
ARMA manuscript No.
(will be inserted by the editor)

EULER EQUATIONS AND REAL
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Abstract

We reprove various existence theorems of regular solutions for the Euler equa-
tions, using classical tools of real harmonic analysis such as singular integrals,
atomic decompositions or maximal functions.

Key words. Euler equations – Besov spaces – Triebel–Lizorkin spaces – commu-
tators – singular integrals

1. Introduction

This paper contains no actually new theorem. It aims to give a new proof of
well-established results of existence of solutions to the Euler equations in spaces
such as Besov spaces or Triebel–Lizorkin spaces. Following the seminal work of
J.Y. Chemin [6], a large number of papers were written on that topic, mainly based
on the use of the Littlewood–Paley decomposition. This approach is very efficient,
especially in the critical case of B1

∞,1 [22], but can lead to tedious computations, as
in the case of Triebel–Lizorkin spaces [7].

In this paper, we shall try not to use the Littlewood–Paley decomposition where
it can be avoided . More precisely, we shall relax our computations and get rid
of the computation of the Littlewood–Paley decomposition of the solution, and
replace it by some more or less classical lemmas on transport equations, singular
integral operators, atomic decompositions, and interpolation. This will allow us to
recover existence results in Besov spaces and in Triebel–Lizorkin spaces.
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2. A general scheme for solving Euler equations.

We consider a divergence-free vector field v0 = (v0,1, . . . ,v0,d) on IRd :

(1) div v0 =
d

∑
i=1

∂iv0,i = 0

and the associated Cauchy problem for the Euler equations

(2)


∂tv+ v.∇v = ∇p

div v = 0

v|t=0 = v0

v is assumed to be a bounded Lipschitz vector field (more precisely, we shall con-
sider v ∈ (L∞((0,T ),Lip))d , where Lip is the space of bounded functions with
bounded derivatives).

If we take the divergence of those equations, we find that

(3) ∆ p =
d

∑
i=1

d

∑
j=1

∂i∂ j(viv j)

so that

(4) ∇p =
d

∑
i=1

d

∑
j=1

∇∂i∂ j

∆
(viv j)+∇q with ∆q = 0.

For v ∈ (Lip)d and div v = 0, ∑
d
i=1 ∑

d
j=1

∇∂i∂ j
∆

(viv j) is a well-defined distribution
and may be written as the gradient of a distribution : if K is the kernel of the con-
volution operator 1

∆
∇, then we have |K(x)| ≤ C|x|1−d and |∂i∂ jK(x)|−d−1 [ for

|x| 6= 0], so that we may write, taking ϕ ∈D be equal to 1 on the ball |x| ≤ 1, that

∑
d
i=1 ∑

d
j=1

∇∂i∂ j
∆

(viv j) = ∑
d
i=1 ∑

d
j=1(ϕK)∗ (∂ jvi∂iv j)+∑

d
i=1 ∑

d
j=1 ∂i∂ j((1−ϕ)K)∗

(viv j) and hence we get that ∑
d
i=1 ∑

d
j=1

∇∂i∂ j
∆

(viv j) belongs to (L∞)d . We shall con-
sider only cases where q = 0 (excluding the action of harmonic polynomials).

The Euler equations we shall consider will then be

(5)


∂tv+ v.∇v = ∑

d
i=1 ∑

d
j=1

∇∂i∂ j
∆

(viv j)

div v = 0

v|t=0 = v0

Throughout the paper, we shall look for existence of solutions in (L∞((0,T ),E)d ,
where E will be a Banach space embedded into Lip; we are not looking for differ-
entiabilty with respect to t, hence the equations will be satisfied in a weak sense
(in the distribution sense). The spaces E we shall consider will be actually em-
bedded in a smaller space : E ⊂ B1

∞,1 ⊂ Lip. It is known that, when v0 belongs to
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(B1
∞,1)

d , then (5) has a solution v ∈ (C ([0,T ),B0
∞,1)∩L∞((0,T ),B1

∞,1))
d and that

this solution is unique [22] (see [1] for a larger class of uniqueness obtained by
Danchin : v ∈ (C ([0,T ),B0

∞,∞)∩L1((0,T ),B1
∞,∞))d ). Thus, we shall be interested

in the problem of proving existence of solutions keeping the regularity of the initial
value v0 ∈ Ed , and pay no special interest in the uniqueness issue (as it has been
settled by Danchin [1]).

While in dimension d = 2, the study of the equations is easy through the control
of the vorticity ω = curl u (classical results are [28] and [30]), the equations are
more difficult to deal with when d ≥ 3. We shall now rewrite equations (5) in a
more convenient way for further study. We consider the Leray projection operator
IP on the solenoidal vector fields :

(6) IP f = f −∇
1
∆

div f ;

this is not defined for all distributions, but at least it is well defined on vector fields
of the form ∑

d
i=1 ∂iui where the ui are bounded vector fields. For w = ∑

d
i=1 ∂i(viv) =

v.∇v = v.IP∇v, we find that

(7)
d

∑
i=1

d

∑
j=1

∇∂i∂ j

∆
(viv j) = w− IPw =

d

∑
i=1

viIP∂iv− IP∂i(viv)

so that we get finally

(8)


∂tv+ v.∇v = ∑

d
i=1[vi, IP∂i]v

v|t=0 = v0

div v = 0

Equations (8) are the Euler equations we shall study in the rest of the paper.
We shall consider the following linear equations associated to the non-linear

problem (8)

(9)

∂t f + v.∇ f = ∑
d
i=1[vi, IP∂i] f

f |t=0 = v0

In equations (9), we see two parts. The left-hand part ∂t f + v.∇ f is a transport
equation through the vector field v; this can be solved through the use of char-
acteristic curves when v ∈ L1

t Lip. The right-hand part ∑
d
i=1[vi,∂iIP] f is a sum of

Calderón’s commutators (commutators between pointwise multiplication and sin-
gular convolution operators with homogeneous kernels of exponent−d−1); those
commutators are generalized Calderón–Zygmund operators when the multipliers
vi are Lipschitz functions. Thus, the same kind of minimal regularity on v is re-
quired to deal with both parts of the equations (9).
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Let us pay now a few words on those two aspects of the equation. The charac-
teristic curves are defined by s 7→ Xt,x(s) where Xt,x is the solution of

(10)


d
ds Xt,x(s) = v(s,Xt,x(s))

Xt,x(t) = x

But, for a divergence-free vector field v ∈ L1
t Lip, the homeomorphism x 7→ Xt,x(s)

is bi-lipschitzian and preserves the Lebesgue measure, so that it operates on many
function spaces. For instance, we have the following lemma :

Lemma 1. Let s 7→ Xt,x(s) be the characteristic curves associated to a divergence-
free vector field v ∈ L1([0,T ],(Lip)d). Then there exists two constants C0 and C1
such that, for g ∈ BMO and 0≤ s≤ t ≤ T , we have

(11) ‖g(Xt,x(s))‖BMO ≤C0‖g‖BMO eC1
∫ t

s ‖∇⊗v‖∞ dσ .

Proof. For a measure-preserving bi-Lipschitzian homeomorphism X , we have for
any ball B = B(x0,r0) and any constant λ

(12)
1
|B|

∫
B |g(X(x))−mB(g(X))| dx ≤ 2 1

|B|
∫

B |g(X(x))−λ | dx

= 2 1
|B|

∫
X(B) |g(y)−λ | dy

Let M be the Lipschitz constant of X (M = supx 6=y
‖X(x)−X(y)‖

‖x−y‖ ) and B1 = B(X(x0),Mr0),
λ = mB1g. We have X(B)⊂ B1 so that (12) gives

(13)
1
|B|

∫
B |g(X(x))−mB(g(X))| dx ≤ 2 Md

|B1|
∫

B1
|g(y)−mB1g| dx

≤ 2Md‖g‖BMO

Thus, we have (11). ut

A Calderón commutator is a commutator between an operator MA of pointwise
multiplication by a function A and a singular convolution operator TK with a ho-
mogeneous distribution K of exponent −d−1 which is smooth outside from {0}.
The distribution kernel of [MA,TK ] is given by L(x,y) = (A(x)−A(y))K(x− y). If
A is Lipschitz, then [MA,TK ] is a generalized Calderón–Zygmund operator [4] [21]
[16] : T is bounded on L2 and its kernel satisfies, outside from the diagonal x = y,

(14)


supx 6=y |x− y|d |L(x,y)|< +∞

supx 6=y |x− y|d+1|∇xL(x,y)|< +∞

supx 6=y |x− y|d+1|∇yL(x,y)|< +∞

The operator IP is a matrix of scalar operators (Pj,k)1≤ j,k≤d and thus ∑
d
i=1[vi, IP∂i] is

a matrix of Calderón–Zygmund operators Tj,k = ∑
d
i=1[vi,Pj,k∂i]. But the operators

Tj,k enjoy further interesting properties. Indeed, we have

(15) Tj,k(1) =−
d

∑
i=1

Pj,k∂ivi = Pj,k(div v) = 0
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and similarly T ∗
j,k(1) = 0, so that they operate as well on many function spaces.

For instance, a Calderón–Zygmund operator T maps boundedly L∞ to BMO, but
it maps as well boundedly BMO to BMO if and only if T (1) = 0 [14]. Thus, we
have the following lemma :

Lemma 2. If v ∈ (Lip)d and div v = 0, then there exists a constant C2 such that,
for every g ∈ BMO, we have

(16) ‖
d

∑
i=1

[vi,Pj,k∂i]g‖BMO ≤C2‖∇⊗ v‖∞‖g‖BMO

Combining Lemmas 1 and 2, we easily get (by an unusual proof) the following
(well-known) result about the conservation of the solenoidal character of the vector
fields for solutions of equations (9) [1] :

Proposition 1. Let f ∈ (L∞((0,T ),Lip)d be a solution of the system

(17)

∂t f + v.∇ f = ∑
d
i=1[vi, IP∂i] f

f |t=0 = v0

where v∈ (L1((0,T ),Lip)d , div v = 0, v0 ∈ (Lip)d and div v0 = 0. Then, we have :
div f = 0.

Proof. We are going to prove that f = IP f in BMO. Indeed, we have

(18)

∂t IP f + IP(v.∇) f = IP∑
d
i=1[vi, IP∂i] f = IP(v.∇)IP f − IP(v.∇) f

IP f |t=0 = v0

and

(19)

∂t f + v.∇ f = ∑
d
i=1[vi, IP∂i] f = v.∇IP f − IP(v.∇) f

f |t=0 = v0

so that

(20)


∂t( f − IP f )+ v.∇( f − IP f ) = IP(v.∇)IP f − IP(v.∇) f

= ∑
d
i=1[vi, IP∂i]( f − IP f )

f − IP f |t=0 = 0

and thus

(21) f − IP f =
∫ t

0

( d

∑
i=1

[vi, IP∂i]( f − IP f )
)
(s,Xt,x(s)) ds

where X is the solution of

(22)


d
ds Xt,x(s) = v(s,Xt,x(s))

Xt,x(t) = x
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Using Lemmas 1 and 2, we find that

(23) ‖ f − IP f‖BMO ≤C0C2

∫ t

0
eC1

∫ t
s ‖∇⊗v‖∞ dσ‖∇⊗ v‖∞‖ f − IP f‖BMO ds

which is enough (due to the Gronwall lemma) to grant that ‖ f − IP f‖BMO = 0. ut

Proposition 1 will lead us to choose our way of constructing solutions to equa-
tions (8). The classical way [6] [1] is to construct inductively approximations hn
of the solution v as solutions of the problem

(24)

∂thn+1 +hn.∇hn+1 = ∑
d
i=1[hn,i, IP∂i]hn

hn+1 |t=0 = v0

but the intermediate solutions hn are not divergence-free, so that the operator Tn =
∑

d
i=1[hn,i, IP∂i] on the left-hand side of (24) doesn’t satisfy Tn(1) = T ∗

n (1) = 0.
Thus, we shall prefer the following scheme (as in [7]) :

The scheme we shall follow to sove the Euler equations is then the following
one : starting from f 0 = v0, we shall try to find a solution f n+1 ∈ L∞

t Lip of the
equation

(25)

∂t f n+1 + f n.∇ f n+1 = ∑
d
i=1[ fn,i, IP∂i] f n+1

f n+1 |t=0 = v0

If this can be done, we will have (by induction) ∇. f n = 0.
In order to compute f n+1, we define inductively gn,k as gn,0 = v0 and

(26)

∂tgn,k+1 + f n.∇gn,k+1 = ∑
d
i=1[ fn,i, IP∂i]gn,k

gn,k+1 |t=0 = v0

The problem is now to prove the convergence of gn,k to f n+1 (as k →+∞) and of
f n to v (as n→+∞).

3. The abstract theory : the Cauchy problem in As.

In this section, we are going to solve equations (8) in an abstract space A1+σ .
A1+σ will belong to a scale of Banach spaces As (where s > 0 stands for a regular-
ity index) which satisfies the following hypotheses:

� Hypothesis (H1) : integrability
As ⊂ L1

loc(IR
d) (continuous embedding)

� Hypothesis (H2) : monotony
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For s1 < s2, As2 ⊂ As1

� Hypothesis (H3) : regularity
f ∈ A1+s ⇔ f ∈ As and ∇ f ∈ As (with equivalence of the norms ‖ f‖As+1 and

‖ f‖As +‖∇ f‖As )

� Hypothesis (H4) : stability
If a sequence ( fn)n∈IN is bounded in As and converges in D ′(IRd) then the

limit belongs to As and we have ‖ limn→+∞ fn‖As ≤ Cs liminfn→+∞ ‖ fn‖As . (This
is usually checked by using the theorem of Banach–Steinhaus, when As is a dual
to a Banach space of functions in which D is densely and continuously embedded)

� Hypothesis (H5) : invariance
The map ( f ,g) ∈D ×As 7→ f ∗g extends to a bounded bilinear operator from

L1×As to As. (Due to hypothesis (H4), it is equivalent to the invariance through
translations : there exists a constant Cs such that for all x0 ∈ IRd and f ∈ As we
have ‖ f (x− x0)‖As ≤Cs‖ f‖As ).

� Hypothesis (H6) : interpolation
If T is a linear operator which is bounded from As1 to As1 and from As2 to

As2 then it is bounded from As to As for every s ∈ [s1,s2] and ‖T‖L (As,As) ≤
C(s,s1,s2)max(‖T‖L (As1 ,As1 ),‖T‖L (As2 ,As2 )).

� Hypothesis (H7) : transport by Lipschitz flows
Let u ∈ L1((0,T ),Lip) be a divergence-free vector field and let f0 ∈ As for

some s ∈ (0,1). Then the solution f ∈ C ([0,T ],L1
loc) of the transport equation

(27)

∂t f +u.∇ f = 0

f|t=0 = f0

satisfies sup0≤t≤T ‖ f (t, .)‖As ≤CseCs
∫ T

0 ‖u‖Lip dt‖ f0‖As .

� Hypothesis (H8) : singular integrals
Let T be a bounded linear operator from D(IRd) to D ′(IRd) (with distribution

kernel K(x,y) ∈D ′(IRd × IRd)) which satisfies the following conditions
• T is bounded on L2 : ‖T ( f )‖2 ≤C0‖ f‖2
• outside from the diagonal x = y, K is a continuous function such that

|K(x,y)| ≤C0
1

|x−y|d(1+|x−y|)
• outside from the diagonal, K satisfies |∇xK(x,y)| ≤C0|x− y|−d−1 and

|∇yK(x,y)| ≤C0|x− y|−d−1

• T (1) = T ∗(1) = 0 in BMO
Then, T is bounded from As to As for all 0 < s < 1 and ‖T‖L (As,As) ≤CsC0

We further consider an hypothesis on some σ > 0 :
� Hypothesis (H9) : pointwise products with Aσ
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Aσ ⊂ L∞ (continuous embedding) and, for all s ∈ (0,σ ], the product ( f ,g) 7→
f g is a bounded bilinear operator from Aσ ×As to As.

We then have the following theorem on the Cauchy problem for the Euler
equations with initial data in A1+σ :

Theorem 1. Let As be a scale of spaces satisfying hypotheses (H1) to (H8) and
let σ > 0 satisfy hypothesis (H9). Let v0 ∈ A1+σ be a divergence free vector field.
Then there exists a positive T such that the Cauchy problem

(28)


∂tv+ v.∇v = ∑

d
i=1[vi, IP∂i]v

v|t=0 = v0

∇.v = 0

has a unique solution v ∈ C ([0,T ],Aσ ) such that sup0≤t≤T ‖v‖Aσ+1 < +∞.

Proof.

Step 1 : Study of the operator ∑
d
i=1[ui, IP∂i]

IP is a matrix of singular integral operators Pj,k = δ j,kId +R jRk where R j is the

j-th Riesz transform R j = ∂ j√
−∆

. We shall prove :

Lemma 3. Let u∈A1+σ with div u = 0. Then the operator ∑
d
i=1[ui,Pj,k∂i] is bounded

on As for every s∈ (0,1+σ ] and we have ‖∑
d
i=1[ui,Pj,k∂i] f‖As ≤Cs,σ‖ f‖As‖u‖A1+σ .

Proof. The operator Ti, j,k = [ui,Pj,k∂i] is an example of the famous Calderón com-
mutators [4] [16] between a Lipschitz function and an operator of order 1. The op-
erator Pj,k∂i is a convolution operator with a distribution Ki, j,k whose restriction to
IRd\{0} is a smooth function which is homogeneous of homogeneity order−d−1.
The distribution kernel of Ti, j,k is given (outside from the diagonal x = y) by the
function Li, j,k(x,y) = (ui(x)−ui(y))Ki, j,k(x− y). Since ui ∈ A1+σ ⊂ Lip, we have
that |Li, j,k(x,y)| ≤Cσ‖ui‖A1+σ

1
|x−y|d(1+|x−y|) and |∇xLi, j,k(x,y)|+ |∇yLi, j,k(x,y)| ≤

Cσ‖ui‖A1+σ |x−y|−d−1. Moreover, Calderón’s theorem states that Ti, j,k is bounded
on L2 with operator norm bounded by C‖∇ui‖∞ ≤Cσ‖ui‖A1+σ .

The next step is to compute Ti, j,k(1) = T ∗
i, j,k(1). We have Ti, j,k(1) =−Pj,k(∂iui).

Thus, ∑
d
i=1 Ti, j,k(1) = Pj,k(div u) = 0. Thus, we can apply (H8) and we get Lemma

3 for 0 < s < 1.
Now, we consider s such that 1 + s ≤ 1 + σ and such that ∑

d
i=1[ui,Pj,k∂i] is

bounded on As. We take f ∈ A1+s and try to estimate g = ∑
d
i=1[ui,Pj,k∂i] f in As+1.

Due to (H3), we must estimate ‖g‖As and, for l = 1, . . . ,d, ‖∂lg‖As . We just write

(29) ∂lg =
d

∑
i=1

[ui,Pj,k∂i]∂l f +
d

∑
i=1

[∂lui,Pj,k∂i] f

so that we find

(30) ‖g‖As+1 ≤Cs
(
‖

d

∑
i=1

[ui,Pj,k∂i]‖L (As,As)‖ f‖As+1 +
d

∑
l=1
‖

d

∑
i=1

[∂lui,Pj,k∂i] f‖As
)
.
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We thus need to estimate ‖∑
d
i=1[∂lui,Pj,k∂i] f‖As . This will be done by distinguish-

ing the low frequencies and the high frequencies. If S0 f is the low-frequency block
in the Littlewood–Paley decomposition f = S0 f +∑

+∞

j=1 ∆ j f , then we write (using
the fact that u is divergence-free)

(31)


∑

d
i=1[∂lui,Pj,k∂i] f = A+B+C +D

A = ∑
d
i=1 ∂luiS0Pj,k∂i f

B = −∑
d
i=1 ∂iS0Pj,k(∂lui f )

C = ∑
d
i=1 ∂lui(Id−S0)Pj,k∂i f

D = −∑
d
i=1(Id−S0)Pj,k(∂lui∂i f )

(Id−S0)Pj,k satisfies the assumptions of (H8), hence is bounded on every Aτ with
0 < τ < 1; since it is a convolution operator, hence commutes with derivatives, we
use (H3) and find that it is bounded on every Aτ with 0 < τ /∈ IN and finally for
every positive τ (by (H6)). Thus, using (H9), we find that ‖C‖As + ‖D‖As is con-
trolled by ‖u‖A1+σ ‖ f‖A1+s . Moreover, ∂iS0Pj,k has an integrable kernel; we then
use the embedding As+1 ⊂ As (by (H2)) and (H5) to get that ‖A‖As + ‖B‖As is
controlled by ‖u‖A1+σ ‖ f‖As and thus by ‖u‖A1+σ ‖ f‖A1+s .

Thus, by induction, we get Lemma 3 for 0 < s≤ 1+σ , s /∈ IN; the case s ∈ IN
and 0 < s < 1+σ then follows by interpolation; if σ ∈ IN, we obtain the final case
s = 1+σ by induction from s = σ to s = 1+σ one more time. ut

Step 2 : Transport equations in As

In this section, we shall prove :

Lemma 4. Let u ∈ L1([0,T ],A1+σ ) with div u = 0. Let f0 ∈ As for some exponent
s ∈ (0,1+σ ]. Then the solution f ∈ C ([0,T ],L1

loc) of the transport equation

(32)

∂t f +u.∇ f = 0

f|t=0 = f0

satisfies sup0≤t≤T ‖ f (t, .)‖As ≤Cs,σ eCs,σ
∫ T

0 ‖u(t,.)‖A1+σ dt‖ f0‖As

Proof. As for Lemma 3, we shall prove the lemma for 0 < s < 1, then we shall
prove that it holds for 1 + s ≤ 1 + σ when it holds for s; this will give that the
lemma is valid for 0 < s < 1 + σ , s 6∈ IN; then interpolation will give the case
0 < s < 1+σ , s ∈ IN and, if σ ∈ IN, a final induction gives the case s = 1+σ .

The case 0 < s < 1 is a direct consequence of (H7) since we have (by (H2),
(H3) and (H9)) the embedding A1+σ ⊂ Lip.

Now, let us assume that Lemma 4 is valid for some s∈ (0,σ ] and let us assume
that f0 ∈ A1+s. In particular, f0 is uniformly locally in W 1,1 and since u is a Lip-
schitz vector field, we find that f as well is uniformly locally in W 1,1 and that its
derivatives (∂1 f , . . . ,∂d f ) are solutions of the system

(33) for j = 1, . . . ,d, ∂t∂ j f +u.∇∂ j f =−
d

∑
k=1

∂ juk∂k f
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Thus, writing Mu = (∂ juk)1≤ j,k≤d and τ 7→ Xt,x(τ) the characteristic curves as-

sociated to the vector field u, we find that H(t,x) =

∂1 f
...

∂d f

 is solution of the

fixed-point problem

(34) H(t,x) = H(0,Xt,x(0))+
∫ t

0
Mu(τ,Xt,x(τ))H(τ,Xt,x(τ)) dτ

For λ > 0, let Lλ be the operator K 7→Lλ K = S where S(t,x) is given by S(t,x) =∫ t
0 e−λ (t−τ)Mu(τ,Xt,x(τ))K(τ,Xt,x(τ)) dτ . Lλ maps L∞((0,T ),(L1

uloc)
d) into itself

(where L1
uloc is the space of uniformly locally integrable functions, normed by

‖ f‖L1
uloc

= supx0∈IRd
∫
|x−x0|<1 | f (x)| dx) and we have

(35)
‖Lλ K‖L∞L1

uloc
≤ C‖K‖L∞L1

uloc
sup0<t<T

∫ t
0 e−λ (t−τ)‖u‖Lip eC

∫ t
τ ‖u‖Lip dθ dτ

= Cλ ,u‖K‖L∞L1
uloc

The solution H of (34) may be written as H = eλ tK where K is solution of

(36) K(t,x) = e−λ tH(0,Xt,x(0))+Lλ K

For λ large enough, we have Cλ ,u < 1 and Lλ is a contraction on L∞((0,T ),(L1
uloc)

d).
Further, we may apply the induction hypothesis and (H9) to see that Lλ maps

L∞((0,T ),(As)d) into itself and that we have

(37)
‖Lλ K‖L∞As≤ C‖K‖L∞As sup0<t<T

∫ t
0 e−λ (t−τ)‖u‖A1+σ eC

∫ t
τ ‖u‖A1+σ dθ dτ

= Dλ ,u‖K‖L∞L1
uloc

For λ large enough, we have Dλ ,u < 1 and Lλ is a contraction on L∞((0,T ),(As)d).

Since H(0,x) =

∂1 f0
...

∂d f0

 belongs to (L1
uloc ∩As)d , we get that H(0,Xt,x(0)) be-

longs to L∞((0,T ),(L1
uloc)

d)∩L∞((0,T ),(As)d) and finally that H itself belongs to
L∞((0,T ),(As)d). This proves that f ∈ L∞A1+s.

We then control the size of ‖ f‖A1+s through the Gronwall lemma. ut

Step 3 : Equation (26)
We are now going to prove theorem 1, by approximating the solution v by the

inductively defined f n (equation (25)) and gn,k (equation (26)). We shall prove by
induction that we can find a time T such that for all n and k we have

(38) sup
0<t<T

‖ f n‖A1+σ ≤ 4C0‖v0‖A1+σ and sup
0<t<T

‖gn,k‖A1+σ ≤ 4C0‖v0‖A1+σ

where C0 is the constant C1+σ ,σ in Lemma 4. Recall that we defined inductively
gn,k as gn,0 = v0 and
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(39)

∂tgn,k+1 + f n.∇gn,k+1 = ∑
d
i=1[ fn,i, IP∂i]gn,k

gn,k+1 |t=0 = v0

We assume that f n is divergence free and that sup0<t<T ‖ f n‖A1+σ ≤ 4C0‖v0‖A1+σ

and sup0<t<T ‖gn,k‖A1+σ ≤ 4C0‖v0‖A1+σ . Now, using τ 7→ X (n)
t,x (τ) the characteris-

tic curves associated to the vector field f n, we have the following expression for
gn,k+1 :

(40) gn,k+1 = v0(X
(n)
t,x (0))+

∫ t

0

( d

∑
i=1

[ fn,i, IP∂i]gn,k
)
(τ,X (n)

t,x (τ)) dτ

We write δ0 =C0‖v0‖A1+σ . Using Lemmas 3 and 4, we find that, for some constant
D0 which depends neither on v0, nor on n or k, nor on T ,

(41) sup
0<t<T

‖gn,k+1‖A1+σ ≤ δ0e4C0T δ0 +C0D0Te4C0T δ0(4δ0)2

so that the induction is valid if T is small enough to ensure that

(42) e4C0T δ0(1+16C0D0δ0T ) < 4.

Step 4 : Equation (25)
If we consider the operator Ln defined by Lng = h with

(43) h(t,x) =
∫ t

0

( d

∑
i=1

[ fn,i, IP∂i]g
)
(τ,X (n)

t,x (τ)) dτ

we have

(44) sup
0<t<T

‖Lng‖A1+σ ≤ 4C0δ0D0Te4C0T δ0 sup
0<t<T

‖g‖A1+σ

so that Ln is a contraction on L∞((0,T ),(A1+σ )d) (under condition (42)). Thus,
gn,k converges to the fixed point f n+1 = v0(X

(n)
t,x (0))+Ln f n+1. We find that f n+1 is

a solution of (25) (so that f n+1 is divergence free) and that sup0<t<T ‖ f n+1‖A1+σ ≤
4C0‖v0‖A1+σ .

Step 5 : Equation (8)
The last step in the proof of Theorem 1 is to check the convergence of f n to a

solution v of equation (8). Let kn = f n+1− f n. We have

(45) ∂tkn+1 + f n+1.∇kn+1 =−kn.∇ fn+1 +∑
d
i=1[ fn+1,i, IP∂i]kn+1

+∑
d
i=1[kn,i, IP∂i] f n+1

with

(46)
∑

d
i=1[∂lkn,i,Pj,k∂i]h =

∑
d
i=1 ∂lkn,i,S0Pj,k∂ih−∑

d
i=1 ∂iS0Pj,k(∂lkn,ih)

+∑
d
i=1 ∂lkn,i(Id−S0),Pj,k∂ih−∑

d
i=1(Id−S0)Pj,k(∂lkn,i∂ih)
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This gives

(47)

 kn+1 =
∫ t

0 Gn(τ,X (n+1)
t,x (τ)) dτ

Gn(t,x) =−kn.∇ fn+1 +∑
d
i=1[ fn+1,i, IP∂i]kn+1 +∑

d
i=1[kn,i, IP∂i] f n+1

hence (by Lemmas 3 and 4, and hypotheses (H5), (H8) and (H9)) we find that, for
some constant D1 which depends neither on v0, nor on n or T , we have

(48) sup
0<t<T

‖kn+1‖Aσ ≤ D1eD14δ0T T (4δ0 sup
0<t<T

‖kn‖Aσ +4δ0 sup
0<t<T

‖kn+1‖Aσ )

If T is small enough to grant that

(49) 4δ0D1eD14δ0T T < 1/4

we find that

(50) sup
0<t<T

‖kn+1‖Aσ ≤ 1
3

sup
0<t<T

‖kn‖Aσ

so that ∑n∈IN sup0<t<T ‖ f n+1− f n‖Aσ < +∞.
Let us remark that ∂t f n is bounded in Aσ , so that f n belongs to C [0,T ],(Aσ )d)

and converges strongly in C [0,T ],(Aσ )d) to some vector field v. This vector field
is divergence-free. Moreover, due to the stability hypothesis (H4), we have that
sup0<t<T ‖v‖Aσ+1 < +∞.

Now, we check that v is a solution to (8). We must prove the convergence in
D ′ of f n.∇ f n+1 to v.∇v and of ∑

d
i=1[ fn,i, IP∂i] f n+1 to ∑

d
i=1[vi, IP∂i]v. This is quite

easy, since f n converges strongly to v in L∞ and ∂i f n converges *-weakly to ∂iv
in L∞. This gives by interpolation strong convergence in Bα,∞

∞ for all α ∈ (1/2,1),
from which we get the required convergence. ut

4. The scale of Besov spaces.

We may apply quite directly Theorem 1 to the case of an intitial value v0 in a
Besov space :

Theorem 2. Let v0 ∈ B1+σ
p,q be a divergence free vector field. Assume that 1≤ p≤

+∞, and that σ > d/p and 1 ≤ q ≤ +∞, or that σ = d/p and q = 1. Then there
exists a positive T such that the Cauchy problem

(51)


∂tv+ v.∇v = ∑

d
i=1[vi, IP∂i]v

v|t=0 = v0

∇.v = 0

has a unique solution v ∈ C ([0,T ],Bσ
p,q) such that sup0≤t≤T ‖v‖B1+σ

p,q
< +∞.
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Proof. We introduce the scale of Besov spaces Bs
p,q for 0 < s ≤ 1 + σ and we

check that this scale satisfies hypotheses (H1) to (H9) :

� Hypothesis (H1) : integrability : for s > 0, Bs
p,q ⊂ Lp ⊂ L1

loc(IR
d)

� Hypothesis (H2) : monotony : For s1 < s2, Bs2
p,q ⊂ Bs1

p,q

� Hypothesis (H3) : regularity : f ∈ B1+s
p,q ⇔ f ∈ Bs

p,q and ∇ f ∈ Bs
p,q

� Hypothesis (H4) : stability : If a sequence ( fn)n∈IN is bounded in Bs
p,q and con-

verges in D ′(IRd) then the limit belongs to Bs
p,q and we have ‖ limn→+∞ fn‖Bs

p,q ≤
liminfn→+∞ ‖ fn‖Bs

p,q . (Bs
p,q is the dual space of the closure of D in B−s

p/(p−1),q/(q−1)).

� Hypothesis (H5) : invariance : for all x0 ∈ IRd and all f ∈ Bs
p,q we have the

equality ‖ f (x− x0)‖Bs
p,q = ‖ f‖Bs

p,q .

� Hypothesis (H6) : interpolation
To prove that (H6) is fullfilled, we may use the real interpolation functor, as

we have, for s1 < s < s2 ∈ IR, that Bs
p,q = [Bs1

p,q,B
s2
p,q]θ ,q with θ = s−s1

s2−s1
[3].

� Hypothesis (H7) : transport by Lipschitz flows
Let u ∈ L1((0,T ),Lip) be a divergence-free vector field and let S(t) be the op-

erator that maps f0 ∈ Lp to the solution f ∈C ([0,T ],L1
loc) ( f (t,x) =

(
S(t) f0

)
(x))of

the transport equation

(52)

∂t f +u.∇ f = 0

f|t=0 = f0

We have ‖S(t) f0‖p = ‖ f0‖p. Moreover, we have, when f0 ∈ W 1,p, ∂ jS(t) f0 =

∑
d
k=1 S(t)∂k f0 ∂ jXk,t,x(0). so that sup0≤t≤T ‖ f (t, .)‖W 1,p ≤CeC

∫ T
0 ‖u‖Lip dt‖ f0‖W 1,p .

The case of the Bs
p,q norm follows by interpolation, since, for 0 < s < 1, we have

Bs
p,q = [Lp,W 1,p]θ ,q with θ = s.

� Hypothesis (H8) : singular integrals
Let T be a bounded linear operator from D(IRd) to D ′(IRd) (with distribution

kernel K(x,y) ∈D ′(IRd × IRd)) which satisfies the following conditions
• T is bounded on L2 : ‖T ( f )‖2 ≤C0‖ f‖2
• outside from the diagonal x = y, K is a continuous function such that

|K(x,y)| ≤C0
1

|x−y|d(1+|x−y|)
• outside from the diagonal, K satisfies |∇xK(x,y)| ≤C0|x− y|−d−1 and

|∇yK(x,y)| ≤C0|x− y|−d−1

• T (1) = T ∗(1) = 0 in BMO
Then, T is bounded from Bs

p,q to Bs
p,q for all 0 < s < 1 and ‖T‖L (Bs

p,q,Bs
p,q) ≤CsC0

[15].
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� Hypothesis (H9) : pointwise products with Bσ
p,q

It is well known that, for any positive s, Bs
p,q∩L∞ is a Banach algebra [3][16].

For σ > n/p and 1 ≤ q ≤ +∞, or for for σ = n/p and q = 1, we have Bσ
p,q ⊂ L∞

(continuous embedding). Thus, the pointwise product ( f ,g) 7→ f g is a bounded
bilinear operator from Bσ

p,q ×E to E when E = Bσ
p,q and when E = Lp, hence,

by interpolation, when E = Bs
p,q for any s ∈ (0,σ ] (since, for 0 < s < σ , Bs

p,q =
[Lp,Bσ

p,q]θ ,q with θ = s/σ ).
Thus, we find that Theorem 2 is only a corollary of Theorem 1. ut

5. The scale of Triebel-Lizorkin spaces.

We may as well apply quite directly Theorem 1 to the case of an intitial value
v0 in a Triebel–Lizorkin space. Let us recall that Besov spaces may be defined
through the Littlewood–Paley decomposition as

(53) f ∈ Bs
p,q ⇔ f ∈S ′,S0 f ∈ Lp and (2 js‖∆ j f‖p) j∈IN ∈ lq

Similarly, for 1 ≤ p,q < +∞, the Triebel–Lizorkin space Fs
p,q [3] may be defined

as :

(54) f ∈ Fs
p,q ⇔ f ∈S ′,S0 f ∈ Lp and

(
∑
j∈IN

2 jsq|∆ j f |q
)1/q ∈ Lp

We may prove easily the following Theorem (announced in [5] and fully proved
in [7] for p > 1) :

Theorem 3. Let v0 ∈ F1+σ
p,q be a divergence free vector field. Assume that 1 ≤

p,q < +∞, and that σ > d/p. Then there exists a positive T such that the Cauchy
problem

(55)


∂tv+ v.∇v = ∑

d
i=1[vi, IP∂i]v

v|t=0 = v0

∇.v = 0

has a unique solution v ∈ C ([0,T ],Fσ
p,q) such that sup0≤t≤T ‖v‖F1+σ

p,q
< +∞.

Proof. We introduce the scale of Triebel–Lizorkin spaces Fs
p,q for 0 < s ≤ 1 + σ

and we check that this scale satisfies hypotheses (H1) to (H9) :

� Hypothesis (H1) : integrability : for s > 0, Fs
p,q ⊂ Lp ⊂ L1

loc(IR
d)

� Hypothesis (H2) : monotony : For s1 < s2, Fs2
p,q ⊂ Fs1

p,q

� Hypothesis (H3) : regularity : f ∈ F1+s
p,q ⇔ f ∈ Fs

p,q and ∇ f ∈ Fs
p,q
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� Hypothesis (H4) : stability : If a sequence ( fn)n∈IN is bounded in Fs
p,q and con-

verges in D ′(IRd) then the limit belongs to Fs
p,q and we have ‖ limn→+∞ fn‖Fs

p,q ≤
liminfn→+∞ ‖ fn‖Fs

p,q : it is enough to check that we have the pointwise convergence
of ∆ j fn to ∆ j f (where f is the limit of fn) and then to conclude by applying twice
Fatou’s lemma.

� Hypothesis (H5) : invariance : for all x0 ∈ IRd and all f ∈ Fs
p,q we have the

equality ‖ f (x− x0)‖Fs
p,q = ‖ f‖Fs

p,q .

� Hypothesis (H6) : interpolation
To prove that (H6) is fullfilled, we may use the complex interpolation functor,

as we have, for s1 < s < s2 ∈ IR, that Fs
p,q = [Fs1

p,q,F
s2
p,q]θ with θ = s−s1

s2−s1
[3].

� Hypothesis (H7) : transport by Lipschitz flows
Let u ∈ L1((0,T ),Lip) be a divergence-free vector field and let S(t) be the op-

erator that maps f0 ∈ Lp to the solution f ∈C ([0,T ],L1
loc) ( f (t,x) =

(
S(t) f0

)
(x))of

the transport equation

(56)

∂t f +u.∇ f = 0

f|t=0 = f0

Indeed, we write again f (t,x) = f0(Xt,x(0)); x 7→Xt,x(0) is a bi-Lipschitzian home-
omorphism and the partial derivatives ∂ j(Xt,x(0) are controlled in L∞ norm by
CeC

∫ t
0 ‖u‖Lip dτ . Thus, we must prove that Fs

p,q is stable under composition with a
bi-Lipschitzian homeomorphism X when 0 < s < 1. This is easy to check, using
the characterization of Fs

p,q through finite differences [27] : for 1≤ p,q < +∞ and
for 0 < s < 1, we have :

(57) f ∈ Fs
p,q ⇔ f ∈ Lp and (

∫ 1

0

∫
|h|<t

t−d−sq| f (x)− f (x+h)|q dh dt)1/q ∈ Lp

(with equivalence of norms). Let J be the Jacobian matrix of X , K(x) = ‖J(x)‖op =
sup|y|≤1 |J(x)y|. We have

(58) ‖ f ◦X‖p ≤ ‖detJ−1‖
1
p
∞‖ f‖p

whereas

(59)

∫
|h|<t | f (X(x))− f (X(x+h))|q dh

≤ ‖detJ−1‖∞

∫
|k|<‖K‖∞t | f (X(x))− f (X(x)+ k)|q dk.

We make a change of variable k = ‖K‖∞h and we write g(x) = f (‖K‖∞x), we then
get

(60)

∫
|h|<t | f (X(x))− f (X(x+h))|q dh

≤ ‖detJ−1‖∞‖K‖d
∞

∫
|h|<t |g(‖K‖−1

∞ X(x))−g(‖K‖−1
∞ X(x)+h)|q dh
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A further change of variable y = ‖K‖−1
∞ X(x)) gives us that the norm of f ◦X in

Fs
p,q is controlled by ‖ f‖p + ‖g‖Fs

p,q . And we easily control the norm of g by the
norm of f in Fs

p,q, so that we may conclude.

� Hypothesis (H8) : singular integrals
Let T be a bounded linear operator from D(IRd) to D ′(IRd) (with distribution

kernel K(x,y) ∈D ′(IRd × IRd)) which satisfies the following conditions
• T is bounded on L2 : ‖T ( f )‖2 ≤C0‖ f‖2
• outside from the diagonal x = y, K is a continuous function such that

|K(x,y)| ≤C0
1

|x−y|d(1+|x−y|)
• outside from the diagonal, K satisfies |∇xK(x,y)| ≤C0|x− y|−d−1 and

|∇yK(x,y)| ≤C0|x− y|−d−1

• T (1) = T ∗(1) = 0 in BMO
Then, T is bounded from Fs

p,q to Fs
p,q for all 0 < s < 1 and ‖T‖L (Fs

p,q,Fs
p,q) ≤CsC0.

Indeed, the boundedness of such an operator T on the homogeneous space Ḟs
p,q

has been proved by several authors (for p > 1, we may quote [10] [?]; for p = 1,
see [9]). Now, the norm of Fs

p,q is equivalent (for s > 0) to the sum of the norm in

Ḟs
p,q and the norm of Bs/2

p,q , so that boundedness on Ḟs
p,q and on Bs/2

p,q gives bounded-
ness on Fs

p,q.

� Hypothesis (H9) : pointwise products with Fσ
p,q

It is well known that, for any positive s, Fs
p,q ∩ L∞ is a Banach algebra [3].

Moreover, if 0 < s < ε < 1, then the pointwise product ( f ,g) 7→ f g is a bounded
bilinear operator from Bε

∞,∞×Fs
p,q to Fs

p,q [24]. For σ > n/p, we have Fσ
p,q ⊂ L∞

(continuous embedding), and more precisely Fσ
p,q ⊂ Bσ−d/p

∞,∞ . Thus, the pointwise
product ( f ,g) 7→ f g is a bounded bilinear operator from Fσ

p,q×E to E when E =
Fσ

p,q and when E = Fs
p,q with 0 < s < min(1,σ − d/p), hence, by interpolation,

when E = Fs
p,q for any s ∈ (0,σ ].

Thus, we find that Theorem 3 is only a corollary of Theorem 1. ut

6. Atoms and molecules.

The continuity of singular integrals on Triebel–Lizorkin spaces can be proved
in an “elementary” way by proving that this class of operators preserve the local-
ization and the scale of so-called “molecules” (see in particular [9] and[12]). The
preservation of molecules is the basis for the construction of an algebra of singular
integral operators introduced by Y. Meyer [20] and the author [14].

We define Aε (0 < ε ≤ 1) as the following class of Calderòn–Zygmund opera-
tors : a bounded linear operator T from D(IRd) to D ′(IRd) (with distribution kernel
K(x,y) ∈D ′(IRd × IRd)) belongs to Aε if it fullfills the following conditions :

• T is bounded on L2 : ‖T ( f )‖2 ≤C0‖ f‖2
• outside from the diagonal x = y, K is a continuous function such that

|K(x,y)| ≤C0
1

|x−y|d(1+|x−y|)
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• outside from the diagonal, K satisfies |K(x,y)−K(z,y)| ≤C0|x−z|ε( 1
|x−y|d+ε

+
1

|z−y|d+ε
)

• outside from the diagonal, K satisfies |K(x,y)−K(x,z)| ≤C0|y−z|ε( 1
|x−y|d+ε

+
1

|x−z|d+ε
)
• T (1) = T ∗(1) = 0 in BMO

We shall define a norm on Aε by taking ‖ f‖Aε
as the infimum of the constants

C0 which satisfies the above four inequalities.
Now, we define an α-molecule f centered at x = x0 at scale r (what we shall

write as f ∈M α(x0,r)) by the following requirements : f ∈M α(x0,r) if it fullfills
the following conditions :

• | f (x)| ≤ rα

(r+|x−x0|)d+α

• | f (x)− f (y)| ≤
( |x−y|

r

)α( rα

(r+|x−x0|)d+α
+ rα

(r+|y−x0|)d+α
)

•
∫

IRd f (x) dx = 0
We shall use the following result of [14] :

Theorem 4. A) If 0 < β < α ≤ ε ≤ 1 and if T ∈ Aε , then there exists a positive
λ > 0 such that for every x0 ∈ IRd and every r > 0 we have for every f ∈M α(x0,r)
that λT ( f ) ∈M β (x0,r).
B) Let 0 < ε < β ≤ α ≤ 1. If T is a bounded linear operator on L2 and if there
exists a positive λ > 0 such that for every x0 ∈ IRd and every r > 0 we have for
every f ∈M α(x0,r) that λT ( f ) ∈M β (x0,r), then T ∈Aε .
C) The set A ε = ∪η<εAη is an algebra of Calderón–Zygmund operators.

Using this theory of molecules, or using the characterization of A ε by the
matrix of T ∈ A ε in a wavelet basis, we have the following theorem of Meyer
[21] :

Theorem 5. If 0 < ε ≤ 1 and if T ∈Aε , then, for 0 < α < ε , the operator (−∆)α/2◦
T ◦ (−∆)−α/2 belongs to A ε−α . Moreover, if α < β < ε and 0 < γ < β −α ,
‖(−∆)α/2 ◦T ◦ (−∆)−α/2‖Aγ

≤Cα,β ,γ‖T‖Aβ

7. Sobolev spaces over the Morrey–Campanato spaces and Lorentz spaces.

Theorem 5 will give us a new way of establishing well-posedness of the Euler
equations. Indeed, we introduce a class BCZ of Banach spaces by the following
conditions : we will say that a Banach space B of functions defined on IRd belongs
to BCZ if it fullfills the following requirements :

� Hypothesis (K1) : integrability
B⊂ L1

loc(IR
d) (continuous embedding)

� Hypothesis (K2) : stability
If a sequence ( fn)n∈IN is bounded in B and converges in D ′(IRd) then the limit

belongs to B and we have ‖ limn→+∞ fn‖B ≤Cs liminfn→+∞ ‖ fn‖B.
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� Hypothesis (K3) : invariance
The map ( f ,g) ∈ D ×B 7→ f ∗ g extends to a bounded bilinear operator from

L1×B to B.

� Hypothesis (K4) : pointwise product
The map ( f ,g) 7→ f g is a bounded bilinear operator from L∞×B to B.

� Hypothesis (K5) : bi-Lipschitzian homeomorphisms
If X is a bi-Lipschitzian measure-preserving homeomorphism, if J is its Ja-

cobian matrix, then for every f ∈ B we have f ◦ X ∈ B and moreover, for two
positive constants C and D which don’t depend neither on X nor on f , we have
‖ f ◦X‖B ≤C(1+‖J‖∞)D‖ f‖B.

� Hypothesis (K6) : singular integrals
For every ε ∈ (0,1] and every T ∈Aε , T is bounded from B to B and ‖T‖L (B,B)≤

C‖T‖Aε

� Hypothesis (K7) : high frequencies control
there exists some κ ∈ IR such that B⊂ Bκ

∞,∞.
We shall define the Sobolev space W k,B for k ∈ IN as the space of the functions

f ∈ B such that, for all α ∈ INd with |α| ≤ k, we have ∂ α f ∈ B. We may prove a
variant of Theorem 1 :

Theorem 6. Let B ∈BCZ such that B⊂ Bκ
∞,∞. Let N ∈ IN such that N +κ > 0. Let

v0 ∈W N+1,B be a divergence free vector field. Then there exists a positive T such
that the Cauchy problem

(61)


∂tv+ v.∇v = ∑

d
i=1[vi, IP∂i]v

v|t=0 = v0

∇.v = 0

has a unique solution v ∈ C ([0,T ],W N,B) such that sup0≤t≤T ‖v‖W N+1,B < +∞.

Proof. Let us first remark that , for f ∈S ′, we have f ∈W k,B ⇔ (Id−∆)k/2 f ∈B,
due to hypothesis (K6). We thus may introduce the scale of Banach spaces Bs =
(Id−∆)s/2B for 0 ≤ s ≤ 1 + N and we check that this scale satisfies hypotheses
(H1) to (H9) :

� Hypothesis (H1) : integrability : for s > 0, Bs ⊂ B0 = B⊂ L1
loc(IR

d)

� Hypothesis (H2) : monotony : For s1 < s2, Bs2 ⊂ Bs1 (since (Id−∆)
s1−s2

2 is a
convolution operator with a kernel in L1

� Hypothesis (H3) : regularity : f ∈ B1+s ⇔ f ∈ Bs and ∇ f ∈ Bs (owing to (K6))
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� Hypothesis (H4) : stability : If a sequence ( fn)n∈IN is bounded in Bs and con-
verges in D ′(IRd) then the limit belongs to Bs and we have ‖ limn→+∞ fn‖Bs ≤
liminfn→+∞ ‖ fn‖Bs . (Just check that (Id−∆)s/2 fn converges in S ′ to (Id−∆)s/2 f ,
where f = limn→+∞ fn, and then apply (K2)).

� Hypothesis (H5) : invariance : it is obvious since we can commute convolution
operators.

� Hypothesis (H6) : interpolation
To prove that (H6) is fullfilled, we may use the complex interpolation functor,

as it is easy to check that we have, for 0 ≤ s1 < s < s2, that Bs = [Bs1 ,Bs2 ]θ with
θ = s−s1

s2−s1
.

� Hypothesis (H7) : transport by Lipschitz flows
Let u ∈ L1((0,T ),Lip) be a divergence-free vector field and let S(t) be the op-

erator that maps f0 ∈ B to the solution f ∈ C ([0,T ],L1
loc) ( f (t,x) =

(
S(t) f0

)
(x))of

the transport equation

(62)

∂t f +u.∇ f = 0

f|t=0 = f0

Due to (K5), we have ‖S(t) f0‖B ≤CeC
∫ T

0 ‖u‖Lip dt‖ f0‖B. Moreover, we have, when
f0 ∈W 1,B, ∂ jS(t) f0 = ∑

d
k=1 S(t)∂k f0 ∂ jXk,t,x(0). so that (using (K4) and (K5)), we

get

(63) sup
0≤t≤T

‖ f (t, .)‖W 1,B ≤CeC
∫ T

0 ‖u‖Lip dt‖ f0‖W 1,B

The case of the Bs norm follows by interpolation, for 0 < s < 1.

� Hypothesis (H8) : singular integrals
Let T be a bounded linear operator from D(IRd) to D ′(IRd) (with distribution

kernel K(x,y) ∈D ′(IRd × IRd)) which satisfies the following conditions
• T is bounded on L2 : ‖T ( f )‖2 ≤C0‖ f‖2
• outside from the diagonal x = y, K is a continuous function such that

|K(x,y)| ≤C0
1

|x−y|d(1+|x−y|)
• outside from the diagonal, K satisfies |∇xK(x,y)| ≤C0|x− y|−d−1 and

|∇yK(x,y)| ≤C0|x− y|−d−1

• T (1) = T ∗(1) = 0 in BMO
Then, T is bounded from Bs to Bs for all 0 < s < 1 and ‖T‖L (Bs,Bs) ≤CsC0 : in-
deed, it is easy to check that, for positive s, (−∆ s/2 is well defined on B and that f ∈
Bs ⇔ f ∈ B and (−∆)s/2 f ∈ B (with equivalence of norms ‖(Id−∆)s/2 f‖B and
‖ f‖B +‖(−∆)s/2 f‖B). Now, if T ∈A1 and 0 < s < 1, we find that ‖T f‖B ≤C‖ f‖B
(due to (K6)) and that ‖(−∆)s/2T f‖B = ‖

(
(−∆)s/2◦T ◦(−∆)−s/2

)
(−∆)s/2 f‖B ≤

C‖(−∆)s/2 f‖B (due to Theorem 5 and (K6)).
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� Hypothesis (H9) : pointwise products with BN

From (K6) and (K4), we find that, for f and g in BN ⊂ L∞, we control the
size of (−∆)Nz/2 f (−∆)N(1−z)/2g in B0 when Re z = 0 or Re z = 1. By complex
interpolation, we find that we control (−∆)z/2 f (−∆)(1−z)/2g in B0 when 0 ≤
Re z ≤ 1. In particular, we find that, for f and g in BN and α and β in INd with
|α|+ |β | = N, we control ∂ α f ∂ β g in B0. This proves that the pointwise product
( f ,g) 7→ f g is bounded from BN ×BN to BN . On the other hand, we have (from
(K4)) that the pointwise product is bounded from BN ×B0 to B0. By interpolation,
it is bounded from BN ×Bs to Bs for 0≤ s≤ N.

Thus, we find that Theorem 6 is only a corollary of Theorem 1. ut

Example 1 : Lebesgue spaces.
For 1 < p < +∞, Lp ∈ BCZ . Thus, theorem 6 gives again Theorem 3 in the

case of W N+1,p with N ∈ IN and N > d/p. (Recall that W N+1,p = FN+1
p,2 ).

Example 2 : Lorentz spaces.
For 1 < p < +∞ and 1 ≤ q ≤ +∞, the Lorentz space Lp,q belongs to BCZ .

Hypotheses (K1) to (K7) are easy to check, since, for 1 < p1 < p < p2 < +∞,
we have Lp,q = [Lp1 ,Lp2 ]θ ,q with θ = p−p1

p2−p1
. Theorem 6 gives the existence of a

solution to the Euler equations, when the initial value belongs to W N+1,Lp,q
with

1 < p < +∞, 1≤ q≤+∞, N ∈ IN and N > d/p.

Example 3 : homogeneous Morrey–Campanato spaces.
For a ball B = B(x0,r), we define 1B the characteristic function of B and |B| the

Lebesgue measure of B. The homogeneous Morrey–Campanato space Ṁp,q is then
defined, for 1 < p < +∞ and p≤ q≤+∞ by f ∈ Ṁp,q ⇔ supB |B|1/q−1/p‖1B f‖p <

+∞ (with norm ‖ f‖Ṁp,q = supB |B|1/q−1/p‖1B f‖p). It is easy to check that, for
1 < p ≤ q < +∞, we have Ṁp,q ∈ BCZ . Theorem 6 gives the existence of a so-
lution to the Euler equations, when the initial value belongs to W N+1,Ṁp,q

with
1 < p≤ q < +∞, N ∈ IN and N > d/q.

Example 4 : homogeneous Lorentz–Morrey–Campanato spaces.
The homogeneous Lorentz-Morrey–Campanato space Ṁp,q,r is then defined,

for 1 < p <+∞, p≤ q≤+∞ and 1≤ r≤+∞, by f ∈ Ṁp,q,r⇔ supB |B|1/q−1/p‖1B f‖Lp,r <
+∞ (with norm ‖ f‖Ṁp,q,r = supB |B|1/q−1/p‖1B f‖Lp,r ). It is easy to check that, for
1 < p ≤ q < +∞ and 1 ≤ r ≤ +∞, we have Ṁp,q,r ∈ BCZ . Theorem 6 gives the
existence of a solution to the Euler equations, when the initial value belongs to
W N+1,Ṁp,q,r

with 1 < p≤ q < +∞, 1≤ r ≤+∞, N ∈ IN and N > d/q.

Example 5 : multiplier spaces Ẋ r.
For 0 < r < d/2, the homogeneousSobolev space Ḣr is defined, by f ∈ Ḣr ⇔

f ∈ L
2d

d−2r and (−∆)r/2 f ∈ L2. Then the space Ẋ r is defined as the space of point-
wise multipliers from Ḣr to L2 [16] : ‖ f‖Ẋr = sup‖g‖Ḣr≤1 ‖ f g‖2. Those spaces
were first studied by Maz’ya [17] [18]. It is easy to check that, for 0 < r < 1, we
have Ẋ r ∈ BCZ . Hypotheses (K1) to (K4) are quite obvious. For (K5), we may
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write the norm in Ḣr (for 0 < r < 1) as ‖ f‖Ḣr =
(∫ ∫ | f (x)− f (y)|2

|x−y|n+2r dx dy
)1/2 and

thus check easily that Ḣr (as well as L2) is stable under bi-Lipschitzian changes
of variable; thus, Ẋ r is stable as well under bi-Lipschitzian changes of variable
and (K5) is fullfilled. The stability of Ẋ r under the action of a Calderón–Zygmund
operator has been established by Verbitsky in [?] and thus (K6) is fullfilled. More-
over, (K7) is obvious, since Ẋ r ⊂ B−r

∞,∞. Theorem 6 then gives the existence of a
solution to the Euler equations, when the initial value belongs to W N+1,Ẋr

with
0 < r < 1, N ∈ IN and N ≥ 1.

8. Besov spaces over the Lorentz spaces or the Morrey–Campanato spaces.

In [16], we developed a theory of Besov spaces over shift-invariant Banach
spaces of local measures. A shift-invariant Banach space of local measures is a
space E which is the dual of a space E∗ such that :
i) D is dense in E∗

ii) the norm of E∗ is invariant through space translation : ‖ f (x− x0)‖E∗ = ‖ f‖E∗

iii) E∗ is stable through space dilation : for all λ > 0, sup‖ f‖E∗≤1 ‖ f (λx)‖E∗ < +∞

iv) the pointwise product ( f ,g) 7→ f g is a bounded map from Cb×E∗ to E∗.
Then, for s ∈ IR and 1 ≤ q ≤ +∞, the Besov space Bs

E,q is defined as the in-
terpolation space Bs

E,q = [(Id −∆)−s1/2E,(Id −∆)s2/2E]θ ,q for s1 < s < s2 and
θ = s−s1

s2−s1
. It does not depend on s1 nor s2 and can be characterized through the

Littlewood–Paley decomposition as

(64) f ∈ Bs
E,q ⇔ f ∈S ′,S0 f ∈ E and (2 js‖∆ j f‖E) j∈IN ∈ lq

One more time, we may easily apply Theorem 1 to solve the Euler equations
in some generalized Besov spaces :

Theorem 7. Let E be a shift–invariant Banach space of local measures and as-
sume moreover that E ∈BCZ . Let σ > 0 and 1≤ q≤+∞ be such that Bσ

E,q ⊂ L∞.
Let v0 ∈ B1+σ

E,q be a divergence free vector field. Then there exists a positive T such
that the Cauchy problem

(65)


∂tv+ v.∇v = ∑

d
i=1[vi, IP∂i]v

v|t=0 = v0

∇.v = 0

has a unique solution v ∈ C ([0,T ],Bσ
E,q) such that sup0≤t≤T ‖v‖B1+σ

E,q
< +∞.

Proof. We introduce the scale of Banach spaces Bs
E,q for 0 < s ≤ 1 + σ and we

check that this scale satisfies hypotheses (H1) to (H9). Hypotheses (H1) to (H5)
are obvious (integrability, monotony, regularity, stability and invariance).
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� Hypothesis (H6) : interpolation
To prove that (H6) is fullfilled, we may use the real interpolation functor, as it

is easy to check that we have, for 0 ≤ s1 < s < s2, that Bs
E,q = [Bs1

E,q,B
s2
E,q]θ ,q with

θ = s−s1
s2−s1

.

� Hypothesis (H7) : transport by Lipschitz flows
This is a direct consequence of the same property for the scale Bs = (Id −

∆)−s/2E, since for 0 < s1 < s < s2 < 1 we have Bs
E,q = [(Id −∆)−s1/2E,(Id −

∆)s2/2E]θ ,q.

� Hypothesis (H8) : singular integrals
This is again a direct consequence of the same property for the scale Bs =

(Id−∆)−s/2E.

� Hypothesis (H9) : pointwise products with Bσ
E,q

In [16] we have shown that, for any positive s, Bs
E,q∩L∞ is a Banach algebra.

Thus, the pointwise product ( f ,g) 7→ f g is a bounded bilinear operator from Bσ
E,q×

F to F when F = Bσ
E,q and when F = E, hence, by interpolation, when F = Bs

E,q
for any s ∈ (0,σ ] (since, for 0 < s < σ , Bs

E,q = [E,Bσ
E,q]θ ,q with θ = s/σ ).

Thus, we find that Theorem 7 is only a corollary of Theorem 1. ut

Example 1 : Lorentz spaces.
Theorem 7 gives the existence of a solution to the Euler equations, when the

initial value belongs to Bσ+1
Lp,q,r with 1 < p < +∞, 1 ≤ q ≤ +∞, σ > d/p and

1≤ r ≤+∞ (or σ = d/p and r = 1). The case r = +∞ was discussed in [25].

Example 2 : homogeneous Morrey–Campanato spaces.
While the Sobolev spaces built on Ṁp,q are known as Q-spaces [29], the Besov

spaces are known as Kozono-Yamazaki spaces [13]. Theorem 7 gives the existence
of a solution to the Euler equations, when the initial value belongs to Bσ+1

Ṁp,q,r with
1 < p≤ q < +∞, σ > d/q and 1≤ r ≤+∞ (or σ = d/q and r = 1). Such a result
was announced in [26].

Example 3 : homogeneous Lorentz–Morrey–Campanato spaces.
Similarly, Theorem 7 gives the existence of a solution to the Euler equations,

when the initial value belongs to Bσ+1
Ṁp,q,r ,t with 1 < p ≤ q < +∞, 1 ≤ r ≤ +∞,

σ > d/q and 1≤ t ≤+∞ (or σ = d/q and t = 1).

9. Related equations.

Theorem 1 can be adapted to deal with other equations that are quite close to
the Euler equations.

Example 1 : the ideal MHD equations. The ideal MHD equations introduce a
new variable b : now, we consider two divergence-free vector fields v0 =(v0,1, . . . ,v0,d)
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and b0 on IRd and we try to solve the following Cauchy problem :

(66)



∂tv+ v.∇v = ∇p− 1
2 ∇|b|2 +b.∇b

∂tb+ v.∇b = b.∇v

div v = 0, div b = 0

v|t=0 = v0, b|t=0 = b0

One more time, we consider only solutions for which we can get rid of the pressure
term (here, ∇(p− 1

2 |b|
2)) by use of the Leray projection operator IP, and we write

(67)



∂tv+∑i=1d IP∂i(viv−bib) = 0

∂tb+∑
d
i=1 IP∂i(vib−biv) = 0

v|t=0 = v0, b|t=0 = b0

div v = 0, div b = 0

Following [7], we introduce the new unknown quantities α = v+b and β = v−b
and we find that

(68)



∂tα +∑i=1d IP∂i(βiα) = 0

∂tβ +∑
d
i=1 IP∂i(αiβ ) = 0

α |t=0 = v0 +b0, β |t=0 = v0−b0

div α = 0, div β = 0

and finally

(69)



∂tα +β .∇α = ∑i=1d [βi, IP∂i]α

∂tβ +α.∇.β = ∑
d
i=1[αi, IP∂i]β

α |t=0 = v0 +b0, β |t=0 = v0−b0

div α = 0, div β = 0

The resolution of (69) follows exactly the same lines as the resolution of the
Euler equations and we find easily the following theorem :

Theorem 8. Let As be a scale of spaces satisfying hypotheses (H1) to (H8) and let
σ > 0 satisfy hypothesis (H9). Let v0 ∈ A1+σ and b0 ∈ A1+σ be two divergence
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free vector fields. Then there exists a positive T such that the Cauchy problem

(70)



∂tv+∑i=1d IP∂i(viv−bib) = 0

∂tb+∑
d
i=1 IP∂i(vib−biv) = 0

v|t=0 = v0, b|t=0 = b0

div v = 0, div b = 0

has a unique solution (v,b) in C ([0,T ],Aσ ) such that sup0≤t≤T ‖v‖Aσ+1 +‖b‖A1+σ <
+∞.

Examples :
Theorem 8 gives existence of solutions in the following cases :

� A1+σ = B1+σ
p,q , Aσ = Bσ

p,q, 1≤ p≤+∞, σ > d/p, 1≤ q≤+∞ (Theorem 2)

� A1+σ = B1+σ
p,q , Aσ = Bσ

p,q, 1≤ p < +∞, σ = d/p, q = 1 (Theorem 2)

� A1+σ = F1+σ
p,q , Aσ = Fσ

p,q, 1≤ p < +∞, σ > d/p, 1≤ q < +∞ (Theorem 3)

� A1+σ = W 1+σ ,Lp,q
, Aσ = W σ ,Lp,q

, 1 < p < +∞, σ ∈ IN, σ > d/p, 1 ≤ q ≤ +∞

(Theorem 6)

� A1+σ = W 1+σ ,Ṁp,q
, Aσ = W σ ,Ṁp,q

, 1 < p≤ q < +∞, σ ∈ IN, σ > d/q (Theorem
6)

� A1+σ = W 1+σ ,Ṁp,q,r
, Aσ = W σ ,Ṁp,q,r

, 1 < p≤ q < +∞, σ ∈ IN, σ > d/q, 1≤ r≤
+∞ (Theorem 6)

� A1+σ = B1+σ

Lp,q,r, Aσ = Bσ
Lp,q,r, 1 < p < +∞, σ > d/p, 1 ≤ q ≤ +∞, 1 ≤ r ≤ +∞

(Theorem 7)

� A1+σ = B1+σ

Ṁp,q,r, Aσ = Bσ

Ṁp,q,r, 1 < p≤ q < +∞, σ > d/q, 1≤ r ≤+∞ (Theorem
7)

� A1+σ = B1+σ

Ṁp,q,r ,t , Aσ = Bσ

Ṁp,q,r ,t , 1 < p≤ q < +∞, σ > d/q, 1≤ r ≤+∞, 1≤ t ≤
+∞ (Theorem 7)

Example 2 : the quasi-geostrophic equation.
The quasi-geostrophic equation (QG) is related to fluid mechanics [23] ; its

mathematical study was initiated by Constantin, Majda and Tabak [8] in 1994.
The quasi-geostrophic equation (QG) describes the evolution of a function θ(t,x),
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t > 0, x ∈ IR2 as

(71)

 ∂tθ +u.∇θ = 0
u = (−R2θ ,R1θ)

θ(0, .) = θ0

where Ri is the Riesz transform Ri = ∂i√
−∆

(so that the vector field u is divergence-
free : div u = 0).

The same formalism as for Euler equations will provide solutions, except that
we don’t need hypothesis (H8) any longer (since there is no right-hand term in
equations (71)), but that we need A1+σ to be stable under the Riesz transforms, in
order to ensure that u is still Lipschitzian. Thus, we get the following theorem :

Theorem 9. Let As be a scale of spaces satisfying hypotheses (H1) to (H7) and
let σ > 0 satisfy hypothesis (H9). Assume moreover that the Riesz transforms are
bounded on A1+σ . Let θ0 ∈ A1+σ . Then there exists a positive T such that the
Cauchy problem

(72)

 ∂tθ +u.∇θ = 0
u = (−R2θ ,R1θ)

θ(0, .) = θ0

has a unique solution θ in C ([0,T ],Aσ ) such that sup0≤t≤T ‖θ‖A1+σ < +∞.

Examples :
Theorem 9 gives existence of solutions in the following cases :

� A1+σ = B1+σ
p,q , Aσ = Bσ

p,q, 1 < p < +∞, σ > 2/p, 1≤ q≤+∞ (Theorem 2)

� A1+σ = B1+σ
p,q , Aσ = Bσ

p,q, 1 < p < +∞, σ = 2/p, q = 1 (Theorem 2)

� A1+σ = F1+σ
p,q , Aσ = Fσ

p,q, 1 < p < +∞, σ > 2/p, 1≤ q < +∞ (Theorem 3)

� A1+σ = W 1+σ ,Lp,q
, Aσ = W σ ,Lp,q

, 1 < p < +∞, σ ∈ IN, σ > 2/p, 1 ≤ q ≤ +∞

(Theorem 6)

� A1+σ = W 1+σ ,Ṁp,q
, Aσ = W σ ,Ṁp,q

, 1 < p≤ q < +∞, σ ∈ IN, σ > 2/q (Theorem
6)

� A1+σ = W 1+σ ,Ṁp,q,r
, Aσ = W σ ,Ṁp,q,r

, 1 < p≤ q < +∞, σ ∈ IN, σ > 2/q, 1≤ r≤
+∞ (Theorem 6)

� A1+σ = B1+σ

Lp,q,r, Aσ = Bσ
Lp,q,r, 1 < p < +∞, σ > 2/p, 1 ≤ q ≤ +∞, 1 ≤ r ≤ +∞

(Theorem 7)

� A1+σ = B1+σ

Ṁp,q,r, Aσ = Bσ

Ṁp,q,r, 1 < p≤ q < +∞, σ > 2/q, 1≤ r ≤+∞ (Theorem
7)
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� A1+σ = B1+σ

Ṁp,q,r ,t , Aσ = Bσ

Ṁp,q,r ,t , 1 < p≤ q < +∞, σ > 2/q, 1≤ r ≤+∞, 1≤ t ≤
+∞ (Theorem 7)

10. The critical case.

Thus far, there are two hypotheses we did not really use. In all our examples,
our spaces As for 0 < s < 1 were stable under transportation by a vector field in
L1Lip (even if the vector field was not divergence-free in hypothesis (H7)) and
were stable as well under the action of a Calderón–Zygmund operator T satisfying
T (1) = 0 (even if T ∗(1) 6= 0 in hypothesis (H8)). (Even for Theorem 5, T ∗(1) = 0
is not required, as we shall see in the following section.) Those conditions are cru-
cial only in the critical case σ = 0 (initial value in B1

∞,1 [22].

The main lemma is then the following one :

Lemma 5. If f ∈ B0
∞,1 is a divergence-free vector field and if g∈ B1

∞,1, then f .∇g∈
B0

∞,1.

Proof. This is easily proved by paradifferential calculus. Using the Littlewood–
Paley decomposition of f and of g, we write

(73)
f .∇g = S0 f .∇g+( f −S0 f ).∇S0g+∑ j∈IN ∑k∈IN,| j−k|≥3 ∆ j f .∇∆kg

+∑ j∈IN ∑k∈IN,| j−k|≤2 ∑
d
i=1 ∂i(∆ j fi∆kg)

and we easily estimate each of the four terms in the right-hand side of (73) :
we use the well-known fact that if h = ∑

∞
j=0 h j where the Fourier transform of

h j is supported in an annulus a2 j ≤ |ξ | ≤ b2 j (or a ball if a = 0) and if s ∈ IR,
then ‖h‖Bs

p,q is controlled by Ca,b,s,p,q‖2 js‖h j‖p‖lq if a > 0 or if s > 0 and a = 0;
∆ j f .∇∆kg has its Fourier transform supported in an annulus (with radius of order
2max( j,k)) if |k− j| ≥ 3; if | j− k| ≤ 2, we can only say that the Fourier transform
is supported in a ball with radius of order 2 j. Thus, we cannot estimate the term
∑ j∈IN ∑k∈IN,| j−k|≤2 ∆ j f .∇∆kg directly in B0

∞,1 (this is a serious obstruction : as a
matter of fact, B0

1,∞ is not an algebra) and we have to use the fact that f is di-
vergence free to rewrite this term as div (∑ j∈IN ∑k∈IN,| j−k|≤2 ∆kg∆ j f ) and estimate
∑ j∈IN ∑k∈IN,| j−k|≤2 ∆kg∆ j f in B1

∞,1. ut

We shall get generalizations of Lemma 3 and Lemma 4 as easy consequences
of Lemma 5.

Lemma 6. Let u∈B1
∞,1 with div u = 0. Then the operator ∑

d
i=1[ui,Pj,k∂i] is bounded

on Bs
∞,1 for every s∈ [0,1] and we have ‖∑

d
i=1[ui,Pj,k∂i] f‖Bs

∞,1
≤Cs,σ‖ f‖Bs

∞,1
‖u‖B1

∞,1
.

Proof. We already know that the operator Tj,k = ∑
d
i=1[ui,Pj,k∂i] is bounded on Bs

p,q
for 0 < s < 1, 1≤ p≤+∞ and 1≤ q≤+∞. Since T ∗

j,k =−Tj,k, we get by duality
that Tj,k is bounded on Bs

p,q for −1 < s < 0, 1 ≤ p ≤ +∞ and 1 ≤ q ≤ +∞. By
interpolation, it is true as well for s = 0.
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Thus, Tj,k is bounded on Bs
∞,1 for 0 ≤ s < 1. We take f ∈ B1

∞,1 and try to
estimate g = ∑

d
i=1[ui,Pj,k∂i] f in B1

∞,1. We must equivalently estimate ‖g‖B0
∞,1

and,

for l = 1, . . . ,d, ‖∂lg‖B0
∞,1

. We just write

(74) ∂lg =
d

∑
i=1

[ui,Pj,k∂i]∂l f +
d

∑
i=1

[∂lui,Pj,k∂i] f

so that we find

(75) lg‖B1
∞,1
≤C

(
‖Tj,k‖L (B0

∞,1,B0
∞,1)‖ f‖B1

∞,1
+

d

∑
l=1
‖

d

∑
i=1

[∂lui,Pj,k∂i] f‖B0
∞,1

)
.

We thus need to estimate ‖∑
d
i=1[∂lui,Pj,k∂i] f‖B0

∞,1
. We write

(76)


∑

d
i=1[∂lui,Pj,k∂i] f = A+B+C +D

A = ∂lu.Pj,k∇S0 f
B = −∑

d
i=1 ∂iS0Pj,k(∂lui f )

C = ∂lu.∇(Id−S0)Pj,k f
D = −∑

d
i=1(Id−S0)Pj,k(∂lu.∇ f )

A and B are obviously controlled in B0
∞,1 norm. On the other hand, (Id−S0)Pj,k is

bounded on B1
∞,1 and on B0

∞,1, so that Lemma 5 gives the control of C and D. ut

Lemma 7. Let u∈ L1([0,T ],B1
∞,1) with div u = 0. Let f0 ∈ Bs

∞,1 for some s∈ [0,1].
Then the solution f of the transport equation

(77)

∂t f +u.∇ f = 0

f|t=0 = f0

satisfies sup0≤t≤T ‖ f (t, .)‖Bs
∞,1
≤Cse

Cs
∫ T

0 ‖u(t,.)‖B1
∞,1

dt
‖ f0‖Bs

∞,1

Proof. Let τ 7→ Xt,x(τ) be the characteristic curves associated to the vector field
u. The solution of (77) is given by f (t,x) = f0(Xt,x(0)). We already that, for 0 ≤
t ≤ T , the mapping f0 7→ f0(Xt,x(0)) is an isomorphism on Bs

p,q for 0 < s < 1,
1≤ p≤+∞ and 1≤ q≤+∞. But writing for f0 ∈ B−s

∞,1 and g0 ∈ B1
1,∞

(78)
d
dt

∫
f0(Xt,x(0))g0(Xt,x(0))dx =

∫
gu.∇ f + f u.∇g dx = 0

we find by a duality argument that the mapping f0 7→ f0(Xt,x(0)) is as well an
isomorphism on B−s

∞,1 for 0 < s < 1. The case s = 0 follows by interpolation.
Now, let us assume that f0 ∈B1

∞,1 ⊂Lip. We write that its derivatives (∂1 f , . . . ,∂d f )
are solutions of the system

(79) for j = 1, . . . ,d, ∂t∂ j f +u.∇∂ j f =−∂ ju.∇ f
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Thus, , we find that H(t,x) =

∂1 f
...

∂d f

 is solution of the fixed-point problem

(80)
H(t,x) = H(0,Xt,x(0))+

∫ t
0
(
(∇⊗u).S0H

)
(τ,Xt,x(τ)) dτ

+
∫ t

0
(
(∇⊗u).∇(Id−S0) 1

∆
div H

)
(τ,Xt,x(τ)) dτ

This problem has a unique solution in L∞((0,T ),(B0
∞,1)

d) and we finally get that
f ∈ L∞

t B1
∞,1. We then control the size of ‖ f‖B1

∞,1
through the Gronwall lemma. ut

Owing to Lemmas 6 and 7, we get easily the following theorem of [22] :

Theorem 10. Let v0 ∈ B1
∞,1 be a divergence free vector field. Then there exists a

positive T such that the Cauchy problem

(81)


∂tv+ v.∇v = ∑

d
i=1[vi, IP∂i]v

v|t=0 = v0

∇.v = 0

has a unique solution v ∈ C ([0,T ],B0
∞,1) such that sup0≤t≤T ‖v‖B1

∞,1
< +∞

Proof. We can follow the same lines as for Theorem 1 (or Theorem 2). Now, the
only thing we have to check is the convergence of f n to v. Recall the identity
satisfied by kn = f n+1− f n :

(82)
{

kn+1 =
∫ t

0 Gn(τ,X (n+1)
t,x (τ)) dτ

Gn(t,x) =−kn.∇ fn+1 +∑
d
i=1[ fn+1,i, IP∂i]kn+1 +∑

d
i=1[kn,i, IP∂i] f n+1

We see that we have to control the term ‖∑
d
i=1[kn,i, IP∂i] f n+1‖B0

∞,1
by ‖kn‖B0

∞,1
‖ f n+1‖B1

∞,1
.

We have no problem for |∑d
i=1 kn,iIP∂iS0 f n+1 nor for ∑

d
i=1 S0IP∂i(kn,i f n+1). Lemma

5 gives an easy control for kn.∇(Id−S0)IP f n+1 as well as for (Id−S0)IP(kn.∇ f n+1).
ut

The case of the MHD equations is similar to the Euler equations :

Theorem 11. Let v0 ∈ B1
∞,1 and b0 ∈ B1

∞,1 be two divergence–free vector fields.
Then there exists a positive T such that the Cauchy problem

(83)



∂tv+∑i=1d IP∂i(viv−bib) = 0

∂tb+∑
d
i=1 IP∂i(vib−biv) = 0

v|t=0 = v0, b|t=0 = b0

div v = 0, div b = 0

has a unique solution (v,b) in C ([0,T ],B0
∞,1) such that sup0≤t≤T ‖v‖B1

∞,1
+‖b‖B1

∞,1
<

+∞.
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We cannot hope to solve the quasi–geostrophic equation in the critical space,
since it is not stable under the Riesz transforms. But we may just add a slight
further requirement to get a solution :

Theorem 12. Let θ0 ∈ B1
∞,1∩Lp with 1 < p < +∞. Then there exists a positive T

such that the Cauchy problem

(84)

 ∂tθ +u.∇θ = 0
u = (−R2θ ,R1θ)

θ(0, .) = θ0

has a unique solution θ in C ([0,T ],B0
∞,1) such that sup0≤t≤T ‖θ‖B1

∞,1
+ ‖θ‖p <

+∞.

11. Relaxing unnecessary hypotheses.

As a matter of fact, the spaces As (0 < s < 1) considered in Theorems 2, 3,
6 and 7 were stable under more general singular integral operators : they satisfy
more precisely the following hypothesis

� Hypothesis (H10) : singular integrals
Let T be a bounded linear operator from D(IRd) to D ′(IRd) (with distribution

kernel K(x,y) ∈D ′(IRd × IRd)) which satisfies the following conditions
• T is bounded on L2 : ‖T ( f )‖2 ≤C0‖ f‖2
• outside from the diagonal x = y, K is a continuous function such that

|K(x,y)| ≤C0
1

|x−y|d(1+|x−y|)
• outside from the diagonal, K satisfies |∇xK(x,y)| ≤C0|x− y|−d−1 and

|∇yK(x,y)| ≤C0|x− y|−d−1

• T (1) = 0 in BMO
Then, T is bounded from As to As for all 0 < s < 1 and ‖T‖L (As,As) ≤CsC0

For As = Bs
p,q, see [15]. For As = Fs

p,q, see [9]. For As = (Id−∆)−s/2E with E =
Lp,q, E = Ṁp,q or E = Ṁp,q,r, we shall use a variant of Theorem 5 (see Lemma 8
below). For As = Bs

E,t with E = Lp,q, E = Ṁp,q or E = Ṁp,q,r, this is a consequence
of the case of (Id−∆)−s/2E (by interpolation).

Lemma 8. Let T be a bounded linear operator from D(IRd) to D ′(IRd) (with dis-
tribution kernel K(x,y) ∈D ′(IRd × IRd)) which satisfies the following conditions

• T is bounded on L2 : ‖T ( f )‖2 ≤C0‖ f‖2
• outside from the diagonal x = y, K is a continuous function such that

|K(x,y)| ≤C0
1

|x−y|d

• outside from the diagonal, K satisfies |∇xK(x,y)| ≤C0|x− y|−d−1 and
|∇yK(x,y)| ≤C0|x− y|−d−1

• T (1) = 0 in BMO
Then, for 0 < α < 1, the operator (−∆)α/2 ◦T ◦ (−∆)−α/2 belongs to A 1−α .
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Proof. Let Tα = (−∆)α/2 ◦T ◦ (−∆)−α/2. We know from [14] that Tα is bounded
on L2. The problem is to estimate its kernel. This could be done through a molec-
ular approach : if (ψε, j,k)1≤ε≤2d−1, j∈ZZ,k∈ZZd is an Hilbertian wavelet basis of L2,
then the kernel of Tα is given in D ′(IRd × IRd) by

(86) Kα(x,y) =
2d−1

∑
ε=1

∑
j∈ZZ

∑
k∈ZZd

Tα(ψε, j,k)(x)ψε, j,k(y)

However, we will prove Lemma 8 by using Theorem 5. We have b = T ∗(1) ∈
BMO. Using the homogeneous Littlewood–Paley decomposition, we introduce the
operator πb : f 7→∑ j∈ZZ S j−2( f ∆ jb). πb is a Calderón–Zygmund operator such that
πb(1) = 0 and π∗b (1) = b. Thus, we may write T = πb + S with S(1) = S∗(1) =
0. We know, by Theorem 5, that (−∆)α/2 ◦ S ◦ (−∆)−α/2 belongs to A 1−α . We
must estimate the kernel Lα of (−∆)α/2 ◦πb ◦ (−∆)−α/2. If S j is the convolution
operator with F−1ϕ(2− jξ ), ∆ j the convolution operator with F−1(ψ(2− jξ )),
and if ω = F−1(|ξ |α ϕ) and Ω = F−1(|ξ |−α

∑
3
k=−3 ψ(2kξ )), then we have

(87) Lα(x,y) = ∑
j∈ZZ

∫
IRd

2 jd
ω(2 j(x− z))∆ jb(z)2 jd

Ω(2 j(z− y)) dz.

It is then a classical computation to estimate the size and the regularity of Lα . ut

12. Maximal solutions.

Due to uniqueness of solutions in Theorem 1, we may define Tσ (v0) the maxi-
mal existence time for a solution in A1+σ :

(88) Tσ (v0) = sup{T > 0 / ∃v ∈ (L∞((0,T ),A1+σ ))d solution of (8)}.

If we have v0 ∈ (A1+σ )d (under the hypotheses of Theorem 1), then we have

(90) Tσ (v0) < +∞⇒ sup
0<t<Tσ (v0)

‖v‖A1+σ = +∞

Under very slight further assumptions, it is easy to check that Tσ (v0) does not
actually depend on σ .

Theorem 13. Let As be a scale of spaces satisfying hypotheses (H1) to (H8). As-
sume that there exists a Banach space E and a σ0 > 0 such that, for all σ > σ0, σ

satisfies hypothesis (H9) and the following hypothesis :
� Hypothesis (H11) : Aσ ⊂ E and

(91) ‖ f g‖Aσ ≤Cσ (‖ f‖E‖g|Aσ +‖g‖E‖g‖Aσ )

Then, for σ0 < σ < τ and v0 ∈ A1+τ , we have Tσ (v0) = Tτ(v0).
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Proof. By induction on τ . We prove that if it is true for τ = σ + k (for some
k ∈ IN), then it is true for σ + k < τ ≤ σ + k +1. We estimate ‖v‖A1+τ as ‖v‖Aτ +
∑

d
i=1 ‖∂iv‖Aτ . We write

(92) ∂t∂iv+ v.∇.∂iv =
d

∑
j=1

[v j, IP∂ j]∂iv−S0IPdiv (∂iv⊗ v)− IP(Id−S0)(∂iv.∇v)

We then get

(93) ‖∂iv(t, .)‖Aτ ≤ CeD
∫

τ
0 ‖v(s,.)‖Aσ+k ds(‖∂iv0‖Aτ

+
∫ t

0 ‖∂iv(s, .)⊗ v(s, .)‖Aτ +‖∂iv(s, .).∇v(s, .)‖Aτ ds)

and finally

(94)
‖v(t, .)‖A1+τ ≤

CeD
∫

τ
0 ‖v(s,.)‖Aσ+k ds(‖v0‖A1+τ +

∫ t
0 ‖v(s, .)‖E‖v(s, .)‖A1+τ ds)

and we conclude with Gronwall’s lemma. ut

13. Conclusion.

Except for Lemma 5, we made no use of the paradifferential calculus. Of
course, our tools are deeply related to the paradifferential calculus. However, we
avoid the rigidity of the Littlewood–Paley decomposition and in a way replaced it
by a molecular approach. Indeed, a Littlewood-Paley decomposition is stable nei-
ther through a transport equation nor under the action of a singular integral opera-
tor. On the other hand, a molecular decompostion will be stable, since a molecuke
is preserved under a transport equation (moving the center along the characteristic
curve and deforming the profile of the molecule, but without altering too much its
scale), or through the action of a singular integral operator (with roughly speaking
the same center and the same scale, but with a deformation of the profile). Simi-
larly, a wavelet decomposition is not preserved, but transformed into a vaguelette
decomposition [16]. In a way, it means that the equations we have studied in this
paper could be numerically approximated by the method of travelling wavelets
proposed in [2].
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16. LEMARIÉ-RIEUSSET, P.G., : Recent developments in the Navier–Stokes problem.
Chapman & Hall/CRC, 2002.

17. MAZ’YA, V.G. ; On the theory of the n-dimensional Schrödinger operator, Izv. Akad.
Nauk SSSR, ser. Mat., 28, 1145–1172 (1964). (in Russian)

18. MAZ’YA, V.G. & SHAPOSHNIKOVA, T.O. : The theory of multipliers in spaces of
differentiable functions. Pitman, New-York, 1985.

19. MAZ’YA, V.G. & VERBITSKY, I.E. : Capacitary inequalities for fractional inte-
grals,Arkiv för Mat. 33, 81–115 (1995).
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