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We consider the formal SDE
dX; = b(t, X,)dt +dZ;,,  Xo=x € R, (E)

where
e be L'([0, T],BS ,(R?,RY)) is some singular drift.

@ Z; is an a-stable symmetric process a € (1,2].
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We consider the formal SDE
dX; = b(t, X,)dt +dZ;,,  Xo=x € R, (E)

where
e be L'([0, T],BS ,(R?,RY)) is some singular drift.

@ Z; is an a-stable symmetric process a € (1,2].
We denote by £% the generator of the noise and p,, its density

—(d+a)
Cot— (1+ 2L if € (1,2
pa(t, z) = ( E> fae(l2) t>0zeR?

‘ 2

(27t)" 2 exp (—%) if =2, ,
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We consider the formal SDE
dX; = b(t, X,)dt +dZ;,,  Xo=x € R, (E)

where
e be L'([0, T],BS ,(R?,RY)) is some singular drift.

@ Z; is an a-stable symmetric process a € (1,2].
We denote by £% the generator of the noise and p,, its density

—(d+a)
Cot— (1+ 2L if € (1,2
pa(t, z) = ( E> fae(l2) t>0zeR?

‘ 2

(27t)" 2 exp (—%) if =2, ,

Self-similarity index a~?
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Heuristics for weak well-posedness

For b € BS, (RY,RY) ~ C”, we work on the PDE
(0r 4+ b -V 4 L*)u(t,x) = f(t,x) on [0, T] x RY (1)

where f is some smooth source term.

e If B> 0, the condition o+ 8 > 1 is required to give a meaning to Vu
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Heuristics for weak well-posedness - 8 > 0

For b € BS, (RY,RY) ~ C”, we work on the PDE
(0r 4+ b-V 4 L*)u(t,x) = f(t,x) on [0, T] x RY 2

where f is some smooth source term.

e If B> 0, the condition o+ 8 > 1 is required to give a meaning to Vu
o [CZZ21] : be CP,a € (0,2) : weak WP under § 4 o > 1.
o [Pri12] : be C®,a € (1,2) : strong WP under B+ & > 1.
o [Por94], [PPO5] : b € LP < B2, a € (1,2), weak WP under % <a-1
o [KRO5] : b€ L] — L2, v = 2, strong WP under 4 + 2 < 1.
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Heuristics for weak well-posedness - 8 < 0

For b € BS, (RY,RY) ~ C”, we work on the PDE
(0r 4+ b-V 4 L*)u(t,x) = f(t,x) on [0, T] x RY 3)

where f is some smooth source term.
e If B> 0, the condition o+ 8 > 1 is required to give a meaning to Vu
e If <0, in order to make sense of b-Vu, we need 5+ (8 +a—1)>0

) 1
e.p>—
ie g 5

o [FIR17] : b € C?, o = 2, WP (virtual solutions) under § > -1.
o [ABM20] : b€ C? a € (1,2), 1D strong WP under § > e
o [CdRM22] : b€ L" — Bf ,, weak WP under

2Bra—d %5
pr
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Discretization of singular drift SDEs

Discretization of singular drift SDEs
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Discretization of singular drift SDEs

Aim : approach (E) with

Xh

ter1

= Xl’h + hb(tk7Xt{;1<) + (Ztk+1 - Ztk)'

k

Or, equivalently, its continuous in time version :
dX{ = b(r7, X[)dt + dZ,

where /' = h|t/h], i.e if t € [ty, tis1), 70 = t.
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Discretization of singular drift SDEs

Aim : approach (E) with

Xh

ter1

= Xl’il + hb(tk’XtZ) + (Ztk+1 - Ztk)'

Or, equivalently, its continuous in time version :

dX{ = b(ry, X[)dt + dZ.

@ Strong error :

Singular drift SDEs: density estimates, weak Euler 17/12/2025



Discretization of singular drift SDEs

Aim : approach (E) with
Xxh

tyt1

= Xtil + hb(tk’Xtixl) + (Ztk+1 - Ztk)'
Or, equivalently, its continuous in time version :

dX{ = b(ry, X},)dt +dZ,

@ Strong error :

sup |Xt - Xth|
te(0,T)

, r>1

L(Q)
@ Weak error with a test function :

[Eo<g(X;") — g(Xo|
Weak error on densities (i.e. g =¢,) :

|rh(07xa tvy) - r(vaa tv}/)|
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A few important results - Gaussian setting (a = 2)

Using PDE techniques :

e [BJ20] b € L* total variation error : hz.

e [JM24] b € L9 — LP under % + % <1, weak error : h—z
Using the stochastic sewing lemma ([L&20]) :

o [LL21] b € L9 — LP under % + % < 1, strong error : h? In(h).

o [DGL22] b e L= N W2, strong error : h -

o [Hol24] b € L™ N CP, weak error on C? test functions : h -
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Sewing techniques for strong error

In a brownian noise setting, the sewing lemma ([L&20]) allows to bound
expressions of the type
?|

which appear when computing strong error rates.

/ t b(s, X') — b(s, X}};)ds
0

} , 4)
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Sewing techniques for strong error

In a brownian noise setting, the sewing lemma ([L&20]) allows to bound
expressions of the type
?|

which appear when computing strong error rates.

/O t b(s, X') — b(s, X}};)ds } , (4)

@ Only works for & = 2 (also works in a non-Markovian setting).
@ Integrability requirements on b.

@ The resulting bound does not take advantage of the full parabolic bootstrap
of the underlying PDE.
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Weak error techniques

Let u be a solution to
(0s + b(s,x) - Vi + L) u(s,x) =0on [0,t) x RY, u(t,”) = g on RY,
By It6’s formula,
E(g, t.x, h) = Eox[g(X{') — g(X:)] = Eox[u(t, X{) — u(0, x)]

= Eox Uot (b(r, xhy - b(r,h,xfrh)) : Vu(r,th)} dr.
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Weak error techniques

Let u be a solution to
(0s + b(s,x) - Vi + L) u(s,x) =0on [0,t) x RY, u(t,”) = g on RY,
By It6’s formula,
E(g, t.x, h) = Eox[g(X{') — g(X:)] = Eox[u(t, X{) — u(0, x)]

= Eox Uot (b(r, xhy - b(r,h,xfrh)) : Vu(r,th)} dr.

Historical approach by [MP91] : for b € C?
@ Schauder estimates for v : || Vul|(e < 00

@ Use the regularity of b to control ‘b(r,X,h) — b(r!, X"h,)
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Weak error techniques

Let u be a solution to
(0s + b(s,x) - Vi + L) u(s,x) =0on [0,t) x RY, u(t,”) = g on RY,
By It6’s formula,
E(g, t.x, h) = Eox[g(X{') — g(X:)] = Eox[u(t, X{) — u(0, x)]

= Eox Uot (b(r, xhy - b(r,h,xfrh)) : Vu(r,th)} dr.

Historical approach by [MP91] : for b € C?
@ Schauder estimates for v : || Vul|(e < 00

@ Use the regularity of b to control ‘b(r,X,h) — b(r!, X"h,)

t
E(g t,x, h) < cuvu||Loo/ Fo [\x,'uxfhw] dr < C|[Vuli=h=.  (5)
A ,
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Weak error techniques

Compare the Duhamel formulas for I'" and T :
rh(OaX7 tay) - r(07X7 tay)
t
= Eox [/ b(s, Xs) - Vypa(t — s,y — Xs) — b(r2, X") -V, pa(t — s,y — Xsh)ds]
O s
When b is singular, the main difficulty lies in controlling
b(:, Xs) = b(:, X;1)

and
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Weak error techniques - b(s, Xs) — b(s, X;»)

In the splitting of the error, we write the following
t
Eo0 U b(5.Xs) - Vypalt — 5.y — Xs) — b(5.X,8) - Uy palt — 5.y — X, )ds
0

= /Ot /[F(O,X,S,z) —T(0,x,70,2)|b(s,2) - Vypa(t — s,y — z)dzds
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Weak error techniques - b(s, Xs) — b(s, X;»)

In the splitting of the error, we write the following
t
Eo.x [/ [b(s,Xs) “Vypa(t —s,y — Xs) — b(S,XTSh) “Vypa(t—s,y — X.,.sh)] ds
0

t
_ / / [F(0, x,5,2) — (0, x, 7%, 2)]b(5,2) - V,pu(t — 5. y — 2)dzds
0

Using bootstrap techniques on the PDE, we can prove

X
a

hyZ h
IF(0,x,s,z) —(0,x,7, 2)| < C!pa(ﬂ’,z—x) < C—rspa(rh z—x)

(th)= AR
where 7 is the gap to singularity :
'y:aflf%f%>0 Lebesgue, b € L9 — LP
y=a+p-1>0 Holder, b € C?
7:25+a—1—%—%>0 NegativeBesov,beLq—Bg,
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Weak error techniques - Heat kernel estimates - Besov case

Theorem ([F.,2023])

Let P be the solution to (E) and (xt):c[s, 7] the associated canonical process.
Then, Vt € (s, T], x: admits a density ['(s,t,x,-) s.t. 3C > 1:V(x,y) € R9,

Clpa(t—s,y —x) <T(s,t,x,y) < Cpa(t — s,y — x),

|er(s, t7x,y)| < lpa(t_ s,y—x),

(t—s)=

Cly =y'?
Mo, xy) = (s, £.5)) € LI (pule =1y =)

+poc(t - Sayl - X))a

Cly —y')f
|er(sv taXLy) —er(s, t7X7y/)| S (t|y_—5)yp+|l (Pa(t—S,X—y)

+pa(t —s,x = y")),
for any p € (—8,—0 +v/2), wherey :=28+a—-1—a/r—d/p>0

v

Singular drift SDEs: density estimates, weak Euler 17/12/202!



Weak error techniques - Heat kernel estimates - Besov case

Theorem ([F.,2025])

Moreover, for any € € (0,—3) and n € (=8, —8 +¢/2), for t' > t such that
(t' —t) < t/2,

r(S,X, t, ) — F(s,x, t/a )
Pa(t i X)
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Weak error techniques - Heat kernel estimates - Besov case

Theorem ([F.,2025])

Moreover, for any € € (0,—3) and n € (=8, —8 +¢/2), for t' > t such that
(t' —t) < t/2,

D) — /. I )
H r(s’ X’ t? ) r(s7 X? t ) ) S C (t 3757ﬁ (7)
palt—5—x) sy (t—s)

Going back to the scheme, we can use this to write the following :

t
/ / [F(0, x,5,2) — (0, x, 7%, 2)]b(5. 2) - V, pu(t — 5.y — 2)dzds
0

f(s—7h7= h
5 0 (h)'Yj pa(Ts’Z_X)b(S’Z).vypa(t_&y_z)dst
T a

S
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Weak error techniques - b(s,

It remains to show the boundedness of

t
/ /pa(s, z—x)b(s,z)Vypa(t — s,y — z)dzds.
0
If b€ $ in space, we have to estimate

lPa(s; - — X)Vypa(t =5,y =)o

and recoup singularities in s and t — s, which we want to integrate against
[16(s, )l 5-
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Weak error techniques - b(s, X;) — b(7l, X;)

Natural time-space scaling :

When b(t,-) € C# in space, we usually assume b(-,z) € C% e

|b(s, Xs) — b(r], X,)| < (s — 71)=

S

Not enough to show a convergence with order

(0% (0%

bl 8 a-—1
e
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Weak error techniques - b(s, X;) —

Time-randomized Euler scheme :

Xh - Xtil + hb(Uk’ Xtil) + (Ztk+1 - Ztk)?

ter1

where (Uk) ~ U([tk, tk+1]).
Duhamel integral over one time-step for the time-randomized Euler scheme :

tt1 b
/ E [b(Uk X!3) - ¥y pa(t — Uiy — X2y)] ds

tiy1 1 tk+1 b b

- / / b(nszh) Vypalt—ry— XTS,,)} drds
tht1 tyt1

1 h h

= IE b(r,XTrh) “Vypa(t—r,y — XT:,)} drds

ty

tht1
/ E[b Xh)- Vypa(t—r,y—X,frh)} dr.
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Results - Holder case , o € (1,2]

Theorem ([F., Menozzi, 2024])
For b € L= —C?,3 > 0, we define the Euler scheme by

Xh

tet1

= X + hb(U, X)) + (Zoe,, — Z,),
where Yk, Uy ~ U(tk, tk+1). Define

y=B+a—1>0.

Then,
IF(0,x, t,y) = F7(0,x, t,y)| < Ch¥ (L4t~ & )pa(t,y — X) (8)

-
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Results - Lebesgue case, o € (1,2)

Theorem ([F., Jourdain, Menozzi, 2024])

Forbe L9—LP, if J
7=a—1———g>0,
P q

then equation
dX; = b(t, X;)dt +dZ;,  Xo=x € R

is weakly well-posed (in the sense of the martingale problem).

Theorem ([F., Jourdain, Menozzi, 2024])
For b € L9 — LP, we define the Euler scheme by

Xh

tit1

= Xi!;: + hbh(U‘ﬂthZ) + (Ztk+1 - Ztk)’

where by, is a cut-offed b s.t. |by| < h~% 4 and Vk, Uc ~ U(tk, txr1). Then,

IF(0,x,t,y) — (0, x, t,y)| < Ch= pa(t,y — X) (9)

v
T
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Besov case, dynamics of the SDE

Proposition (Dynamics of the distributional SDE, [DD16],[CdRM22])

Assume
144 1—a+2d 420
o € —’f,2 Be| ———2—20], (GRD)
== 2
Then, the formal SDE
dX; = b(t, X;)dt +dZ;,  Xo=x € R

rewrites .
Xt:X()“r/ b(S,Xs,dS)—i—Zh
0

whereV0 < v <s< T,

H5,6= 1) = / / B el = vy = )l
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Besov case, definition of the scheme

Definition of the scheme :

Xh

tit1

= X!+ 0(ti, X[ h) + (Zsy,, — Zs,)

tiv1
:Xt'i’+/ /b(r,y)pa(r— t,-,y—X,_,'/_’)dydr—i—(Z,_s,.+1 —Z4)
ti
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Besov case, definition of the scheme

Definition of the scheme :

Xh

tit1

= X!+ 0(ti, X[ h) + (Zsy,, — Zs,)
tiv1
:Xt'i’+/ /b(r,y)pa(r— t,-,y—X,_,'/_’)dydr—i—(Z,_s,.+1 —Z4)
ti

— case dependent!
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Results - Besov case , a € (1,2)

Theorem ([F., Menozzi, Issoglio, 2025])

Forbe L" — ]Bg’q, B < 0, using the previously defined Euler scheme, for all ¢ > 0,

IF(0, %, £,y) = T"(0, %, £,y)| < Ch™S" (1 + t~&)pa(t,y — x) (10)

where vy =2 +a—1—d/p—a/r>0.
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Results - Besov case , a € (1,2)

Theorem ([F., Menozzi, Issoglio, 2025])

Forbe L" — ]B%g’q, B < 0, using the previously defined Euler scheme, for all ¢ > 0,

IF(0, %, £,y) = T"(0, %, £,y)| < Ch™S" (1 + t~&)pa(t,y — x) (11)

where vy =2 +a—1—d/p—a/r>0.

@ Strictly stable setting only (although method is robust enough for gaussian
case)

@ Loss of € due to the distributional setting

@ Gap is the same as for well-posedness
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Besov case, remark on the dynamics of the scheme

We are able to define the scheme under the condition

144 l—a+d+2
ae| 12 pe|——="—"0), (12)
r

and show tension and convergence of the law of (X/) to some law which solves
the SDE.
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Besov case, remark on the dynamics of the scheme

We are able to define the scheme under the condition

144 l—a+d+2
ae| 12 pe|——="—"0), (13)
r

and show tension and convergence of the law of (X/) to some law which solves
the SDE.
If

(14)

l-a+94+2 1-q+2 420
,BG P r P r
2 ’ 2 ’

the laws still converge but we cannot make sense of the Young integral in the
previous proposition.
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Besov case as a consequence of the Holder case ?

e Holder : |F(0,x,t,y) —T"(0,x,t,y)| < C[b]c;sh pa(t Yy —X)
o Negative Besov regularity : let b € L"([0, T],B] ;),7 < 0 and set

s+h
b(s, z, h) / / u,y)pa(u—s,y — z)dydu.

Then, b(s, -, h) is S-Holder with 8 > 0 and its Holder modulus

16(s, 2z, h) — b(s, 2, h)| < Clz — 2Z/|Ph— i~ ata s
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Besov case as a consequence of the Holder case ?

ax{" = o(Ug, X" hy)dt +dZ;  Scheme for Holder SDE

(1)
dX =o(t, X2, h)dt +dZ,  Holder SDE
1 (2)
dX; = b(t, X;)dt +dZ;  Besov SDE

.. . . +
@ Holder result : weak error on densities for (1) with rate M% w.r.t. hy.

@ How to handle (2) is still unclear : taking hy = hy yields a lower rate, may be
possible to optimize.
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SDE solutions

Definition (Weak solution with bounded drift)

A stochastic process (X, Ft)e>0 on some probability space (2, F,P) is a weak
solution to (E) with initial distribution (s if there exists a (F;):>o-adapted process
(Z¢)t>0 on some (possibly different) (', F/,P") such that

(i) P(Xo € ) = ()
(ii) For all t >0,

t
X, = Xo + / b(s, X.)ds + (Z — Zb) (15)
0

holds almost surely.
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SDE solutions

Definition (Bounded drift martingale problem)

Let b be a bounded drift.

A probability measure P on Q, with time-marginals (P;).c[o, 7], solves the
martingale problem related to b -V + L% and the initial probability measure p if,
denoting by (&:):eqo, 7] the associated canonical process,

(i) Po=p.

(ii) for all C*2 function f on [0, T] x RY bounded together with its derivatives,
the process

{f(t7 &) — /Ot ((85 + LYYf(s,&) + b(s, &) - Vf(s,fs))ds— f(0,§o)}

0<t<T

)

(16)

is a P-martingale.

v
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SDE solutions

Definition (Lebesgue drift martingale problem)

Let b € L9 — LP be a Lebesgue drift.
A probability measure P on Q, with time-marginals (P;).c[o, 7], solves the
martingale problem related to b -V + L% and the initial probability measure p if,
denoting by (&:):eqo, 7] the associated canonical process,

(i) Po=p,

(i) for a.a. t € (0, T], P(dy) = p(t, y)dy for some p € L9 ((0, T], L' (R?)),
(iii) for all 12 function f on [0, T] x R? bounded together with its derivatives,

the process

{f(r, &- | (@4 £2)F(5,6) + bls. 66)- TF(5,6) ) ds - f(o,so)} :
=)
is a P-martingale.

v
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SDE solutions

Definition (Mild solution of the underlying PDE)

Let b L —Bj , be a Besov drift. Let & € (1,2], ¢ : Ry x RY — R and

g R = R.

For a given T > 0, we say that f : [0, T] x R — R is a mild solution of the
formal Cauchy problem C(b, L%, ¢, g, T)

(0r + b-V + LY) f(t,x) = ¢(t,x) on [0, T) x R, f(T,")=gonR?,

if it belongs to C%([0, T] x RY, R) with V£ € C2([0, T], B 15¢) for any
0<exl and9:,8+a—%—%, and if it satisfies

T
V(t,X) € [07 T] X Rd, f(t,X) = P'Ia'—t[g](x) _/t Psa—t[¢ —b- Vf](S,X)dS, (18)

where Pg* denotes the semi-group generated by £¢.
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SDE solutions

Definition (Besov drift martingale problem)

Let b€ L" —Bj , be a Besov drift.

We say that a probability measure P on €, equipped with its canonical filtration
is a solution of the martingale problem associated with (b, £, x) for x € R if,
denoting by (&:):eqo, 7] the associated canonical process,

(i) P(&o=x) =1,
(i) V¢ € C([0, T],S(R?,R)), g € C}(RY,R) with Vg € BESL (R, RY),
0=p8+a—d/p—«a/r, the process

{f(t,ft) - /ot¢(5a £)ds — f(o’x)}ogrsT

is a (square-integrable if & = 2) martingale under P where f is the mild
solution of the Cauchy problem C(b, L%, ¢, g, T).
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SDE solutions

Definition (Weak solution with distributional drift)

A weak solution to the formal distributional drift SDE (E) is a pair (X, Z) of
adapted processes on some probability space (2, F,P) such that Z is an a-stable
process under P and, almost surely under PP,

t t
X; = Xo +/ F(s, X, ds)+ Z, E / F(s,X,,ds)| <o, (19)
0 0
where, forany 0 < v <s< T,x € RY,
Fvxs=v)i= [ [ brylpatr = vy — x)ayar (20)

and the integral in (19) is understood as an L* stochastic Young integral for any
e (1,q].

Singular drift SDEs: density estimates, weak Euler 17/12/2025




Test functions 1

Let us mention that if one is interested in the weak error for some test function f,
E(f,x,t, h) == Eox[f(X) — F(Xe)],
as soon as f is 6-Holder (not necessarily bounded) then, a rate can be derived as a

consequence of the convergence of |[(s, x, t,y) — (s, x, t,y)| using a simple
cancellation argument :

E(f,x,t, h) = /Rd(r” —T1)(0,x,t,y)f(y)dy

= [ =05 ()~ G0y,

e S0t [ palty =0k - yl'dy
R

< taha.

Singular drift SDEs: density estimates, weak Euler 17/12/2025



	Regularization by noise, Well-Posedness of the SDEs
	Discretization of singular drift SDEs
	Bibliography

