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1. Introduction

Given two multiresolution analyses V;(R) and V;*(R), the following asser-
tions are equivalent:

L*(R) = Vo(R) @ (V5 (R)) ™. (1.1)
There is a bounded projection operator Py on L?(R) such that
RanPy = Vp(R) and KerPy = (V5 (R))*. (1.2)

There are scaling functions ¢ for (V;(R)) and ¢* for (V;*(R)) such that

{p(@)]@*(x = k) = dro- (1.3)
There are scaling filters myg for (V;(R)) and mg for (V;*(R)) such that
mo(§)my(§) +mo(€ + m)mg(§ +m) = 1. (1.4)

We then speak of biorthogonal multiresolution analysis introduced by J.C.
Feauveau [18] and developed by A. Cohen et al. [9].

Moreover to the dual scaling functions ¢, ¢* (with associated filters mg, mg)
we may associate dual wavelets 1, ¢* defined by

9(0) = e mi G+ me G+ me) (15
and ¢ ¢
() = e Emo (G + )¢ (5): (L6)

The functions ¢(x — k), k € Z, are then a Riesz basis for the wavelet space
Wo(R) = Vi(R) N (Vg (R))*+ and the functions ¢*(z — k), k € Z, are a Riesz
basis for the dual wavelet space Wi (R) = V;*(R) N (Vo(R))* such that

(@)™ (x — k) = Ik (1.7)
As usual, we define 1;; and ¢, for j € Z and k € Z by
Vix(w) = 202p(20x — k) (1.8)

and

Vi) = 229" (Px — k). (1.9)

s
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We have of course the biorthogonality relationship

(Y klvr,) = 0j.0kp- (1.10)

The construction of biorthogonal wavelet bases has been considered by
many researchers ([8], [9], [14], [19], [20], [21] and [22]). The Biorthogonal
formalism is favored for operator equations in practical computations and
allows a commutation property between scale projectors and derivation [24].

We cannot define in the same way multiresolution analyses on general
bounded domains or manifolds. The problem is that, in bounded domains,
classical invariance by dilation and translation are preserved for dilation, on
the other hand they lost in part their meaning for translation.

The search for wavelet bases on bounded domains and more complicated
manifolds has been an active field for many years, since the 90’s. Several
approaches have been explored in wavelet literature. The first approach is
the direct method which is based on the usual tensor product of wavelets on
the interval and restrictions of integer shifts of scaling functions and wavelets
to the domain ([4], [5], [21], [23], [28], [29] and [31]). The second approach is
the decomposition method. It was introduced by Z. Ciesielski and T. Figiel
in 1982 ([6] and [7]) to construct spline bases of generalized Sobolev spaces
WH(M) (k€ Zand 1 < p < oo) where M is a compact Riemannian man-
ifold. This method is based on wavelets on a unit cube by taking tensor
products of wavelets on the interval and writing the domain or manifold as a
disjoint union of parametric images of this cube. This construction satisfies
the lifting scheme which is simply a linear transformation of the wavelets
[31]. The third approach uses a multilevel decomposition of finite element
spaces. This approach can be more tempting if one wants to combine wavelet
properties with the structural simplicity of finite element spaces.

It is clear that the constructions of wavelet bases on bounded domains
are related to wavelets on the interval. The problem of existence of an or-
thonormal basis of L?([0,1]) allowing the characterization of C*([0,1]) and
having simple algorithms was treated by Y. Meyer [28]. There are related
constructions of wavelets on the interval as well by P. Auscher [2], A. Cohen
et al. in 1992 [10]. All these constructions are based on Meyer’s work and
gave a polynomial extension outside the interval. In 1993, A. Jouini and P.G.
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Lemarié-Rieusset [21] defined a multiresolution analysis on the interval and
introduced new associated wavelet spaces.

In 1992, A. Jouini et al. [22] used the decomposition approach to con-
struct on a two-dimensional open bounded set biorthogonal wavelet bases
adapted for the study of Sobolev spaces H' and H}. This approach was
used again in 1999 by A. Cohen and R. Schneider [15] to construct biorthog-
onal wavelet bases (15, )rev of L2(€) where Q is a bounded domain of
R? (d € N); these bases were shown to be bases of Sobolev spaces H*(£2)
for —% < s < % There are related constructions as well by C. Canuto and
coworkers in [3] and by R. Masson in [27]. In 2003, A. Jouini and P.G.
Lemarié-Rieusset [23] studied the L-shaped domain L. They used the di-
rect approach to construct orthogonal wavelet bases and the decomposition
method to construct biorthogonal wavelet bases. These bases have simple
expressions and the specific geometry of the domain allows to get higher
regularity namely the study of the Sobolev spaces H*(L) (k € Z). This
construction turns out to be well adapted to the wavelet setting due to the
simple geometry of the L-Shaped domain. In 2007, A. Jouini and M. Kra-
tou [20] used the decomposition method to construct biorthogonal wavelets
on a compact Riemannian manifold with dimension n. These bases were
also adapted for the study of the Sobolev spaces H' and H;. Recently (in
2011), N. Ajmi, A. Jouini and P.G. Lemarié-Rieusset [1] constructed two or-
thonormal multiresolution analyses on the triangle A. In the first one, they
described a direct method to define an orthonormal multiresolution analysis
which is adapted for the study of the Sobolev spaces H§(A) (s € N). In the
second one, they added boundary conditions for constructing an orthonormal
multiresolution analysis which is adapted for the study of the Sobolev spaces
H*(A) (s € N). The associated wavelets preserve the original regularity and
are easy to implement.

The decomposition approach turns out to have principal limitations and
it does not induce Sobolev Spaces H® when |s| > 3/2. The basic difficulty
is that function spaces on general bounded domains or compact Riemannian
manifolds are usually defined in terms of open covering and associated charts,
not in terms of partitions of the manifold. Moreover, more regular spaces
are more complicated to consider since regularity is directly related to the
size of the support. The idea of considering overlapping functions does not
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work since quite small overlapping domains cause several stability problems,
in particular in the orthonormal process. Finally, there are not general cri-
teria available in wavelet theory that tell under which conditions one has
uniform estimates and norm equivalences on bounded domains or manifolds
with specific geometry. In particular, we do not have on the triangle regular
biorthogonal wavelet bases which have compact support, give uniform esti-
mates and are easy to implement.

The other approaches described in wavelet literature as decomposition
method or the tensorization of Meyer’s Lemma cause problems in computa-
tion or implementation. The first one gives complicated wavelets defined as
charts with a limitation in regularity and the second one gives only a generat-
ing system which is not independent in the case of a triangle. Then, we have
more coefficients in numerical analysis defined as stability constants and the
functions are not located near the borders. The direct method used in this
paper constitutes a very important method for the study of many problems
of mathematics and physics because we have the exact number of wavelets
which have many applications as computation and numerical simulation for
elliptic problems or image processing (see [25] and [26]) and we give a good
description of scaling functions and associated wavelets specially near the
boundaries. The biorthogonal formalism gives a great flexibility and it is
easy to implement. Such a construction has unfolded their full computation
efficiently in numerical and applied analysis. The non linear approximation
is an important concept to adaptative approximation and the properties of
the present wavelet bases provide a rigorous analysis for dynamical systems.
More precisely, this paper is concerned with constructions in an elementary
way of biorthogonal wavelet bases on a triangle . These constructions are
based on the usual tensor product of the orthogonal scaling functions and
wavelets of 1. Daubechies [16]. The bases constructed here are regular, have
compact support and allow fast algorithms. Moreover, they are adapted
for the study of some important functional spaces in numerical analysis as
Sobolev spaces.

Section 2 is devoted to the description of biorthogonal multiresolution
analyses V;(I) and V;*(I) on the interval I. These analyses will be useful for
the remainder of the work.

In section 3, we define and study wavelet bases on the interval. Our
construction is based on Meyer’s Lemma (Lemma 3.1). This construction is
very important to realize the main goal of this paper.
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In section 4, we shall use a direct method based on the results A. Jouini
and P.G. Lemarié-Rieusset ([21] and [23]) to define a biorthogonal multires-
olution analysis (V;(A), V;*(A)) on a triangle A.

In section 5, we study and construct the associated wavelet bases on
the triangle A. This construction is complicated and technical due to the
geometry of the triangle. In the first part, we study two particular cases
(N =1and N = 2). These examples permit to illustrate the constructions
of wavelet bases of this paper and to explain clearly the central problem
between the tensor product and the geometry of the domain. In the second
part, we give a description of the wavelet spaces.

In the last section, we prove some regularity results which give uniform
estimates for extension operators on the scaling spaces. These results are
very important to characterize regular spaces namely Sobolev spaces H*(A)
and HS(A)(s € N) in terms of discrete norm equivalences.

We recall that all bases constructed in this work have compact support
and the same regularity as for Daubechies bases [16].

NOTATIONS. We denote by

-MRA : Multiresolution analysis

-OMRA : Orthogonal multiresolution analysis
-BMRA : Biorthogonal multiresolution analysis.

2. The spaces V;(I) and V;*(I)

We start from the orthogonal multiresolution (V;(R)) of I. Daubechies,
having some Sobolev regularity H*¥ with sy = (1 — (n3/in4)N + o(N) and
spanned by dilates and translates at scale 27 of a scaling function ¢ with
compact support equal to [0,2N — 1].

Y. Meyer [28] showed that the restrictions to the interval [0, 1] of the
scaling functions ¢, 5, —2N +2 < k < 27 — 1, constitute a basis of a mul-
tiresolution analysis, noted V;([0,1]). More precisely, we have the following
Lemma.

lemma 2.1. Let jo be the smallest integer satisfying 270 > 4N — 4. Then,
for j > jo, the functions vjx/1), 2 —2N <k <2/ —1, form a Riesz basis
of V;([0,1]).
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We denote by v;([0,1]) the space generated by the functions ¢, with
support being completely contained in [0,1]. A. Jouini and P.G. Lemarié-
Rieusset [21] defined a multiresolution analysis on the interval as the follow-
ing.

Definition 2.1. A sequence {V;};>;, of closed subspaces of L*([0,1]) is
called a multiresolution analysis on L*([0,1]) associated with V;(R) if we
have

DY > jor w([0,1]) € V; € V3([0, 1))

i) Vj = jo, V; C Vi1

Remark 2.1. If I is a bounded interval of R the space V;(I) is defined as

the space of restrictions to I of elements of V;(R). More precisely, we may
keep only the indexes k such that (277k,277(k + 2N — 1)) N1 # .

In the general case of Remark 2.1, we have the following results from [23].

lemma 2.2. Let I = [o, f]. For j € Z, let o the smallest integer which is
greater than 2o — 2N + 1 and let 8; the greatest integer which is smaller
than 273. The functions (p;x) /1, o5 < k < B; are linearly independent, and
thus they are a basis for V;(I).

lemma 2.3. Under the assumptions of Lemma 2.2, there exists a constant
c(j,I) such that for all sequences (Ax)a;<k<p;, we have the inequality

B
G0 3 P [ I wenPdes 3 P 22)

o <k<B; ¢ kez? a;<k<p;
If o or B is not a dyadic number, we may have lim inf;_ooc(j, 1) = 0: we
have ¢(j,I) < min(fj_jaj lo|?dz, ffﬂﬂj |o|>dz). On the other hand, when «
and B are dyadic numbers, c(j, 1) does not depend on j when j is big enough.

Definition 2.2. Let ¢ be a compactly supported orthonormal scaling func-
tion with support [0,2N — 1]. The associated Meyer border functions are
defined in the following way:

i) [left border functions] for 1 < p < 2N — 2, the functions goz[,l] belong to
the linear span of the functions o(x — k)| 4o00) with —2N+2 <k < —1

and satisfy / oz — k)(pg} (x)dx = 0k —p.
0
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ii) [right border functions] for 1 < p < 2N —2, the functions gol[;"] belong to

the linear span of the functions o(x —k)|(—oo,0) with —2N4+2 < k < —1
0

and satisfy / oz — k:)gog"] (x)dr = 0k —p.

—00

We have from [21] the following definition of biorthogonal multiresolution
analysis on the interval.

Definition 2.3. A sequence (V;, V") of closed subspaces of L3([0,1]) associ-
ated with a biorthogonal multiresolution analysis (V;(R),V*(R)) of L*(R) is
called a biorthogonal multiresolution analysis of L*([0,1]) if

i) 0,([0.1)) € V; € V,([0.1)) and 03((0.1]) € V;' € V7 (0,1]).

i) V; C Vi and V¥ C V7.

ii) L2([0,1]) = V; & (V) *.

Proposition 2.1. We denote by (¢(; )a;<k<p; the dual system of the basis

(PGik))a;<k<p,; - If a and B are dyadic numbers and if moreover jo is the
smallest integer j such that 27a and 273 belong to Z and 27 (8 — ) > 2N —1,
then for j > jo we have aj = 29 — 2N 4+ 2 and 8; = 273 — 1, and

i) [interior functions] for 2a < k < 2 — 2N + 1, we have ¢{;,) =
Pk) = Pik
i) [left border functions] for 22a—2N +2 <k < 2a—1,k = 2a —p, we
have @, ) (x) = 202 (x — )
iii) [right border functions] for 278 —2N +2 <k <23 -1, k=23 —p,
we have go?j.7k)(x) = 2j/2g0][gr](2j(x—ﬁ)). In particular , ¢(j,I) = ¢(jo, I).

*

Thus the functions (¢{; ;))a;<k<s; are a basis for V*(I).

3. Wavelet bases on the interval

The construction of wavelet bases on the interval has been extensively
discussed in wavelet literature (see [4], [10] and [21]). All these constructions
started from the orthonormal multiresolution analysis of 1. Daubechies or
spline bases.
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We start again from the orthogonal multiresolution (V;(R)) of I. Daubechies.
The moments of the related wavelet ¢ satisfy [ zFy(z)dz = 0 for 0< k& <
N —1. We normalize the wavelet ¢ by taking its support equal to [0,2N — 1].

Y. Meyer [28] showed that the complementary part of V;([0, 1]) in V;44([0, 1]),
noted W;([0, 1]), is automatically of dimension 27. He proved that the restric-
tions of the extreme wavelets 95, —2N +2 < k < —N and 2 —2N+1<
k < 27 —1 belong to V;([0,1]). Then, by omitting these functions, we obtain
a generating system of (2711 + 2N — 2) vectors of V;11([0, 1]), hence we have
the following Meyer’s Lemma.

lemma 3.1. Let jy be the smallest integer satisfying 27° > 4N — 4. Then,
for j > jo, the functions vjrj01], 2 — 2N < k < 2/ — 1, (which form a
Riesz basis of V;([0,1])) and the functions ¥;y/01, —N +1 < k <2/ — N,
constitute a Riesz basis for Vj1([0, 1]).

Definition 3.1. Let ¢ be a compactly supported orthonormal scaling func-
tion with support [0,2N — 1]. The associated Meyer border wavelets are de-
fined in the following way:

i) left border scaling functions the family (@I{Dl})lgpggN_Q is the Gram-
Schmidt orthonormalization of the family (cpz[,l])lgpggN_Q.

i) right border scaling functions the family (@;r})lgpggN_g is the Gram-

Schmidt orthonormalization of the family (gog])lgpggN_g.

iii) left border wavelets the family (goz{,l})lgpggN,g U (wél})lquN,l is the
Gram-Schmidt orthonormalization of the family (@g])lspsgN_Q U(¢(x+
q)](0,+00) ) 1<g<N—1-

iv) right border wavelets the family (o5 )1<pcon—2 U (08 ) 1<gen—1 is the
Gram-Schmidt orthormalization of the family (gpg])lgpSgN_g_g U(z—
2+ N+ q)|(—00,0))1<q<N-1-

Then, Meyer’s lemma reads as:

Proposition 3.1. Let j such that 2/ > 2N — 1. Then
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i) A Hilbertian basis for V;((0, 1)) is given by the family (¢7},) —ant2<k<2i—1,
with
e interior functions for 0 < k <2/ —2N +1, (pj:k = Pk
e left border functions for —2N +2 < k < —1, k = —p, ij:k =
220, (Pa)
e right border functions for 22 —2N+2 < k <271, k =2/ —p, o3, =
2720 (P (x — 1))

i) A Hilbertian basis for W;((0,1)) is given by the family (1;7.) —n41<k<ai—N,

with

o interior wavelets for 0 < k <2/ — 2N + 1, %Lk =Yk

o left border wavelets for —N +1 < k < -1, k = —q, ]lk =
22y, (V)

e right border wavelets for 22 —2N +2 <k <2/ — N, k=2 — N +
1—gq, ¢j:k — Qj/2¢;r}(21(x —1)).

A. Jouini and P.G. Lemarié-Rieusset [21] proposed a new wavelet space
W;([0,1]) by keeping the wavelets with support being completely contained
in [0,1] and replacing the collection of the wavelets on the borders 0 and 1.
We have the second important result from [21].

Proposition 3.2. Let jo be the smallest integer satisfying 270 > 4N — 4.
For 7 > jo, we denote

X; = Vet {t)j5,0 <k <29 —2N + 1,041 2641,
0<k<N-—-2910m2 —2N+2<k<2 —N}. (3.1)

Then
i) dim X; = 27.
ii) There exists an integer J such that for every j > J, Vi1 =V, & X;.

4. The spaces V;(A) and V;*(A)

Starting from the orthogonal multiresolution analysis of I. Daubechies, we
define V;(R?) the multiresolution analysis associated to the separable scaling
function ¢ ® ¢ : V;(R?) is the tensor product V;(R*) = V;(R)®V;(R).
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The next domain we shall consider is the triangle A = {(z,y) € [-1,1] X
0,1], y <1 — |z|}. In the following, we study a multiresolution analysis on

A.

Definition 4.1. The space V;(A) is defined as the space of restrictions to A
of elements of V;(R?).

We have an obvious generating family of V;(A).

Proposition 4.1. For 27 > 4N — 4, V;(A) has the following basis: the
family ©jr @ @jp/a with ky = =29 —=2N +2+p, 0 < p < 27 —2 and
—2N + 2 < ky < p; the family ©jp, @ @jra with by = —2N + 1 + p,
0<p<2N—1and —2N +2 < ky <27 — 1 and the family @;i, ® ©jr,/a
withky=14+p, 0<p<2 —2and —2N +2<ky <2/ —2—p.

It is clear that Lemma 2.1 and Lemma 2.2 prove that the system described
in Proposition 4.1 is linearly independent. If we look now at the supports of
these functions, we can split these families into the following sets:

i) interior functions: ¢;, ® @jr,/a with =27 + 2N —1 < k; < —N and
0 <hy < ki +2'=2N41; 91, QQjipyya wWith —N4+1 < ky < 2/ —4N 42
andOSkQ S —k1+2]—4N+2

ii) edge functions: @, ® @;p,/a With =27 —2N +3 <k < =2/ 42N —2
and 1 S ]{2 S ]{31 + 2j + 2N — 27 P kq & Pjka/A with —2j + 2N —
1 <k <2 —4N +2and 2—2N < ky < —1; Ok @ ©jky/a With
0 42N—-1<k <-2Nand k1 +29 —2N+2 < ky < k1 +2/ +2N —2;
P k1 ®30j,k2/A with —2N +1 S k‘l S —N —1 and k?l +2j — 2N+ 2 S
ke < —ky + 2/ — 4N + 1; Cjky @ Qjko/a With =N +2 <k < 0
and —]{31 + 2j — 4N + 3 S k’g S k‘l + 2j — 2N, P kq X Pjka/A with
1<k <22 —4AN +2 and —ky + 27 —4AN +3 < ky < =k + 27 — 1;
©jk1 @ Pjko/a With W AN+3<k <2—-2and1<ky<—k+2 -1

iii) exterior corner functions: ¢;, ® Qjr,/a with =27 — 2N +2 < ky <
=27 +2N —2 and 2 — 2N < ky < 0; @i @ @)k a With 27 —4N 43 <
ki <2 —1land 2—2N <ky <0

iv) interior corner functions: ¢;, ® ©jko/a With =2N +1 <k < —N and
—ki +2 AN +2 < ky <22 —1; Gjky @ Pjho/a With =N +1 <k <0
and k1 +27 —2N +1 < ky <2/ —1.
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We define v;(A) the space of elements of V;(R?) with support in A. It is
clear that the interior functions described in i) form an orthonormal basis of
vj(A) and we have V;(A) = v,;(A) @ X,;(A) where X;(A) is the space gener-
ated by the border functions (edge and corner functions) described above.

We shall now construct a space V;*(A) which is in duality with V;(A) for
the scalar product on A. We remark at first that v;(A) C V;*(A). Then, it
is enough to construct a dual system of X;(A). The interior functions are
already orthogonal to V;(A) and orthonormal. We begin by the duality of the
edge functions. Then, we proceed to the dualization of the exterior corner
functions. Due to the control of the supports of the scaling functions involved
in those computations, we see in those computations the global geometry of
the open set and for each corner, the computations are the same as if we
were in the case of Lemma 2.2, and we find functions provided by tensor
products (more precisely, we find the corner elements of the tensor product
as in Proposition 2.1). Finally, we construct in the same way a dual system
of the interior corner functions. We get a dual space X (A) of X;(A). We
write V*(A) = (v;(A)®X;(A))NH(A). Then, we have the following result.

Proposition 4.2. For j such that 27 > 4N —4, the spaces V;(A) and V}*(A)
form a biorthogonal multiresolution analysis of L*(A).

To simplify notations, we denote by ¢;, r,/a the Riesz basis of V;(A)
and @7, ., the Riesz basis of V*(A) where (ki,ks) € M; and cardM; =
dim V;(A) = dim V;*(A) = 2 4+ (6N — 5)27 + (2N — 2)*. All these functions
are regular (same regularity as Daubechies scale function). We denote by P;
(resp P;) the projection operator on V;(A) (resp V}*(A)) parallel to (V;*(A))*
(resp (V;(A))*). Thus, we have:

Pif = Z < /O kr ks > Pikr ks (4.1)
(k’l,kQ)EMj
and
Prf= > <[/ikiks >a Spin, (4.2)
(kl,kg)GM]’

where < f/g >a= [, fgdx.
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5. The spaces W;(A) and W} (A)

Recall first that wavelet spaces are given by W;(A) = Vi1 (A)N(V;(A))+

and Wr(A) = Vi (A) N (V;(A))*. The construction of wavelet spaces is
very technical and complicated in biorthogonal case. N. Ajmi, A. Jouini and
P.G. Lemarié-Rieusset [1] show the complexity of this construction even in
orthogonal case because the tensorization of Meyer’s Lemma (Lemma 3.1)
gives in our case only a generating system of Vjy;(A) which is not linearly
independent. Moreover, the regularity of the bases is directly related to the
length of the support.
To explain this point, we study at first two particular cases (N = 1 and
N = 2). We consider the Haar basis (which corresponds to the case N =
1). Proposition 4.1 shows that V;(A) has the following basis: the family
Ok @ Qjro/a With ky = 2 4+p, 0<p<2—1and 0 < ky < p and the
family ©;r, ® ©jr,ya With ky =p, 0 < p < 2 —1land 0 < ky <29 —1—p.
We can split these families into the following sets:

i) interior functions: @k, ® @i, with =2/ +1 <k < —1land 0 < ky <
]{1+2‘7—1, P kq ®90j,k2 with 0 S ]{31 S 2j—2 and 0 S kQ S —k’1+23—2

ii) edge functions: @;g, @ @)k, a with =27/ +1 < ky < —2 and ky = ky +27;
©j .k & SOj,kg/A with 1 S ]{71 S 2j — 2 and k?g = 2j —1- ]{71

iii) exterior corner functions: ¢;x, ® @;r,/a With k1 = —27 and ky = 0;
P k1 X Pika/A with ]Cl = 2j — 1 and k’Q =0

iv) interior corner functions: ¢;x, ® @;k, /a with =1 <k < 0 and ky =
27 — 1.

We have dim V;(A) = 2% + 27, We study now the space W;(A). The
construction of wavelets here is more simple due to small support of the
Haar basis. We have dimW;(A) = 3 x 2% 4+ 27, Let X;(A) be a supplement
of V;(A) into V;11(A), then X;(A) has the following Riesz basis:

i) the family p;;, ® Vjko/a With ky = 2 4+p, 0<ky<pand 0<p<
27 — 1 and the family ¢, ® 1;5,/a with k1 =p, 0 <ky <27 —p—1
and 0<p<2 —1

ii) the family ¢, 5, ® Ojka/a With ky = 2 4+p, 0<ky<pand 0<p<
27 — 1 and the family ¢; 5, ® @jr/a With k1 =p, 0 <ky <2/ —p—1
and 0<p<2—1
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iii) the family ;5 ® ¥;5,/a with by = =27 +p, 0 < ky < p — 1 and
the family ¢, ® ¢jp,a with by =p—1,0 < ky < 2/ —p —1 and
1<p<2—1.

We have exactly (3 x 2% + 27) functions which are linearly independent
because the third collection has a support in the interior of A and the bound-
ary functions are in the sets i) and ii). More precisely, We can split these
families into the following sets:

i) interior functions: ¢, , ®wj’k? s Vi @Piikeas Wiy @j g, With —2i41<
ki < —land 0 < Ky < ki 427 =15 050, @Vjiky 5 ik © @ik Viks DUy
with 0 <k <27 —2and 0 < ks < —k +27 -2

ii) edge functions: Pjkr QUjka/A 5 Viks © Pjka/a, With D41 <k g -2
and ko = /ﬁ + 275 0k @Ujko/A s Vi @ Qjka/a With 1 <k <27 -2
andk‘2:2j—1—k:1

iii) exterior corner functions: ¢;x, @ Vjk/a » Vik @ Pjks/a With ky = —27
and ky = 0; Pikr & 1/1]‘,]92/A ) wj,kl @ Pjka/A with k1 =27 —1and k; =0

iv) interior corner functions: ¢;x, @Vjk,/a » Vjk @ Qjks/a With =1 <k <
0 and ky =27 — 1.

It remains to realize orthogonality for the scalar product of L2(A) of the
(4227 — 8) edge functions, the four exterior corner functions and the four
interior corner functions with V]*(A) by using proposition 2.1. Then, we get
a nice basis for W;(A). Now, to construct a Riesz basis for the wavelet space
Wi (A), we consider interior wavelets described in i) (which are orthogonal)
and we add dual system of the 4x2’ functions (edge functions, exterior corner
functions and interior corner functions) by using Proposition 3.1.

We study now the case NV = 2. It is clear that this case is more complicated
than the first one because the wavelets described in the third collection iii)
does not have a support in the interior of A. Proposition 4.1 shows that
V;(A) has the following basis : the family ;5 ® @;r,/a With ky = —27 4 p,
-2 <p< 2 —4and -2 < ky < p+ 2, the family ;. ® @jr,/a with
—3<k <0and —2 < ky < 27 —1 and the family Pjk1 @Pjko/a With k1 = p,
1<p<2-land -2 < ky <2/ —1—p. We have dim V;(A) = 2% +7x 27 +4.
We describe now a basis of the associated space W;(A). The construction of
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wavelets here is different from the case of the Haar basis (N = 1). We have
dimW;(A) = 3 x 2% + 7 x 27. Let X;(A) be a supplement of V;(A) into
Vit1(A), then X;(A) has the following Riesz basis:

i)

ii)

iii)

the family ;r, ® ¥jr,/a With ki = =27 +p, =1 < ky < p+ 1 and
-1 < p < 27 — 4, the family @jz ® ¥,/ with =3 < k < 0
and —1 < ky < 27 — 2 and the family ¢;i, @ ¢;,/a with k1 = p,
1<k <2 —p—-2and1<p<2 -2

the family ;5 ® @)k, a with &k = —2 4+ p, —2 < ky <p+2and
=1 < p < 2 — 4, the family 9;, ® @jr,/a with =3 < &k < 0 and
—2 < ko < 29 —1 and the family Yik @ Q) ky/a With by = p, =2 < ky <
22 —1—pand 1 <p< 27 -2

the family ¥jx, ® ¥jp/a with ki = =27 +p, 0 < ky < p—1 and
1 < p < 2 — 4, the family ¢4 ® thjp,/a with —3 < ki < 0 and
0 < ky < 2 — 4, the family Vit @ Vjpya With ky = p, 0 < ky <
27 —4—pand 1 < p < 2/ —4 and the family ©;;, ® ©¥jx,/a where
(kv ko) € {(—=27 +1,-1),(~2,2 — 3),(~1,2 — 3), (2 — 4, ~1)}.

We have exactly (3 x 2% 47 x 27) functions which are linearly independent
due to Lemma 3.1.We can split these families into the following sets:

i)

ii)

interior functions: ¢;x, RVjks » Vikr @ Pikas Vjohs @Pjp, With —213<
/{31 S —2and 0 S 1?2 S k‘l +2] —3; P kq ®wj,k2 ) wj,kl ®90j,k27 wj,kl ®'¢j,k2
with =1 <k <2 —6and 0< ky < -k +27 -6

edge functions: ¢k @ ¥k, a with =29 <k < =2/ +2and 1 < ky <
]{31 + 2j —+ 1, P kq (24 ijQ/A with —2j + 3 S k?l S 2j — 6 and ]{32 = —1,
Ojky @Vjpy/a With =20 +3 < by < —dand k1 +27 -2 < ky < k1 +27+ 15
ity @V ky/a With ky = =3 and 2/ =5 < ky < 20 —4; @; 1, @1j k,/a With
ki =0and 2/ —5 < ky < 27 —4; @1, @1, a with 1 <k <27 —6 and
—k1+2]—5 S kQ S —k1+2j—2, <Pj,k1®¢j,k2/A with 2‘7—5 S kl S 2]—2
and 1 S ]{32 S —kl +2j - 2; wj}kl ®§0j,k2/A with —2j —1 S kl S —2j + 2
and 1 S ]{32 S k?l + 2j +2, ¢j,k1 & SOjij/A with —2j + 3 S k?l S 2j —6
and —2 < ky < —1; Y @ Qjrya with =27 +3 < k) < —4 and
kl + 2j -2 S k’z S kl + 2j + 2; ’(,DjJﬂ X gpj,kz/ﬁ with kl = —3 and
2 =5 < ko <2 —4; Y1, QP ky/a With by = 0 and 27 —5 < by < 27 —4;
d}j,lﬂ@@j,kz/A with 1 S ]{31 S 2j—6 and —/{31+2j—5 S kg S —/{31+2j—1;
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iii)

iv)

ijgl ®90j,k2/A with 2j -5 S k’l S 2j —2and 1 S k’g S —k’1 —|—2J - 1,
wj,k; X wj,kg/A with kl = —2]“4- 2 and kQ = 1; wj,kl X wj,kz/A with
2243 < kl < —4 and k1—|—2j -2 < kQ < k1+2J —1, wj,kl ®wj,k2/A
with kl = —3 and 2j -5 S ]{32 S 2j - 4, 1/Jj,k1 ® ¢j7k2/A with k’l =0
and 27 —5 < ky < 27 —4; Yjp @ Yjgyya with 1 < by <27 —6 and
—k’l +27 -5 S k?g S —]{?1 + 27 — 4, ,lvbj,k‘l & ¢j,k2/A with k’l S 27 — 5 and
ko =1

exterior corner functions: ¢jx, ® ¥jk,/a with =279 —1 < ky < —27 42
and —1 < ky < 0; @j @ Yjpyya with 27 —5 < ky < 27 — 2 and
-1 S kg S O; ¢j,k1 X ij,kz/A with —2j -1 S kl S —2j + 2 and
2 <y < 05 Y @Gy pya With 29 —5 < ky < 20 —2.and —2 < ky < 0;
Vit @ Vjky/A with by = =2/ + 1 and —1 < ky < 0; Vit @ Vjky/A with
ki = =27+ 2 and ky = 0; ¢, @ 5, a with ky =27 — 5 and ky = 0;
Yk @ Yjpya with by = 2 —4and —1 < ky <0

interior corner functions: ¢, @Yk, /A with =3 < k; < =2 and —k; +
2j—6 < /{ZQ < 2j—2; Pk ®'¢j,k2/A with —1 < kl < 0 and k1+2j—3 <
k)g S 27 —2; wj’kl ®§0j,k2/A with —3 S k‘l S —2 and —k1+2] —6 S ]{32 S
2 =105k @ Qjreya With =1 < ky <Oand k) +27 =3 < ko <27 -1
Yk @ Vjry/a with —2 <k < —land 2 —4 < ky, <2/ — 3.

Orthogonalization for the scalar product of L*(A) of the (28 x 27 — 110)
edge functions, the forty six exterior corner functions and the twenty eight
interior corner functions with V;*(A) by using proposition 2.1 gives a Riesz
basis for W;(A). Now, to construct a Riesz basis for the wavelet space
Wr(A), we consider the (3x 2% —21x274-36) interior wavelets described in 1)
(which are orthogonal) and we add dual system of the (28 x 27 —36) functions
(edge functions, exterior corner functions and interior corner functions) by
using Proposition 3.1.

Theorem 5.1. Let 270 > 4N — 4. Then:

a)

b)

there exist (3x2%4(6N—5)27) functions W, x, x, such that the functions
Gjer oo/ for Vi(A) where (ki ky) € M; and Vjy, p, where (ki ky) €
M1\ Mj, form a Riesz basis for Vi11(A),

there exist (3x2% +(6N —5)27) functions W%, . such that the functions
D} jy oy Jor Vi (A) where (ki ko) € M; and W3, o where (ki ks) €
M1\ Mj, form a Riesz basis for Vi, (A).
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Proof. a) We consider interior wavelets ¢,k & Vj ks Vjik @ ©jk, and
Vig, @i, with =27 + 2N —1 <k < —Nand 0 < ky < k; +27 —2N +1
or =N +1<k <2 —4N+2and 0 < ko < —k; +2/ — 4N + 2, and we
complete this system from the collection described above (edge and corner
functions). Next, we realize orthogonality for the scalar product of L*(A) of
edge and corner wavelets with V;*(A) by using proposition 2.1.

b) We keep interior wavelets ©;x, & ¥ k,, Vg @ @)k, and ¥, @ 15, with
—V4IN—-1<k <—-Nand0<k <k +2 —2N+1lor—-N+1<k <
2 — AN +2and 0 < ky < —k; +27 — 4N + 2, and we construct dual system

W% 1,k Of edge and corner wavelets by using Proposition 3.1. =

Remark 5.1. The general idea for constructing wavelets consists to take
near wavelets which satisfy Proposition 3.1 or Proposition 3.2. Next, we pro-
ceed to dualization of edge functions, exterior corner functions and interior
corner functions.

6. Uniform estimates and Sobolev spaces

Definition 6.1. Let A = {(z,y) € [-1,1] x [0,1], y < 1 — |z|}. Let us
consider, for 29 > 4N —4, the basis for V;(A) (resp the basis for V;*(A)) given
by the family (;k, ko/a)(ky k2)ens;) described in (4.1) (resp (¢;,k1,kz)(kl,k2)€Mj
described in (4.2)). Then we define the extension operator E; from V;(A) to
Vi(R?) by the formula

Eif= Y <O > Gikika (6.1)

(k1,k2)€M;

To establish the main object of this section , we need the following results
for extension operators and multiresolution analyses on a triangle.

Proposition 6.1. Let A = {(z,y) € [-1,1] x [0,1], y < 1 — |z|}. There
exists a positive constant o such that for all j such that 22 > 4N — 4 and all
feVi(h):

1B f 1222y < @llf I720a)- (6.2)

Proof. To prove this important result, we use special triangulations for

[0,1] x [0,1] and R? which are adapted to scale because this condition is
necessary for projects. In fact, we divide [0,1] x [0, 1] into four triangles
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defined by: for 0 <7 <3, 7" = {(z,y) € [0,1] x [0,1]/(=1)"(x —y) > 0 and
(—1)E@)(z +y —1) > 0}.
We triangulate R? such that

U U ],kl ka

0<n<3 (k1 ,k2)€22

where
Tk = {(2,9) /(22— k1, 2y — ky) € T}
This triangulation is adapted to scale and also to our triangle A =
{(z,y) € [-1,1] x [0,1],y <1 — |z|} because we have

A= U Tﬁkl,kz‘

Tﬂkl,kch
We put ¢j,k1,k2 (ZE, y) = 2j90<2jx - kl)@(zjy - k2) and ¢k1,k2 = ¢0,k1,k2' Let
us write

f fA ’ Z(kth)eZ? ak1,k2¢] k1,k2 Pd.il}dy
- ZT" CA f fT’

2 .
oo kl,kQ)em ak17k2¢jykl,k2’ dxdy;

J,lo

then,

J S

2
i kl,k2)€Z2 akl,k2¢k1,k2| dxdy

= f an ’ Z(kl,kQ)eZ? ak17k2¢k1*ll,k2*lg|2dl’dy~

Let C" be the set of indexes (ky, k2) such that the support of ¢y, x, has
an intersection of non vanishing measure with 7" ka , the set of indexes
(l1,12) such that the support of ¢;;, ;, has an intersectlon of non vanishing
measure with T;fkth and C; the set of indexes (k, k2) such that the support
of ¢, k, k, has an intersection of non vanishing measure with A.

We have Cj = U a Oy, 1, The family (&g, ko) (ky koyecn 18 linearly

Jik1,k2
independent. Then, there exists a positive constant + such that we have

// > Bumbrwdrdy >y Y [Brywl
Tn

(k1,k2)€Z2 (k1,k2)eCn

hence,
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f fT’? ) | Z(k17k2)622 akl,k2¢j7k1,k2|2d$dy >

Jily,l
2 2
Y Z(kl,kg)eC" ’ak1+l1,k2+l2‘ =7 Z(kth)GC;]ll Iy ‘Oéklykz‘
and then

2 2
f fA ! Z(km)ezz Oy o Pjker o | “dxdy > 7y ZT]."JLZQCA Z(kl,kQ)ec;{llh |k o |
> VZ(khkz)eCj |ak17k2|2' u
We establish now the following important result which completes the
precedent proposition to get equivalence norms for Sobolev spaces (or other
functional spaces as Besov spaces).

Theorem 6.1. Let A = {(z,y) € [-1,1] x[0,1], y < 1 — |z|} and jo € N
such that 270 > 4N — 4. Let (V;(R?));ez be a reqular multiresolution analysis
of L*(R?). We assume that there exists a projection operator A; onto V;(R?)
such that

Z) Aj+10Aj = AjOAj = AJ’

6) |1 F s gy = 1A0F 722y + 22550 27 1 4j0 F = A F |75 -

If P; is a projection operator from L*(A) onto V;(A) such that, for a
constant B and j > jo, P; satisfies:

1P f 1172y < Bz (6.3)

then, we have

Vfe H(A), [|f]

e a) = P flliza) + Z 22| P f = PifllTea)-
Jj=Jjo

(6.4)

Proof. The case of the triangle and Proposition 6.1 give f = F/o and
F=(F—-AF)+A;F. We get

IPjsaf = Pifl7ay = (Pisa = P)(F = AjF) all72a)
< BIF — AjF(72a)

where [ is a positive constant independent of j. Then, we have

S|P f - Biflaay < B 2N — APy

Jj=Jjo jzjo
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< ﬁZQstHF_AjFH%?(R?)

J=>Jo

< p Z 22js|| Z (Ap - Ap—l)FH%?(R%
J=>Jo p>j+1

< BY A 2V (A4, — Ay ) Fl[faen
Jj2jo p=j+1

It’s a convolution ¢1of? C ¢?, then we get the first inequality. To prove the
reverse inequality, we write f = Fya and F' = Eo(Pof) + 350 Ejr1 (P41 f —
P;f) where Ej; is the extension operator described in Definition 4.1. Then,
we have:

1 1rs 2y < 1]

froee) & | Aof 2@y + ) 274 F — AjF |[Faee)

320

and
AjF — AjF = (Aj — A)Era (Pya f — Bif).

1>

Then, we get for a constant M:

27| Aj F — AjF | agey < ) 2°1(Ajs — A)Era (P f — P13
=

< Y Ma| P f — Pif|[2a)2720 70,

1>y
It’s a convolution /20f' C ¢2, then we get the first inequality. m

Remark 6.1. See that Theorem 6.1 described above dosen’t depend on the
formalism of the given multiresolution analysis (orthogonal or biorthogonal).

Proposition 6.1 and Theorem 6.1 are very useful for analyzing regular

functions on the triangle. Recall that P; (resp P}) is the projection operator

on V;(A) (resp V;(A)) parallel to (V;*(A))* (resp (V;(A))*). We denote
by @Q; (resp Q) the projection operator on W;(A) (resp W;(A)) parallel
to (W7 (A))* (resp (W;(A))*+). These projectors are completely described
by the scaling function constructed in section 4 and the associated wavelets
constructed in section 5. We can now establish the first main result of this
section.
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Theorem 6.2. Let 270 > AN — 4. Then:
a) for f e LA(A), we have || f|132a) = 1P fl32a) + 2z 1Qi Fl132(a);
b) for f € H*(A), we have || fll3sa) = || P} fHLQ(A +3 17 4%)1Q; f 12

Proof. a) is a classical result in wavelet theory.
b) the first inequality follows from Proposition 6.1 and the second inequality
follows from Theorem 6.1. m

We use now dual multiresolution analysis and Remark 6.1 to characterize
the following spaces.

Theorem 6.3. Let 270 > AN — 4. Then:
a) for f € L*(A), we have || f[|72a) = 175 fI|72 Z] o 1Q5 122 (ay5

b) for f € Hi(A), we have || fII3a) = NP5 fIIZ2a)+225=5 47 1Q5 72

Proof. a) is a classical result in wavelet theory.
b) follows from Proposition 6.1 and Theorem 6.1. =

The wavelet bases on a triangle constructed in this paper allow many
concrete numerical examples. In fact, we can use these bases for the study
of the image-watermarking robust to the desynchronizations and we improve
the general robustness of the scheme by embedding in the wavelet transform
domain by using the same method described in [3]. The second example is
to perform a Scan-based Wavelet Compression of 3D semi-regular multireso-
lution meshes [17]. Of course, we can use these bases for applications to gas
dynamics and scalar conservation laws or to improve integral formulation in
electromagnetism and scale-space approximations ([11], [12], [13]).

7. Conclusion

We used in this paper a direct method based on Lemma 2.2 to construct
a biorthogonal multiresolution analysis on A. This construction is very tech-
nical due to the specific geometry of the triangle. Moreover, it is difficult
to analyze more regular spaces since regularity is directly related to the size
of the support. The analysis constructed in this paper is adapted for the
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study of the Sobolev spaces H*(A) and H{(A) (s € N). The associated
wavelet bases are regular and have compact support. More precisely, they
are associated to simple algorithms. Proposition 6.1 and Theorem 6.1 permit
to get the norm equivalences in the two cases. We should notice that our
construction can be achieved numerically in a satisfactory way only for the
first Daubechies scaling functions.
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