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Tunis, 2092 Tunisia
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1. Introduction

Given two multiresolution analyses Vj(R) and V ∗j (R), the following asser-
tions are equivalent:

L2(R) = V0(R)⊕ (V ∗0 (R))⊥. (1.1)

There is a bounded projection operator P0 on L2(R) such that

RanP0 = V0(R) and KerP0 = (V ∗0 (R))⊥. (1.2)

There are scaling functions ϕ for (Vj(R)) and ϕ∗ for (V ∗j (R)) such that

〈ϕ(x)|ϕ∗(x− k)〉 = δk,0. (1.3)

There are scaling filters m0 for (Vj(R)) and m∗0 for (V ∗j (R)) such that

m0(ξ)m̄∗0(ξ) +m0(ξ + π)m̄∗0(ξ + π) = 1. (1.4)

We then speak of biorthogonal multiresolution analysis introduced by J.C.
Feauveau [18] and developed by A. Cohen et al. [9].

Moreover to the dual scaling functions ϕ, ϕ∗ (with associated filtersm0,m
∗
0)

we may associate dual wavelets ψ, ψ∗ defined by

ψ̂(ξ) = e−i
ξ
2 m̄∗0(

ξ

2
+ π)ϕ̂(

ξ

2
+ π)ϕ̂(

ξ

2
) (1.5)

and

ψ̂∗(ξ) = e−i
ξ
2 m̄0(

ξ

2
+ π)ϕ̂∗(

ξ

2
). (1.6)

The functions ψ(x − k), k ∈ Z, are then a Riesz basis for the wavelet space
W0(R) = V1(R) ∩ (V ∗0 (R))⊥ and the functions ψ∗(x − k), k ∈ Z, are a Riesz
basis for the dual wavelet space W ∗

0 (R) = V ∗1 (R) ∩ (V0(R))⊥ such that

〈ψ(x)|ψ∗(x− k)〉 = δk,0. (1.7)

As usual, we define ψj,k and ψ∗j,k for j ∈ Z and k ∈ Z by

ψj,k(x) = 2j/2ψ(2jx− k) (1.8)

and
ψ∗j,k(x) = 2j/2ψ∗(2jx− k). (1.9)
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We have of course the biorthogonality relationship

〈ψj,k|ψ∗`,p〉 = δj,`δk,p. (1.10)

The construction of biorthogonal wavelet bases has been considered by
many researchers ([8], [9], [14], [19], [20], [21] and [22]). The Biorthogonal
formalism is favored for operator equations in practical computations and
allows a commutation property between scale projectors and derivation [24].

We cannot define in the same way multiresolution analyses on general
bounded domains or manifolds. The problem is that, in bounded domains,
classical invariance by dilation and translation are preserved for dilation, on
the other hand they lost in part their meaning for translation.

The search for wavelet bases on bounded domains and more complicated
manifolds has been an active field for many years, since the 90’s. Several
approaches have been explored in wavelet literature. The first approach is
the direct method which is based on the usual tensor product of wavelets on
the interval and restrictions of integer shifts of scaling functions and wavelets
to the domain ([4], [5], [21], [23], [28], [29] and [31]). The second approach is
the decomposition method. It was introduced by Z. Ciesielski and T. Figiel
in 1982 ([6] and [7]) to construct spline bases of generalized Sobolev spaces
W k
p (M) (k ∈ Z and 1 < p < ∞) where M is a compact Riemannian man-

ifold. This method is based on wavelets on a unit cube by taking tensor
products of wavelets on the interval and writing the domain or manifold as a
disjoint union of parametric images of this cube. This construction satisfies
the lifting scheme which is simply a linear transformation of the wavelets
[31]. The third approach uses a multilevel decomposition of finite element
spaces. This approach can be more tempting if one wants to combine wavelet
properties with the structural simplicity of finite element spaces.

It is clear that the constructions of wavelet bases on bounded domains
are related to wavelets on the interval. The problem of existence of an or-
thonormal basis of L2([0, 1]) allowing the characterization of Cs([0, 1]) and
having simple algorithms was treated by Y. Meyer [28]. There are related
constructions of wavelets on the interval as well by P. Auscher [2], A. Cohen
et al. in 1992 [10]. All these constructions are based on Meyer’s work and
gave a polynomial extension outside the interval. In 1993, A. Jouini and P.G.
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Lemarié-Rieusset [21] defined a multiresolution analysis on the interval and
introduced new associated wavelet spaces.

In 1992, A. Jouini et al. [22] used the decomposition approach to con-
struct on a two-dimensional open bounded set biorthogonal wavelet bases
adapted for the study of Sobolev spaces H1 and H1

0 . This approach was
used again in 1999 by A. Cohen and R. Schneider [15] to construct biorthog-

onal wavelet bases (ψλ, ψ̃λ)λ∈∇ of L2(Ω) where Ω is a bounded domain of
Rd (d ∈ N); these bases were shown to be bases of Sobolev spaces Hs(Ω)
for −1

2
< s < 3

2
. There are related constructions as well by C. Canuto and

coworkers in [3] and by R. Masson in [27]. In 2003, A. Jouini and P.G.
Lemarié-Rieusset [23] studied the L-shaped domain L. They used the di-
rect approach to construct orthogonal wavelet bases and the decomposition
method to construct biorthogonal wavelet bases. These bases have simple
expressions and the specific geometry of the domain allows to get higher
regularity namely the study of the Sobolev spaces Hk(L) (k ∈ Z). This
construction turns out to be well adapted to the wavelet setting due to the
simple geometry of the L-Shaped domain. In 2007, A. Jouini and M. Kra-
tou [20] used the decomposition method to construct biorthogonal wavelets
on a compact Riemannian manifold with dimension n. These bases were
also adapted for the study of the Sobolev spaces H1 and H1

0 . Recently (in
2011), N. Ajmi, A. Jouini and P.G. Lemarié-Rieusset [1] constructed two or-
thonormal multiresolution analyses on the triangle ∆. In the first one, they
described a direct method to define an orthonormal multiresolution analysis
which is adapted for the study of the Sobolev spaces Hs

0(∆) (s ∈ N). In the
second one, they added boundary conditions for constructing an orthonormal
multiresolution analysis which is adapted for the study of the Sobolev spaces
Hs(∆) (s ∈ N). The associated wavelets preserve the original regularity and
are easy to implement.

The decomposition approach turns out to have principal limitations and
it does not induce Sobolev Spaces Hs when |s| ≥ 3/2. The basic difficulty
is that function spaces on general bounded domains or compact Riemannian
manifolds are usually defined in terms of open covering and associated charts,
not in terms of partitions of the manifold. Moreover, more regular spaces
are more complicated to consider since regularity is directly related to the
size of the support. The idea of considering overlapping functions does not
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work since quite small overlapping domains cause several stability problems,
in particular in the orthonormal process. Finally, there are not general cri-
teria available in wavelet theory that tell under which conditions one has
uniform estimates and norm equivalences on bounded domains or manifolds
with specific geometry. In particular, we do not have on the triangle regular
biorthogonal wavelet bases which have compact support, give uniform esti-
mates and are easy to implement.

The other approaches described in wavelet literature as decomposition
method or the tensorization of Meyer’s Lemma cause problems in computa-
tion or implementation. The first one gives complicated wavelets defined as
charts with a limitation in regularity and the second one gives only a generat-
ing system which is not independent in the case of a triangle. Then, we have
more coefficients in numerical analysis defined as stability constants and the
functions are not located near the borders. The direct method used in this
paper constitutes a very important method for the study of many problems
of mathematics and physics because we have the exact number of wavelets
which have many applications as computation and numerical simulation for
elliptic problems or image processing (see [25] and [26]) and we give a good
description of scaling functions and associated wavelets specially near the
boundaries. The biorthogonal formalism gives a great flexibility and it is
easy to implement. Such a construction has unfolded their full computation
efficiently in numerical and applied analysis. The non linear approximation
is an important concept to adaptative approximation and the properties of
the present wavelet bases provide a rigorous analysis for dynamical systems.
More precisely, this paper is concerned with constructions in an elementary
way of biorthogonal wavelet bases on a triangle . These constructions are
based on the usual tensor product of the orthogonal scaling functions and
wavelets of I. Daubechies [16]. The bases constructed here are regular, have
compact support and allow fast algorithms. Moreover, they are adapted
for the study of some important functional spaces in numerical analysis as
Sobolev spaces.

Section 2 is devoted to the description of biorthogonal multiresolution
analyses Vj(I) and V ∗j (I) on the interval I. These analyses will be useful for
the remainder of the work.

In section 3, we define and study wavelet bases on the interval. Our
construction is based on Meyer’s Lemma (Lemma 3.1). This construction is
very important to realize the main goal of this paper.
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In section 4, we shall use a direct method based on the results A. Jouini
and P.G. Lemarié-Rieusset ([21] and [23]) to define a biorthogonal multires-
olution analysis (Vj(∆), V ∗j (∆)) on a triangle ∆.

In section 5, we study and construct the associated wavelet bases on
the triangle ∆. This construction is complicated and technical due to the
geometry of the triangle. In the first part, we study two particular cases
(N = 1 and N = 2). These examples permit to illustrate the constructions
of wavelet bases of this paper and to explain clearly the central problem
between the tensor product and the geometry of the domain. In the second
part, we give a description of the wavelet spaces.

In the last section, we prove some regularity results which give uniform
estimates for extension operators on the scaling spaces. These results are
very important to characterize regular spaces namely Sobolev spaces Hs(∆)
and Hs

0(∆)(s ∈ N) in terms of discrete norm equivalences.

We recall that all bases constructed in this work have compact support
and the same regularity as for Daubechies bases [16].

NOTATIONS. We denote by
-MRA : Multiresolution analysis
-OMRA : Orthogonal multiresolution analysis
-BMRA : Biorthogonal multiresolution analysis.

2. The spaces Vj(I) and V ∗
j (I)

We start from the orthogonal multiresolution (Vj(R)) of I. Daubechies,
having some Sobolev regularity HsN with sN = (1− ln3/ln4)N + o(N) and
spanned by dilates and translates at scale 2j of a scaling function ϕ with
compact support equal to [0, 2N − 1].

Y. Meyer [28] showed that the restrictions to the interval [0, 1] of the
scaling functions ϕj,k, −2N + 2 ≤ k ≤ 2j − 1, constitute a basis of a mul-
tiresolution analysis, noted Vj([0, 1]). More precisely, we have the following
Lemma.

lemma 2.1. Let j0 be the smallest integer satisfying 2j0 ≥ 4N − 4. Then,
for j ≥ j0, the functions ϕj,k/[0,1], 2− 2N ≤ k ≤ 2j − 1, form a Riesz basis
of Vj([0, 1]).
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We denote by vj([0, 1]) the space generated by the functions ϕj,k with
support being completely contained in [0,1]. A. Jouini and P.G. Lemarié-
Rieusset [21] defined a multiresolution analysis on the interval as the follow-
ing.

Definition 2.1. A sequence {Vj}j≥j0 of closed subspaces of L2([0, 1]) is
called a multiresolution analysis on L2([0, 1]) associated with Vj(R) if we
have
i) ∀j ≥ j0, vj([0, 1]) ⊂ Vj ⊂ Vj([0, 1]).
ii) ∀j ≥ j0, Vj ⊂ Vj+1.

Remark 2.1. If I is a bounded interval of R the space Vj(I) is defined as
the space of restrictions to I of elements of Vj(R). More precisely, we may
keep only the indexes k such that (2−jk, 2−j(k + 2N − 1)) ∩ I 6= ∅.

In the general case of Remark 2.1, we have the following results from [23].

lemma 2.2. Let I = [α, β]. For j ∈ Z, let αj the smallest integer which is
greater than 2jα − 2N + 1 and let βj the greatest integer which is smaller
than 2jβ. The functions (ϕj,k)/I , αj ≤ k ≤ βj are linearly independent, and
thus they are a basis for Vj(I).

lemma 2.3. Under the assumptions of Lemma 2.2, there exists a constant
c(j, I) such that for all sequences (λk)αj≤k≤βj we have the inequality

c(j, I)
∑

αj≤k≤βj

|λk|2 ≤
∫ β

α

|
∑
k∈Z2

λkϕj,k|2dx ≤
∑

αj≤k≤βj

|λk|2. (2.2)

If α or β is not a dyadic number, we may have lim infj→+∞c(j, I) = 0: we

have c(j, I) ≤ min(
∫ 2−jαj
α

|ϕ|2dx,
∫ β

2−jβj
|ϕ|2dx). On the other hand, when α

and β are dyadic numbers, c(j, I) does not depend on j when j is big enough.

Definition 2.2. Let ϕ be a compactly supported orthonormal scaling func-
tion with support [0, 2N − 1]. The associated Meyer border functions are
defined in the following way:

i) [left border functions] for 1 ≤ p ≤ 2N − 2, the functions ϕ
[l]
p belong to

the linear span of the functions ϕ(x−k)|(0,+∞) with −2N +2 ≤ k ≤ −1

and satisfy

∫ ∞
0

ϕ(x− k)ϕ[l]
p (x)dx = δk,−p.
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ii) [right border functions] for 1 ≤ p ≤ 2N −2, the functions ϕ
[r]
p belong to

the linear span of the functions ϕ(x−k)|(−∞,0) with −2N +2 ≤ k ≤ −1

and satisfy

∫ 0

−∞
ϕ(x− k)ϕ[r]

p (x)dx = δk,−p.

We have from [21] the following definition of biorthogonal multiresolution
analysis on the interval.

Definition 2.3. A sequence (Vj, V
∗
j ) of closed subspaces of L2([0, 1]) associ-

ated with a biorthogonal multiresolution analysis (Vj(R), V ∗j (R)) of L2(R) is
called a biorthogonal multiresolution analysis of L2([0, 1]) if
i) vj([0, 1]) ⊂ Vj ⊂ Vj([0, 1]) and v∗j ([0, 1]) ⊂ V ∗j ⊂ V ∗j ([0, 1]).
ii) Vj ⊂ Vj+1 and V ∗j ⊂ V ∗j+1.
iii) L2([0, 1]) = Vj ⊕ (V ∗j )⊥.

Proposition 2.1. We denote by (ϕ∗(j,k))αj≤k≤βj the dual system of the basis

(ϕ(j,k))αj≤k≤βj . If α and β are dyadic numbers and if moreover j0 is the
smallest integer j such that 2jα and 2jβ belong to Z and 2j(β−α) ≥ 2N−1,
then for j ≥ j0 we have αj = 2jα− 2N + 2 and βj = 2jβ − 1, and

i) [interior functions] for 2jα ≤ k ≤ 2jβ − 2N + 1, we have ϕ∗(j,k) =
ϕ(j,k) = ϕj,k

ii) [left border functions] for 2jα− 2N + 2 ≤ k ≤ 2jα− 1, k = 2jα− p, we

have ϕ∗(j,k)(x) = 2j/2ϕ
[l]
p (2j(x− α))

iii) [right border functions] for 2jβ − 2N + 2 ≤ k ≤ 2jβ − 1, k = 2jβ − p,

we have ϕ∗(j,k)(x) = 2j/2ϕ
[r]
p (2j(x−β)). In particular , c(j, I) = c(j0, I).

Thus the functions (ϕ∗(j,k))αj≤k≤βj are a basis for V ∗j (I).

3. Wavelet bases on the interval

The construction of wavelet bases on the interval has been extensively
discussed in wavelet literature (see [4], [10] and [21]). All these constructions
started from the orthonormal multiresolution analysis of I. Daubechies or
spline bases.
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We start again from the orthogonal multiresolution (Vj(R)) of I. Daubechies.
The moments of the related wavelet ψ satisfy

∫
xkψ(x)dx = 0 for 0≤ k ≤

N−1. We normalize the wavelet ψ by taking its support equal to [0, 2N − 1].

Y. Meyer [28] showed that the complementary part of Vj([0, 1]) in Vj+1([0, 1]),
noted Wj([0, 1]), is automatically of dimension 2j. He proved that the restric-
tions of the extreme wavelets ψj,k, −2N + 2 ≤ k ≤ −N and 2j − 2N + 1 ≤
k ≤ 2j − 1 belong to Vj([0, 1]). Then, by omitting these functions, we obtain
a generating system of (2j+1 + 2N − 2) vectors of Vj+1([0, 1]), hence we have
the following Meyer’s Lemma.

lemma 3.1. Let j0 be the smallest integer satisfying 2j0 ≥ 4N − 4. Then,
for j ≥ j0, the functions ϕj,k/[0,1], 2 − 2N ≤ k ≤ 2j − 1, (which form a
Riesz basis of Vj([0, 1])) and the functions ψj,k/[0,1], −N + 1 ≤ k ≤ 2j − N,
constitute a Riesz basis for Vj+1([0, 1]).

Definition 3.1. Let ϕ be a compactly supported orthonormal scaling func-
tion with support [0, 2N − 1]. The associated Meyer border wavelets are de-
fined in the following way:

i) left border scaling functions the family (ϕ
{l}
p )1≤p≤2N−2 is the Gram-

Schmidt orthonormalization of the family (ϕ
[l]
p )1≤p≤2N−2.

ii) right border scaling functions the family (ϕ
{r}
p )1≤p≤2N−2 is the Gram-

Schmidt orthonormalization of the family (ϕ
[r]
p )1≤p≤2N−2.

iii) left border wavelets the family (ϕ
{l}
p )1≤p≤2N−2 ∪ (ψ

{l}
q )1≤q≤N−1 is the

Gram-Schmidt orthonormalization of the family (ϕ
[l]
p )1≤p≤2N−2∪(ψ(x+

q)|(0,+∞))1≤q≤N−1.

iv) right border wavelets the family (ϕ
{r}
p )1≤p≤2N−2 ∪ (ψ

{r}
q )1≤q≤N−1 is the

Gram-Schmidt orthormalization of the family (ϕ
[r]
p )1≤p≤2N−2−2∪(ψ(x−

2 +N + q)|(−∞,0))1≤q≤N−1.

Then, Meyer’s lemma reads as:

Proposition 3.1. Let j such that 2j ≥ 2N − 1. Then
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i) A Hilbertian basis for Vj((0, 1)) is given by the family (ϕ⊥j,k)−2N+2≤k≤2j−1,
with

• interior functions for 0 ≤ k ≤ 2j − 2N + 1, ϕ⊥j,k = ϕj,k

• left border functions for −2N + 2 ≤ k ≤ −1, k = −p, ϕ⊥j,k =

2j/2ϕ
{l}
p (2jx)

• right border functions for 2j−2N+2 ≤ k ≤ 2j−1, k = 2j−p, ϕ⊥j,k =

2j/2ϕ
{r}
p (2j(x− 1))

ii) A Hilbertian basis for Wj((0, 1)) is given by the family (ψ⊥j,k)−N+1≤k≤2j−N ,
with

• interior wavelets for 0 ≤ k ≤ 2j − 2N + 1, ψ⊥j,k = ψj,k

• left border wavelets for −N + 1 ≤ k ≤ −1, k = −q, ψ⊥j,k =

2j/2ψ
{l}
q (2jx)

• right border wavelets for 2j − 2N + 2 ≤ k ≤ 2j − N, k = 2j − N +
1− q, ψ⊥j,k = 2j/2ψ

{r}
p (2j(x− 1)).

A. Jouini and P.G. Lemarié-Rieusset [21] proposed a new wavelet space
Wj([0, 1]) by keeping the wavelets with support being completely contained
in [0,1] and replacing the collection of the wavelets on the borders 0 and 1.
We have the second important result from [21].

Proposition 3.2. Let j0 be the smallest integer satisfying 2j0 ≥ 4N − 4.
For j ≥ j0, we denote

Xj = Vect {ψj,k, 0 ≤ k ≤ 2j − 2N + 1;ϕj+1,2k+1,

0 ≤ k ≤ N − 2;ϕj+1,2k, 2
j − 2N + 2 ≤ k ≤ 2j −N}. (3.1)

Then
i) dimXj = 2j.
ii) There exists an integer J such that for every j ≥ J, Vj+1 = Vj ⊕Xj.

4. The spaces Vj(∆) and V ∗
j (∆)

Starting from the orthogonal multiresolution analysis of I. Daubechies, we
define Vj(R2) the multiresolution analysis associated to the separable scaling
function ϕ⊗ ϕ : Vj(R2) is the tensor product Vj(R2) = Vj(R)⊗̂Vj(R).
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The next domain we shall consider is the triangle ∆ = {(x, y) ∈ [−1, 1]×
[0, 1], y ≤ 1 − |x|}. In the following, we study a multiresolution analysis on
∆.

Definition 4.1. The space Vj(∆) is defined as the space of restrictions to ∆
of elements of Vj(R2).

We have an obvious generating family of Vj(∆).

Proposition 4.1. For 2j ≥ 4N − 4, Vj(∆) has the following basis: the
family ϕj,k1 ⊗ ϕj,k2/∆ with k1 = −2j − 2N + 2 + p, 0 ≤ p ≤ 2j − 2 and
−2N + 2 ≤ k2 ≤ p; the family ϕj,k1 ⊗ ϕj,k2/∆ with k1 = −2N + 1 + p,
0 ≤ p ≤ 2N − 1 and −2N + 2 ≤ k2 ≤ 2j − 1 and the family ϕj,k1 ⊗ ϕj,k2/∆
with k1 = 1 + p, 0 ≤ p ≤ 2j − 2 and −2N + 2 ≤ k2 ≤ 2j − 2− p.

It is clear that Lemma 2.1 and Lemma 2.2 prove that the system described
in Proposition 4.1 is linearly independent. If we look now at the supports of
these functions, we can split these families into the following sets:

i) interior functions: ϕj,k1 ⊗ ϕj,k2/∆ with −2j + 2N − 1 ≤ k1 ≤ −N and
0 ≤ k2 ≤ k1+2j−2N+1; ϕj,k1⊗ϕj,k2/∆ with −N+1 ≤ k1 ≤ 2j−4N+2
and 0 ≤ k2 ≤ −k1 + 2j − 4N + 2

ii) edge functions: ϕj,k1 ⊗ϕj,k2/∆ with −2j − 2N + 3 ≤ k1 ≤ −2j + 2N − 2
and 1 ≤ k2 ≤ k1 + 2j + 2N − 2; ϕj,k1 ⊗ ϕj,k2/∆ with −2j + 2N −
1 ≤ k1 ≤ 2j − 4N + 2 and 2 − 2N ≤ k2 ≤ −1; ϕj,k1 ⊗ ϕj,k2/∆ with
−2j+2N−1 ≤ k1 ≤ −2N and k1 +2j−2N+2 ≤ k2 ≤ k1 +2j+2N−2;
ϕj,k1 ⊗ ϕj,k2/∆ with −2N + 1 ≤ k1 ≤ −N − 1 and k1 + 2j − 2N + 2 ≤
k2 ≤ −k1 + 2j − 4N + 1; ϕj,k1 ⊗ ϕj,k2/∆ with −N + 2 ≤ k1 ≤ 0
and −k1 + 2j − 4N + 3 ≤ k2 ≤ k1 + 2j − 2N ; ϕj,k1 ⊗ ϕj,k2/∆ with
1 ≤ k1 ≤ 2j − 4N + 2 and −k1 + 2j − 4N + 3 ≤ k2 ≤ −k1 + 2j − 1;
ϕj,k1⊗ϕj,k2/∆ with 2j−4N+3 ≤ k1 ≤ 2j−2 and 1 ≤ k2 ≤ −k1 +2j−1

iii) exterior corner functions: ϕj,k1 ⊗ ϕj,k2/∆ with −2j − 2N + 2 ≤ k1 ≤
−2j + 2N − 2 and 2− 2N ≤ k2 ≤ 0; ϕj,k1 ⊗ϕj,k2/∆ with 2j − 4N + 3 ≤
k1 ≤ 2j − 1 and 2− 2N ≤ k2 ≤ 0

iv) interior corner functions: ϕj,k1 ⊗ϕj,k2/∆ with −2N + 1 ≤ k1 ≤ −N and
−k1 + 2j − 4N + 2 ≤ k2 ≤ 2j − 1; ϕj,k1 ⊗ϕj,k2/∆ with −N + 1 ≤ k1 ≤ 0
and k1 + 2j − 2N + 1 ≤ k2 ≤ 2j − 1.
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We define vj(∆) the space of elements of Vj(R2) with support in ∆. It is
clear that the interior functions described in i) form an orthonormal basis of
vj(∆) and we have Vj(∆) = vj(∆)⊕Xj(∆) where Xj(∆) is the space gener-
ated by the border functions (edge and corner functions) described above.

We shall now construct a space V ∗j (∆) which is in duality with Vj(∆) for
the scalar product on ∆. We remark at first that vj(∆) ⊂ V ∗j (∆). Then, it
is enough to construct a dual system of Xj(∆). The interior functions are
already orthogonal to Vj(∆) and orthonormal. We begin by the duality of the
edge functions. Then, we proceed to the dualization of the exterior corner
functions. Due to the control of the supports of the scaling functions involved
in those computations, we see in those computations the global geometry of
the open set and for each corner, the computations are the same as if we
were in the case of Lemma 2.2, and we find functions provided by tensor
products (more precisely, we find the corner elements of the tensor product
as in Proposition 2.1). Finally, we construct in the same way a dual system
of the interior corner functions. We get a dual space X∗j (∆) of Xj(∆). We
write V ∗j (∆) = (vj(∆)⊕X∗j (∆))∩Hs

0(∆). Then, we have the following result.

Proposition 4.2. For j such that 2j ≥ 4N−4, the spaces Vj(∆) and V ∗j (∆)
form a biorthogonal multiresolution analysis of L2(∆).

To simplify notations, we denote by φj,k1,k2/∆ the Riesz basis of Vj(∆)
and φ∗j,k1,k2 the Riesz basis of V ∗j (∆) where (k1, k2) ∈ Mj and cardMj =
dimVj(∆) = dimV ∗j (∆) = 22j + (6N − 5)2j + (2N − 2)2. All these functions
are regular (same regularity as Daubechies scale function). We denote by Pj
(resp P ∗j ) the projection operator on Vj(∆) (resp V ∗j (∆)) parallel to (V ∗j (∆))⊥

(resp (Vj(∆))⊥). Thus, we have:

Pjf =
∑

(k1,k2)∈Mj

< f/φ∗j,k1,k2 > φj,k1,k2/∆ (4.1)

and
P ∗j f =

∑
(k1,k2)∈Mj

< f/φj,k1,k2 >∆ φ∗j,k1,k2 (4.2)

where < f/g >∆=
∫

∆
fgdx.



N. Ajmi et al/ 13

5. The spaces Wj(∆) and W ∗
j (∆)

Recall first that wavelet spaces are given by Wj(∆) = Vj+1(∆)∩(V ∗j (∆))⊥

and W ∗
j (∆) = V ∗j+1(∆) ∩ (Vj(∆))⊥. The construction of wavelet spaces is

very technical and complicated in biorthogonal case. N. Ajmi, A. Jouini and
P.G. Lemarié-Rieusset [1] show the complexity of this construction even in
orthogonal case because the tensorization of Meyer’s Lemma (Lemma 3.1)
gives in our case only a generating system of Vj+1(∆) which is not linearly
independent. Moreover, the regularity of the bases is directly related to the
length of the support.
To explain this point, we study at first two particular cases (N = 1 and
N = 2). We consider the Haar basis (which corresponds to the case N =
1). Proposition 4.1 shows that Vj(∆) has the following basis: the family
ϕj,k1 ⊗ ϕj,k2/∆ with k1 = −2j + p, 0 ≤ p ≤ 2j − 1 and 0 ≤ k2 ≤ p and the
family ϕj,k1 ⊗ ϕj,k2/∆ with k1 = p, 0 ≤ p ≤ 2j − 1 and 0 ≤ k2 ≤ 2j − 1 − p.
We can split these families into the following sets:

i) interior functions: ϕj,k1 ⊗ ϕj,k2 with −2j + 1 ≤ k1 ≤ −1 and 0 ≤ k2 ≤
k1 + 2j−1; ϕj,k1⊗ϕj,k2 with 0 ≤ k1 ≤ 2j−2 and 0 ≤ k2 ≤ −k1 + 2j−2

ii) edge functions: ϕj,k1⊗ϕj,k2/∆ with −2j+1 ≤ k1 ≤ −2 and k2 = k1 +2j;
ϕj,k1 ⊗ ϕj,k2/∆ with 1 ≤ k1 ≤ 2j − 2 and k2 = 2j − 1− k1

iii) exterior corner functions: ϕj,k1 ⊗ ϕj,k2/∆ with k1 = −2j and k2 = 0;
ϕj,k1 ⊗ ϕj,k2/∆ with k1 = 2j − 1 and k2 = 0

iv) interior corner functions: ϕj,k1 ⊗ ϕj,k2/∆ with −1 ≤ k1 ≤ 0 and k2 =
2j − 1.

We have dimVj(∆) = 22j + 2j. We study now the space Wj(∆). The
construction of wavelets here is more simple due to small support of the
Haar basis. We have dimWj(∆) = 3× 22j + 2j. Let Xj(∆) be a supplement
of Vj(∆) into Vj+1(∆), then Xj(∆) has the following Riesz basis:

i) the family ϕj,k1 ⊗ ψj,k2/∆ with k1 = −2j + p, 0 ≤ k2 ≤ p and 0 ≤ p ≤
2j − 1 and the family ϕj,k1 ⊗ ψj,k2/∆ with k1 = p, 0 ≤ k2 ≤ 2j − p − 1
and 0 ≤ p ≤ 2j − 1

ii) the family ψj,k1 ⊗ ϕj,k2/∆ with k1 = −2j + p, 0 ≤ k2 ≤ p and 0 ≤ p ≤
2j − 1 and the family ψj,k1 ⊗ ϕj,k2/∆ with k1 = p, 0 ≤ k2 ≤ 2j − p− 1
and 0 ≤ p ≤ 2j − 1
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iii) the family ψj,k1 ⊗ ψj,k2/∆ with k1 = −2j + p, 0 ≤ k2 ≤ p − 1 and
the family ψj,k1 ⊗ ψj,k2/∆ with k1 = p − 1, 0 ≤ k2 ≤ 2j − p − 1 and
1 ≤ p ≤ 2j − 1.

We have exactly (3 × 22j + 2j) functions which are linearly independent
because the third collection has a support in the interior of ∆ and the bound-
ary functions are in the sets i) and ii). More precisely, We can split these
families into the following sets:

i) interior functions: ϕj,k1⊗ψj,k2 , ψj,k1⊗ϕj,k2 , ψj,k1⊗ψj,k2 with −2j+1 ≤
k1 ≤ −1 and 0 ≤ k2 ≤ k1 +2j−1; ϕj,k1⊗ψj,k2 , ψj,k1⊗ϕj,k2 , ψj,k1⊗ψj,k2
with 0 ≤ k1 ≤ 2j − 2 and 0 ≤ k2 ≤ −k1 + 2j − 2

ii) edge functions: ϕj,k1 ⊗ψj,k2/∆ , ψj,k1 ⊗ϕj,k2/∆, with −2j + 1 ≤ k1 ≤ −2
and k2 = k1 + 2j; ϕj,k1 ⊗ ψj,k2/∆ , ψj,k1 ⊗ ϕj,k2/∆ with 1 ≤ k1 ≤ 2j − 2
and k2 = 2j − 1− k1

iii) exterior corner functions: ϕj,k1 ⊗ψj,k2/∆ , ψj,k1 ⊗ϕj,k2/∆ with k1 = −2j

and k2 = 0; ϕj,k1 ⊗ ψj,k2/∆ , ψj,k1 ⊗ ϕj,k2/∆ with k1 = 2j − 1 and k2 = 0

iv) interior corner functions: ϕj,k1⊗ψj,k2/∆ , ψj,k1⊗ϕj,k2/∆ with −1 ≤ k1 ≤
0 and k2 = 2j − 1.

It remains to realize orthogonality for the scalar product of L2(∆) of the
(4x2j − 8) edge functions, the four exterior corner functions and the four
interior corner functions with V ∗j (∆) by using proposition 2.1. Then, we get
a nice basis for Wj(∆). Now, to construct a Riesz basis for the wavelet space
W ∗
j (∆), we consider interior wavelets described in i) (which are orthogonal)

and we add dual system of the 4x2j functions (edge functions, exterior corner
functions and interior corner functions) by using Proposition 3.1.

We study now the caseN = 2. It is clear that this case is more complicated
than the first one because the wavelets described in the third collection iii)
does not have a support in the interior of ∆. Proposition 4.1 shows that
Vj(∆) has the following basis : the family ϕj,k1 ⊗ ϕj,k2/∆ with k1 = −2j + p,
−2 ≤ p ≤ 2j − 4 and −2 ≤ k2 ≤ p + 2, the family ϕj,k1 ⊗ ϕj,k2/∆ with
−3 ≤ k1 ≤ 0 and −2 ≤ k2 ≤ 2j−1 and the family ϕj,k1⊗ϕj,k2/∆ with k1 = p,
1 ≤ p ≤ 2j−1 and −2 ≤ k2 ≤ 2j−1−p. We have dimVj(∆) = 22j+7×2j+4.
We describe now a basis of the associated space Wj(∆). The construction of
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wavelets here is different from the case of the Haar basis (N = 1). We have
dimWj(∆) = 3 × 22j + 7 × 2j. Let Xj(∆) be a supplement of Vj(∆) into
Vj+1(∆), then Xj(∆) has the following Riesz basis:

i) the family ϕj,k1 ⊗ ψj,k2/∆ with k1 = −2j + p, −1 ≤ k2 ≤ p + 1 and
−1 ≤ p ≤ 2j − 4, the family ϕj,k1 ⊗ ψj,k2/∆ with −3 ≤ k1 ≤ 0
and −1 ≤ k2 ≤ 2j − 2 and the family ϕj,k1 ⊗ ψj,k2/∆ with k1 = p,
−1 ≤ k2 ≤ 2j − p− 2 and 1 ≤ p ≤ 2j − 2

ii) the family ψj,k1 ⊗ ϕj,k2/∆ with k1 = −2j + p, −2 ≤ k2 ≤ p + 2 and
−1 ≤ p ≤ 2j − 4, the family ψj,k1 ⊗ ϕj,k2/∆ with −3 ≤ k1 ≤ 0 and
−2 ≤ k2 ≤ 2j−1 and the family ψj,k1⊗ϕj,k2/∆ with k1 = p, −2 ≤ k2 ≤
2j − 1− p and 1 ≤ p ≤ 2j − 2

iii) the family ψj,k1 ⊗ ψj,k2/∆ with k1 = −2j + p, 0 ≤ k2 ≤ p − 1 and
1 ≤ p ≤ 2j − 4, the family ψj,k1 ⊗ ψj,k2/∆ with −3 ≤ k1 ≤ 0 and
0 ≤ k2 ≤ 2j − 4, the family ψj,k1 ⊗ ψj,k2/∆ with k1 = p, 0 ≤ k2 ≤
2j − 4 − p and 1 ≤ p ≤ 2j − 4 and the family ψj,k1 ⊗ ψj,k2/∆ where
(k1, k2) ∈ {(−2j + 1,−1), (−2, 2j − 3), (−1, 2j − 3), (2j − 4,−1)}.

We have exactly (3×22j+7×2j) functions which are linearly independent
due to Lemma 3.1.We can split these families into the following sets:

i) interior functions: ϕj,k1⊗ψj,k2 , ψj,k1⊗ϕj,k2 , ψj,k1⊗ψj,k2 with −2j+3 ≤
k1 ≤ −2 and 0 ≤ k2 ≤ k1 +2j−3; ϕj,k1⊗ψj,k2 , ψj,k1⊗ϕj,k2 , ψj,k1⊗ψj,k2
with −1 ≤ k1 ≤ 2j − 6 and 0 ≤ k2 ≤ −k1 + 2j − 6

ii) edge functions: ϕj,k1 ⊗ ψj,k2/∆ with −2j ≤ k1 ≤ −2j + 2 and 1 ≤ k2 ≤
k1 + 2j + 1; ϕj,k1 ⊗ ψj,k2/∆ with −2j + 3 ≤ k1 ≤ 2j − 6 and k2 = −1;
ϕj,k1⊗ψj,k2/∆ with −2j+3 ≤ k1 ≤ −4 and k1 +2j−2 ≤ k2 ≤ k1 +2j+1;
ϕj,k1⊗ψj,k2/∆ with k1 = −3 and 2j−5 ≤ k2 ≤ 2j−4; ϕj,k1⊗ψj,k2/∆ with
k1 = 0 and 2j−5 ≤ k2 ≤ 2j−4; ϕj,k1⊗ψj,k2/∆ with 1 ≤ k1 ≤ 2j−6 and
−k1+2j−5 ≤ k2 ≤ −k1+2j−2; ϕj,k1⊗ψj,k2/∆ with 2j−5 ≤ k1 ≤ 2j−2
and 1 ≤ k2 ≤ −k1 + 2j − 2; ψj,k1 ⊗ϕj,k2/∆ with −2j − 1 ≤ k1 ≤ −2j + 2
and 1 ≤ k2 ≤ k1 + 2j + 2; ψj,k1 ⊗ ϕj,k2/∆ with −2j + 3 ≤ k1 ≤ 2j − 6
and −2 ≤ k2 ≤ −1; ψj,k1 ⊗ ϕj,k2/∆ with −2j + 3 ≤ k1 ≤ −4 and
k1 + 2j − 2 ≤ k2 ≤ k1 + 2j + 2; ψj,k1 ⊗ ϕj,k2/∆ with k1 = −3 and
2j−5 ≤ k2 ≤ 2j−4; ψj,k1⊗ϕj,k2/∆ with k1 = 0 and 2j−5 ≤ k2 ≤ 2j−4;
ψj,k1⊗ϕj,k2/∆ with 1 ≤ k1 ≤ 2j−6 and −k1+2j−5 ≤ k2 ≤ −k1+2j−1;
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ψj,k1 ⊗ ϕj,k2/∆ with 2j − 5 ≤ k1 ≤ 2j − 2 and 1 ≤ k2 ≤ −k1 + 2j − 1;
ψj,k1 ⊗ ψj,k2/∆ with k1 = −2j + 2 and k2 = 1; ψj,k1 ⊗ ψj,k2/∆ with
−2j + 3 ≤ k1 ≤ −4 and k1 + 2j − 2 ≤ k2 ≤ k1 + 2j − 1; ψj,k1 ⊗ ψj,k2/∆
with k1 = −3 and 2j − 5 ≤ k2 ≤ 2j − 4; ψj,k1 ⊗ ψj,k2/∆ with k1 = 0
and 2j − 5 ≤ k2 ≤ 2j − 4; ψj,k1 ⊗ ψj,k2/∆ with 1 ≤ k1 ≤ 2j − 6 and
−k1 + 2j − 5 ≤ k2 ≤ −k1 + 2j − 4; ψj,k1 ⊗ ψj,k2/∆ with k1 ≤ 2j − 5 and
k2 = 1

iii) exterior corner functions: ϕj,k1 ⊗ ψj,k2/∆ with −2j − 1 ≤ k1 ≤ −2j + 2
and −1 ≤ k2 ≤ 0; ϕj,k1 ⊗ ψj,k2/∆ with 2j − 5 ≤ k1 ≤ 2j − 2 and
−1 ≤ k2 ≤ 0; ψj,k1 ⊗ ϕj,k2/∆ with −2j − 1 ≤ k1 ≤ −2j + 2 and
−2 ≤ k2 ≤ 0; ψj,k1⊗ϕj,k2/∆ with 2j−5 ≤ k1 ≤ 2j−2 and −2 ≤ k2 ≤ 0;
ψj,k1 ⊗ψj,k2/∆ with k1 = −2j + 1 and −1 ≤ k2 ≤ 0; ψj,k1 ⊗ψj,k2/∆ with
k1 = −2j + 2 and k2 = 0; ψj,k1 ⊗ ψj,k2/∆ with k1 = 2j − 5 and k2 = 0;
ψj,k1 ⊗ ψj,k2/∆ with k1 = 2j − 4 and −1 ≤ k2 ≤ 0

iv) interior corner functions: ϕj,k1⊗ψj,k2/∆ with −3 ≤ k1 ≤ −2 and −k1 +
2j−6 ≤ k2 ≤ 2j−2; ϕj,k1⊗ψj,k2/∆ with −1 ≤ k1 ≤ 0 and k1 + 2j−3 ≤
k2 ≤ 2j−2; ψj,k1⊗ϕj,k2/∆ with −3 ≤ k1 ≤ −2 and −k1 +2j−6 ≤ k2 ≤
2j − 1; ψj,k1 ⊗ ϕj,k2/∆ with −1 ≤ k1 ≤ 0 and k1 + 2j − 3 ≤ k2 ≤ 2j − 1;
ψj,k1 ⊗ ψj,k2/∆ with −2 ≤ k1 ≤ −1 and 2j − 4 ≤ k2 ≤ 2j − 3.

Orthogonalization for the scalar product of L2(∆) of the (28× 2j − 110)
edge functions, the forty six exterior corner functions and the twenty eight
interior corner functions with V ∗j (∆) by using proposition 2.1 gives a Riesz
basis for Wj(∆). Now, to construct a Riesz basis for the wavelet space
W ∗
j (∆), we consider the (3×22j−21×2j+36) interior wavelets described in i)

(which are orthogonal) and we add dual system of the (28×2j−36) functions
(edge functions, exterior corner functions and interior corner functions) by
using Proposition 3.1.

Theorem 5.1. Let 2j0 ≥ 4N − 4. Then:

a) there exist (3×22j+(6N−5)2j) functions Ψj,k1,k2 such that the functions
φj,k1,k2/∆ for Vj(∆) where (k1, k2) ∈ Mj and Ψj,k1,k2 where (k1, k2) ∈
Mj+1 \Mj, form a Riesz basis for Vj+1(∆),

b) there exist (3×22j+(6N−5)2j) functions Ψ∗j,k1,k2 such that the functions
φ∗j,k1,k2/∆ for V ∗j (∆) where (k1, k2) ∈ Mj and Ψ∗j,k1,k2 where (k1, k2) ∈
Mj+1 \Mj, form a Riesz basis for V ∗j+1(∆).
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Proof. a) We consider interior wavelets ϕj,k1 ⊗ ψj,k2 , ψj,k1 ⊗ ϕj,k2 and
ψj,k1 ⊗ ψj,k2 with −2j + 2N − 1 ≤ k1 ≤ −N and 0 ≤ k2 ≤ k1 + 2j − 2N + 1
or −N + 1 ≤ k1 ≤ 2j − 4N + 2 and 0 ≤ k2 ≤ −k1 + 2j − 4N + 2, and we
complete this system from the collection described above (edge and corner
functions). Next, we realize orthogonality for the scalar product of L2(∆) of
edge and corner wavelets with V ∗j (∆) by using proposition 2.1.
b) We keep interior wavelets ϕj,k1 ⊗ ψj,k2 , ψj,k1 ⊗ ϕj,k2 and ψj,k1 ⊗ ψj,k2 with
−2j + 2N − 1 ≤ k1 ≤ −N and 0 ≤ k2 ≤ k1 + 2j − 2N + 1 or −N + 1 ≤ k1 ≤
2j − 4N + 2 and 0 ≤ k2 ≤ −k1 + 2j − 4N + 2, and we construct dual system
Ψ∗j,k1,k2 of edge and corner wavelets by using Proposition 3.1.

Remark 5.1. The general idea for constructing wavelets consists to take
near wavelets which satisfy Proposition 3.1 or Proposition 3.2. Next, we pro-
ceed to dualization of edge functions, exterior corner functions and interior
corner functions.

6. Uniform estimates and Sobolev spaces

Definition 6.1. Let ∆ = {(x, y) ∈ [−1, 1] × [0, 1], y ≤ 1 − |x|}. Let us
consider, for 2j ≥ 4N−4, the basis for Vj(∆) (resp the basis for V ∗j (∆)) given
by the family (φj,k1,k2/∆)(k1,k2)∈Mj

) described in (4.1) (resp (φ∗j,k1,k2)(k1,k2)∈Mj

described in (4.2)). Then we define the extension operator Ej from Vj(∆) to
Vj(R2) by the formula

Ejf =
∑

(k1,k2)∈Mj

< f/φ∗j,k1,k2 > φj,k1,k2 . (6.1)

To establish the main object of this section , we need the following results
for extension operators and multiresolution analyses on a triangle.

Proposition 6.1. Let ∆ = {(x, y) ∈ [−1, 1] × [0, 1], y ≤ 1 − |x|}. There
exists a positive constant α such that for all j such that 2j ≥ 4N − 4 and all
f ∈ Vj(∆):

‖Ejf‖2
L2(R2) ≤ α‖f ‖2

L2(∆). (6.2)

Proof. To prove this important result, we use special triangulations for
[0, 1] × [0, 1] and R2 which are adapted to scale because this condition is
necessary for projects. In fact, we divide [0, 1] × [0, 1] into four triangles
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defined by: for 0 ≤ η ≤ 3, T η = {(x, y) ∈ [0, 1]× [0, 1]/(−1)η(x− y) ≥ 0 and
(−1)E( η

2
)(x+ y − 1) ≥ 0}.

We triangulate R2 such that

R2 =
⋃

0≤η≤3

⋃
(k1,k2)∈Z2

T ηj,k1,k2

where
T ηj,k1,k2 = {(x, y)/(2jx− k1, 2

jy − k2) ∈ T η}.

This triangulation is adapted to scale and also to our triangle ∆ =
{(x, y) ∈ [−1, 1]× [0, 1], y ≤ 1− |x|} because we have

∆ =
⋃

T ηj,k1,k2
⊂∆

T ηj,k1,k2 .

We put φj,k1,k2(x, y) = 2jϕ(2jx− k1)ϕ(2jy − k2) and φk1,k2 = φ0,k1,k2 . Let
us write∫ ∫

∆
|
∑

(k1,k2)∈Z2 αk1,k2φj,k1,k2 |2dxdy
=

∑
T ηj,l1,l2

⊂∆

∫ ∫
T ηj,l1,l2

|
∑

(k1,k2)∈Z2 αk1,k2φj,k1,k2|2dxdy;

then,∫ ∫
T ηj,l1,l2

|
∑

(k1,k2)∈Z2 αk1,k2φk1,k2|2dxdy
=

∫ ∫
T η
|
∑

(k1,k2)∈Z2 αk1,k2φk1−l1,k2−l2|2dxdy.

Let Cη be the set of indexes (k1, k2) such that the support of φk1,k2 has
an intersection of non vanishing measure with T η, Cη

j,k1,k2
the set of indexes

(l1, l2) such that the support of φj,l1,l2 has an intersection of non vanishing
measure with T ηj,k1,k2 and Cj the set of indexes (k1, k2) such that the support
of φj,k1,k2 has an intersection of non vanishing measure with ∆.
We have Cj =

⋃
T ηj,k1,k2

⊂∆ C
η
j,k1,k2

. The family (φk1,k2|T η)(k1,k2)∈Cη is linearly

independent. Then, there exists a positive constant γ such that we have∫ ∫
T η
|

∑
(k1,k2)∈Z2

βk1,k2φk1,k2|2dxdy ≥ γ
∑

(k1,k2)∈Cη
|βk1,k2 |2;

hence,
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∫ ∫
T ηj,l1,l2

|
∑

(k1,k2)∈Z2 αk1,k2φj,k1,k2|2dxdy ≥
γ
∑

(k1,k2)∈Cn |αk1+l1,k2+l2|2 = γ
∑

(k1,k2)∈Cηj,l1,l2
|αk1,k2|2

and then∫ ∫
∆
|
∑

(k1,k2)∈Z2 αk1,k2φj,k1,k2|2dxdy ≥ γ
∑

T ηj,l1,l2
⊂∆

∑
(k1,k2)∈Cηj,l1,l2

|αk1,k2|2

≥ γ
∑

(k1,k2)∈Cj |αk1,k2|
2.

We establish now the following important result which completes the
precedent proposition to get equivalence norms for Sobolev spaces (or other
functional spaces as Besov spaces).

Theorem 6.1. Let ∆ = {(x, y) ∈ [−1, 1] × [0, 1], y ≤ 1 − |x|} and j0 ∈ N
such that 2j0 ≥ 4N − 4. Let (Vj(R2))j∈Z be a regular multiresolution analysis
of L2(R2). We assume that there exists a projection operator Aj onto Vj(R2)
such that

i) Aj+1oAj = AjoAj = Aj

ii) ‖F‖2
Hs(R2) ≈ ‖A0F‖2

L2(R2) +
∑

j≥0 22js‖Aj+1F − AjF‖2
L2(R2).

If Pj is a projection operator from L2(∆) onto Vj(∆) such that, for a
constant β and j ≥ j0, Pj satisfies:

‖Pjf‖2
L2(∆) ≤ β‖f‖2

L2(∆) (6.3)

then, we have

∀f ∈ Hs(∆), ‖f‖2
Hs( ∆ ) ≈ ‖Pj0f‖2

L2(∆) +
∑
j≥j0

22js‖Pj+1f − Pjf‖2
L2(∆).

(6.4)

Proof. The case of the triangle and Proposition 6.1 give f = F/∆ and
F = (F − AjF ) + AjF . We get

‖Pj+1f − Pjf‖2
L2(∆) = ‖(Pj+1 − Pj)(F − AjF )/∆‖2

L2(∆)

≤ β‖F − AjF‖2
L2(∆)

where β is a positive constant independent of j. Then, we have∑
j≥j0

22js‖Pj+1f − Pjf‖2
L2(∆) ≤ β

∑
j≥j0

22js‖F − AjF‖2
L2(∆)
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≤ β
∑
j≥j0

22js‖F − AjF‖2
L2(R2)

≤ β
∑
j≥j0

22js‖
∑
p≥j+1

(Ap − Ap−1)F‖2
L2(R2)

≤ β
∑
j≥j0

{
∑
p≥j+1

2(j−p)s22ps‖(Ap − Ap−1)F‖2
L2(R2)}2.

It’s a convolution `1o`2 ⊂ `2, then we get the first inequality. To prove the
reverse inequality, we write f = F/∆ and F = E0(P0f) +

∑
j≥0Ej+1(Pj+1f −

Pjf) where Ej is the extension operator described in Definition 4.1. Then,
we have:

‖f‖2
Hs(∆) ≤ ‖F‖2

Hs(R2) ≈ ‖A0f‖2
L2(R2) +

∑
j≥0

22js‖Aj+1F − AjF‖2
L2(R2)

and
Aj+1F − AjF =

∑
l≥j

(Aj+1 − Aj)El+1(Pl+1f − Plf).

Then, we get for a constant M :

22js‖Aj+1F − AjF‖2
L2(R2) ≤

∑
l≥j

2js‖(Aj+1 − Aj)El+1(Pl+1f − Plf)‖2
2

≤
∑
l≥j

Mα‖Pl+1f − Plf‖2
L2(∆)2

ls2(j−l)s.

It’s a convolution `2o`1 ⊂ `2, then we get the first inequality.

Remark 6.1. See that Theorem 6.1 described above dosen’t depend on the
formalism of the given multiresolution analysis (orthogonal or biorthogonal).

Proposition 6.1 and Theorem 6.1 are very useful for analyzing regular
functions on the triangle. Recall that Pj (resp P ∗j ) is the projection operator
on Vj(∆) (resp V ∗j (∆)) parallel to (V ∗j (∆))⊥ (resp (Vj(∆))⊥). We denote
by Qj (resp Q∗j) the projection operator on Wj(∆) (resp W ∗

j (∆)) parallel
to (W ∗

j (∆))⊥ (resp (Wj(∆))⊥). These projectors are completely described
by the scaling function constructed in section 4 and the associated wavelets
constructed in section 5. We can now establish the first main result of this
section.
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Theorem 6.2. Let 2j0 ≥ 4N − 4. Then:

a) for f ∈ L2(∆), we have ‖f‖2
L2(∆) = ‖Pj0f‖2

L2(∆) +
∑j=∞

j=j0
‖Qjf‖2

L2(∆),

b) for f ∈ Hs(∆), we have ‖f‖2
Hs(∆) ≈ ‖Pj0f‖2

L2(∆)+
∑j=∞

j=j0
4sj‖Qjf‖2

L2(∆).

Proof. a) is a classical result in wavelet theory.
b) the first inequality follows from Proposition 6.1 and the second inequality
follows from Theorem 6.1.

We use now dual multiresolution analysis and Remark 6.1 to characterize
the following spaces.

Theorem 6.3. Let 2j0 ≥ 4N − 4. Then:

a) for f ∈ L2(∆), we have ‖f‖2
L2(∆) = ‖P ∗j0f‖

2
L2(∆) +

∑j=∞
j=j0
‖Q∗jf‖2

L2(∆),

b) for f ∈ Hs
0(∆), we have ‖f‖2

Hs(∆) ≈ ‖P ∗j0f‖
2
L2(∆)+

∑j=∞
j=j∗

4sj‖Q∗jf‖2
L2(∆).

Proof. a) is a classical result in wavelet theory.
b) follows from Proposition 6.1 and Theorem 6.1.

The wavelet bases on a triangle constructed in this paper allow many
concrete numerical examples. In fact, we can use these bases for the study
of the image-watermarking robust to the desynchronizations and we improve
the general robustness of the scheme by embedding in the wavelet transform
domain by using the same method described in [3]. The second example is
to perform a Scan-based Wavelet Compression of 3D semi-regular multireso-
lution meshes [17]. Of course, we can use these bases for applications to gas
dynamics and scalar conservation laws or to improve integral formulation in
electromagnetism and scale-space approximations ([11], [12], [13]).

7. Conclusion

We used in this paper a direct method based on Lemma 2.2 to construct
a biorthogonal multiresolution analysis on ∆. This construction is very tech-
nical due to the specific geometry of the triangle. Moreover, it is difficult
to analyze more regular spaces since regularity is directly related to the size
of the support. The analysis constructed in this paper is adapted for the
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study of the Sobolev spaces Hs(∆) and Hs
0(∆) (s ∈ N). The associated

wavelet bases are regular and have compact support. More precisely, they
are associated to simple algorithms. Proposition 6.1 and Theorem 6.1 permit
to get the norm equivalences in the two cases. We should notice that our
construction can be achieved numerically in a satisfactory way only for the
first Daubechies scaling functions.
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