Université d'Évry Val d'Essonne 2015-2016 M63 algèbre linéaire et bilinéaire et géométrie

Examen du Licence 3 de Mathématiques

Exercice 1.

Soit $E = M_n(\mathbb{R})$ l'espace vectoriel des matrices carrées d'ordre n sur \mathbb{R} et soit f l'application de $E \times E$ vers \mathbb{R} définie par $f(A, B) = \text{Tr}(A^t B)$.

- 1. Démontrer que f est une forme bilinéaire symétrique sur E.
- 2. Déterminer la signature de f.

Dans ce qui suit, on prend $E = M_2(\mathbb{R})$ l'espace vectoriel des matrices carrées d'ordre 2 sur \mathbb{R} .

- 3. Quelle est la matrice de f dans la "base canonique" de $\mathcal{M}_2(\mathbb{R})$?
- 4. Donner la forme quadratique associée à f. Est-elle définie positive?
- 5. Démontrer que $q: M_2(\mathbb{R}) \to \mathbb{R}$ définie par $q(A) = \det(A)$ est une forme quadratique sur E. Déterminer son rang, sa signature et les éléments isotropes pour q.
- 6. Détreminer la forme polaire associée à q.
- 7. Soit F le sous-espace vectoriel de E formé des matrices de trace nulle. Quel est l'orthogonal de F pour la forme polaire associée à q?

Exercice 2. Décomposer la forme quadratique suivante en sommes de carrés. En déduire si elle est positive. $q(x, y, z, t) = x^2 + 3y^2 + 4z^2 + t^2 + 2xy + xt$;

Exercice 3. Soit Q une forme quadratique non dégénérée et non définie sur E un \mathbb{K} -espace vectoriel de dimension finie, avec \mathbb{K} un corps de caractéristique $\neq 2$. Nous prendrons φ la forme bilinéaire associée. Nous dirons qu'un sous-espace A est S.E.T.I.M., si A est sous-espace totalement isotrope et maximal. Rappel A est dit isotrope si $A \subset A^{\perp}$ et maximal si pour tout sous-espace A de A et A e

- 1. Montrer que tout sous-espace totalement isotrope est inclus dans un S.E.T.I.M.
- 2. Soient A, B deux S.E.T.I.M. et A', B' des sous-espaces tels que :

$$A = (A \cap B) \oplus A'$$

$$B = (A \cap B) \oplus B'$$

Montrer que $A + (A'^{\perp} \cap B')$ est totalement isotrope et que $(A'^{\perp} \cap B') \subset A$.

- 3. Prouver que $A \cap B' = \{0\}$, déduire que $A'^{\perp} \cap B' = \{0\}$.
- 4. Après avoir majoré $dim(A'^{\perp} + B')$, montrez que $dimB' \leq dimA'$.
- 5. En déduire que tout les sous-espaces S.E.T.I.M. ont la même dimension. Cette dimension est appelée l'indice de Q.

 Application: Dans le cas $E = \mathbb{R}^n$, $\mathbb{K} = \mathbb{R}$ et Q a pour signature $(p,q) \in \mathbb{N}^2$, notre but sera de déterminer l'indice de Q. Nous supposerons $p \geq q$ (quitte à prendre -Q).
- 6. Pourquoi existe-t-il une base (e_1, \ldots, e_n) tel que la matrice de Q dans cette base soit $diag(\underbrace{1, \ldots, 1}_{p}, \underbrace{-1, \ldots, -1}_{q})$?
- 7. Considérez $H = Vect(e_1 + e_{p+1}, e_2 + e_{p+2}, \dots, e_p + e_{p+q})$, vérifiez que H est bien isotrope.
- 8. Prenons un vecteur $x = \sum_{i=1}^{n} \lambda_i e_i$, avec $(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$ tel que $H + \mathbb{K}x$ soit isotrope. Démontrer que pour tout $1 \leq j \leq q$ on a $\lambda_j = \lambda_{p+j}$.
- 9. En déduire l'indice de Q.