d'analyse
- Je décris quelques travaux visant à éclairer ce choix
- Idées : annotations, ré-échantillonage

G. Rigaill Septembre 2020 5/46

Quelques défis pour analyser des données omiques

Dans cette présentation

Développer des méthodes

- Permettre l'inférence de modèles de plus en plus complexes
- Améliorer l'inférence de modèles existants

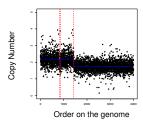
Chap 3 Évolution des algorithmes d'élagage fonctionnel

Travailler à la mise en œuvre des méthodes

L'interprétation biologique du modèle n'est pas évidente
 Chap 4 Ruptures pour le transcriptome

G. Rigaill Septembre 2020

Plan


- Plan du mémoire
- Détection de ruptures multiples
- Récurrence fonctionnelle
 - Pour la détection de ruptures dans la moyenne
 - Pour des modèles plus complexes
- Modélisation et interprétation de données transcriptomiques
 - Des ruptures, des fluctuations locales et de l'auto-corrélation
 - Prédictions et interprétation
- Conclusion

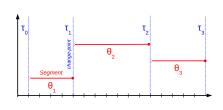
G. Riggill Septembre 2020 7/46

Un problème important et récurrent

Selon le « National Research Council (US) »

- Des modèles complexes
 - ► Genomique [Hocking et al. 2016, Pierre-Jean et al. 2015...]
 - Geologie, Finance, Biologie...

8/46


- De plus en plus de méthodes ces dix dernières années
 - Modèle gaussien univarié: [Harchaoui and Levy-Leduc 2009, Killick et al. 2011, Frick et al. 2014. Lin et al. 2015. Dette and Wied 2015, Haynes et al. 2016, Maidstone et al. 2017, Fryzlewicz 2017...]

Méthodes minimisant un coût pénalisé

- De bonnes propriétés statistiques [Yao 1989, Lebarbier 2005, Arlot et al. 2012...]
- Complexité algorithmique quadratique $\mathcal{O}(n^2)$ ou moins
- Etat de l'art pour plusieurs applications en biologie

Un modèle constant par morceaux

données
$$Y_1, \ldots, Y_n$$

ruptures $\tau = (\tau_1, ..., \tau_D)$
segments $s_d = (\tau_{d-1}, \tau_d]$
paramètres $\theta = (\theta_1, ..., \theta_D)$
modèle $Y_i \sim \mathcal{F}(\theta_d)$ i.i.d

9/46

Modèle
$$\mathcal{F} \to \gamma \to \text{Optimisation}$$

$$Y_i \sim \mathcal{N}(\theta_d, \sigma^2) \qquad (Y_i - \theta_d)^2 \qquad \sum_{d=1}^{|\tau|} \sum_{\tau_{d-1} + 1}^{\tau_d} (Y_i - \hat{\theta}_d)^2$$

- le nombre et la position des ruptures sont inconnus
- l'ensemble des segmentations \mathcal{M}_n est grand : 2^{n-1}

Maximum de vraisemblance pénalisée

Minimiser moins la log-vraisemblance

$$cost(\tau) = \sum_{d=1}^{|\tau|} \min_{\theta} \{ \sum_{\tau_{d-1}+1}^{\tau_d} \gamma(Y_i, \theta) \}$$

- $cost(\tau)$ est minimal pour n-1 ruptures.
- Il faut pénaliser!

$$cost(\tau) = \sum_{d=1}^{|\tau|} \min_{\theta} \{ \sum_{\tau_{d-1}+1}^{\tau_d} \gamma(Y_i, \theta) + \lambda \}$$

G. Rigaill Septembre 2020

Pénalités linéaires et concaves

• (P1) Linéaire [Yao 1989] ou (P2) Concave [Lebarbier 2005]

P1:
$$pen(\tau) = 2\sigma^2 |\tau| \log(n)$$

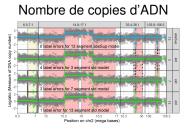
P2: $pen(\tau) = 2\sigma^2 |\tau| (c_1 \log(n/|\tau|) + c_2)$

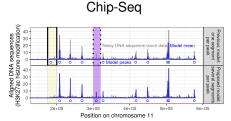
Algorithmiquement

• Résoudre (P2) se ramène à résoudre plusieurs problèmes (P1)

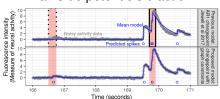
[Killick et al. 2012, Haynes et al. 2016]

G. Rigaill Septembre 2020

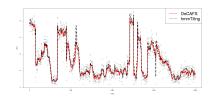

Plan


- Plan du mémoire
- Détection de ruptures multiples
- Récurrence fonctionnelle
 - Pour la détection de ruptures dans la moyenne
 - Pour des modèles plus complexes
- Modélisation et interprétation de données transcriptomiques
 - Des ruptures, des fluctuations locales et de l'auto-corrélation
 - Prédictions et interprétation
- Conclusion

G. Rigaill Septembre 2020

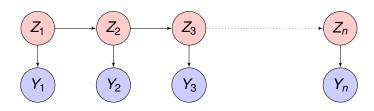

Récurrence fonctionnelle

Prendre en compte des contraintes et des dépendances



Trains de potentiels d'action

Transcriptome bactérien



Plan

- Plan du mémoire
- Détection de ruptures multiples
- Récurrence fonctionnelle
 - Pour la détection de ruptures dans la moyenne
 - Pour des modèles plus complexes
- Modélisation et interprétation de données transcriptomiques
 - Des ruptures, des fluctuations locales et de l'auto-corrélation
 - Prédictions et interprétation
- Conclusion

G. Rigaill Septembre 2020 14/46

Ruptures et chaînes de Markov cachées

Espace d'états continu

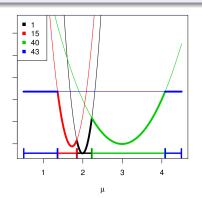
 Z_i dans un intervalle de \mathbb{R}

Règle de chaînage

$$(Y_i|Z_i=\theta) \sim \mathcal{N}(\theta,\sigma^2)$$

Transition

$$k(x,y) \propto \mathbb{I}_{x=y} + e^{-\lambda} \mathbb{I}_{x\neq y}.$$


15/46

16/46

Conditionner par le paramètre du dernier segment

Un point de vue fonctionnel [Rigaill 2010-2015, Johsnon 2010-2013, Rote 2012, Maidstone et al. 2016]

$$\widetilde{P_n}(\mu) = \min_{\substack{\tau,\theta\\\theta_{|\tau|}=\mu}} \left\{ \lambda |\tau| + \sum_{d=1}^{|\tau|} \sum_{\tau_{d-1}+1}^{\tau_d} (Y_i - \theta_d)^2 \right\}$$

17/46

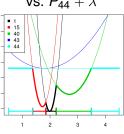
Algorithme de Viterbi sur un espace d'états continu

Élagage fonctionnel

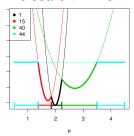
$$\widetilde{P_{n+1}}(\mu) = \min \left\{ egin{array}{l} ext{"pas de rupture"} \ \widetilde{P_n}(\mu) \ ext{min} \{\widetilde{P_n}(\mu')\} + \lambda \ ext{"une rupture"} \end{array}
ight\} + (Y_{n+1} - \mu)^2$$

- L'espace d'états est continu...
- On applique la mise à jour par intervalle
- Au pire il y a 2n 1 intervalles.
- Complexité au pire en $\mathcal{O}(n^2)$

Mise à jour fonctionnelle visuellement

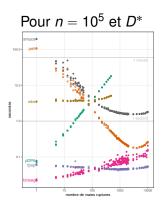

$$n = 43$$

$$n = 43 + \frac{1}{2}$$


$$n = 44$$

$$+(Y_{44}-\mu)^2$$

vs.
$$P_{44} + \lambda$$


discard $\tau = 43$

15 **4**0 43

Algorithme Fpop en pratique

- Quasi-linéaire en moyenne (même sans rupture)
- Environ 4 secondes pour $n = 10^7$

19/46

Rapide avec d'excellentes performances statistiques

- Bonnes propriétés statistiques [Yao 1989, ..., Garreau and Arlot 2017]
- SOTA sur des simulations [Fryzlewicz 2014, Fearnhead and Rigaill 2020]
- SOTA pour le nombre de copies d'ADN [Hocking et al. 2013, Pierre-Jean et al. 2015]

Plan

- Plan du mémoire
- Détection de ruptures multiples
- Récurrence fonctionnelle
 - Pour la détection de ruptures dans la moyenne
 - Pour des modèles plus complexes
- Modélisation et interprétation de données transcriptomiques
 - Des ruptures, des fluctuations locales et de l'auto-corrélation
 - Prédictions et interprétation
- Conclusion

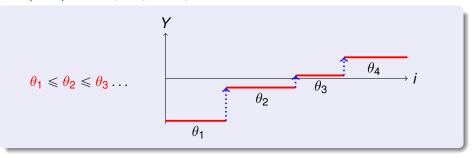
G. Rigaill Septembre 2020 20/46

Extensions de l'élagage fonctionnel

Modèles i.i.d

- Poisson, Binomial Negatif [Cleynen et al. 2015]
- Pertes robustes (pour les outliers) [Fearnhead and Rigaill 2018]
- Pas efficace pour des modèles multivariés?

Modèles avec dépendances


[Maidstone et al. 2017, Hocking et al. 2018, Jewell et al. 2019, Romano et al. 2020]

- Isotonique, pics, train de potentiels d'action
- Auto-corrélation, drift . . .

G. Rigaill Septembre 2020

Modèle isotonique

Quelques opérateurs [Hocking et al. 2018]

$$\widetilde{P}_{n+1}^{\mathit{Iso}}(\mu) = \min \left\{ \begin{array}{c} \text{"pas de rupture"} \\ \widetilde{P}_{n}^{\mathit{Iso}}(\mu) \\ \\ \min \limits_{\mu' \leq \mu} \{\widetilde{P}_{n}^{\mathit{Iso}}(\mu')\} + \lambda \\ \\ \text{"une rupture"} \end{array} \right\} + (Y_{n+1} - \mu)^2$$

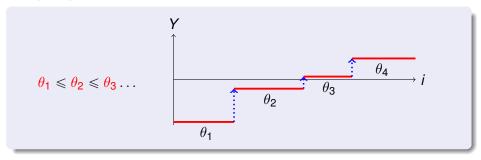
G. Rigaill Septembre 2020

Opérateur minimum à gauche

Définition

$$\widetilde{\min}(f)(\mu) = \min_{\mu' \leqslant \mu} f(\mu').$$

Propriétés


Si f est quadratique sur m intervalles :

- \bullet min(f) est quadratique sur au plus 2m intervalles
- ② On peut calculer $\widetilde{min}(f)$ de gauche à droite en O(m)

G. Rigaill Septembre 2020

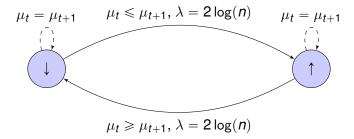
Modèle isotonique

Quelques opérateurs [Hocking et al. 2018]

$$\widetilde{P}_{n+1}^{Iso}(\mu) = \min \left\{ egin{array}{l} ext{"pas de rupture"} \ \widetilde{P}_{n}^{Iso}(\mu) \ \hline ilde{min}(\widetilde{P}_{n}^{Iso})(\mu) + \lambda \ ext{"une rupture"} \end{array}
ight\} + (Y_{n+1} - \mu)^{2}$$

G. Rigaill Septembre 2020

25/46


Pour des patterns plus complexes

On considère plusieurs fonctions à chaque étape :

$$s \in \mathcal{S}, \quad \widetilde{P}_n^s$$

- S est un ensemble fini
- L'espace d'états est $\mathcal{S} \times \mathbb{R}$
- ullet Un noyau de transition représenté par un graphe ${\cal G}$

Noyau et graphe pour modéliser des pics

G. Rigaill Septembre 2020

Récurrence fonctionnelle

On obtient \widetilde{P}_{n+1}^s en appliquant des opérateurs et en comparant les fonctions de l'étape n.

• Pour $\widetilde{P}_{n+1}^{\uparrow}$ on utilise l'opérateur \widecheck{min} .

$$\widetilde{P}_{n+1}^{\uparrow}(\mu) = \min \left\{ \begin{array}{c} \text{"pas de rupture"} \\ \widetilde{P}_{n}^{\uparrow}(\mu) \\ \\ \widetilde{\textit{min}}(\widetilde{P}_{n}^{\downarrow}(\mu)) + \lambda \\ \text{"une rupture"} \end{array} \right\} + (Y_{n} - \mu)^{2}.$$

• Pour $\widetilde{P}_{n+1}^{\downarrow}$ on applique l'opérateur minimum à droite...

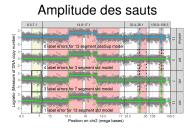
G. Rigaill Septembre 2020

Un package pour un graphe générique

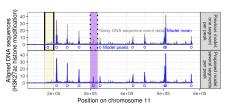
Thanks to Vincent Runge [Runge et al. submitted]

Algorithme gfpop

- En entrée : un graphe, un(e) modèle/distribution et des données
- Applications
 - Chip-Seq et pics [Hocking et al. 2017 and 2018]
 - Potentiels d'actions [Jewell et al. 2019]


Pattern	perte	n	temps
Pics	ℓ_2	10 ⁶	~ 13 <i>s</i>
Pics	robuste	10 ⁶	~ 40 <i>s</i>

https://github.com/vrunge/gfpop


G. Rigaill Septembre 2020

Récurrence fonctionnelle


Prendre en compte des contraintes

Des pics

Isotonique Haut-Bas

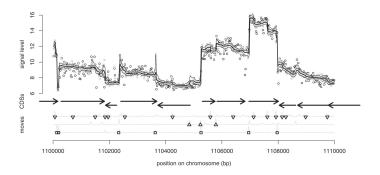
G. Rigaill

Plan

- Plan du mémoire
- Détection de ruptures multiples
- Récurrence fonctionnelle
 - Pour la détection de ruptures dans la moyenne
 - Pour des modèles plus complexes
- Modélisation et interprétation de données transcriptomiques
 - Des ruptures, des fluctuations locales et de l'auto-corrélation
 - Prédictions et interprétation
- Conclusion

G. Rigaill Septembre 2020

Plan


- Plan du mémoire
- Détection de ruptures multiples
- Récurrence fonctionnelle
 - Pour la détection de ruptures dans la moyenne
 - Pour des modèles plus complexes
- Modélisation et interprétation de données transcriptomiques
 - Des ruptures, des fluctuations locales et de l'auto-corrélation
 - Prédictions et interprétation
- Conclusion

G. Rigaill Septembre 2020 31/46

32/46

Niveau d'expression de cellules bactériennes

HMMTiling [Nicolas et al. 2009]

- Puces tiling avec une résolution inférieure à 25 paires de bases
- Pour chaque sonde t une mesure d'expression : Y_t
- Un mélange de sauts et de variations plus continues...

Modèle de détection de ruptures

avec un drift et de l'auto-corrélation

$$\begin{array}{lcl} Y_t & = & \theta_t + \epsilon_t \\ \theta_t & = & \theta_{t-1} + \eta_t + \delta_t & \text{marche ou saute} \\ \epsilon_t & = & \phi \epsilon_{t-1} + \nu_t & \text{AR(1)} \end{array}$$

Marche aléatoire ou saut

Marche aléatoire :

$$\eta_t \sim \mathcal{N}(\mathbf{0}, \sigma_\eta^2), \ \delta_t \in \mathbb{R}$$

• Saut de δ_t et pénalité λ :

si
$$\delta_t \neq 0$$
 alors $\eta_t = 0$

Auto-corrélation

• AR(1):

$$\nu_t \sim \mathcal{N}(\mathbf{0}, \sigma_v^2)$$

34/46

Quelques opérateurs de plus

DeCAFS [Romano et al. 2020]

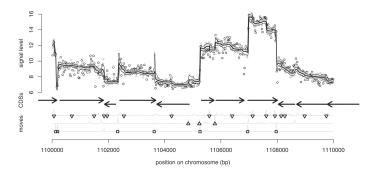
- Le coût $\widetilde{P}_n^{\#}$ est quadratique par morceaux
- Deux opérateurs de convolution calculables en O(m)

DAC: drift + auto-corrélation

$$SAC: saut + auto-corrélation \\ \widetilde{P}_{n+1}^{\#}(\mu) = \min \left\{ \begin{array}{l} \text{"drift et auto-corrélation"} \\ DAC(\widetilde{P}_{n}^{\#}(\mu)) \\ \\ SAC(\widetilde{P}_{n}^{\#}(\mu)) + \lambda \\ \\ \text{"saut et auto-corrélation"} \end{array} \right\} \ + \ (Y_{n} - \mu)^{2}.$$

Temps de calcul

Quelques minutes pour n = 300 000

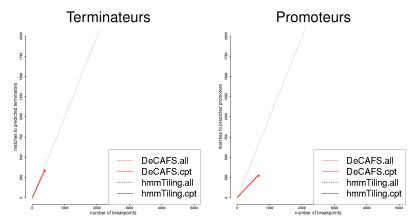

Plan

- Plan du mémoire
- Détection de ruptures multiples
- Récurrence fonctionnelle
 - Pour la détection de ruptures dans la moyenne
 - Pour des modèles plus complexes
- Modélisation et interprétation de données transcriptomiques
 - Des ruptures, des fluctuations locales et de l'auto-corrélation
 - Prédictions et interprétation
- Conclusion

G. Rigaill Septembre 2020 35/46

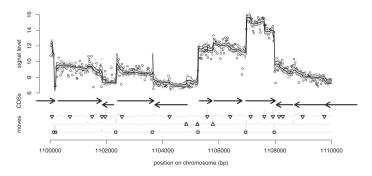
Prédire des terminateurs et des promoteurs

Première interprétation


- Un terminateur correspond à la fin d'un gène
- On attend une baisse du niveau de transcription [Nicolas et al. 2009]
 - ▶ Un saut : $t \in \hat{\tau}$
 - Et une différence importante : $d_t = \hat{Y}_{t+1} \hat{Y}_t$ très négative

G. Rigaill Septembre 2020

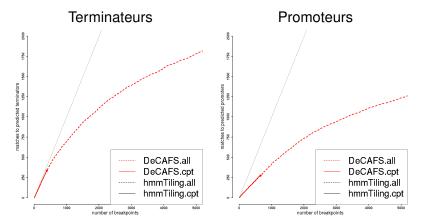
Interpréter les ruptures?


Comparer aux terminateurs connus bioinformatiquement

- axe des y : nombre de terminateurs connus
- axe des x : nombre de terminateurs prédits

Prédire des terminateurs et des promoteurs

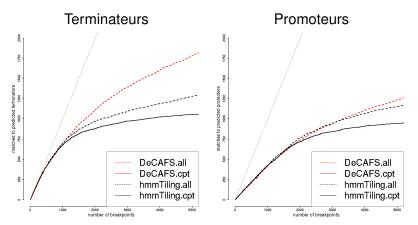
Deuxième interprétation


- Un terminateur correspond à la fin d'un gène
- On attend une baisse du niveau de transcription
 - $t \in \{1, \cdots, n\}$
 - ▶ Une différence importante : $d_t = \hat{Y}_{t+1} \hat{Y}_t$ très négative

G. Rigaill Septembre 2020

Interpréter les différences?

Comparer aux terminateurs connus bioinformatiquement


- axe des y : nombre de terminateurs connus
- axe des x : nombre de terminateurs prédits

Même conclusion avec HMMTiling

Special Thanks to Pierre Nicolas!

- Il semble préférable de considérer les différences
- Les sauts seuls, $\hat{\tau}$, ne capturent pas idéalement la « réalité »

G. Rigaill Septembre 2020

Conclusion

Avec le même modèle deux résultats différents

- Modéliser de petites transitions et des sauts [Nicolas et al. 2009]
- Les sauts seuls, $\hat{\tau}$, ne capturent pas idéalement la « réalité »
- Il semble préférable de regarder : $\hat{Y}_{t+1} \hat{Y}_t$
- Comment choisir sans informations extérieures?
- Entre modélisation statistique et interprétation biologique il y a encore beaucoup de travail

G. Rigaill Septembre 2020

Plan

- Plan du mémoire
- Détection de ruptures multiples
- Récurrence fonctionnelle
 - Pour la détection de ruptures dans la moyenne
 - Pour des modèles plus complexes
- Modélisation et interprétation de données transcriptomiques
 - Des ruptures, des fluctuations locales et de l'auto-corrélation
 - Prédictions et interprétation
- Conclusion

G. Rigaill Septembre 2020

Quelques défis pour analyser des données omiques

Développer des méthodes

Illustré avec le Chap. 3 & 5

- Permettre l'inférence de modèles de plus en plus complexes
- Améliorer l'inférence de modèles existants

Travailler à la mise en œuvre des méthodes Illustré avec le Chap. 4

- Réfléchir au pré-traitement, à la modélisation et à l'interprétation
- Nécessite un dialogue interdisciplinaire

Evaluer

Illustré avec le Chap. 6

43/46

- Toute analyse implique de nombreux choix
 - Pré-traitement, modélisation, méthode, interprétation...
- Il est souvent difficile de juger et de justifier ces choix

Évaluer ce n'est pas facile!

Statistiquement

- Étude mathématique ou de simulations
- On peut explorer de nombreuses configurations
- Ces simulations ne peuvent rivaliser avec la complexité des données biologiques
- Il est douteux qu'une méthode qui fonctionne mal statistiquement soit performante sur des données biologiques

Biologiquement

- Valider expérimentalement les résultats
- Il n'y a pas à douter du réalisme des données
- Les validations sont souvent peu nombreuses et nous pouvons douter de leur représentativité

Quelques défis pour analyser des données omiques

Développer des méthodes

Illustré avec le Chap. 3 & 5

- Permettre l'inférence de modèles de plus en plus complexes
- Améliorer l'inférence de modèles existants

Travailler à la mise en œuvre des méthodes Illustré avec le Chap. 4

- Réfléchir au pré-traitement, à la modélisation et à l'interprétation
- Nécessite un dialogue interdisciplinaire

Evaluer

Illustré avec le Chap. 6

45/46

- Toute analyse implique de nombreux choix
 - Pré-traitement, modélisation, méthode, interprétation...
- Il est souvent difficile de juger et de justifier ces choix

Merci à tous...

- Membres du jury
- Collègues et collaborateurs
- Amis et famille

G. Rigaill Septembre 2020