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Notations

We consider the formal SDE

dXt = b(t,Xt)dt + dZt , X0 = x ∈ Rd , (E)

where

b ∈ Lr ([0,T ],Bβ
p,q(Rd ,Rd)) is some singular drift.

Zt is an α-stable symmetric process α ∈ (1, 2].
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Notations

We consider the formal SDE

dXt = b(t,Xt)dt + dZt , X0 = x ∈ Rd , (E)

where

b ∈ Lr ([0,T ],Bβ
p,q(Rd ,Rd)) is some singular drift.

Zt is an α-stable symmetric process α ∈ (1, 2].

We denote by Lα the generator of the noise and pα its density

pα(t, z) :=

Cαt
− d

α

(
1 + |z|

t
1
α

)−(d+α)

if α ∈ (1, 2)

(2πt)−
d
2 exp

(
− |z|2

2t

)
if α = 2,

, t > 0, z ∈ Rd
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Notations

We consider the formal SDE

dXt = b(t,Xt)dt + dZt , X0 = x ∈ Rd , (E)

where

b ∈ Lr ([0,T ],Bβ
p,q(Rd ,Rd)) is some singular drift.

Zt is an α-stable symmetric process α ∈ (1, 2].

We denote by Lα the generator of the noise and pα its density

pα(t, z) :=

Cαt
− d

α

(
1 + |z|

t
1
α

)−(d+α)

if α ∈ (1, 2)

(2πt)−
d
2 exp

(
− |z|2

2t

)
if α = 2,

, t > 0, z ∈ Rd

Self-similarity index α−1
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Heuristics for weak well-posedness

For b ∈ Bβ
∞,∞(Rd ,Rd) ≈ Cβ , we work on the PDE

(∂t + b · ∇+ Lα)u(t, x) = f (t, x) on [0,T ]× Rd (1)

where f is some smooth source term.

If β > 0, the condition α+ β > 1 is required to give a meaning to ∇u
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Heuristics for weak well-posedness - β > 0

For b ∈ Bβ
∞,∞(Rd ,Rd) ≈ Cβ , we work on the PDE

(∂t + b · ∇+ Lα)u(t, x) = f (t, x) on [0,T ]× Rd (2)

where f is some smooth source term.

If β > 0, the condition α+ β > 1 is required to give a meaning to ∇u

[CZZ21] : b ∈ Cβ , α ∈ (0, 2) : weak WP under β + α > 1.
[Pri12] : b ∈ Cβ , α ∈ (1, 2) : strong WP under β + α

2
> 1.

[Por94], [PP95] : b ∈ Lp ↪→ B−d/p
∞,∞, α ∈ (1, 2), weak WP under d

p
< α− 1.

[KR05] : b ∈ Lq
t − Lp

x , α = 2, strong WP under d
p
+ 2

q
< 1.
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Heuristics for weak well-posedness - β < 0

For b ∈ Bβ
∞,∞(Rd ,Rd) ≈ Cβ , we work on the PDE

(∂t + b · ∇+ Lα)u(t, x) = f (t, x) on [0,T ]× Rd (3)

where f is some smooth source term.

If β > 0, the condition α+ β > 1 is required to give a meaning to ∇u

If β < 0, in order to make sense of b · ∇u, we need β + (β + α− 1) > 0

i.e. β >
1− α

2

[FIR17] : b ∈ Cβ , α = 2, WP (virtual solutions) under β > − 1
2
.

[ABM20] : b ∈ Cβ , α ∈ (1, 2), 1D strong WP under β > 1−α
2

.

[CdRM22] : b ∈ Lr − Bβ
p,q, weak WP under

2β + α− d

p
− α

r
> 1
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Discretization of singular drift SDEs

Discretization of singular drift SDEs
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Discretization of singular drift SDEs

Aim : approach (E) with

X h
tk+1

= X h
tk + hb(tk ,X

h
tk ) + (Ztk+1

− Ztk ).

Or, equivalently, its continuous in time version :

dX h
t = b(τht ,X

h
τh
t
)dt + dZt ,

where τht = h⌊t/h⌋, i.e. if t ∈ [tk , tk+1), τ
h
t = tk .
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Discretization of singular drift SDEs

Aim : approach (E) with

X h
tk+1

= X h
tk + hb(tk ,X

h
tk ) + (Ztk+1

− Ztk ).

Or, equivalently, its continuous in time version :

dX h
t = b(τht ,X

h
τh
t
)dt + dZt .

Strong error : ∥∥∥∥∥ sup
t∈(0,T )

|Xt − X h
t |

∥∥∥∥∥
Lr (Ω)

, r > 1
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Discretization of singular drift SDEs

Aim : approach (E) with

X h
tk+1

= X h
tk + hb(tk ,X

h
tk ) + (Ztk+1

− Ztk ).

Or, equivalently, its continuous in time version :

dX h
t = b(τht ,X

h
τh
t
)dt + dZt

Strong error : ∥∥∥∥∥ sup
t∈(0,T )

|Xt − X h
t |

∥∥∥∥∥
Lr (Ω)

, r > 1

Weak error with a test function :

|E0,x [g(X
h
t )− g(Xt)]|

Weak error on densities (i.e. g = δy ) :

|Γh(0, x , t, y)− Γ(0, x , t, y)|
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A few important results - Gaussian setting (α = 2)

Using PDE techniques :

[BJ20] b ∈ L∞ total variation error : h
1
2 .

[JM24] b ∈ Lq − Lp under d
p + 2

q < 1, weak error : h
1− d

p
− 2

q
2 .

Using the stochastic sewing lemma ([Lê20]) :

[LL21] b ∈ Lq − Lp under d
p + 2

q < 1, strong error : h
1
2 ln(h).

[DGL22] b ∈ L∞ ∩ Ẇ β
m , strong error : h

1+β
2 −.

[Hol24] b ∈ L∞ ∩ Cβ , weak error on Cβ test functions : h
1+β
2 −.
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Sewing techniques for strong error

In a brownian noise setting, the sewing lemma ([Lê20]) allows to bound
expressions of the type

E
[∣∣∣∣∫ t

0

b(s,X h
s )− b(s,X h

τh
s
)ds

∣∣∣∣r] , (4)

which appear when computing strong error rates.
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Sewing techniques for strong error

In a brownian noise setting, the sewing lemma ([Lê20]) allows to bound
expressions of the type

E
[∣∣∣∣∫ t

0

b(s,X h
s )− b(s,X h

τh
s
)ds

∣∣∣∣r] , (4)

which appear when computing strong error rates.

Only works for α = 2 (also works in a non-Markovian setting).

Integrability requirements on b.

The resulting bound does not take advantage of the full parabolic bootstrap
of the underlying PDE.
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Weak error techniques

Let u be a solution to

(∂s + b(s, x) · ∇x + Lα) u(s, x) = 0 on [0, t)× Rd , u(t, ·) = g on Rd ,

By Itô’s formula,

E(g , t, x , h) = E0,x [g(X
h
t )− g(Xt)] = E0,x [u(t,X

h
t )− u(0, x)]

= E0,x

[∫ t

0

(
b(r ,X h

r )− b(τhr ,X
h
τh
r
)
)
· ∇u(r ,X h

r )

]
dr .
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Weak error techniques

Let u be a solution to

(∂s + b(s, x) · ∇x + Lα) u(s, x) = 0 on [0, t)× Rd , u(t, ·) = g on Rd ,

By Itô’s formula,

E(g , t, x , h) = E0,x [g(X
h
t )− g(Xt)] = E0,x [u(t,X

h
t )− u(0, x)]

= E0,x

[∫ t

0

(
b(r ,X h

r )− b(τhr ,X
h
τh
r
)
)
· ∇u(r ,X h

r )

]
dr .

Historical approach by [MP91] : for b ∈ Cβ

Schauder estimates for u : ∥∇u∥L∞ < ∞

Use the regularity of b to control
∣∣∣b(r ,X h

r )− b(τhr ,X
h
τh
r
)
∣∣∣
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Weak error techniques

Let u be a solution to

(∂s + b(s, x) · ∇x + Lα) u(s, x) = 0 on [0, t)× Rd , u(t, ·) = g on Rd ,

By Itô’s formula,

E(g , t, x , h) = E0,x [g(X
h
t )− g(Xt)] = E0,x [u(t,X

h
t )− u(0, x)]

= E0,x

[∫ t

0

(
b(r ,X h

r )− b(τhr ,X
h
τh
r
)
)
· ∇u(r ,X h

r )

]
dr .

Historical approach by [MP91] : for b ∈ Cβ

Schauder estimates for u : ∥∇u∥L∞ < ∞

Use the regularity of b to control
∣∣∣b(r ,X h

r )− b(τhr ,X
h
τh
r
)
∣∣∣

E(g , t, x , h) ≤ C∥∇u∥L∞

∫ t

0

E0,x

[
|X h

r − X h
τh
r
|β
]
dr ≤ C∥∇u∥L∞h

β
α . (5)
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Weak error techniques

Compare the Duhamel formulas for Γh and Γ :

Γh(0, x , t, y)− Γ(0, x , t, y)

= E0,x

[∫ t

0

b(s,Xs) · ∇ypα(t − s, y − Xs)− b(τhs ,X
h
τh
s
) · ∇ypα(t − s, y − X h

s )ds

]
When b is singular, the main difficulty lies in controlling

b(·,Xs)− b(·,Xτh
s
)

and
b(s, ·)− b(τhs , ·)
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Weak error techniques - b(s,Xs)− b(s,Xτhs
)

In the splitting of the error, we write the following

E0,x

[∫ t

0

b(s,Xs) · ∇ypα(t − s, y − Xs)− b(s,Xτh
s
) · ∇ypα(t − s, y − Xτh

s
)ds

]
=

∫ t

0

∫
[Γ(0, x , s, z)− Γ(0, x , τhs , z)]b(s, z) · ∇ypα(t − s, y − z)dzds
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Weak error techniques - b(s,Xs)− b(s,Xτhs
)

In the splitting of the error, we write the following

E0,x

[∫ t

0

[
b(s,Xs) · ∇ypα(t − s, y − Xs)− b(s,Xτh

s
) · ∇ypα(t − s, y − Xτh

s
)
]
ds

]
=

∫ t

0

∫
[Γ(0, x , s, z)− Γ(0, x , τhs , z)]b(s, z) · ∇ypα(t − s, y − z)dzds

Using bootstrap techniques on the PDE, we can prove

|Γ(0, x , s, z)− Γ(0, x , τhs , z)| ≤ C
(s − τhs )

γ
α

(τhs )
γ
α

pα(τ
h
s , z − x) ≤ C

h
γ
α

(τhs )
γ
α

pα(τ
h
s , z − x)

where γ is the gap to singularity :

γ = α− 1− d

p
− α

q
> 0 Lebesgue, b ∈ Lq − Lp

γ = α+ β − 1 > 0 Holder, b ∈ Cβ

γ = 2β + α− 1− d

p
− α

q
> 0 Negative Besov, b ∈ Lq − Bβ

p,r
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Weak error techniques - Heat kernel estimates - Besov case

Theorem ([F.,2023])

Let P be the solution to (E) and (xt)t∈[s,T ] the associated canonical process.

Then, ∀t ∈ (s,T ], xt admits a density Γ(s, t, x , ·) s.t. ∃C ≥ 1 : ∀(x , y) ∈ Rd ,

C−1pα(t − s, y − x) ≤ Γ(s, t, x , y) ≤ Cpα(t − s, y − x),

|∇xΓ(s, t, x , y)| ≤
C

(t − s)
1
α

pα(t − s, y − x),

|Γ(s, t, x , y)− Γ(s, t, x , y ′)| ≤ C |y − y ′|ρ

(t − s)
ρ
α

(pα(t − s, y − x)

+pα(t − s, y ′ − x)) ,

|∇xΓ(s, t, x , y)−∇xΓ(s, t, x , y
′)| ≤ C |y − y ′|ρ

(t − s)
ρ+1
α

(pα(t − s, x − y)

+pα(t − s, x − y ′)) ,

for any ρ ∈ (−β,−β + γ/2), where γ := 2β + α− 1− α/r − d/p > 0
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Weak error techniques - Heat kernel estimates - Besov case

Theorem ([F.,2025])

Moreover, for any ε ∈ (0,−β) and η ∈ (−β,−β + ε/2), for t ′ > t such that
(t ′ − t) < t/2, ∥∥∥∥Γ(s, x , t, ·)− Γ(s, x , t ′, ·)

pα(t − s, · − x)

∥∥∥∥
Bη
∞,∞

≤ C
(t ′ − t)

γ−ε
α

(t − s)
γ−ε−β

α

(6)
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Weak error techniques - Heat kernel estimates - Besov case

Theorem ([F.,2025])

Moreover, for any ε ∈ (0,−β) and η ∈ (−β,−β + ε/2), for t ′ > t such that
(t ′ − t) < t/2, ∥∥∥∥Γ(s, x , t, ·)− Γ(s, x , t ′, ·)

pα(t − s, · − x)

∥∥∥∥
Bη
∞,∞

≤ C
(t ′ − t)

γ−ε
α

(t − s)
γ−ε−β

α

(7)

Going back to the scheme, we can use this to write the following :∫ t

0

∫
[Γ(0, x , s, z)− Γ(0, x , τhs , z)]b(s, z) · ∇ypα(t − s, y − z)dzds

≲
∫ t

0

(s − τhs )
γ−ε
α

(τhs )
γ−ε−β

α

∫
pα(τ

h
s , z − x)b(s, z) · ∇ypα(t − s, y − z)dzds
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Weak error techniques - b(s,Xs)− b(s,Xτhs
)

It remains to show the boundedness of∫ t

0

∫
pα(s, z − x)b(s, z)∇ypα(t − s, y − z)dzds.

If b ∈ H in space, we have to estimate

∥pα(s, · − x)∇ypα(t − s, y − ·)∥H∗ ,

and recoup singularities in s and t − s, which we want to integrate against
∥b(s, ·)∥H.
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Weak error techniques - b(s,Xs)− b(τ hs ,Xs)

Natural time-space scaling :

When b(t, ·) ∈ Cβ in space, we usually assume b(·, z) ∈ C
β
α , i.e.

|b(s,Xs)− b(τhs ,Xs)| ≤ (s − τhs )
β
α

Not enough to show a convergence with order

γ

α
=

β

α
+

α− 1

α
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Weak error techniques - b(s,Xs)− b(τ hs ,Xs)

Time-randomized Euler scheme :

X h
tk+1

= X h
tk + hb(Uk ,X

h
tk ) + (Ztk+1

− Ztk ),

where (Uk) ∼ U([tk , tk+1]).
Duhamel integral over one time-step for the time-randomized Euler scheme :∫ tk+1

tk

E
[
b(Uk ,X

h
τh
s
) · ∇ypα(t − Uk , y − X h

τh
s
)
]
ds

=

∫ tk+1

tk

1

h

∫ tk+1

tk

E
[
b(r ,X h

τh
s
) · ∇ypα(t − r , y − X h

τh
s
)
]
drds

=

∫ tk+1

tk

1

h

∫ tk+1

tk

E
[
b(r ,X h

τh
r
) · ∇ypα(t − r , y − X h

τh
r
)
]
drds

=

∫ tk+1

tk

E
[
b(r ,X h

τh
r
) · ∇ypα(t − r , y − X h

τh
r
)
]
dr .
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Results - Hölder case , α ∈ (1, 2]

Theorem ([F., Menozzi, 2024])

For b ∈ L∞ − Cβ , β > 0, we define the Euler scheme by

X h
tk+1

= X h
tk + hb(Uk ,X

h
tk ) + (Ztk+1

− Ztk ),

where ∀k,Uk ∼ U(tk , tk+1). Define

γ = β + α− 1 > 0.

Then,

|Γ(0, x , t, y)− Γh(0, x , t, y)| ≤ Ch
γ
α (1 + t−

β
α )pα(t, y − x) (8)
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Results - Lebesgue case, α ∈ (1, 2)

Theorem ([F., Jourdain, Menozzi, 2024])

For b ∈ Lq − Lp, if

γ = α− 1− d

p
− α

q
> 0,

then equation
dXt = b(t,Xt)dt + dZt , X0 = x ∈ Rd

is weakly well-posed (in the sense of the martingale problem).

Theorem ([F., Jourdain, Menozzi, 2024])

For b ∈ Lq − Lp, we define the Euler scheme by

X h
tk+1

= X h
tk + hbh(Uk ,X

h
tk ) + (Ztk+1

− Ztk ),

where bh is a cut-offed b s.t. |bh| ≤ h−
d
αp−

1
q and ∀k ,Uk ∼ U(tk , tk+1). Then,

|Γ(0, x , t, y)− Γh(0, x , t, y)| ≤ Ch
γ
α pα(t, y − x) (9)
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Besov case, dynamics of the SDE

Proposition (Dynamics of the distributional SDE, [DD16],[CdRM22])

Assume

α ∈

(
1 + d

p

1− 1
r

, 2

)
β ∈

(
1− α+ 2d

p + 2α
r

2
, 0

)
, (GRD)

Then, the formal SDE

dXt = b(t,Xt)dt + dZt , X0 = x ∈ Rd

rewrites

Xt = X0 +

∫ t

0

b(s,Xs ,ds) + Zt ,

where ∀0 ≤ v ≤ s ≤ T,

b(v , x , s − v) =

∫ s

v

∫
b(r , y)pα(r − v , y − x)dydr
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Besov case, definition of the scheme

Definition of the scheme :

X h
ti+1

= X h
ti + b(ti ,X

h
ti , h) + (Zti+1 − Zti )

= X h
ti +

∫ ti+1

ti

∫
b(r , y)pα(r − ti , y − X h

ti )dydr + (Zti+1 − Zti )
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Besov case, definition of the scheme

Definition of the scheme :

X h
ti+1

= X h
ti + b(ti ,X

h
ti , h) + (Zti+1 − Zti )

= X h
ti +

∫ ti+1

ti

∫
b(r , y)pα(r − ti , y − X h

ti )dydr + (Zti+1 − Zti )

→ case dependent !
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Results - Besov case , α ∈ (1, 2)

Theorem ([F., Menozzi, Issoglio, 2025])

For b ∈ Lr − Bβ
p,q, β < 0, using the previously defined Euler scheme, for all ε > 0,

|Γ(0, x , t, y)− Γh(0, x , t, y)| ≤ Ch
γ−ε
α (1 + t−

β
α )pα(t, y − x) (10)

where γ = 2β + α− 1− d/p − α/r > 0.
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Results - Besov case , α ∈ (1, 2)

Theorem ([F., Menozzi, Issoglio, 2025])

For b ∈ Lr − Bβ
p,q, β < 0, using the previously defined Euler scheme, for all ε > 0,

|Γ(0, x , t, y)− Γh(0, x , t, y)| ≤ Ch
γ−ε
α (1 + t−

β
α )pα(t, y − x) (11)

where γ = 2β + α− 1− d/p − α/r > 0.

Strictly stable setting only (although method is robust enough for gaussian
case)

Loss of ε due to the distributional setting

Gap is the same as for well-posedness
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Besov case, remark on the dynamics of the scheme

We are able to define the scheme under the condition

α ∈

(
1 + d

p

1− 1
r

, 2

)
β ∈

(
1− α+ d

p + α
r

2
, 0

)
, (12)

and show tension and convergence of the law of (X h
s ) to some law which solves

the SDE.
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Besov case, remark on the dynamics of the scheme

We are able to define the scheme under the condition

α ∈

(
1 + d

p

1− 1
r

, 2

)
β ∈

(
1− α+ d

p + α
r

2
, 0

)
, (13)

and show tension and convergence of the law of (X h
s ) to some law which solves

the SDE.
If

β ∈

(
1− α+ d

p + α
r

2
,
1− α+ 2d

p + 2α
r

2

)
, (14)

the laws still converge but we cannot make sense of the Young integral in the
previous proposition.
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Besov case as a consequence of the Hölder case ?

Hölder : |Γ(0, x , t, y)− Γh(0, x , t, y)| ≤ C [b]Cβh
β+α−1

α pα(t, y − x)

Negative Besov regularity : let b ∈ Lr ([0,T ],Bη
p,q), η < 0 and set

b(s, z , h) :=
1

h

∫ s+h

s

∫
b(u, y)pα(u − s, y − z)dydu.

Then, b(s, ·, h) is β-Hölder with β > 0 and its Hölder modulus

|b(s, z , h)− b(s, z ′, h)| ≤ C |z − z ′|βh−
1
r −

β
α+ η

α− d
αp
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Besov case as a consequence of the Hölder case ?

dX h1,h2
t = b(Uk ,X

h1,h2

τ
h1
t

, h2)dt + dZt Scheme for Holder SDE

↑↓ (1)

dX h2
t = b(t,X h2

t , h2)dt + dZt Holder SDE

↑↓ (2)

dXt = b(t,Xt)dt + dZt Besov SDE

Hölder result : weak error on densities for (1) with rate
η+α−α

r −
d
p −1

α w.r.t. h1.

How to handle (2) is still unclear : taking h1 = h2 yields a lower rate, may be
possible to optimize.
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Franco Flandoli, Elena Issoglio, and Francesco Russo.

Multidimensional stochastic differential equations with distributional drift.
Transactions of the American Mathematical Society, 369 :1665–1688, 2017.

Teodor Holland.

A note on the weak rate of convergence for the Euler-Maruyama scheme with Hölder drift.
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SDE solutions

Definition (Weak solution with bounded drift)

A stochastic process (Xt ,Ft)t≥0 on some probability space (Ω,F ,P) is a weak
solution to (E) with initial distribution µ if there exists a (Ft)t≥0-adapted process
(Zt)t≥0 on some (possibly different) (Ω′,F ′,P′) such that

(i) P(X0 ∈ ·) = µ(·)
(ii) For all t ≥ 0,

Xt = X0 +

∫ t

0

b(s,Xs)ds + (Zt − Z0) (15)

holds almost surely.
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SDE solutions

Definition (Bounded drift martingale problem)

Let b be a bounded drift.
A probability measure P on Ωα with time-marginals (Pt)t∈[0,T ], solves the
martingale problem related to b · ∇+ Lα and the initial probability measure µ if,
denoting by (ξt)t∈[0,T ] the associated canonical process,

(i) P0 = µ,

(ii) for all C1,2 function f on [0,T ]× Rd bounded together with its derivatives,
the process{
f (t, ξt)−

∫ t

0

(
(∂s + Lα)f (s, ξs)+ b(s, ξs) · ∇f (s, ξs)

)
ds − f (0, ξ0)

}
0≤t≤T

,

(16)
is a P-martingale.
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SDE solutions

Definition (Lebesgue drift martingale problem)

Let b ∈ Lq − Lp be a Lebesgue drift.
A probability measure P on Ωα with time-marginals (Pt)t∈[0,T ], solves the
martingale problem related to b · ∇+ Lα and the initial probability measure µ if,
denoting by (ξt)t∈[0,T ] the associated canonical process,

(i) P0 = µ,

(ii) for a.a. t ∈ (0,T ], Pt(dy) = ρ(t, y)dy for some ρ ∈ Lq
′
((0,T ], Lp

′
(Rd)),

(iii) for all C1,2 function f on [0,T ]× Rd bounded together with its derivatives,
the process{
f (t, ξt)−

∫ t

0

(
(∂s + Lα)f (s, ξs)+ b(s, ξs) · ∇f (s, ξs)

)
ds − f (0, ξ0)

}
0≤t≤T

,

(17)
is a P-martingale.
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SDE solutions

Definition (Mild solution of the underlying PDE)

Let b ∈ Lr − Bβ
p,q be a Besov drift. Let α ∈ (1, 2], ϕ : R+ × Rd → R and

g : Rd → R.
For a given T > 0, we say that f : [0,T ]× Rd → R is a mild solution of the
formal Cauchy problem C(b,Lα, ϕ, g ,T )

(∂t + b · ∇+ Lα) f (t, x) = ϕ(t, x) on [0,T )× Rd , f (T , ·) = g on Rd ,

if it belongs to C0,1([0,T ]× Rd ,R) with ∇f ∈ C0
b([0,T ],Bθ−1−ε

∞,∞ ) for any

0 < ε ≪ 1 and θ = β + α− d
p − α

r , and if it satisfies

∀(t, x) ∈ [0,T ]× Rd , f (t, x) = Pα
T−t [g ](x)−

∫ T

t

Pα
s−t [ϕ− b · ∇f ](s, x)ds, (18)

where Pα
t denotes the semi-group generated by Lα.
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SDE solutions

Definition (Besov drift martingale problem)

Let b ∈ Lr − Bβ
p,q be a Besov drift.

We say that a probability measure P on Ωα equipped with its canonical filtration
is a solution of the martingale problem associated with (b,Lα, x) for x ∈ Rd if,
denoting by (ξt)t∈[0,T ] the associated canonical process,

(i) P(ξ0 = x) = 1,

(ii) ∀ϕ ∈ C([0,T ],S(Rd ,R)), g ∈ C1(Rd ,R) with ∇g ∈ Bθ−1
∞,∞(Rd ,Rd),

θ = β + α− d/p − α/r , the process{
f (t, ξt)−

∫ t

0

ϕ(s, ξs)ds − f (0, x)

}
0≤t≤T

is a (square-integrable if α = 2) martingale under P where f is the mild
solution of the Cauchy problem C(b,Lα, ϕ, g ,T ).
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SDE solutions

Definition (Weak solution with distributional drift)

A weak solution to the formal distributional drift SDE (E) is a pair (X ,Z ) of
adapted processes on some probability space (Ω,F ,P) such that Z is an α-stable
process under P and, almost surely under P,

Xt = X0 +

∫ t

0

F(s,Xs ,ds) + Zt , E
∣∣∣∣∫ t

0

F(s,Xs ,ds)

∣∣∣∣ < ∞. (19)

where, for any 0 ≤ v ≤ s ≤ T , x ∈ Rd ,

F(v , x , s − v) :=

∫ s

v

∫
b(r , y)pα(r − v , y − x)dydr (20)

and the integral in (19) is understood as an Lℓ stochastic Young integral for any
ℓ ∈ (1, α].
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Test functions 1

Let us mention that if one is interested in the weak error for some test function f ,

E(f , x , t, h) := E0,x [f (X
h
t )− f (Xt)],

as soon as f is δ-Hölder (not necessarily bounded) then, a rate can be derived as a
consequence of the convergence of |Γ(s, x , t, y)− Γh(s, x , t, y)| using a simple
cancellation argument :

E(f , x , t, h) =
∫
Rd

(Γh − Γ)(0, x , t, y)f (y)dy

=

∫
Rd

(Γh − Γ)(0, x , t, y)
(
f (y)− f (x)

)
dy ,

|E(f , x , t, h)| ≲ h
γ
α

∫
Rd

pα(t, y − x)|x − y |δdy

≲ t
δ
α h

γ
α .
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