TD: Anneaux euclidiens, principaux, factoriels.

Tout anneau sera supposé commutatif et unitaire, et tout morphisme entre deux anneaux sera un morphisme d'anneaux unitaires.

Exercice 1 Soit A un anneau commutatif, soit a et b deux éléments de A. Montrer les assertions suivantes :

- 1. l'anneau A[X]/(X-a) est isomorphe à A;
- 2. l'anneau A[X,Y]/(Y-b) est isomorphe à A[X];
- 3. l'anneau A[X,Y]/(X-a,Y-b) est isomorphe à A.

Exercice 2 Soit K un corps et

$$A = \left\{ \frac{P(X)}{Q(X)} \in K(X) \mid Q(0) \neq 0 \right\}$$

- 1. Montrer que A est un anneau (commutatif et unitaire).
- 2. Montrer que $\{f \in A \mid f(0) = 0\}$ est l'unique idéal maximal de A.

Exercice 3 Soit $d \in \mathbb{Z}$ non carré (c'est-à-dire qu'il n'existe pas de $e \in \mathbb{Z}$ tel que $e^2 = d$). Montrer que $A = \{a + b\sqrt{d} \in \mathbb{C} \mid a, b \in \mathbb{Z}\}$ et qu'il existe un unique automorphisme d'anneau σ de A tel que $\sigma(\sqrt{d}) = -\sqrt{d}$.

Pour tout $z \in A$ on note $N(z) = |z\sigma(z)|$. Montrer que $N(z) \in \mathbb{N}$ pour tout $z \in A$, et que N(z) = 0 ssi z = 0. Montrer que z est inversible dans A ssi N(z) = 1. Que vaut alors z^{-1} ? Que vaut N(z) si d < 0?

Exercice 4 Montrer que $\mathbb{Z}[\sqrt{2}]$ est euclidien (utiliser ex. 3).

Exercice 5 Montrer que $\mathbb{Z}[i]$ (anneau des entiers de Gauss) est euclidien. L'idéal $2\mathbb{Z}[i]$ de $\mathbb{Z}[i]$ est-il premier?

Exercice 6 Soit $j = \exp(2i\pi/3)$. Montrer que $\mathbb{Z}[j]$ est euclidien (utiliser $N(z) = |z|^2$).

Exercice 7 Soit A un anneau intègre, $a \in A \setminus \{0\}$ et $S = \{a^n \mid n \in \mathbb{N}\}$. Montrer que S est une partie multiplicative, et que $S^{-1}A$ est isomorphe à A[X]/(aX-1).

Exercice 8 En utilisant l'exercice 6, montrer que l'anneau $\mathbb{C}[X,Y]/(XY-1)$ est principal. En déduire que l'anneau $\mathbb{C}[X,Y]/(X^2+Y^2-1)$ est principal, donc factoriel.

Exercice 9 Factoriser X, 1+Y et 1-Y dans l'anneau factoriel $\mathbb{C}[X,Y]/(X^2+Y^2-1)$. En déduire que les anneaux $\mathbb{k}[X,Y]/(X^2+Y^2-1)$ pour $\mathbb{k}=\mathbb{Q}$ ou $\mathbb{k}=\mathbb{R}$ ne sont pas factoriels.