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1 Kato’s mild solutions.

In this paper, we consider the following Cauchy problem for the 3D Navier–
Stokes equations : given ~u0 ∈ (L3(R3))3 with ~∇.~u0 = 0, find a solution ~u ∈
C([0, T ], (L3(R3))3) of the equations

(1)



∂t~u = ∆~u− (~u.~∇) ~u− ~∇p

~∇.~u = 0

~u(0, .) = ~u0

where p is the (unknown) pressure, whose action is to maintain the divergence
of ~u to be 0 (this divergence free condition expresses the incompressibility of
the fluid).

In order to solve equations (1), we follow Kato [1] and use the Leray–Hopf op-
erator P which is the orthogonal projection operator on divergence-free vector
fields. We thus consider the following Navier–Stokes equations on ~u(t, x) :

(2)


∂t~u = ∆~u− P~∇ · (~u⊗ ~u)

~u(0, .) = ~u0

Solving the Cauchy problem associated to the initial value ~u0 then amounts
to solve the integral equation

(3) ~u = et∆~u0 −
t∫

0

e(t−s)∆P~∇.(~u⊗ ~u) ds.

In order to solve (3), we define the bilinear operator B by

(4) B(~f,~g)(t) =

t∫
0

e(t−s)∆P~∇.(~f ⊗ ~g) ds.

We then define the sequence ~u(n) by

(5) ~u(0) = et∆~u0 and ~u(n+1) = et∆~u0 −B(~u(n), ~u(n))

and the sequence ~w(n) by

(6) ~w(n) = ~u(n+1) − ~u(n).

For every n ∈ N, we have ~u(n) ∈ C([0,+∞), (L3(R3))3) and it is well known
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that for some positive T we have

(7)
∑
n∈N

sup
0<t<T

‖~w(n)(t, .)‖3 <∞

so that the sum

(8) ~u = et∆~u0 +
∞∑

n=0

~w(n)

belongs to C([0, T ], (L3(R3))3) and is a solution to the Cauchy problem (1).
The solution ~u is then known to be smooth.

In this paper, we shall discuss the convergence of the series (8). In order
to ensure the convergence of the series, one usually works with weaker norms
than the L3 norm (writing that L3 is embedded into Besov spaces [2] [3] or in
the space BMO−1 considered by Koch and Tataru [4]). In order to get regu-
larity estimates, one tries to get a contractive estimate in a new norm and this
is usually done by taking a smaller value of T . Thus, the series

∑
w(n) may be

convergent on an interval [0, T ] which should depend on the norm in which the
terms w(n) are estimated. We shall prove that the interval of convergence does
not depend on most norms that are usually used to describe Kato’s solutions.
Some of those results were previously obtained in [5], [6] and [7], where they
were described as persistency results.

2 Size of the solutions.

In 1984, Kato [1] proved the existence of mild solutions in Lp, p ≥ 3. His

construction of mild solutions relies on the fact that the operator e(t−s)∆P~∇ is a
matrix of convolutions operators (in the x variable) whose kernels Ki,j(t−s, x)
are controlled by

(9) |Ki,j(t− s, x)| ≤ C
1

(
√
t− s+ ‖x‖)4

.

For p > 3, he used the estimate

(10) ‖e(t−s)∆P~∇.(~f ⊗ ~g)‖p ≤ Cp(t− s)−
1
2
− 3

2p‖~f‖p‖~g‖p

to prove the boundedness of B on L∞([0, T ], (Lp)3) :

(11) ‖B(~f,~g)(t, .)‖p ≤ Cpt
1
2
− 3

2p sup
0<s<t

‖~f(s, .)‖p sup
0<s<t

‖~g(s, .)‖p.
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For the critical case p = 3, inequality (10) becomes

(12) ‖e(t−s)∆P~∇.(~f ⊗ ~g)‖3 ≤ C
1

(t− s)
‖~f‖3‖~g‖3.

This is a very unconvenient estimate for dealing with ~f and ~g in L∞([0, T ], (L3)3),
since

∫ t
0

ds
t−s

diverges at the endpoint s = t. Kato then used an idea of Weissler
[8], namely to use the smoothing properties of the heat kernel (when applied
to ~u0 ∈ (L3)3) to search for the existence of a solution in a smaller space
of mild solutions ; indeed, whereas the bilinear operator B is unbounded
on C([0, T ], (L3(R3))3) [9], it becomes bounded on the smaller space {~f ∈
C([0, T ], (L3(R3))3) / sup0<t<T

√
t‖~f(t, .)‖∞ <∞}. Thus, we replace the esti-

mate (12) (which leads to a divergent integral) by the estimates

(13) ‖e(t−s)∆P~∇.(~f ⊗ ~g)‖3 ≤ C
1√

t− s
√
s
‖~f‖3

√
s‖~g‖∞

and
(14)

‖e(t−s)∆P~∇.(~f ⊗ ~g)‖∞ ≤ C
1√
t− s

min(
1

(t− s)
‖~f‖3‖~g‖3,

1

s

√
s‖~f‖∞

√
s‖~g‖∞)

which lead to two convergent integrals.

We begin by checking that the introduction of this second norm does not
bear any restriction on the interval of convergence for the series (8) :

Theorem 1
Let ~u0 ∈ (L3(R3))3 with ~∇.~u0 = 0. Let the sequence ~u(n) be defined by

(15) ~u(0) = et∆~u0 and ~u(n+1) = et∆~u0 −B(~u(n), ~u(n))

and the sequence ~w(n) by

(16) ~w(n) = ~u(n+1) − ~u(n).

Let T ∈ (0,+∞]. Then the following assertions are equivalent :

(17)
∑
n∈N

sup
0<t<T

‖~w(n)(t, .)‖3 <∞

(18)
∑
n∈N

sup
0<t<T

√
t‖~w(n)(t, .)‖∞ <∞

Proof : In inequality (13), we have stressed on the role of the L3 norm of ~f

and the L∞ norm of ~g, but we could as well have used the L∞ norm of ~f and
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the L3 norm of ~g. We change (13) in a more symmetrical inequality in ~f and
~g :

(19) ‖e(t−s)∆P~∇.(~f ⊗ ~g)‖3 ≤ C
1√

t− s
√
s

√
‖~f‖3‖~g‖3

√
s‖~f‖∞

√
s‖~g‖∞

This gives
(20)

sup
0<t<T

‖B(~f,~g)‖3 ≤ C

√
sup

0<t<T
‖~f‖3 sup

0<t<T
‖~g‖3 sup

0<t<T

√
t‖~f‖∞ sup

0<t<T

√
t‖~g‖∞.

In order to estimate sup0<t<T

√
t‖B(~f,~g)‖∞, we write

(21)

t/2∫
0

‖e(t−s)∆P~∇.(~f ⊗ ~g)‖∞ ds ≤ C

t/2∫
0

1

(t− s)3/2
‖~f‖3‖~g‖3 ds

so that

(22)
√
t

t/2∫
0

‖e(t−s)∆P~∇.(~f ⊗ ~g)‖∞ ds ≤ C sup
0<t<T

‖~f‖3 sup
0<t<T

‖~g‖3.

On the other hand, we have
(23)

t∫
t/2

‖e(t−s)∆P~∇.(~f⊗~g)‖∞ ds≤C
t∫

t/2

√
t√

t− s
√
s

min(
‖~f‖3‖~g‖3

(t− s)
,

√
s‖~f‖∞

√
s‖~g‖∞

s
) ds

so that, writing

(24) λ =

√√√√ sup0<t<T ‖~f‖3 sup0<t<T ‖~g‖3

sup0<t<T

√
t‖~f‖∞ sup0<t<T

√
t‖~g‖∞

and

(25) Φ(λ) =

1∫
0

1√
s(1− s)

min(
λ

1− s
,

1

λs
) ds,

we get
(26) √

t
∫ t
t/2 ‖e(t−s)∆P~∇.(~f ⊗ ~g)‖∞ ds√

sup0<t<T ‖~f‖3 sup0<t<T ‖~g‖3 sup0<t<T

√
t‖~f‖∞ sup0<t<T

√
t‖~g‖∞

≤ CΦ(λ).

We can easily check that

(27) sup
λ>0

Φ(λ) <∞.

5



Now, we write
(28)
~w(n+1) = B(~u(n), ~u(n))−B(~u(n+1), ~u(n+1)) = −B(~u(n), ~w(n))−B(~w(n), ~u(n+1))

We define :

(29) αn = sup
0<t<T

‖~w(n)‖3, An = sup
0<t<T

‖~u(n)‖3

and

(30) βn = sup
0<t<T

√
t‖~w(n)‖∞, Bn = sup

0<t<T

√
t‖~u(n)‖∞.

From (20), we get

(30) αn+1 ≤ C
√
αn

√
β

n
(
√
AnBn +

√
An+1Bn+1)

and thus

(31) αn+1 ≤ C
√
αn

√
β

n

√√√√A0 +
n∑

p=0

αp

√√√√B0 +
n∑

p=0

βp.

Similarly, from (22) and (26), we get

(32) βn+1 ≤ Cαn(An + An+1) + C
√
αnβn(AnBn + An+1Bn+1

and thus

(33) βn+1 ≤ Cαn(A0 +
n∑

p=0

αp) + C
√
αn

√
β

n

√√√√A0 +
n∑

p=0

αp

√√√√B0 +
n∑

p=0

βp.

We may finish the proof, by using the following lemma :

Lemma 1
Let (γn), (δn) and (εn) be three sequences of nonnegative real numbers such
that :

(34)
∞∑

n=0

γn <∞ and
∞∑

n=0

δn <∞

and

(35) ∀n ∈ N εn+1 ≤ γn +

√√√√εnδn
n∑

p=0

εp.
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Then, we have

(36)
∞∑

n=0

εn <∞.

Proof : We write

(37) εn+1 ≤ γn +
1

2
εn +

1

2
δn

n∑
p=0

εp.

This gives, for n0 ∈ N and n ≥ n0

(38)
n+1∑
p=0

εp ≤ ε0 +
n∑

p=0

γp +
1

2

n∑
p=0

εp +
1

2

n0∑
p=0

δp

n0∑
p=0

εp +
1

2

n∑
p=n0+1

δp
n∑

p=0

εp.

Choosing n0 such that

(39)
∞∑

n0+1

δp < 1/2,

we get

(40)
∞∑

p=0

εp ≤ 4(ε0 +
∞∑

p=0

γp +
1

2

n0∑
p=0

δp

n0∑
p=0

εp).

Thus, Lemma 1 and Theorem 1 are proved.

Remark :

If we work with the Lorentz space L3,∞ instead of the Lebesgue space L3,
then we don’t need Weissler’s trick of using the smoothing properties of the
heat kernel to get mild solutions, since the bilinear operator B is bounded
on C∗([0, T ], (L3,∞(R3))3) [10] (where C∗([0, T ], (L3,∞(R3))3) is the space of
bounded maps from [0, T ] to (L3)3 which are strongly continuous on (0, T ] and
are *-weakly continuous at t = 0). However, we may do the same computations
as in the proof of Theorem 1 and see that the solution in C∗([0, T ], (L3,∞(R3))3)
provided by the Picard-Duhamel iterates ~u(n) inherits the good behaviour of
the L∞ norm.

3 Convergence in weaker norms.

In the study of mild solutions for the Navier–Stokes equations, weaker norms
than the L3 or the L∞ norms have been introduced to prove either existence
or stability of mild solutions. The weakest norm to be controlled in order to
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provide existence of mild solutions is the bmo−1 norm of the initial value ~u0

(where bmo−1 is the space introduced by Koch and Tataru [4]), while stability
is described through the control of the norm of the solution ~u(t, .) in the Besov
space B−1,∞

∞ [11] (following ideas of Kozono and co-workers [12] [13]). We recall
basic definitions and facts about Besov spaces in the appendix.

Recall that f ∈ bmo−1 if and only if, for all positive T , we have

(41) sup
0<t<T

sup
x0∈R3

t−3/2

t∫
0

∫
B(x0,

√
t)

|es∆f |2 dx ds <∞

Once again, the introduction of those new norms does not bear any restriction
on the interval of convergence for the series (8) :

Theorem 2
Let ~u0 ∈ (L3(R3))3 with ~∇.~u0 = 0. Let the sequence ~u(n) be defined by

(42) ~u(0) = et∆~u0 and ~u(n+1) = et∆~u0 −B(~u(n), ~u(n))

and the sequence ~w(n) by

(43) ~w(n) = ~u(n+1) − ~u(n).

Let T ∈ (0,+∞). Then the following assertions are equivalent :

(44)
∑
n∈N

sup
0<t<T

‖~w(n)(t, .)‖3 <∞

(45)

∑
n∈N

sup
0<t<T

(√
t‖~w(n)(t, .)‖∞ + sup

x0∈R3

t−3/4

√√√√√√
t∫

0

∫
B(x0,

√
t)

|~w(n)(s, x)|2 dx ds
)
<∞

(46)
∑
n∈N

sup
0<t<T

‖~w(n)(t, .)‖B−1,∞
∞

<∞

Remark : Assertions (46) and (44) are equivalent as well to the conver-
gence of the series

∑
n∈N sup0<t<T ‖~w(n)(t, .)‖bmo−1 , since we have the continu-

ous imbeddings L3 ⊂ bmo−1 ⊂ B−1,∞
∞ .

Proof : In the same way as for proving Theorem 1, we write
(47)
~w(n+1) = B(~u(n), ~u(n))−B(~u(n+1), ~u(n+1)) = −B(~u(n), ~w(n))−B(~w(n), ~u(n+1))
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We define :

(48) αn = sup
0<t<T

‖~w(n)‖3, An = sup
0<t<T

‖~u(n)‖3,

(49) βn = sup
0<t<T

√
t‖~w(n)‖∞, Bn = sup

0<t<T

√
t‖~u(n)‖∞,

(50) γn = sup
0<t<T

sup
x0∈R3

t−3/4

√√√√√√
t∫

0

∫
B(x0,

√
t)

|~w(n)(s, x)|2 dx ds,

(51) Cn = sup
0<t<T

sup
x0∈R3

t−3/4

√√√√√√
t∫

0

∫
B(x0,

√
t)

|~u(n)(s, x)|2 dx ds,

and

(52) δn = sup
0<t<T

‖~w(n)‖B−1,∞
∞

, Dn = sup
0<t<T

‖~u(n)‖B−1,∞
∞

.

The fact that (44) ⇒ (45) is obvious, since γn ≤ Cαn. The fact that (45) ⇒
(46) is easily checked : the operator P~∇. is bounded from (L∞)3×3 to (B−1,∞

∞ )3,
so we shall deal with L∞ norms. We have

(53) ‖
t/2∫
0

e(t−s)∆f(s, .) ds‖∞ ≤ Ct−3/2 sup
x0∈R3

t∫
0

∫
B(x0,

√
t)

|f(s, x)| dx ds

and

(54) ‖
t∫

t/2

e(t−s)∆f(s, .) ds‖∞ ≤ C sup
0<s<t

s‖f(s, .)‖∞.

From (47), (53) and (54), we get
(55)

δn+1 ≤ Cγn(Cn+Cn+1)+Cβn(Bn+Bn+1) ≤ 2Cγn(C0+
n∑

p=0

γp)+2Cβn(B0+
n∑

p=0

βp).

The proof that (46) ⇒ (44) is not so easy. We use the fact that, for f ∈ B−1,∞
∞ ,

we have

(56)
√
t‖et∆f‖∞ ≤ C(1 +

√
t)‖f‖B−1,∞

∞
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We write

(57) ~w(n+1)(t, .) = e
t
2
∆ ~w(n+1)(t/2, .) + ~v(n)(t, .)

where

(58) ~v(n)(t, .) = −

t
2∫

0

e(
t
2
−s)∆P~∇.V (n)(t/2 + s, .) ds

and

(59) V (n) = ~u(n) ⊗ ~w(n) + ~w(n) ⊗ ~u(n+1).

We then write

(60) ‖~w(n+1)(t, .)‖∞ ≤ ‖e
t
2
∆ ~w(n+1)(t/2, .)‖∞ + ‖~v(n)(t, .)‖∞,

hence
(61)

‖~w(n+1)(t, .)‖∞≤C(
1 +

√
t√

t
‖~w(n+1)(

t

2
, .)‖B−1,∞

∞
+
√
‖~v(n)(t, .)‖B1,∞

∞
‖~v(n)(t, .)‖B−1,∞

∞

)
.

Moreover, we easily check that

(62) ‖~v(n)(t, .)‖B−1,∞
∞

= ‖~w(n+1)(t, .)− e
t
2
∆ ~w(n+1)(t/2, .)‖B−1,∞

∞

hence

(63) ‖~v(n)(t, .)‖B−1,∞
∞

≤ ‖~w(n+1)(t, .)‖B−1,∞
∞

+ ‖~w(n+1)(t/2, .)‖B−1,∞
∞

,

while, on the other hand, we have

(64) ‖~v(n)(t, .)‖B1,∞
∞

≤ C(1 +
√
t) sup

t/2<s<t

‖V (n)(t, .)‖∞,

(more precisely, it is easy to check that the high frequency term ‖(Id −
S0)~v

(n)(t, .)‖B1,∞
∞

is controled by supt/2<s<t ‖V (n)(t, .)‖∞ uniformly in t, while

the low frequency term ‖S0~v
(n)(t, .)‖B1,∞

∞
is controled by

√
t supt/2<s<t ‖V (n)(t, .)‖∞

uniformly in t), hence
(65)

‖~v(n)(t, .)‖B1,∞
∞

≤ C
1 +

√
t

t
sup

0<s<t

√
s‖~w(n)‖∞( sup

0<s<t

√
s‖~u(n)‖∞+ sup

0<s<t

√
s‖~u(n+1)‖∞)

Finally, we get that

(66) βn+1 ≤ C(1 +
√
T )(δn+1 +

√
δn+1βn(Bn +Bn+1))
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and thus

(67) βn+1 ≤ C(1 +
√
T )(δn+1 +

√√√√δn+1βn(B0 +
n∑

p=0

βp)).

We then conclude the proof by using Lemma 1.

4 Regularity of the solution.

It is well known that the solutions of the Navier–Stokes equations which be-
long to C([0, T ], (L3(R3))3 are indeed smooth on (0, T ]. This regularity is first
established in the space variable, then extended to the time variable by differ-
entiating the equations. In the case of the Picard-Duhamel iterates, this can
be seen very easily :

Theorem 3
Let ~u0 ∈ (L3(R3))3 with ~∇.~u0 = 0. Let the sequence ~u(n) be defined by

(68) ~u(0) = et∆~u0 and ~u(n+1) = et∆~u0 −B(~u(n), ~u(n))

and the sequence ~w(n) by

(69) ~w(n) = ~u(n+1) − ~u(n).

Let T ∈ (0,+∞) and σ > 0. Then the following assertions are equivalent :

(70)
∑
n∈N

sup
0<t<T

‖~w(n)(t, .)‖3 <∞

(71)
∑
n∈N

sup
0<t<T

t
1+σ

2 ‖~w(n)(t, .)‖Bσ,∞
∞ <∞

Proof : We shall use the well-known inequality

(72) ‖fg‖Bτ,∞
∞ ≤ Cτ‖f‖Bτ,∞

∞ ‖g‖∞ + ‖f‖∞‖g‖Bτ,∞
∞

for τ > 0 (which is easily checked by using the decomposition of the products
into paraproducts). If max(0, σ − 1) < τ < σ, we get
(73)

‖
t∫

t/2

e(t−s)∆P~∇. ~f⊗~g ds‖Bσ,∞
∞ ≤ C(1+t)t

τ+1−σ
2 sup

t/2<s<t
(‖f‖Bτ,∞

∞ ‖g‖∞+‖f‖∞‖g‖Bτ,∞
∞ )
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(more precisely, the high frequency term ‖(Id−S0)
∫ t
t/2 e

(t−s)∆P~∇. ~f⊗~g ds‖Bσ,∞
∞ ‖B1,∞

∞

is controled by t
τ+1−σ

2 supt/2<s<t(‖f‖Bτ,∞
∞ ‖g‖∞+‖f‖∞‖g‖Bτ,∞

∞ )‖∞ uniformly in

t, while, on the other hand, the low frequency term ‖S0

∫ t
t/2 e

(t−s)∆P~∇. ~f ⊗
~g ds‖Bσ,∞

∞ ‖B1,∞
∞

is controled by
√
t supt/2<s<t(‖f‖Bτ,∞

∞ ‖g‖∞+‖f‖∞‖g‖Bτ,∞
∞ )‖∞

uniformly in t; of course, we have
√
t+ t

τ+1−σ
2 ≤ C(1 + t)t

τ+1−σ
2 for all t > 0).

We have the interpolation inequality

(74) ‖f‖Bτ,∞
∞ ≤ ‖f‖1− τ

σ∞ ‖f‖
τ
σ

Bσ,∞
∞
.

We then define :

(75) αn = sup
0<t<T

√
t‖~w(n)‖∞, An = sup

0<t<T

√
t‖~u(n)‖∞,

and

(76) βn = sup
0<t<T

t
1+σ

2 ‖~w(n)‖Bσ,∞
∞ , Bn = sup

0<t<T
t

1+σ
2 ‖~u(n)‖Bσ,∞

∞ .

We write again

(77) ~w(n+1)(t, .) = e
t
2
∆ ~w(n+1)(t/2, .) + ~v(n)(t, .)

where

(78) ~v(n)(t, .) = −

t
2∫

0

e(
t
2
−s)∆P~∇.V (n)(t/2 + s, .) ds

and

(79) V (n) = ~u(n) ⊗ ~w(n) + ~w(n) ⊗ ~u(n+1).

We then find (using (73) and (74))
(80)

βn+1 ≤ Cαn+1 + C(1 + T )((An + An+1)α
1− τ

σ
n β

τ
σ
n + αn(A

1− τ
σ

n B
τ
σ
n + A

1− τ
σ

n+1B
τ
σ
n+1))

If A = A0 +
∑∞

p=0 αp, we find

(81) βn+1 ≤ Cαn+1 + C(1 + T )(Aα
1− τ

σ
n β

τ
σ
n + αnA

1− τ
σ (B0 +

n∑
p=0

βp)
τ
σ )

and we conclude (through the Young inequality) :

(82) βn+1 ≤ Cαn+1 +
1

2
βn +C(A(1 + T ))

σ
σ−τ αn +

1

2
αn(B0 +

n∑
p=0

βp) +CAαn

which is enough to grant (as in Lemma 1) that the convergence of
∑

n αn

implies the convergence of
∑

n βn. Thus, we have proved that (70) ⇒ (71).
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To prove the converse, we use Kato’s theorem to get that, for some small
δ > 0, we have

(83)
∞∑

n=0

sup
0<t<δ

√
t‖~w(n)(t, .)‖∞ <∞

and we use the embedding Bσ,∞
∞ ⊂ L∞ (for σ > 0) to get

(84) αn ≤ sup
0<t<δ

√
t‖~w(n)(t, .)‖∞ + Cδ−σ/2βn

which is enough to conclude that the convergence of
∑

n βn implies the con-
vergence of

∑
n αn.

5 Serrin’s exponents.

Serrin’s theorems on uniqueness or regularity of weak solutions deals with a
solution ~u which is Lp

tL
q
x with 2/p+3/q = 1 [14]. When ~u is a mild solution on

[0, T ] associated to ~u0 ∈ (L3)3, then ~u ∈ (Lp([0, T ], Lq)3 for 2/p+ 3/q = 1 and
p ≥ 3; the fluctuation ~w = ~u−et∆~u0 belongs to (Lp([0, T ], Lq)3 for 2/p+3/q = 1
(and p ≥ 2)(for a discussion of the regularity of the fluctuation, see [15]).

This can be checked directly on the Picard–Duhamel iterates :

Theorem 4
Let ~u0 ∈ (L3(R3))3 with ~∇.~u0 = 0. Let the sequence ~u(n) be defined by

(85) ~u(0) = et∆~u0 and ~u(n+1) = et∆~u0 −B(~u(n), ~u(n))

and the sequence ~w(n) by

(86) ~w(n) = ~u(n+1) − ~u(n).

Let T ∈ (0,+∞] and p, q such that p ≥ 2 and 2/p + 3/q = 1. Then the
following assertions are equivalent :

(87)
∑
n∈N

sup
0<t<T

‖~w(n)(t, .)‖3 <∞

(88)
∑
n∈N

‖~w(n)‖Lp((0,T ),Lq) <∞

13



Proof : From the Bernstein inequalities, we get the following embeddings for
2/p+ 3/q = 1 and p ≥ 3 :

(89) L3 ⊂ Ḃ0,3
3 ⊂ Ḃ3/q−1,3

q ⊂ Ḃ−2/p,p
q

and thus

(90) ‖et∆f‖Lp((0,+∞),Lq) ≤ C‖f‖3

If 3 ≤ p < ∞, 2/p + 3/q = 1, 1/q = 1/r − 1/3, we use the LpLq maximal
regularity of the heat kernel to get

(91) ‖
t∫

0

e(t−s)∆
√
−∆F (s, .) ds‖Lp((0,T ),Lq) ≤ C‖F‖Lp((0,T ),Lr)

and thus
(92)

‖B(~f,~g)‖Lp((0,T ),Lq) ≤ C

√
sup

0<t<T
‖~f‖3 ‖~f‖Lp((0,T ),Lq) sup

0<t<T
‖~g‖3 ‖~g‖Lp((0,T ),Lq)

In the same way as for proving Theorem 1, we then write
(93)
~w(n+1) = B(~u(n), ~u(n))−B(~u(n+1), ~u(n+1)) = −B(~u(n), ~w(n))−B(~w(n), ~u(n+1))

We define :

(94) αn = sup
0<t<T

‖~w(n)‖3, An = sup
0<t<T

‖~u(n)‖3

and

(95) βn = ‖~w(n)‖Lp((0,T ),Lq), Bn = ‖~u(n)‖Lp((0,T ),Lq).

From (92), we get

(96) βn+1 ≤ C
√
αn

√
β

n
(
√
AnBn +

√
An+1Bn+1)

and thus

(97) βn+1 ≤ C
√
αn

√
β

n

√√√√A0 +
n∑

p=0

αp

√√√√B0 +
n∑

p=0

βp.

Due to Lemma 1, we may conclude that the convergence (87) implies the
convergence (88) when p ≥ 3.

Now, we prove the convergence (88) for 2 ≤ p < 3. It is enough to prove it for

14



p = 2, since we have, for 2 < p <∞ and 2/p+ 3/q = 1,
(98)

‖f‖Lp((0,T ),Lq) ≤ ( sup
0<t<T

‖f‖3)
3/q ‖f‖1−3/q

L2((0,T ),L∞) ≤
3

q
sup

0<t<T
‖f‖3+

q − 3

q
‖f‖L2L∞ .

We use the LrLs maximal regularity for r = 3/2 and s = 9/2 and for r = 3
and s = 9/4 and we find

(99) ‖
√
−∆B(~f,~g)‖L3/2((0,T ),L9/2) ≤ C‖~f‖L3((0,T ),L9)‖~g‖L3((0,T ),L9)

and

(100) ‖
√
−∆B(~f,~g)‖L3((0,T ),L9/4) ≤ C‖~f‖L3((0,T ),L9) sup

0<t<T
‖~g‖3.

We use the inequality
(101)

‖f‖∞ ≤ C‖f‖
Ḃ

2/3,1

9/2

≤ C ′‖f‖1/2

Ḃ1,∞
9/2

‖f‖1/2

Ḃ
1/3,∞
9/2

≤ C ′′‖
√
−∆f‖1/2

9/2‖
√
−∆f‖1/2

9/4

and thus

(102) ‖B(~f,~g)‖L2((0,T ),L∞) ≤ C‖~f‖L3((0,T ),L9)

√
‖~g‖L3((0,T ),L9) sup

0<t<T
‖~g‖3.

Thus, if we define :

(103) αn = sup
0<t<T

‖~w(n)‖3, An = sup
0<t<T

‖~u(n)‖3,

(104) βn = ‖~w(n)‖L3((0,T ),L9), Bn = ‖~u(n)‖L3((0,T ),L9).

and

(105) γn = ‖~w(n)‖L2((0,T ),L∞),

we find from (93) and (102)

(106) γ0 ≤ CB
3/2
0 A

1/2
0 and γn+1 ≤ C(Bn

√
αnβn + βn

√
An+1Bn+1)

so that the convergence of
∑

n αn (and, hence, of
∑

n βn) implies the conver-
gence of

∑
n γn.

We now prove the converse. We first notice that, for 1/r + 3/(2σ) = 1 and
f ∈ Lr((0, T ), Lσ), we have

(107) sup
0<t<T

‖
t∫

0

e(t−s)∆
√
−∆f(s, .) ds‖Ḃ−1,∞

∞
≤ C‖f‖Lr((0,T ),Lσ).
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This is checked by using the Littlewood–Paley decomposition : we write
(108)

‖∆j

t∫
0

e(t−s)∆
√
−∆f(s, .) ds‖∞ ≤ C

t∫
0

min(2j(1+ 3
σ

),
1

√
t− s

1+ 3
σ

)‖f(s, .)‖σ ds

and we conclude by checking (using the equality 1− 1/r = 3/(2σ) that

(109) (

t∫
0

min(2j(1+ 3
σ

),
1

√
t− s

1+ 3
σ

)
r

r−1 ds)
r−1

r ≤ C2j.

From (107), we get for 2/p+ 3/q = 1

(110) sup
0<t<T

‖
t∫

0

e(t−s)∆
√
−∆(fg) ds‖Ḃ−1,∞

∞
≤ C‖f‖Lp((0,T ),Lq)‖g‖Lp((0,T ),Lq)

and

(111) sup
0<t<T

‖
t∫

0

e(t−s)∆
√
−∆(fg) ds‖Ḃ−1,∞

∞
≤ C‖f‖Lp((0,T ),Lq) sup

0<t<T
‖g(t, .)‖3.

Now, we define :

(112) αn = ‖~w(n)‖Lp((0,T ),Lq), An = ‖~u(n) − et∆~u0‖Lp((0,T ),Lq),

and

(113) βn = sup
0<t<T

‖~w(n)‖Ḃ−1,∞
∞

.

From (93), (110) and (111), we get

(114) βn+1 ≤ Cαn(‖~u0‖3 + An) ≤ Cαn(‖~u0‖3 +
n∑

p=0

αp).

This proves the convergence of (87) (due to Theorem 2).

Remark : We used the norm of the homogeneous space Ḃ−1,∞
∞ and not

the norm of the inhomogeneous space B−1,∞
∞ as in Theorem 2, because we

wanted to include the value T = +∞ in the theorem. If we dealt with the
nonhomogeneous Besov space, we would find different exponents for t for the
low frequencies and the high frequencies (see formulas (64) and (73), for in-
stance. . . ), and we could not have results valid uniformly on (0,+∞).
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A Appendix : Besov spaces.

In this appendix, we recall some basic facts on Besov spaces we used through-
out the paper. Proofs and further references to Besov spaces can be found in
the book [6] (or in the books [16] [17] and [18]). First, we introduce the well-
known Littlewood–Paley decomposition of distributions into dyadic blocks of
frequencies :

Definition 1
Let ϕ0 ∈ D(R3) be a non-negative radial function such that |ξ| ≤ 1

2
⇒ ϕ0(ξ) =

1 and |ξ| ≥ 1 ⇒ ϕ0(ξ) = 0. Let ψ0 be defined as ψ0(ξ) = ϕ0(ξ/2)− ϕ0(ξ). Let
Sj and ∆j be defined as the Fourier multipliers F(Sjf) = ϕ0(ξ/2

j)Ff and
F(∆jf) = ψ0(ξ/2

j)Ff . The distribution ∆jf is called the j-th dyadic block of
the Littlewood–Paley decomposition of f .

For all N ∈ Z and all f ∈ S ′(R3) we have

(115) f = SNf +
∑
j≥N

∆jf in S ′(R3).

This equality is called the Littlewood–Paley decomposition of the distribution
f . If moreover limN→−∞ SNf = 0 in S ′, then the equality

(116) f =
∑
j∈Z

∆jf

is called the homogeneous Littlewood–Paley decomposition of f .

Then we define the Besov spaces Bs,p
q :

Definition 2
Let p, q ∈ [1,+∞] and s ∈ R.

a) The Besov space Bs,p
q (R3) is the Banach space of distributions f ∈ S ′(R3)

such that, for all j ∈ N Sjf ∈ Lp and such that (2js‖∆jf)j∈N ∈ lq, normed
with

(117) ‖f‖Bs,p
q

= ‖S0f‖p + (
+∞∑
j=0

2jsq‖∆jf‖q
p)

1/q.

b) For s < 3/p, the homogeneous Besov space Ḃs,p
q (R3) is the Banach space of
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distributions f ∈ S ′(R3) such that f =
∑

j∈Z ∆jf in S ′(R3)and such that , for
all j ∈ Z, ∆jf ∈ Lp with (2js‖∆jf)j∈Z ∈ lq, normed with

(118) ‖f‖Ḃs,p
q

= (
+∞∑

j=−∞
2jsq‖∆jf‖q

p)
1/q.

We have the obvious embeddings

(119) Bs,p
q ⊂ Ḃs,p

q for 0 < s < 3/p and Ḃs,p
q ⊂ Bs,p

q for s < 0

and

(120) for 1 ≤ q1 ≤ q2 ≤ +∞, Bs,p
q1
⊂ Bs,p

q2
and Ḃs,p

q1
⊂ Ḃs,p

q2
.

An important result of harmonic analysis states that

(121) for 1 < p < +∞, Ḃ0,p
min(p,2) ⊂ Lp ⊂ Ḃ0,p

max(p,2).

The Bernstein inequalities on Lp norms state that there exists constants Cp1,p2

for 1 ≤ p1 ≤ p2 ≤ +∞ such that

(122) for j ∈ Z and for f ∈ S ′(R3), ‖Sjf‖p2 ≤ Cp1,p22
3j( 1

p1
− 1

p2
)‖Sjf‖p1

which implies that, for 1 ≤ q ≤ +∞ and s ∈ R,
(123)

for 1 ≤ p1 ≤ p2 ≤ +∞, Bs,p1
q ⊂ B

s−3( 1
p1
− 1

p2
),p2

q and Ḃs,p1
q ⊂ Ḃ

s−3( 1
p1
− 1

p2
),p2

q .

The Bernstein inequalities on derivatives state that there exists constants Cα

for α ∈ N3 such that
(124)

for j ∈ Z, 1 ≤ p ≤ ∞ and for f ∈ S ′(R3), ‖ ∂
α

∂xα
Sjf‖p ≤ Cα2j|α|‖Sjf‖p

which implies that ∂α

∂xα is a bounded map from Bs,p
q to Bs−|α|,p

q and from Ḃs,p
q

to Ḃs−|α|,p
q . Similarly, we find that ∂α

∂xα is a bounded map from L∞ to Ḃ−|α|,∞
∞ .

The Riesz transforms operate boundedly on the dyadic blocks : there exists a
constant C0 and constants Cp for 1 < p < +∞ such that, for all j ∈ Z and all
f ∈ S ′(R3), for k = 1, . . . , 3

(125) for 1 < p < +∞, ‖RkSjf‖p ≤ Cp‖Sjf‖p

and

(126) for 1 ≤ p ≤ +∞, ‖Rk∆jf‖p ≤ C0‖∆jf‖p.
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In particular, we see easily that the operator P~∇. is bounded from (L∞)3×3 to
(B−1,∞

∞ )3.

An useful criterion to check whether a distribution f belongs to a Besov space
is the following one : if s > 0, 1 ≤ p ≤ +∞ and 1 ≤ q ≤ +∞, f =

∑
j∈N fj

where the Fourier transforms f̂j are supported in balls B(0, C2j) (where C
doesn’t depend on j) and if (2js‖fj‖p)j∈N ∈ lq, then f belongs to Bs,p

q . A
similar criterion holds for all s ∈ R, if we request that, for j > 0, the Fourier
transforms f̂j are supported in coronas {ξ ∈ R3 / γ2j ≤ ‖ξ‖ ≤ C2j} (where
γ > 0 doesn’t depend on j). Due to this criterion, one is lead to split a product
fg = (S0f+

∑
j∈Z ∆jf)(S0g+

∑
j∈Z ∆jg) into pieces well localized in frequency

(126) fg = π(f, g) + π(g, f) +R(f, g)

where the paraproduct π(f, g) contains the terms whose frequency is deter-
mined mainly by g

(127) π(f, g) =
+∞∑
j=2

Sj−2f∆jg,

the paraproduct π(g, f) similarly contains the terms whose frequency is de-
termined mainly by f and R(f, g) is the remainder

(128) R(f, g) = S0fS2g + ∆0fS3g + ∆1fS4g +
+∞∑
j=2

+2∑
l=−2

∆jf∆j+lg.

This decomposition and the criterion allows one to check very easily the well-
known inequality

(129) ‖fg‖Bs,p
q
≤ Cs,p,q(‖f‖Bs,p

q
‖g‖∞ + ‖f‖∞‖g‖Bs,p

q
)

for s > 0, 1 ≤ p ≤ +∞ and 1 ≤ q ≤ +∞.

Besov spaces may be characterized through the heat kernel :

Lemma 2
Let 1 ≤ p ≤ +∞, 1 ≤ q ≤ +∞ and s < 0.

a) Let T > 0. f ∈ S ′(R3) belongs to Bs,p
q (R3) if and only if et∆f ∈ Lp for

all t > 0 and t|s|/2‖et∆f‖p ∈ Lq((0, T ), dt
t
). Moreover, the norm of Bs,p

q is

equivalent to the norm ‖eT∆f‖p + (
∫ T
0 tq|s|‖et∆‖q

p
dt
t
)1/q.

b) f ∈ S ′(R3) belongs to Ḃs,p
q (R3) if and only if et∆f ∈ Lp for all t > 0 and

t|s|/2‖et∆f‖p ∈ Lq((0,∞), dt
t
). The norm of Ḃs,p

q is equivalent to (
∫ +∞
0 tq|s|‖et∆‖q

p
dt
t
)1/q.
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Stokes, Comptes Rendus Math. 336 (2003), pp. 731–734.

[12] H. KOZONO & H. SOHR, Regularity criterion on weak solutions to the
Navier–Stokes equations, Adv. Differential Eq. 2 (1997), pp. 535–554.

[13] H. KOZONO & Y. SHIMADA, Bilinear estimates in homogeneous Triebel–

20



Lizorkin spaces and the Navier–Stokes equations, Math. Nachr. 276 (2004),
pp. 63–74.

[14] SERRIN, J. On the interior regularity of weak solutions of the Navier–
Stokes equations, Arch. Rat. Mech. Anal.. 9 (1962), pp. 187–195.

[15] CANNONE, M. & PLANCHON, F., On the regularity of the bilinear
term for solutions to the incompressible Navier–Stokes equations, Revista Mat.
Iberoamer. 16 (2000) pp. 1–16.
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