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Résumé

Cette these est dédiée a 1étude des équations
différentielles stochastiques, dont la dérive, singuliere, ap-
partient & un espace de Holder, de Lebesgue ou de Besov,
dirigées par un processus stable symétrique. Dans ce
cadre irrégulier, le caracteére bien-posé faible des équations
ne peut étre obtenu via les théoremes usuels de ’analyse
stochastique, et il repose sur des effets de régularisation par
le bruit. Notre objectif est d’établir le caractere bien-posé
de ces équations, d’obtenir des estimées sur les densités de
leurs solutions et de fournir des taux de convergence quan-
titatifs pour I'erreur faible associée a leur discrétisation.

Précisément, mnous définissons des schémas de
discrétisation de type FKEuler pour des équations
différentielles stochastiques a dérive singuliere a bruit ad-
ditif et donnons des taux de convergence pour l’erreur
faible associée aux densités. Nos contributions princi-
pales consistent & obtenir des taux de convergence qui
se fondent sur la régularité en temps de ’équation aux
dérivées partielles parabolique sous-jacente, permettant
ainsi de relaxer les hypotheses sur la régularité en espace
de la dérive. Ce faisant, nous soulignons le réle fondamen-
tal que joue “I’écart a la singularité”, qui est défini comme

la marge restante dans la condition d’existence et unicité
d’une solution faible a I’équation considérée, et qui condi-
tionne la régularité en temps de la densité de la solution.

Si les estimées sur la régularité en temps de la densité
existent, comme dans le cadre Besov ou nous prouvons ces
estimées indépendamment ou dans le cadre Holder, elles
peuvent étre utilisées pour en déduire les résultats sur
Perreur faible. Si ce n’est pas le cas, il est possible de tra-
vailler & la place sur la densité de I’équation discrétisée, ce
qui permet, par passage a la limite, d’obtenir le caractere
bien posé de I’équation différentielle stochastique ainsi que
des estimées sur sa densité comme nous le faisons dans le
cadre Lebesgue.

Nous mettons également en évidence l'importance de
la randomisation de l’argument en temps de la dérive lors
de la discrétisation. Cette technique, qui peut étre vue
comme une forme de régularisation par le bruit, permet
de se passer d’hypotheses sur la régularité en temps de la
dérive.

Nos méthodes sont valables dans le cadre Brownien et
dans le cadre d’un bruit strictement stable symétrique de
mesure spectrale réguliere.
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Abstract

This thesis is dedicated to the study of stochastic differ-
ential equations with singular drifts belonging to Holder,
Lebesgue or Besov spaces, driven by symmetric stable
noises. In this singular setting, well-posedness cannot be
derived from standard It6 calculus results, and we rely on
regularization by noise effects to obtain solutions to these
equations. Our aim is to study their weak well-posedness,
to derive estimates on the density of the solutions and
to provide quantitative weak convergence rates for their
discretization.

Namely, we provide discretization schemes of Euler
type for singular drift SDEs with additive noise and com-
pute convergence rates for the associated weak error on
densities. Our main contributions in this part consist in
obtaining rates which are based on the time-regularity
of the associated parabolic partial differential equation,
therefore allowing to relax assumptions on the spatial reg-
ularity of the drift. Doing so, we underline the fundamental
role of the “gap to singularity”, which can be defined as

the margin left in the weak well-posedness condition of a
singular drift SDE, and which conditions the regularity of
the density of the solution.

If estimates on the time regularity of the density are
available, like in the Besov case where we prove these es-
timates separately or in the Holder case, they can be used
to compute weak error rates. Otherwise, it is possible to
work with the density of the discretized equation instead.
By passing to the limit, as we do in the Lebesgue setting,
we then obtain well-posedness of the SDE as well as heat
kernel estimates on its density.

We highlight as well the importance of randomizing
the time-argument when defining the schemes, which can
also be seen as some sort of regularization by noise phe-
nomenon, in order to avoid any assumptions on the time
regularity of the drift.

Our techniques are valid in both the Brownian setting
and the strictly stable symmetric, smooth spectral measure
setting.




Notations

C(A, B) : space of continuous functions from A to B

C? : Holder space of regularity £

Cy° : space of smooth bounded functions

S(R?) is the Schwartz class and S’(R?) its dual

D(A, B) : space of cadlag functions from A to B

ng : Besov space with regularity # and integrability indexes p, ¢

L" : Lebesgue space with exponent r

A < B if there exists a constant C' (possibly depending on the current parameters) such that A < CB
AxBif A< Band BS A

L% generator of the a-stable process (the exact nature of which depends on the context)
P semi-group associated with £

Do ¢ density of the a-stable process (the exact nature of which depends on the context)
0 = h|s/h] € (s — h, 5] is the last grid point before time s

* denotes the spatial convolution.

For f € §'(R?) and ¢ € C$°(R?) such that ¢(0) # 0, we set ¢(D)f = F~ (¢ x F(f)) = F L) x f,
where F denotes the Fourier transform.

For p € [1,400], we always denote by p’ € [1, +0o0] s.t. % + ﬁ = 1 its conjugate.

N is the set of natural numbers (including 0) and N* is the set of non-zero natural numbers
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Part 1

Introduction



Chapter 1

Singular stochastic differential
equations

1.1 Well-posedness of singular drift SDEs

Consider the ordinary differential equation (ODE)
dX; = b(t, X;) dt, Xy =z eR? (1.1.1)

The Cauchy-Lipschitz theorem states that if b is continuous in time and locally Lipschitz in its spatial
variable (with Lipschitz constant independant of time), then (1.1.1) admits a unique local solution. The
Peano existence theorem allows to go below Lipschitz regularity and ensures local existence of solutions
whenever b € C#, 3 € [0,1) is (Hblder) continuous. In this regime, the Peano example gives a counter-
example to uniqueness: let us consider the one-dimensional ODE

dX; = [X¢|"sgn(Xy)dt,  Xo =0, (1.1.2)

for some a € (0,1). Then, (1.1.2) admits infinitely many explicit solutions as for all s > 0, the following
process solves (1.1.2):

Xt = :l:l{tzé}(t — S)a+1

—s=0
4 s=1
—s5=2
0
=)
Il 9
s |
=)
0,
T T T T T T T
0 0.5 1 1.5 2 2.5 3

This gives an intuition about why uniqueness might break down: in this example, solutions stay at y = 0
for any amount of time and then take off at time s > 0, either towards positive or negative values of y.
However, if one were to give them a small push at time 0, one would expect that there is only one possible
path for the solution to follow. This heuristic is actually made rigorous in the work of Flandoli and Delarue
[DF14]. In this work, it is proved that the limit of a vanishing Brownian viscosity in (1.1.2) is a symmetric
probability measure weighting the maximal solutions of (1.1.2), thus restoring a kind of uniqueness.



Going below continuity, we even lose existence. Consider the ODE
dX; = —sgn(Xy) dt, Xo=0 (1.1.3)
dx?

with the convention sgn(0) = 1. This ODE has bounded drift, yet existence fails: =
and X2 = 0 so for all t <0, X? = 0 and in turn X; = 0, which does not solve (1.1.3).

= —2X;sgn(X;) <0

To tackle the previous issues and inspired by the Peano example, one way to restore some sort of well-
posedness is to introduce randomness in the equation. Let us introduce the stochastic differential equation
(SDE)

dX;: = b(t, X)) dt + dZy, (1.1.4)

where (Z;) is a semi-martingale (for example a standard Brownian motion or a stable process). This equation,
which may have a singular (i.e. Holder, Lebesgue or Besov) drift, is the main object of this thesis. We will
be interested in its well-posedness, its discretization as well as in estimates on its underlying density. It
was proved by Veretennikov in [Ver80] that this equation, with Brownian noise and bounded drift, admits a
unique strong solution. In general terms, for a process (X;) to be called a solution to (1.1.4), we will require
that for all £ > 0,

t
X, = Xo +/ b(s, X,)ds + (Z, — Zo)
0

holds almost surely. The solution is said to be a strong solution if it is progressively measurable with respect
to the sigma algebra o(Zs,0 < s < t) generated by the noise (roughly speaking, the solution is a function of
the input noise). It is said to be a weak solution if any two solutions (possibly with different noises defined
on distinct probability spaces) have the same probability distribution. For strong well-posedness, the key
notion is pathwise uniqueness, which holds if, for two solutions X' and X2 defined on the same probability
space,
P (Sup|Xt1 - X2 = 0) =1
t>0

Together with weak existence, pathwise uniqueness gives strong uniqueness and thus strong well-posedness
through the Yamada-Watanabe theorem.

For weak solutions, this notion is not suitable and uniqueness refers to uniqueness in law for the under-
lying processes. Let us as well mention that if we have strong existence and weak uniqueness, it is possible
to obtain strong uniqueness, which is sometimes refered to as the dual Yamada-Watanabe theorem.

In this thesis, we are mainly interested in weak aspects: we prove weak well-posedness results and related
estimates and our results on discretization schemes are related to the rate of convergence of the time marginal
laws of the process.

Let us now investigate more precisely what is required for well-posedness of (1.1.4). Roughly speaking,
we expect to be able to give a rigorous meaning to (1.1.4) if, formally, the integral

I = /t b(s, Z,) — b(0, Zo)] ds

is more regular than the noise process Z; in the sense that its typical time scale, E[|I;|], should be smaller.

This leads to the following condition: if we assume that b is time-homogeneous and S-Holder continuous in
3

space and Z; is an a-stable process, then (formally), b(Z.) € C % and the condition reads

1
1+é>—<:>a+ﬁ>1. (1.1.5)
a o«
If this is the case, it is possible to construct a solution to (1.1.4), the typical time scale of which will be the

same as that of the noise.



This is indeed the threshold which appears in the seminal article by Tanaka, Tsuchiya and Watanabe
[TTW74]. The authors consider therein the scalar case, and proved that strong uniqueness holds for bounded
B-Holder drifts under this condition, while giving a uniqueness counter example when 8+ o < 1. A critical
multidimensional case (a« = 1, § = 0 continuous drift) in a time-inhomogeneous setting was investigated in
[Kom84], in which weak uniqueness is derived, with the driving noise having absolutely continuous spectral
measure w.r.t. the Lebesgue measure on the sphere. This was later extended to an arbitrary non-degenerate
spectral measure in [CARMP20b].

Note that most regularization by noise results involving a stable noise usually impose a non-degeneracy
condition on the noise, i.e. it should act on all directions. In [Wat07], Watanabe investigates the exact
link between the support of the non-degenerate spectral measure of the process and the estimates one can
obtain on its density. Whenever the spectral measure of the noise is not equivalent to (i.e. bounded from
above and below by) the Lebesgue measure on the sphere, global estimates on the density (such as those
presented in Section 2.2) are delicate to obtain, making the equivalence assumption standard to computing
heat kernel estimates. Let us mention that a branch of the regularization by noise literature focuses on
more general non-degenerate spectral measure such as cylindrical a-stable processes (see e.g. [CARM22a],
[CZZ21], [CHZ20], [CARMP20a]). However, these last results do no concern pointwise estimates on the
density of the underlying process.

Having in mind that weak (or strong) well-posedness is often investigated through the corresponding
parabolic PDE, recalling that the associated expected parabolic gain is f + «a, the condition 5 4+ a > 1
coincides with the regularity required to define the gradient of the fundamental solution to the PDE. The
aforementioned regularity gain is often obtained through Schauder-type estimates. We can mention [MP14]
(bounded drift, stable-like generators), [CARMP20a] (unbounded drift, general stable generators including
e.g. the cylindrical one). These estimates naturally lead to weak uniqueness in the multidimensional setting
for (1.1.4) through the martingale problem, which precisely requires a control of the gradient of the solution
of the PDE.

In [FJM24], we extend the condition (1.1.5) to SDEs with time-inhomogeneous drifts which belong to
the Lebesgue space LI([0,T], LP(R%)) := {f 0, 7] x RE: It = 1 f (el pago,ry) < oo} =: L7 — [P with

Z; being a symmetric non-degenerate d-dimensional a-stable process, whose spectral measure is equivalent
to the Lebesgue measure on the unit sphere S?~! under the condition

- (g + 2‘) >1,  ae(1,2). (1.1.6)

This is done by investigating the Euler scheme associated with (1.1.4). Namely, we compute estimates on
the density of the Euler scheme which are uniform with respect to the time step of the discretization and
we let the time step go to 0 to obtain a solution of the martingale problem associated with (1.1.4). This
method also allows to immediately deduce heat kernel estimates for the solution as the uniform estimates
on the density of the Euler scheme pass to the limit.

This well-posedness result extends the ones derived in [Por94] (scalar) and [PP95] (multidimensional),
which adress the strictly stable time-homogeneous case. Under the condition o — d/p > 1, authors therein
construct the density through its parametrix series expansion and show that it solves the corresponding
martingale problem. Let us also mention the work [CdRM22a], in which weak well-posedness is proved for
distributional drifts in the Besov-Lebesgue space LY — Bg’r under the condition (see below why a factor two
appears in the distributional setting)

a+ <2ﬁ - g - Z) > 1. (1.1.7)

In view of this threshold, our well-posedness result can be seen as an extension of this work for 5 = 0.



d
Note that, when considering the embedding LP(R?) < Boo’so (R?) (which roughly speaking expresses the
trade-off between integrability and regularity) and the time-space scale of the equation, the condition (1.1.6)
is consistent with the condition a+ 8 > 1 appearing in the Holder case if we see —d/p—«/q as the regularity
of an L? — LP drift.

The condition (1.1.6) that we obtain can also be seen as the a-stable extension of the Krylov-Rockner

condition PR
-+-<1 (1.1.8)
p q

for Brownian-driven SDEs (see [KR05]), although not guaranteeing strong well-posedness in the strictly sta-
ble setting (o < 2). Indeed, in [KRO5], authors make use of the Girsanov theorem (which is specific to the
Brownian setting) along with the aforementioned Yamada-Watanabe theorem to derive strong well-posedness
from weak existence and strong uniqueness. In a stable setting, in order to derive strong well-posedness, some
additional smoothness conditions on the drift is required, expressed for example in terms of Bessel potential
spaces by Xie and Zhang in [XZ20]. It was also shown by Priola in [Pril12] that pathwise uniqueness holds
in the multidimensional case for general non-degenerate stable generators with @ > 1 for time-homogeneous
bounded S-Hoélder drifts under the assumption 8 > 1 — a/2. Under the same assumption, [CZZ21] proved
strong existence and uniqueness for any « € (0,2), as well as weak uniqueness whenever 8 + « > 1 for
time-inhomogeneous drift with non-trivial diffusion coefficient. Those results are usually obtained using the
Zvonkin transform (see [Zvo74], [Ver80]), which requires additional regularity on the underlying PDE, which
again follows from Schauder-type estimates.

Let us now mention a few recent results which give a more detailed understanding of the threshold (1.1.6).
The critical regime for Lebesgue drift equation driven by Brownian motion was investigated by Rockner and
Zhao in [RZ25], where strong existence is proved as well as pathwise uniqueness among a class of solution
satisfying certain estimates (see as well [Kry23] and [Kry21a] for the homogeneous case). In [Kry21b], Krylov

works under the condition
d 1
-+ - <1, (1.1.9)
p q

which is slightly weaker than (1.1.8). In the subcritical regime (i.e. when (1.1.8) is satisfied), as previously
mentioned, the noise dominates the drift in small time. This is not necessarily the case anymore under
(1.1.9), meaning that regularization by noise phenomenon might not take place. However, [Kry21b] provides
a proof for weak existence of a solution in this regime, although uniqueness may fail. Extending this result
to more general, possibly non-markovian, noises, Butkovsky and Gallay prove in [BG23] weak existence in
the strictly stable setting (using the John-Nirenberg inequality) under

-1 d
N | (1.1.10)
q P

and in the fractional Brownian motion setting (using the stochastic sewing lemma of Lé, see [Lé20]) under

+—<1-H, (1.1.11)
D

where H is the Hurst parameter of the considered fractional Brownian motion. In this second setting, au-
thors also provide a counter-example to show optimality of this condition. Strong well-posedness in these
regimes remains an open problem.

Going towards negative regularity for the drift brings additional difficulties. The first challenge is to
specify what is intended with “solution” to (1.1.4). To this end, a key tool is the following PDE:

(O +b-V + LY u(t,x) = f(t,x) on [0,T) x R, u(T,-) = g on R? (1.1.12)

for suitable sources f and final conditions g, and where £ is the generator of the noise Z. Note that this
PDE is only available in the current Markovian setting. When using non-Markovian noises such as fractional

10



Brownian motion, other tools have to be relied upon (mainly the aforementioned stochastic sewing lemma of
Khoa Lé, see [Lé20]). When studying (1.1.12), defining the gradient of the solution still requires a + 8 > 1,
which now imposes a > 1. This is anyhow not sufficient: we also need to be able to define b- Vu as a
distribution. Roughly, since b has spatial regularity 3, this imposes S+ (6+a —1) > 0 < [ > PT‘X by
usual paraproduct rules (note that this is the exact assumption we need if p = r = +00). This threshold
already appears in [BC01] in the diffusive setting (o = 2), where strong well-posedness is derived in the
scalar case through Dirichlet forms techniques for specifically structured time-homogeneous drifts. The
same threshold is exhibited in [FIR17], where the authors introduce the notion of virtual solutions to give a
meaning to (1.1.4). Those solutions are defined through a Zvonkin-type transform formula, and, while not
requiring any specific structure, do not yield a precise dynamics for the SDE. We can also refer to Zhang and
Zhao ([ZZ17]) and Athreya, Butkovsky and Mytnik ([ABM20]), who specified the meaning to be given to
(1.1.4), in the sense that the drift therein is defined through smooth approximating sequences of the singular
b along the solution. Importantly, the limit drift is a Dirichlet process, highlighting once again that (1.1.4) is
a formal equation. A thorough description of this Dirichlet process was done in the Brownian scalar case by
Delarue and Diel in [DD16] and extended by Cannizzaro and Chouk in [CC18] for multidimensional SDEs.
Assuming some additional structure on the drift, they manage to go beyond the above threshold and reach
8> —% (still with p = 7 = 00). This work was extended in the multidimensional strictly stable case, still
assuming a specific structure for the drift by Kremp and Perkowski in [KP22], in which weak well-posedness
is proved for 8 > % Without any structure on the drift, a similar and consistent description of the
dynamics for the weak solutions of (1.1.4) in the multidimensional setting is obtained in [CdRM22a] for
8 > 1_TO‘ The case of a non-trivial diffusion coefficient was investigated by Ling and Zhao in [LZ22] with
the same thresholds. Note that, in the present work, we chose to work with a trivial diffusion coefficient as
the most delicate issue is the handling of the singular drift (see Remark 15 in [CdRM22a] for the handling
of a non trivial diffusion coefficient in a Duhamel expansion). We do believe our approach for heat kernels
would be robust enough to treat this case. We emphasize that most of the aforementioned results heavily
rely on the Schauder-type regularization properties of the PDE (1.1.12).

1.2 Defining weak solutions to singular drift SDEs

When we consider SDEs with singular drifts, defining solutions becomes a challenge. Let Q, = D([0, T], RY)
(the Skorokhod space of cadlag functions) if a € (1,2) and Qy = C([0,7],R?). We will here focus on weak
solutions as they are the main object of this thesis. Let us start with the case of a bounded drift.

Definition 1.1 (Weak solution with bounded drift). A stochastic process (X, Fi)i>0 on some probability
space (2, F,P) is a weak solution to (1.1.4) with initial distribution p if there exists a (Fy)i>o-adapted process
(Zt)t>0 on some (possibly different) (', F',P’) such that

(1) P(Xo €)= n()
(i) For allt >0,
Xt = Xo +/ b<S7XS) ds + (Zt - Zo) (121)
0

holds almost surely.

As b is bounded, we have no issues making sense of the integral term in (1.2.1). It was proved in [SV97]
and [EKS86] that this formulation is equivalent to considering the following so-called “martingale problem”:

Definition 1.2 (Bounded drift martingale problem). Let b be a bounded drift.
A probability measure P on Q. with time-marginals (P;)icjo,1), solves the martingale problem related to
b-V + L and the initial probability measure y if, denoting by (&t)iejo,r) the associated canonical process,

(Z) Py = 122
(ii) for all C*? function f on [0,T] x R% bounded together with its derivatives, the process

{f(t’gt) - /0 ((aS + Eo‘)f(s,fs) + b(&fs) . Vf(&fs)) ds — f(ovgo)} ) (1'2'2)

0<t<T
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is a P-martingale.

One can readily see that if there exists a weak solution in the sense of Definition 1.1, by applying It&’s
formula, we obtain a solution to the martingale problem of Definition 1.2.

Moreover, uniqueness holds for the martingale problem if and only if uniqueness in law holds for the weak
solution, i.e. if the finite dimensional distributions of any two weak solutions are equal.

The choice of the class of f is not critical. We only need it to be rich enough to characterize marginal
laws, i.e. a class of functions ® is sufficient if whenever two probability measures u; and uo satisfy

[odm=[odm  weo,
then py = po.

When considering Lebesgue drifts, a new difficulty appears: in order to make sense of

E VOT |b(s,Xs)|ds] :/Qa /OTIb(svfs)IdsP(dé),

we need an additional assumption on the solution. Namely, we can give the following definition:

Definition 1.3 (Lebesgue drift martingale problem). Let b € LY — LP be a Lebesgue drift.
A probability measure P on Q. with time-marginals (P;)icjo,1), solves the martingale problem related to
b-V + LY and the initial probability measure p if, denoting by (&t)iefo,r) the associated canonical process,

(Z) PO =K
(ii) for a.a. t € (0,T], P,(dy) = p(t,y) dy for some p € LY ((0,T], L? (RY)),

(iii) for all C*? function f on [0,T] x R% bounded together with its derivatives, the process

{f(t7§t) - /O ((as + £a)f(s>§s) + b(&fs) : Vf(s>§s)) ds — f(07£0)} ’ (123)

0<t<T

is a P-martingale.

Let us point out that, in the current singular drift setting, condition (4#¢) which guarantees that

/Qa /OT |b(s, £)| dsP(d€) < oo

is somehow the minimal one required for all the terms in (1.2.3) to be well defined. Basically, the requirement
is that the probability measure which solves the martingale problem has time marginals, which, seen as a
function of time and space, admits a density w.r.t. the Lebesgue measure which belongs to the dual space of
b. This highlights that in the singular setting, estimates (in this case Lebesgue estimates) on the density are
somehow necessary to ensure that a measure is a solution to the SDE in the sense of the previous Definition
1.3.

Now, if b is a distribution, (1.2.3) does not necessarily make sense anymore. To reach this setting, we
will study the cauchy problem associated with the operator 9; + b -V + L% in order to formally get rid of
the integrand in (1.2.3) and replace it with a source term. This trick allows to make sense of the martingale
problem as long as the Cauchy problem is well-posed, therefore lowering the regularity required on the drift.
This approach is known as the generalized martingale problem, see [EK86].
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For the sake of simplicity, assume that b € Bgo’oo, B < 0 is a time-homogeneous distributional drift. For

the definition of the Cauchy problem in the distributional Besov setting, we need the following conditions
on a, (:
26+a>1 (1.2.4)

and we will denote
0:=8+a, (1.2.5)

which corresponds to the parabolic bootstrap induced by the drift. As explained in [CdRM22a], this choice
of 6 implies that the mapping

T
(t,2) > /t PG (s, 7) ds

is well defined and belongs to C;**([0,7] x R%,R) for G € B, and v € L>([0,T], B% 15%(R%,R%)) for some
0<ex 1.

Note that, here, we are only trying to give a meaning to the distributional product G - v. Roughly
speaking, by Bony’s paraproduct rule, we need the sum of the regaularities of G and v to be positive. This
is only possible if @ and g satisfy (1.2.4), hence the definition of the former.

In the more general case of a time-dependent generic Besov drift, we can give the following definition:

Definition 1.4 (Mild solution of the underlying PDE). Let b € L™ — Bg’q be a Besov drift. Let o € (1,2],
¢:Ry xR? =R and g : R —R.

For a given T > 0, we say that f : [0,T] x R? — R is a mild solution of the formal Cauchy problem
C(b, LY ¢,9,T)

(at +b'v+£a) f(t,l’) = ¢(t,$) on [OaT) X Rda f(Ta) =gon Rd7

if it belongs to C%1([0,T] x R4, R) with Vf € CY([0,T], BZ;})O_E) forany0<e<<land=p+a— % -2,
and if it satisfies

T
(t.a) € 0.7 X RY £(t.) = PF(lal(@) — [ P[0 —b-V)s.0)ds, (1.26)

where P denotes the semi-group generated by L.

Definition 1.5 (Besov drift martingale problem). Let b€ L" — ng be a Besov drift.
We say that a probability measure P on Q,, equipped with its canonical filtration is a solution of the martingale
problem associated with (b, L%, x) for x € R if, denoting by (§t)tejo,) the associated canonical process,

(ii) Yo € C([0,T],S(R% R)), g € C1 (R R) with Vg € B L (RLRY), 0 =B+ a—d/p—a/r, the process

{f(té“t) -/ (s, 6) ds - f(07fv)}

0<t<T

is a (square-integrable if o = 2) martingale under P where f is the mild solution of the Cauchy problem
C(b, L% ¢,9,T).

Let us mention that in the distributional setting, the solution process has to be understood as a Dirichlet
process in the following sense: assuming that b € B% .3 < 0 is a time-homogeneous drift, Chaudru de

Raynal and Menozzi proved in [CARM22a] that the maftingale problem of Definition 1.5 is well-posed. They
also introduce the following notion:
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Definition 1.6 (Weak solution with distributional drift). A weak solution to the formal distributional drift
SDE (1.1.4) is a pair (X, Z) of adapted processes on some probability space (2, F,P) such that Z is an
a-stable process under P and, almost surely under P,

t t
X = Xo +/ F(s,Xs,ds) + Zy, E / F(s,Xs,ds)| < oc. (1.2.7)
0 0

where, for any 0 <v < s < T,z € R%,
F(v,z, s —v) = / /b(r, Y)pa(r —v,y —x)dydr (1.2.8)

and the integral in (1.2.7) is understood as an L* stochastic Young integral for any ¢ € (1,q].

Importantly, the existence of such object is derived through an appropriate extention of the martingale
problem which also keeps track of the noise, which is used to reconstruct the drift.

This result bears a huge importance in the scope of developping the associated numerical scheme. It
gives the means to discretize the equation as long as we can compute F numerically in some way. The
discretization scheme that we use in Chapter 6 is inspired by this representation.

Other definitions of solutions have been proposed, such as virtual solutions, by Flandoli, Issoglio and
Russo in [FIR17], where the solution is defined through a kind of Zvonkin transform. Those are shown in
the same paper to be equivalent to defining solutions through mollification of the drift.

Once again, since the distributional setting imposes to study the Cauchy problem associated with the
underlying PDE. Estimating the density, when possible, is the most complete approach in this scope. The
next section is dedicated to this issue.

1.3 Heat kernel estimates

When studying well-posedness, a natural question is to obtain estimates on the time marginals of the
solution. The first such estimates were obtained in a purely analytical setting by Aronson in [Aro67], in
which he considers an operator L in divergence form

Li(z) = %div (@(@)Vf(2) +b(x) - V@), feCPRY, (1.3.1)

with a,b bounded measurable and a uniformly elliptic (i.e. 3A < 1:V(z,&) € (R)2, A2 < a(n)é - € <
AJ€]?) and obtains bounds on the fundamental solution p of the associated Cauchy problem (9; + L)f = 0
with a Dirac mass as terminal condition. Namely, for all T' > 0, there exists constants C' > 1 depending on
AT, |Ib|lc and ¢ € (0,1] depending on A such that if p is the fundamental solution associated with L, for all
(t,z,y) € (0,T] x R* x RY,

C
19

ct [_6—1 ly —
t

d €xXp t:| Sp(t,.’L’7y) S

t2

exp [—CW} . (1.3.2)

This expresses the fact that the fundamental solution associated with L is controlled from above and below
by the fundamental solutions of constant coefficients equations (i.e. the rescaled densities of the noise in
probabilistic terms). This type of bounds will be refered to as Aronson bounds. We will also be interested
in obtaining estimates on the derivatives of p and their Holder modulus in space and time.

For stable noises, which are the main topic of interest in this thesis, the seminal work of Kolokoltsov
[Kol00] addresses the case of a stable-driven SDE with smooth bounded drift where the driving noise has
a Lévy measure which is equivalent to the isotropic a-stable measure, with smooth density. This work was
extended in various directions for stable-driven SDEs for which weak well-posedness can be obtained. Kulik
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proved continuity of the density as well as its time derivative for a Holder drift in [Kull9] and [KK18] for
a rotationnaly invariant a-stable noise using the parametrix method. In [MZ22], authors cover the whole

range « € (0,2) with Holder unbounded drift using flow techniques to account for the unboundedness of the
drift.

In the scope of distributional drift heat kernels estimates, the sole result we were able to gather is due
to Perkowski and van Zuijlen, [PvZ22]. In a Brownian setting, using the Littlewood-Paley characterization
of Besov spaces, they managed to derive two-sided gaussian heat kernel estimates of type (1.3.2) in a time-
inhomogeneous setting with time-continuous drift in Bfo’l, B > f%. They also derive gradient estimates
w.r.t. the backward variable. The constants therein explicitly depend on the Littlewood-Paley decomposi-

tion of the drift.

In Chapter 3, we consider an SDE with additive strictly stable noise (although we expect the results to
hold with multiplicative noise) which has a time-inhomogeneous distributional drift in L" — Bg ¢ and we
compute heat kernel estimates for its density. To this end, we rely on its first order parametrix expansion

(i.e. the Duhamel formula) and on a proper mollification of the drift. We prove the following result:

Theorem 1.1 (Heat kernel estimates for Besov SDE with stable noise). Fiz the parameters T > 0 and
0 :={a,d,8,1,p,q, Hb||LT_B§q}. Take b € L"([0,T7, Bg’q(Rd)) and assume v :=a—1+28—a/q—d/p > 0.
Consider the solution P to the martingale problem associated with (b, L% x) starting at time s and denote
(w¢)tels,m) the associated canonical process. For allt € (s,T], x; admits a density (s, x,t,-) such that there
ezists C := C(T, 0, p) > 1 such that for all y € RY,

Cpa(t — s,y —x) <T(s,2,t,y) < Opa(t — s,y — ), (1.3.3)
C
|Vzl“(s,:v,t,y)| < Wpa(t—s,y—x), (1.3.4)
! d ! C|y_y/|
V(y,y') € RY, IT(s,z,t,y) — (s, 2, t,y)| < -k (Pa(t = s,y — ) +palt — 5,9 —2)),
(1.3.5)
’ d C|y_y/|p ’
v(yvy ) €R ) |er(87mvtay) - VzF(s,x,t,y)| < W (pa(t_ S, _y) +p0¢(t_ ST =Y ))
_ )&
(1.3.6)
orany p € (—0,—p +7v/2), where vy := +a—-—1—%=—2>0 15 the “gap to singularity”.
f B,—pB 2), wh 253 1—2—9>0is the imgularity”
Moreover, for any e € (0,—0) and p € (—8,—F +¢/2), for t' >t such that (t' —t) < /2,
U(s,x,t,-) — T(s,z,t,- )&
[Frogdoteatd] <ol (13.7)
palt=s=2) e~ (-5

Note that (1.3.7) was actually not present in [Fit23] but is included in the associated Chapter 3 in the
current work as it follows from the same proof and the same procedure.

The lower bound in (1.3.3) is rather straightforward to obtain in the strictly stable setting because the
polynomial nature of the bounds allows to obtain the lower bound from the same procedure as the upper
bound. When dealing with a Brownian noise, chaining techniques have to be used to account for the expo-
nential tails of the gaussian distribution in order to have related variances for the upper and lower bounds
(see e.g. the monograph of Bass [Bas98]).

In the Lebesgue setting, taking the limit of the discretization scheme, we obtain the following in Chapter
4 ([FJM24] for the published version):

Theorem 1.2 (Weak existence and density estimates for Lebesgue drift SDEs with strictly stable noise).
Assume b € LY — LP and o — 1 — d/p — a/q. The stochastic differential equation (1.1.4) admits a weak
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solution such that for each t € (0,T], Xy admits a density y — T'(0,t,x,y) w.r.t. the Lebesque measure such
that 3C := C(b,T) < 00 : ¥t € (0,T),V(z,y) € (RY)?,

['(0,z,t,y) < Cpa(t,y — ), (1.3.8)

and this density is the unique solution to the following Duhamel representation among functions of (t,y) €

[0,T] x R? satisfying (1.3.8):

t
vt e (OaT]a Vy € Rd7 F(O,:c,t,y) :poé(t,yfx) 7/ / F(vaaraz)b(nz)'vypa(t*TayfZ) dzdr. (139)
0 JR4

Furthermore, there exists a unique solution to the martingale problem related to b -V + LY starting from x
at time 0 in the sense of Definition 1.2.3.

Finally, let us define the “gap to singularity” as

yi=ma—1— (?ﬁ%) > 0. (1.3.10)

Then, T has the following regularity in the forward spatial variable: ¥t € (0,T],Y(x,y,") € (R?)3,

ly—y'|" Ata
ol

o

(0, z,t,y) —=T(0,z,t,y)| < C (Pa(t,y —x) + palt,y’ —x)). (1.3.11)

Those two results once again highlight the fundamental role of the gap to singularity.

1.4 Discretization schemes for singular SDEs

In this section, we are interested in the discretization of the previously studied SDEs. In order to make a
panorama of the associated literature, we will for a moment consider a more general setting which includes
non-trivial diffusion coefficients. Namely, for a driving process Z with stability index o > 1, we consider
dynamics of the form

dX: =b(t, Xy)dt + o(t, X;- ) dZs, (1.4.1)
and the X[ the following discretization
Xpo = X2+ hb(te, XP2) + o (te, X1 (Zay ey — Zy),s (1.4.2)

provided those equations are well defined. There are mainly two types of error in the literature. The strong
error focuses on the difference between the trajectory of a strong solution and a given discretization. In this
setting, we are interested in obtaining almost sure estimates or L? averaged estimates. We are interested in
quantifying the convergence of

sup |X; — X} or E| sup |X;— X]|P (1.4.3)
te(0,T) te(0,T

for suitable exponents p > 1. In the case of smooth coefficients and non-trivial diffusion coefficient, the
strong error rate in the Brownian setting is 1/2.

On the other hand, the weak error is defined as the difference between the expectation of a functional of
the process and its discretization. In this thesis, we will consider weak errors of the form

S(f,t,l‘, h) = EOJ [f(X[L) - f(Xt)] ) (144)
for f belonging to a suitable class of test functions, and where the meaning of the expectation subscript is
Eo.[] := E[|X} = Xo = z]. In our results, we will focus on the case of a Dirac test function, meaning

that we study directly the difference between the density of the solution to the SDE and the density of the
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discretization, provided they do exist.

Deriving convergence results for the weak error in the chosen Markovian setting involves studying the
PDE
(D5 + b(s,x) -V + L) u(s,z) =0 on [0,T) x RY, u(T,-) = f on RY, (1.4.5)

where L is the generator of the martingale part of the equation (which is £* whenever we work with a trivial
diffusion coefficient). When the coefficients of (1.1.4) and the test function f are smooth (and, importantly,
with a non-trivial diffusion coefficient), the seminal paper of Talay and Tubaro [TT90] gives a convergence
rate of order 1 in h in the Brownian case. Let us also mention the work of Protter and Talay [PT97], which
deals with an SDE with no drift and a non-trivial diffusion coefficient. Assuming that the general Lévy noise
Z that they consider has either finite high order moments or bounded jumps, they prove a convergence rate
of order 1 in h for the standard Euler scheme. Similar results were obtained for the densities in [KMO02]
and [KM10] respectively in the Brownian and pure-jump stable settings. With S-Hoélder coefficients and
again a smooth f in (1.4.4), the work of Mikulevicius and Platen [MP91] proves a convergence in h% in the
Brownian case. This result was extended to densities by Konakov and Mammen in [KM17]. In these works,
when applying It6’s formula, authors use the regularity of the coefficients to treat terms of the form

[b(r, X}) = b(ty, Xp2 )| Vulr, X)), € (tr, tri1)

and
Tr [[o0* (r, X}') — o0 (ts, X{;)]Vzu(r, xM].

Namely, for u solving (1.4.5) with smooth terminal condition f, applying Itd’s formula, the error writes,
considering an additive noise for simplicity, with 7/ := h|s/h],

E(f.t.,h) = Boulf(X]') — F(Xe)] = Eoulu(t, X[") — u(0,2)]

=Eo. [ /O t (b(r, XMy - b(rf,Xi})) - Vu(r, XM dr] .

The authors then use classic Schauder type estimates, see e.g. [Fri64], to control ||Vu| e (and ||VZul|pe
whenever we have multiplicative noise). From the S-Hélder continuity of the drift, the following bound is
then derived

t
E(f,t, 2, h)| < O V| / Eo. [\Xﬁ - Xfm] dr < C||Vul|,=h?. (1.4.6)
0 ks

The above final rate then comes from the magnitude of the increment of the Euler scheme on one time
step in the L?(P) norm. However, one can see that this essentially consists in using strong error analysis
techniques to derive a weak error rate, which does not necessarily seem adequate. We insist that all the
previously quoted results are for an SDE with multiplicative noise which is as well g-Hoélder continuous in
space. In that setting, the results are believed to be sharp. However, for an additive noise as in (1.1.4), one
of the main contribution of this thesis is that the rate can be significantly improved by exploiting the full
parabolic bootstrap associated with the PDE (1.4.5).

In the current setting of singular drift additive SDEs driven by a stable noise, it appears that the most
reasonable scheme to use is a standard Euler scheme as defined in (1.4.2), as opposed to considering higher-
order schemes with a regularized drift, which would lead to additional numerical context-dependent issues.
In the scope of the singular drift weak error, we are led to average the results over a large number M of
simulated trajectories to compute E[f(X[)]. From a simulation viewpoint, we are thus also limited by the
asymptotic behavior in M of this quantity when computing Monte-Carlo estimations. For Brownian-driven
SDEs, a central limit theorem applies, provided finiteness of the second order moment of the solution. When
the noise is an a-stable process, o < 2, the solution does not have a moment of second order. Anyhow, a
stable central limit theorem still applies, although with a lower rate of convergence 1 — 1/« (see [Zol86]).

In the (possibly fractional) Brownian singular setting, one way to derive strong or weak results is to use
the stochastic sewing lemma introduced in [Lé20], which allows to quantify the discretization error along
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rough functionals of the (fractional) Brownian path. The main contribution of the sewing lemma consists in
bounding L™ norms of the form
E |;

that is, the strong error associated with local differences of the path along an irregular function with suitable
integrability properties.

t
/ b(s, X1 — b(s, X7, ) ds
0 s

] | (147

Importantly, as this approach does not rely on the underlying PDE, it also works for SDEs driven by an
additive fractional Brownian motion (i.e. in a non-Markovian setting), as was done by Gerencsér, Dareiotis
and Butkovsky in [BDG21]. Therein, authors derive a strong error rate of almost 1/2 + SH, where H is the
Hurst parameter of the noise. In the specific case of a S-Holder continuous drift and terminal condition f,
in the work [Hol24], the author improves the convergence rate from [MP91] to h%_a, g > 0, still using the
stochastic sewing lemma. We extended this result to the pure-jump setting o € (1,2] and to a more general
class of test functions by working on densities, achieving as well ¢ = 0 in [FM24]. Let us also mention the
work [LL21], which proves a strong (i.e. on trajectories) rate of convergence of order 1/2 (up to a logarithmic
factor) in the Brownian setting for L? — LP drifts under the Krylov-Réckner type condition d/p + 2/q < 1.
However, the use of stochastic sewing techniques still does not allow to take advantage of the parabolic
bootstrap associated with the fundamental solution of (1.4.5) when the test function is rough, e.g. Dirac
masses leading to the weak error on densities.

In our works, we precisely focus on these types of errors of the form £(dy,t,z,h) (where d, is the Dirac
mass at point y). From Itd’s formula, (1.4.4) and (1.4.5), this formally writes

t
£(0,.t,x,h) = Egu { / (b(r, X1 = b(Ups s Xﬁh))) LT 2t y) | xen dr| (1.4.8)
o ; b
To analyze the corresponding error, a new idea was introduced in [BJ22]. The drift was therein assumed to
be merely measurable and bounded so that no rate could be a priori derived from the difference in (1.4.8).
The point then consists in using the regularity of the solution to (1.4.5) instead of that of b. Writing

Y

EO,iE[b(T7 X;L) : VF(T7 Xh t y) - b(T’, Xj—lh) : VF(T7 X-,]—zh 5 ta y)]

= /[F’L(O,x,r, z) — F}L(O,x,Trh, 2)]b(r, z) - VI(r, 2, t,y) dz (1.4.9)

one can exploit some additional (or-bootstrapped) regularity of I'* in its forward time variable. Namely, it
was proved in the Brownian setting of [BJ22] that for a bounded drift, this regularity was of order 1/2. This
technique is robust enough to be adapted to a vast range of singular drifts (Lebesgue, Holder, Besov) and
provides a significant improvement, corresponding to the expected regularity deriving from the parabolic
bootstrap in the forward variable, even in the Holder case when some regularity is available on the drift.
Indeed, it appears that in those three settings, the forward time regularity of I' (or I') is of order v/«,
where v is what we call the “gap to singularity” and changes depending on the context:

Holder y=a—-14+7,

d
Lebesgue vza—l—f—g,
p g
d
Besov 72@—14—26—7—%.
p
Note that in the Holder and Lebesgue cases, the gap to singuarity reads as the sum of a — 1 and the
regularity of the drift (8 in the Holder case and —d/p — /¢ in the Lebesgue case). This is still the case
in the Besov setting (up to an additional 8, which is specific to the distributional setting), highlighting the
continuity in our methods and results. Let us as well mention that for suitable and smooth test functions
for the weak error in the kinetic case, Hao, Lé and Ling are able to derive a rate of order 1/2 through it-

erated Duhamel expansions in [HLL24]. This approach would also extend to the current non-degenerate case.
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Note as well that, if estimates on the time regularity of the density I' are already available, like in the
Besov case where we prove these estimates separately in [Fit23] or in the Holder case where they already
existed, they can be used to compute weak error rates using the aforementioned method. Otherwise, it is
possible to work with the density I' of the discretized equation instead. By passing to the limit, as we do in
the Lebesgue setting, we then obtain well-posedness of the SDE as well as heat kernel estimates on its density.

On the other hand, we also have to account for terms involving b(r, X,.) — b(7", X,.). One way to achieve
the expected convergence rate is to make strong assumptions on the time regularity of b: we would need
b(-, z) to be v/a-Holder to match the rate that is achieved with other error terms (with, again, v depending
on the context). However, it is possible to handle those terms without any assumptions on the drift’s time
regularity by randomizing the time argument in the discretization schemes. This allows for a convenient use
of the Fubini theorem in the error analysis (see (4.2.10) below). This averaging procedure can somehow be
seen as well as a regularization by noise phenomenon.

From the above techniques (forward time regularity of I'* or I' and time randomization), a rate of order

—(dia
% > 0 is derived in [JM24a] in the Brownian setting, for a Lebesgue drift in L? — L? for the difference

of the densities I' — I'*. In [FJM24], we extended this result to the strictly stable setting, with (Z;) being a
symmetric non-degenerate d-dimensional a-stable process with spectral measure equivalent to the Lebesgue
measure on the sphere S¥~! with a smooth density.

To present our result, let us first introduce the scheme that we used. Since we consider a potentially
unbounded drift coefficient, it is natural to introduce a cutoff for the discretization scheme. For a time step
size h, the cutoff we consider is the following:

e If p = q = oo, we simply take, for almost all (,y) € [0,T] x R%, by, (t,y) = b(t,y).

e Otherwise, we set

min {|b<t, y)|, Bh w54
lb(t, )|

for some constant B > 0 which can be chosen freely as long as it does not depend on h nor T.

bh(t7y) = b(tay)1|b(t,y)|>07 (t7y) € [OaT] X Rd7 (1410)

The idea behind this cutoff level is to make sure the contribution of the drift does not dominate over that of
the stable noise on each time step of the scheme. Note that, as such, the cutoffed drift might not be defined
for all starting points = but only for almost all x. This issue disappears after one time step since the driving
noise introduces a density. To bypass this issue, one can set the drift to zero on the first time step without
impacting our results.

We then define a discretization scheme with n time steps over [0, 7], with constant step size h := T'/n.
We recall that, Vk € {1,...,n},ty := kh and Vs > 0,7 := h|£] € (s — h, s], which is the last grid point
before time s. Namely, if s € [tk,tk+1),7'sh = 1.

In order to avoid assumptions on the drift b beyond integrability and measurability, we are led to ran-
domize the evaluations of by, in the time variable. For each k € {0, ...,n — 1}, we will draw a random variable
Uy according to the uniform law on [ty, tx+1], independently of each other and the noise (Z;);>0. We can
then define a step of the Euler scheme as

X[ =X+ hbp (U, X2 ) + (Ziy o, — Zay), (1.4.11)

trt1
and its time interpolation as the solution to

dX{" = by (U 1), XB) dt + dZ,. (1.4.12)

As by, is bounded, the scheme (1.4.12) is well defined and admits a density in positive times. We will denote
by T"(0,z,t,-) this density at time ¢t € (0,7] when starting from x at time 0. Recall that I' denotes the
density of the solution to the SDE.
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Theorem 1.3 (Convergence Rate for the stable-driven Euler-Maruyama scheme with L?— L? drift). Assume
that v :=a —1—d/p —a/q > 0. There exists a constant C < oo s.t. for all h =T /n with n € N*, and all
t€(0,7], (z,y) € (RY)?

|Fh(0a x,t,y) - F(O,l’,t,y)| < Ch%pa(tvy - CL‘)

Comparing this rate to that of [LL21], although 1/« is lost due to the gradient in (1.4.9) (time singularity
induced by the gradient of the density of the noise), one sees that the convergence rate displays explicitly
the “gap to singularity” o — 1 — (d/p + «/q) or Serrin condition in that setting (critical stable parabolic
scaling in Lebesgue spaces).

We later proved a similar result for Holder bounded drifts in [FM24], covering at the same time the
Brownian setting and the case of a symmetric isotropic d-dimensional a-stable driving noise. In this work,
the scheme is defined in the following way: we again use a discretization scheme with n time steps over [0, T,
with constant step size h := T'/n. We define a step of the Euler scheme, starting from X, = x, as

Xh

tr41

= X' +hb(U, X) + (Z1o, — Z1,), k€N, (1.4.13)

where the (Ug)ken are, again, independent random variables, independent as well from the driving noise,

1
s.t. U (I2w) U([tk,trs1]), i.e. Ug is uniform on the time interval [tg,tx+1]. We consider the corresponding

time interpolation defined as the solution to
dX;" = b(U,» /h,Xffh) dt + dZ,. (1.4.14)

Again, as b is bounded, equation (1.4.14) is well-posed and X}* admits a density for ¢+ > 0. We will denote
by I'"(0, z,t,-) this density at time ¢ € (0, 7] when starting from z at time 0. We obtain the following result:

Theorem 1.4 (Convergence Rate for the stable-driven Euler scheme with LC? drift). Denoting by T' and
" the respective densities of the SDE (1.1.4) and its Euler scheme defined in (1.4.13), there exists a constant
C:=C(d,b,a,T) < 00 s.t. for all h =T /n with n € N*, and all t € (0,T], z,y € R%,

IT%(0,2,t,y) — T(0,2,£,y)| < C(1 4t~ )hapa(t,y — ), (1.4.15)

where vy = B+ a —1 > 0 is again the “gap to singularity”.

Let us mention that if one is interested in the weak error for some test function f, E(f,xz,t,h) :=
Eo.[f(X]) — f(X1)], as soon as f is § € [B, 1]-Hélder (not necessarily bounded) then, a rate can be derived
as a consequence of the convergence of |I'(s,x,t,y) — I'"(s,x,t,y)| using a simple cancellation argument:

S(f,x,t,h):/

Rd

(Th — (0,1, 9) f (y) dy = / ("~ )0, £,) (f(4) — f(2)) dy,

Rd

et S hE (e f) [

paltyy —a)le —ylPdy < (1+¢5)tah3.
Rd

Precisely, the smoothness of f allows to absorb the time-singularity from (1.4.15) in small time.

Importantly, when comparing the Holder rate to the Lebesgue one, if we interpret — (% + %) in the latter

as the regularity loss!, there is continuity of the rate of the convergence w.r.t. the regularity of the drift.
Continuity w.r.t. the stability index « also holds when comparing Theorem 1.4 to the results in [Hol24] (and
getting rid of the ¢ in the rate therein), thus extending the former to a more general class of test functions
and noises.

lactually this exponent naturally appears as the negative regularity parameter when embedding the time-space Lebesgue
space in a Besov space with infinite integrability indexes (which can be identified with a usual Holder space when the regularity
index is positive), see e.g. [Sawl8|.
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To introduce the scheme associated with the formal Besov-drift SDE, one first needs to recall that the
precise meaning to be given to the SDE, following [CdRJM22] in the pure-jump setting, inspired by [DD16]
in the Brownian setting, is:

t
Xi=z +/ b(s, Xs, ds) + Z, (1.4.16)
0

where for all (s, z) € [0,7] x R4, h > 0,

s+h s+h
b(s,z,h):= / /b(u, Ypalu— s,z —y)dydu = / P b(u, z) du, (1.4.17)

Pa(v,-) denoting the density of the a-stable driving noise (Z,),>0 at time v and P® the associated semi-
group. For this result, we will assume that (Z;) is a symmetric isotropic d-dimensionnal a-stable process
whose spectral measure is equivalent to that of the Lebesgue measure on the sphere S*~! with smooth density.
The integral in (1.4.16) is intended as a nonlinear Young integral obtained by passing to the limit in a suitable
procedure aimed at reconstructing the drift (see again [CARJIJM22]). The resulting drift in (1.4.16) is, per se, a
Dirichlet process (as it had already been indicated in the literature, see e.g. [ABM20] and references therein).
Importantly, the dynamics in (1.4.16) also naturally provides a corresponding approximation scheme to be
analyzed. Note that, in order to give a precise meaning to the integral appearing in (1.4.16), we need the

following condition:
1+4 l—a+ 24 20
ac€ T—%J B e ———7f———ﬂ , (1.4.18)

which is more stringent than that associated with well-posedness. Interestingly enough, this condition does
not appear elsewhere in the analysis since we only consider the time marginals of the process.

We can now define the related Euler scheme X", starting from X = x, on the time grid as

Xh

tit1

= X[ +b(t;, X[ h) + Zi,,, — Z (1.4.19)

i

We have precisely used the quantity b(ti,Xﬁ7h) defined in (1.4.17) as an approximation of the nonlinear

Young integral ftt_i“ b(s, X", ds), which served to define the limit dynamics (1.4.16) for the SDE, with a
time argument corresponding to the chosen time step.

We extend the dynamics of the scheme in continuous time as follows
h h h yh h
Xt = XTth + b(Tt ,X_[_th,t — Tt ) + Zt — ZTth (1420)
For this scheme, we proved the following result:

Theorem 1.5 (Convergence Rate for the stable-driven Euler scheme with Besov drift). Assume that

1+4 l-a+2+2
ae |12 pe|——"—"0

and let the drift b be an element of L" ([0,T],B (R, R?)) for some r € [1, oc].

Denoting by T' and T the respective densities of the SDE (1.1.4) and its Euler scheme defined in (1.4.20),
for all e > 0,p > —p there exists a constant C := C(d,b,a,T,e,p) < oo s.t. for all h = T/n with n € N*,
and all t € (0,T), (x,y) € (RY)?,

IT"(0,2,t,y) — T(0,2,t, )] < Ch™= pa(t,y — ), (1.4.21)

where v = o+ 2 — % — 2 —1>0 s the “gap to singularity” in the Besov case.
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The layout of this manuscript is as follows: in Chapter 2, we give a summary of the main tools linked
to the stable distribution and related estimates in Lebesgue and Besov spaces, whose properties are also
detailed therein. In Chapter 3, we show heat kernel estimates for stable-driven SDEs with distributional
drift (see Theorem 1.1). In Chapter 4, we show the weak convergence rate of Euler schemes for additive SDEs
with Holder drift of Theorem 1.4. In Chapter 5, we prove well-posedness of an SDE with Lebesgue drift and
stable additive noise, study the associated weak discretization (see Theorem 1.3) and provide heat kernel
estimates for the underlying density. Finally, in Chapter 6, we define an Euler scheme for distributional
SDEs of the type studied in Chapter 3 and provide the associated weak error rate appearing in Theorem 1.5.
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Chapter 2

Technical tools

In this Chapter, we collect some of the main tools which are common to most of the upcoming works.

2.1 Definition and basic properties of Besov spaces

We first recall that denoting by S’(R?) the dual space of the Schwartz class S(RY), for £,m € (0, +o0], ¥ € R,
the Besov space Bzm can be characterized with

B, = {/ € SRY : flleg, = |7 @F(llge + T (F) < o0}

1 m
d m
(/ —vv("_ﬂ/o‘)mﬂaﬁﬁa(v, ) *f||7L”4) for 1 <m < oo,
Tom(f) =9 Vo Y (2.1.1)
sup {v("_ﬂ/o‘)H@Z} Pa (v, ) *fHL"} form = oo,

v€e(0,1]

with x denoting the spatial convolution, n being any non-negative integer (strictly) greater than 9/, the
function ¢ being a C3°-function (infinitely differentiable function with compact support) such that ¢(0) # 0,
and P, (v,-) denoting the density function at time v of the d-dimensional isotropic stable process.

For our analysis we will rely on the following important inequalities:

e Product rule: for all ¥ € R, (¢,m) € [1,+0c0]? and p > max (19, d(3 - 1)+ —19), V(f,g9) € B, « X Bzm,

1S - glley

£, m

< Iflsz. .. Ile - (2.12)

See Theorem 4.37 in [Saw18] for a proof.

e Duality inequality: for all ¥ € R, (¢,m) € [1,+00]?, with m’ and ¢ respective conjugates of m and ¢,
and (f,g) € BZm X Bgfgml,
[ 1aw)as| <151y, Nalle (213)

See Proposition 6.6 in [LR02] for a proof.

e Young inequality: for all ¥ € R, (¢,m) € [1,+00]?, for any 6 € R and for (¢1,¢3) € [1,00]? and
(m1,ms) € (0,00]? such that

1
<—+—

1
1+-=—+—  and )
mi mo

1
(LG m
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there exists C such that, for f € B % and g € ngm,

£1,m1

1f*gllss. < Cllfllgr-s llalls . - (2.1.4)
»m 01 ,mq 2,m2

See Theorem 2.2 in [KS21] for a proof.

Proposition 2.1 (Smooth approximation of Besov functions). Let b € L™ — BZm with ¥ € (=1,0] and
(¢,m) € [1,00]2. There exists a sequence of smooth bounded time-space functions (b")nen such that

Vo < 9, o= 0" g5 — 0 (2.1.5)

with ¥ =1 if r < 00 and for any ¥ < oo otherwise. Moreover, there exists k > 1 :

n ~
sup "o, < wlbller sy, (216)

2.2 Estimates for the stable kernel

Let us denote by £ the generator of the driving noise Z and p, : Ry \{0} x R? — R, its density. In the case
o =2, L is the usual normalized Laplacian %A. The noise is a Brownian Motion and its gaussian marginal
densities are explicit.

When « € (1,2), in whole generality, the generator of a symmetric stable process writes, V¢ € C5°(R% R)
(smooth compactly supported functions),

£20() = pv. [ [ola+2) = ola)] v(d2)
—ov [ [ B p0) - o)l (a0 2 E

(see [Sat99] for the polar decomposition of the stable Lévy measure) where 4 is a symmetric measure on the
unit sphere S?~!. We will here restrict to the case where u is symmetric and

C™'m(dg) < p(dg) < Cm(dg),

i.e. it is equivalent to the Lebesgue measure on the sphere. Indeed, in that setting Watanabe (see [Wat07],
Theorem 1.5) and Kolokoltsov ([Kol00], Propositions 2.1-2.5) showed that if C~1m(d¢) < p(d€) < Cm(dE),
the following estimates hold: there exists a constant C' depending only on «,d, s.t. Yv € R;\{0}, z € R?,

—(d+a) —(d+a)
clya <1 + |Zl|> < pa(v,2) < Co™ @ <1 + ‘ZJ > . (2.2.1)

Va Ve

On the other hand let us mention that the sole non-degeneracy condition 3x > 1: VX € R?
KNS [ A (a9 < R
gd—1

does not allow to derive global heat kernel estimates for the noise density.

Lemma 2.1 (Pointwise estimates for the stable kernel). Let o € (1,2] and ¢ > 1. There exists a constant
C depending only on «, ¢ and the dimension d such that

e Derivatives: ¥5 € {0,1,2},k € Nyx € RLt €Ry,¢; > ¢

C
|00V D o(t, 2)| < pru (t,z). (2.2.2)
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e Moments: Vt € Ry,n € [0, ),

C
/ 2" Pae(t, 2) dz < = (2.2.3)
Rd t(x
e Time Hélder regularity: V9 € (0,1),z € R, 0<t <t,5€{0,1,2},k € N,¢; > ¢,
it —¢|”
|07V F Do o(t, ) — 0) VEpac(t,2)| < T (Paey (@) + Pave, (', 7)) . (2.2.4)
e Spatial Hélder reqularity: Y9 € (0,1], (x,2') € (R1)%,t € Ry,5 € {0,1,2},k € N,¢; > ¢,
Sk Sk ’ |1' — 93/|19 1 ’
|0;V*Pac(t,x) — 0y VFpa.c(t, )| S 3 Al e (P, (£, ) + Dave, (8, 2)) (2.2.5)

Lemma 2.2 (Lebesgue estimates for the stable kernel). Let o € (1,2] and ¢ > 1. There exists a constant C
depending only on «, ¢ and the dimension d such that

e Lebesgue norm of the stable kernel: ¥p > 1,Vt € Ry,
_d
[Pae(t, )| o < Ct™ 55 (2.2.6)

e Lebesgue norm of the convolution of stable kernels: Vp > 1,Y(j, k) € (N)%,V(r,t) € (Ry)?, V(x,y) €
(Rd)z, Ver > ¢,

. 1 _d _d
194 paelt s = 2) 9 pelry = Mg < o [¢75 v | pae(t+ 1,y — @), (2.2.7)
afr

Q.

Lemma 2.3 (Besov estimates for the stable kernel). Let o € (1,2] and ¢ > 1. There exists a constant C
depending only on «, ¢ and the dimension d such that

e Besov norm of the stable kernel: Vp > 1,Vt € Ry,

_d
IPae(t; sy, < Ct™=r. (2.2.8)

e Besov norm of the convolution of stable kernels: ¥ < 0,¥(¢,m) € [1,00]2,V(j, k) € N2,¥(r,t) € (R})?,
Y(z,y) € (RY)?, Yei > ¢,

|~

, t47r)+C 1 1 1
IV Pae(ts - = )V pae(r,y —)gs < C% —t— ||t
o tara tae’ T am’ ta

] Pa,e, (t+ T,y —T).
(2.2.9)

2~

r

Lemma 2.4 (Besov estimates for kernels with controlled Holder modulus). Let o € (1,2] and ¢ > 1. Let
p: Ry x R? = R such that for some k > 0 and some n € (0,1),

_ pm
W e Ry () R ) )] < 1 (AT Guclta) $pact)). @210

Then there exists a constant C depending only on «, ¢ and the dimension d such that for all 0 < ¥ <
n, (6,m) € [1,]%,5 € N,s <t € (Ry)?, (z,9) € (RY)?, ¢1 > ¢, the following hold:

e Convolution with a stable kernel

; t=a ta ta 1 1 _
[p(s, —2)V pa,C(t*Svy*')”B;fm <C Tt =+ o T 7 | Paer (£, y—1).
> (t—s)a Sa (t—S)a Sap (t—s)ap
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e Convolution with space sensitivity of a stable kernel. For (y,y') € R? such that |y — y'| < ta,

peW,n+9)

Hp(sa C x) [vjpa,c(t —S5Y— ) - vjpa,c(t - S,y/ - )] ||B}a9m,

9 n n
tT o i to to 1 1
<cllv-y¥ [1+n+n} | Paar by — ).
(t—s)= so (t—s)a] |sor (t—s)ar

for all

(2.2.12)

o Convolution with time sensitivity of a stable kernel. For all 0 < r < s <t, for all p € (¢,n+ 1),

[p(s, - — @) [V pase(t =5,y =) = Vpact =7y —)]||go

£,m

9 L n
t~a(r—s)a [ ta to ] 1 1 _
SC—— 1+ =+ —= T | Pae, (LY — @)
(t — s5) sa (t—s)a] |s35  (t—s)ar '

(2.2.13)

We will only prove (2.2.11) as the next two estimates follow from the same line, using as well the Holder

sensitivity in time and space of the stable kernel (see (2.2.4) and (2.2.5)).

Proof. Denote q;ty() = p(s," — )VIpa.c(t — s,y — ), of which we will control the BZm norm using the

thermic characterization
laz s = 6Dz, lloe + Tenlas)
Thermic part

Let us recall the definition of the thermic part and split it in two parts:

' dv —9\m s m ! dv
Tolat) = [ LD opato ) et Ol + [l
0 v t v

= ’Ut) C|$’,u Tlﬂ(tl qum

Lm

7£ m S m
7 10pav, ) % a2t ()17

For the upper part on (¢,1), using a L' — L* convolution inequality, we get

v

1
dv (1_2)m j
T st ™ S / S0y pa (v, I 1p(s, - — )V palt — 5,y — ) [T

Next, taking 2 = 2’/2 in (2.2.10) and letting |z| — 400, we first obtain that p(t,z) goes to zero,
turn, taking the limit in (2.2.10) as |2/| — 400, we have, for a fixed x € R?, for all t > 0,

p(t, @) < Kpac(t, ).

In particular, using the LP estimate (2.2.7), we have

i _i
p(s:- = @)V pae(t = s,y =)L S (8= 8)" % [Pase(s, - = 2)pae(t — s,y =)L
dm 7M:|

< Paer (ty — 2)(t — 8) = {s o 4+ (t—s) o

This yields

o

[s7% + (L= 5)7 ] </1v”&” 1dv>;
t

9

[sia% +(t— s)faip} o

T[] S Paltyy — 2)(t —5)”

e

5 ﬁa(tﬂy - w)(t - S)_
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For the lower part, let us write

¢
dz

Havpa(va ) * qif;”ée = / ’/avpa(va z— w)q;:ty(w> dw
¢
dz, (2.2.16)

= [| [ oot =l - o)) aw
using a cancellation argument for the last equality. Next, let us distinguish whether this difference is in
diagonal or off-diagonal regime.
e Diagonal case: |z —w| < s=. Let us write
a5y (w) — 435, (2) = p(s,w — 2) [Vpa(t — s,y — w) = Vpa(t — s,y — 2)]
= [p(s,2 = x) = p(s,w — ) [Vpa(t — s,y — 2).

Using the spatial regularity of p,, (2.2.5) and the Holder regularity of p, (2.2.10), we get, for some
n € (0,1] and for some constant ¢ > 1,

s s = e =
a5, (w) — a3 (2)] S Pae(s,w — ) (t — s) x |(t R [Pa,c(t — 8,y — W) + Pac(t — 8,y — 2)]
_ _ |z —w|" i
+ [Poc(s, 2 —x) + Pac(s,w — )] —F— = 8) @ Pt —s,y —2) (2.2.17)
Sao

In the previous, terms involving a cross-dependence in w and z are slightly more difficult to handle.
In order to avoid them, we use the current diagonal regime in which, for any ¢; > ¢, pac(s,w —z) S
Daey (8,2 —x) and Do (S, 2 — ) S Pae, (8, w0 — ) to write

|q:§:’,ty(w) - q;?f;,(z)\ S Paver (8, W = T)Pae, (t — 5,y — w)(t — 5)_é |:

[z —wl” 2= wl"}

(t—s)a sa
_ _ il |lz=w|" z —wl|"
Il i FRCERE

e Off-diagonal case: |z —w| > s&. Using a triangular inequality, the regularity of pa, (7?), (2.2.14)
and the fact that Z=2" > 1, we trivially have the following:

S Y EE
|qz,y(w) qx,y(z)‘wpa,cl(‘s?w T)Pare ( s,y —w)( s) @ o2
ilz—wl|"
+]§a(s,z—x)ﬁaycl(t—s,y—z)(t—s)*als%. (2.2.19)

Gathering (2.2.18) and (2.2.19), we have

a7 (W) — 8575 (2)] S Pave, (8,1 = 2)Pace, (t = s,y —w)(t — )=

(t—s)a sa
_ _ _i[lz—w|"  Jz—w|"
+pa7c1(S,Z—$)pa,cl(t—8,y—Z)(t—S) « (t_s)ﬂ + Sﬂ (2220)
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Plugging this in (2.2.16) and using (2.2.2) (i.e. the fact that 8,pa(v,) < v " pa.c, (v,-)), we get

)4

e, > a5 = [ \ [ etz — iz wyau| @z
S / </U_1poz,61 (v,2 — w)ﬁa,q (s,w— x)pa,q (t—s,y—w)
- . ¢
; _apn _apln
X (t—s)"@ 12 ,,w| + |2 w\n dw) dz
Sw (t—s)= |
+ / (/vlﬁa(v, Z — W)Pa,c, (8,2 — T)Paye, (T — 8,y — 2)

Tz — wl? —wlm ¢
X (t—s) & 12 nw| + 12 w‘y, dw | dz.
Sa (t—s)a |

From this point, we derive a smoothing effect in v by using the moments estimate (2.2.3). It is immediate
for the second term, whereas for the first one, due to the order of integration, we need to use an L' — L*
convolution inequality. This yields, using (2.2.7),

0vpa (v, ) * q3 yHL@

e é
S ((“+ s +(t—s)_3}> [ [ B0 =) G = 53 = 0) 4 s =20/~ )

t—s)a

Zdw

+ / (ﬁa,q (8, Z = l‘) (ﬁa,cl (t —5Y—- Z) +pa701 (t - 57yl - Z)))é dz
¢
vl z n n d d
. <(t —J;)gx {5*3 + (- S)a}> [S_(Tp +(t - 5)_(7prﬁa,m (ty — x)Z. (2.2.21)

Going back to the definition of 74 -(0.6) , we thus obtain, recalling that n > 19,

1
1 1 1 1 v L
L e Y | e et LNCVE] § LSRR
S (t—S)d Sap (t—s)ap 0
i1 1 1 1 )
St—s) = |—/+ 3 T = | Paes (8, Y )t
sa (t—s)a | |s» (t—s)or
This finally yields
9 n n
t— o to to 1 1 B
Tl § = [ S ] s - ) (22.22)
SN RN | P

Non-thermic part

Noticing that
[F (@) *azylle SNF @) llagyllce.

we see that (2.2.22) is also a valid bound for the non-thermic part of ||q;’fy||st , which concludes the proof

of (2.2.11).
O
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Part 11

Heat kernel estimates
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Chapter 3

Heat kernel estimates for

stable-driven SDEs with
distributional drift

This chapter is based on the article [Fit23], published in the Journal of Potential Analysis. Therein, we
consider the formal SDE
dX, = b(t, X;)dt + dZ,, Xy =z €RY, (E)

where b € L™([0,T7], Bg’q(Rd7 RY)) is a time-inhomogeneous Besov drift and Z; is a symmetric d-dimensional
a-stable process, a € (1,2), whose spectral measure is absolutely continuous w.r.t. the Lebesgue measure
on the sphere. Above, L" and Bg)q respectively denote Lebesgue and Besov spaces. We show that, when
8 > %, the martingale solution associated with the formal generator of (E) admits a density which
enjoys two-sided heat kernel bounds as well as gradient estimates w.r.t. the backward variable. Our proof
relies on a suitable mollification of the singular drift aimed at using a Duhamel-type expansion. We then
use a normalization method combined with Besov space properties (thermic characterization, duality and

product rules) to derive estimates.

3.1 Introduction
For a fixed T' > 0, we study the formal SDE

dX, = b(t, X,)dt + dZ;, Xo=w=x,  Vte[0,T), (3.1.1)

where b € L7([0,T], B2 (R?,R%)) = {f . [0,T] x R : Ht o 7 s

< oo} and Z; is a symmet-
Lr([0,77)

ric non-degenerate d-dimensional a-stable process, whose spectral measure is absolutely continuous w.r.t.
the Lebesgue measure on S¢~1.

We assume the following weak-wellposedness condition holds:
a d

For this section, as we work with a < 2, we will drop the subscript ¢ and denote p, the density of the
noise. The set of parameters on which the notations < and < can depend is © := {a,d, 5,7,p, ¢, ||bl[ ;. _gs }-
p,q

We call (3.1.1) “formal” equation because b can be a distribution when 8 < 0, in which case (3.1.1) is
ill-defined as such. As there are multiple ways to define a solution to (3.1.1), each with its conditions on the
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parameters (3, p, q,r and interpretation, we will go into details in Subsection 3.1.2.

The main idea behind the study of singular drift diffusions is that adding a noise regularizes ordinary
differential equations, and helps restore existence and uniqueness in some appropriate sense. For example,
in the case of a B-Hoélder (5 € (0, 1)) drift, the noise gives an “impulse” which permits to exit singular spots
(see e.g. [DF14] in the Brownian case). Knowing that, one would expect that, the bigger the intensity of the
noise, the stronger the regularizing effect, which we will see on the upcoming thresholds (see also [CARM22b)]
and [MM21]). We will investigate cases in which the noise is strong enough to restore uniqueness even for
distributional drifts.

Let us first review the probabilistic results and associated techniques used in the case 8 > 0,a € (0,2)
to derive weak or strong well-posedness, when the drift is a function. In order to establish well-posedness,
a natural condition appeared in the seminal article by Tanaka et al. [TTW74] : 4 « > 1. The authors
consider therein the scalar case, and proved that strong uniqueness holds for bounded S-Hélder drifts under
this condition, while giving a counter example when 8 4+ a < 1. The critical multidimensional case (i.e.
a = 1) in a time-inhomogeneous setting was investigated in [Kom84|, in which weak uniqueness is derived
for a continuous drift with, again, the driving noise having absolutely continuous spectral measure w.r.t. the
Lebesgue measure on the sphere. Having in mind that weak (or strong) well-posedness is often investigated
through the corresponding parabolic PDE, recalling that the associated expected parabolic gain is £ + «,
the condition 5 4+ « > 1 coincides with the regularity required to define the gradient of the solution. The
aforementioned regularity gain is often obtained through Schauder-type estimates. We can mention [MP14]
(bounded drift, stable-like generators), [CARMP20a] (unbounded drift, general stable generators including
e.g. the cylindrical one). These estimates naturally lead to weak uniqueness in the multidimensional setting
for (3.1.1) through the martingale problem, which precisely requires a control of the gradient of the solution
of the PDE.

Going towards strong solutions requires additional constraints on the parameters. It was e.g. shown by
Priola in [Pril12] that pathwise uniqueness holds in the multidimensional case for general non-degenerate sta-
ble generators with « > 1 for time-homogeneous bounded S-Holder drifts under the assumption 8 > 1—«/2.
Under the same assumption, [CZZ21] proved strong existence and uniqueness for any a € (0,2), as well
as weak uniqueness whenever 5 + a > 1 for time-inhomogeneous drift with non-trivial diffusion coefficient.
Those results are usually obtained using the Zvonkin transform (see [Zvo74], [Ver80]), which requires addi-
tional regularity on the underlying PDE, which again follow from Schauder-type estimates.

Once weak or strong well-posedness is established, a natural question concerns the behavior of the time
marginal laws of the SDE. Such behavior is usually investigated through heat kernel estimates, which, in
the stable setting, somehow forces to consider the stable-like case, i.e., the driving noise Z in (3.1.1) has
a Lévy measure with smooth density w.r.t. to the isotropic a-stable measure (see Subsection 3.1.1 for de-
tailed assumptions on the noise). In this setting, we can refer to the seminal work by Kolokoltsov [Kol00],
who addressed the subcritical case @ > 1 for smooth bounded drifts. This work was extended in various
directions, although mostly for non-negative 5 (see [Kull9], [CHZ20], [KK18]). In [MZ22], authors cover the
whole range a € (0,2) with Holder unbounded drift. In those works, the authors establish that the time
marginal laws of the process have a density which is “equivalent” (i.e. bounded from above and below) to
the density of the noise, and that the spatial gradients exhibit the same time singularities and decay rates
(see Theorem 3.1 below in the current setting).

Going towards negative 8 brings additional difficulties. The first challenge is to specify what is intended
with “solution” to (3.1.1). To this end, a key tool is the following PDE:

(0 +b-D+ LY u(t,z) = f(t,z) on [0,T) x RY, u(T,-) = g on R? (3.1.2)

for suitable sources f and final conditions g, and where £ is the generator of the noise Z. When studying
(3.1.2), defining the gradient of the solution still requires & + 8 > 1, which now imposes @ > 1. This is
anyhow not sufficient: we also need to be able to define b- Du as a distribution. Roughly, since b has spatial
regularity 3, this imposes 8+ (8 4+ a — 1) > 0 <= 3 > 152 by usual paraproduct rules (note that this is
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the exact assumption we need if p = r = +00). This threshold already appears in [BC01] in the diffusive
setting (« = 2), where strong well-posedness is derived in the scalar case through Dirichlet forms techniques
for specifically structured time-homogeneous drifts. The same threshold is exhibited in [FIR17], where the
authors introduce the notion of wvirtual solutions to give a meaning to (3.1.1). Those solutions are defined
through a Zvonkin-type transform formula, and, while not requiring any specific structure, do not yield a
precise dynamics for the SDE. We can also refer to [2Z17] and [ABM20], who specified the meaning to be
given to (3.1.1), in the sense that the drift therein is defined through smooth approximating sequences of the
singular b along the solution. Importantly, the limit drift is a Dirichlet process, highlighting once again that
(3.1.1) is a formal equation. A thorough description of this Dirichlet process was done in the Brownian scalar
case in [DD16] and extended in [CC18] for multidimensional SDEs. Assuming some additional structure on
the drift, they manage to go beyond the above threshold and reach g > —% (still with p = r = 00). This
work was extended in the multidimensional strictly stable case, still assuming a specific structure for the
drift in [KP22], in which weak well-posedness is proved for g > % Without any structure on the drift, a
similar and consistent description of the dynamics for the weak solutions of (3.1.1) in the multidimensional
setting is obtained in [CdRM22a] for 8 > 1—% The case of a non-trivial diffusion coefficient was investigated
in [LZ22] with the same thresholds. Note that, in the present work, we chose to work with a trivial diffusion
coefficient as the most delicate issue is the handling of the singular drift (see Remark 15 in [CdRM22a] for
the handling of a non trivial diffusion coefficient in a Duhamel expansion). We do believe our approach
would be robust enough to treat this case. Let us mention that [ABM20] also obtained strong uniqueness
with this threshold in the scalar case. We emphasize that most of the aforementioned results heavily rely on
the Schauder-type regularization properties of the PDE (3.1.2).

In the scope of singular drift heat kernels estimates, the sole result we were able to gather is [PvZ22].
Using the Littlewood-Paley characterization of Besov spaces, Perkowski and van Zuijlen managed to derive
explicit two-sided heat kernel estimates as well as gradient estimates w.r.t. the backward variable for the
solution in the Brownian, time-inhomogeneous setting with time-continuous drift in Bfoyl, 8> f%.

The goal of the current paper is to establish heat kernel and gradient estimates for stable driven SDEs
with drifts in L" — Bg) o, and symmetric non-degenerate d-dimensional a-stable noise with absolutely contin-
l-—a+dto

uous Lévy measure for 8 € 5

,0). As compared to the previous results, this represents a slight

modification of the threshold, due to integrability concerns. For p = r = 400, we work under the usual

8> 1_70‘ assumption.

This paper is organized as follows. We first discuss the properties of the noise in Subsection 3.1.1. We
then define the notions of martingale solutions for (3.1.1) and mild solutions for (3.1.2) along with required
assumptions in Subsection 3.1.2. We state our main results in Subsection and detail the dynamics of (3.1.1)
in 3.2.1. Section 3.3 is dedicated to obtaining estimates on a mollified equation with smooth drift and Section
3.4 links those estimates back to the main SDE (3.1.1) through compactness arguments.

3.1.1 Driving noise and related density properties

Let us denote by L the generator of the driving noise Z. In the case a = 2, L% is the usual Laplacian d%A.
When « € (1,2), in whole generality, the generator of a symmetric stable process writes, V¢ € C5° (R, R)
(smooth compactly supported functions),

£26() = pv. [ [9(o+2) o) v(d:)
—pv [ [ 10+ p) — o) u(a) L

(see [Sat99] for the polar decomposition of the spectral measure) where p is a non-degenerate measure on
the unit sphere S%~1, i.e. y is symmetric and 3k > 1: VA € RY,

I [N < A
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W

where stands for the usual scalar product in R%.

This general setting will not allow us to derive heat kernel estimates, because it does not lead to global
estimates of the noise density. In [Wat07], Watanabe investigates the behavior of the density of an a-stable
process in terms of properties fulfilled by the support of its spectral measure. From this work, we know that
whenever the measure p is not equivalent to the Lebesgue measure on the unit sphere, accurate estimates on
the density of the stable process are delicate to obtain. However, Watanabe (see [Wat07], Theorem 1.5) and
Kolokoltsov ([Kol00], Propositions 2.1-2.5) showed that if C~1m(d¢) < p(d€) < Cm(d€) (where m is the
uniform density on S?~!), the following estimates hold: there exists a constant C' depending only on «,d,
s.t. Yu € R%,z € R,

o

1
I2| d+a°
Q+Aj)

U@

c1 1
d d+a Spa(uaz) S
U (1 i %) U

u o

Qla

As our approach heavily relies on these global bounds, we have to assume that p is equivalent to the
Lebesgue measure on the sphere and that a € (1,2).

3.1.2 Defining solutions to the distributional drift SDE
We will use the following notations :

e The set of all parameters will be denoted © := {a,d, 8,7, p, q, ||b]

Lr—B,‘j,q}
e o < b if there exists a constant C', which depends only on parameters from ©, such that a < Cb.

e o = bif there exists a constant C, which depends only on parameters from O, such that C~'b < a < Cb.

* denotes the spatial convolution.

C%1([0,T] x R%,R) is the space of continuous in time and differentiable in space functions, Cy* ([0, T] x
R4, R) = C%1([0, T)x R, R)NL>([0, T]xR%,R) and CY ([0, T] xR, R) is the space of bounded continuous

space-time functions.

e For f € S'(R?) (the dual of the Schwartz class S(R?)) and ¢ € C§°(R?) such that ¢(0) # 0, we set
#(D)f = F (¢ x F(f)) = F1(¢) * f, where F denotes the Fourier transform.

e For p € [1,+0o0], we always denote by p’ € [1,4+00] s.t. % + i =1 its conjugate.

As we work with a distributional drift, we need to specify what we call a “solution” to (3.1.1). There are two
ways to define a solution to (3.1.1) which we will investigate. We will first introduce the usual martingale
solutions. Those are defined through the mild solutions of the underlying PDE and are the ones that require
the least regularity. Importantly, they are sufficient to state Theorem ??. In Subsection 3.2.1, we will then
give details about weak solutions, as defined in [CdRM22a] in order to give a concrete dynamics for the
solution.

Although our results are proved for martingale solutions (in which case they can be understood as a
formal discussion on the density of the process), they are mainly useful in the scope of weak solutions, as
those introduce a dynamics and could be a starting point to establish numerical schemes for those equations.

Let us now fix p,q,r > 1. For the definition of a martingale solution to (3.1.1), we need the following
conditions on «, 8, which we call a good relation (GR) :

1+4 l-a+2+2
ac |2 pe|——F—"0 (GR)

T

and we will denote d
§—B+a—2-2% (3.1.3)
p T
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which corresponds to the parabolic bootstrap induced by the drift. As explained in [CdRM22a], this choice
of 6 implies that

(t,z) — /t P& LG - v](s, ) ds

is well defined and belongs to C;*' ([0, T]xR%, R) as soon as G € L"([0, T, BS ,(RY.R?)) and v € L>=([0,T], Bi 1 ¢ (RY,R))
for some 0 < e < 1.

Remark 3.1. Note that, here, we are only trying to give a meaning to the distributional product G - v.
Roughly speaking, for p =1 = +00, by Bony’s paraproduct rule, the total reqularity of G-v is B+6 —1—¢,
which we need to be positive. This is only possible if o« and B satisfy (GR), hence the definition of the latter.
The additional % + & corresponds to the lack of global boundedness of the drift b.

T

This allows us to give the definition of mild solution to a PDE:

Definition 3.1. M:ld solution of the underlying PDE.
Let a € (1,2), f : Ry x R* = R and g : R* = R. For a given T > 0, we say that u : [0,T] x R? = R is a
mald solution of the formal Cauchy problem C(b, L%, f, g,T)

(O 4+b-D+ LY u(t,x) = f(t,z) on [0,T) x R%, u(T,-) = g on RY,

if it belongs to C®*([0,T] x R%,R) with Du € CJ([0,T],BiS 1 ¢) for any 0 < e < 1 and 0 =+ o — % -9,
and if it satisfies

T
Y(t,z) € [0,T] x RY, u(t,z) = P¥_,[g](x) —/t P&LIf — b Dul(s,x)ds. (3.1.4)

In [CdRM22a], Chaudru de Raynal and Menozzi proved existence and uniqueness of such solutions under
(GR), and also give information on their time regularity. Let us now introduce the notion of martingale
problem (introduced in [SV97] and then generalized in [EK86]).

Definition 3.2. Solution of the martingale problem

Let Q = D([0,T],R%) (the Skorokhod space of cadlag functions). We say that a probability measure P on
Q equipped with its canonical filtration is a solution of the martingale problem associated with (b, L%, x) for
x € RY if, denoting by (7¢)¢ejo,r) the associated canonical process,

(i) P(xg =z) =1,
(ii) Vf € C([0,T],S(R%R)), g € C*(R%,R) with Dg € B L (R%,RY),
t
(u(t,xt) - / f(s,zs)ds — u(O,x))
0 0<t<T
is a martingale under P where u is the mild solution of the Cauchy problem C(b, L%, f,g,T).

Remark 3.2. The choice of the class of f (here, C([0,T],S(R%,R))) is not critical. We only need it to be
rich enough to characterize marginal laws, i.e. a class of functions ® is sufficient if whenever two probability
measures (11 and po satisfy

/¢du1 =/¢du2, Vo € @,
then p, = ps.

Again, in [CdRM22a], it is proved that there exists a unique solution to the martingale problem in
the sense of the previous definition. We will call “martingale solution to (3.1.1)” the associated canonical
process.
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3.2 Main results

Theorem 3.1. Fiz the parameters T > 0 and © = {a, d, 3,7,p, q, ||bHLuB£ q}. Take b € L([0,T],B} ,(RY))
and assume (WP) holds. Consider the solution P to the martingale problem associated with (b, L, x) starting
at time s and denote (xt)ie[s,1) the associated canonical process. For all t € (s,T], x; admits a density
['(s,x,t,-) such that there exists C := C(T, 0, p) > 1 such that for all y € R%,

Cpal(t — s,y —x) <T(s,2,t,9) < Opa(t — s,y — ), (3.2.1)
9.5, 2,1, )| < (t_i)ipa@ Csy-w), (3.22)

V(y,y') eRY, [T(s,a,t,y) —T(s,z,t,y)| < M (pa(t — s,y — ) + palt — s,y —2)),
(3.2.3)

V(y,y') €RY, |V.D(s,2,t,y) — VuI(s,2,t,y)| < M (Pt — 8,2 —y) +palt —s,2 1Y),
o (3.2.4)

for any p € (=B, B +~/2), where v :=2+a—1—- % — % > 0 is the “gap to singularity”.
Moreover, for any e € (0,—5) and p € (=8,—8 +¢/2), fort' >t such that (t' —t) < t/2,
t—t) s
< 0(737575
Bl  (t—s) @

Remark 3.3 (Logarithmic gradient estimates.). Note that, in the current strictly stable regime (« € (1,2))
and given the previous theorem, one can easily compute global logarithmic gradient estimates for I':

VelogID(s,z,t,y)| = < .
| el o)l L(s,z,t,y) (t—s)&

The sketch of the proof of Theorem 3.1 is as follows:

Hr(w,t,-) —I'(s,z,t,") (3.2.5)

palt — s, — )

e Take a smooth ™ € Cp° to approach b and consider the mollified equation
dX;" =0"(t, X)) dt + dZ;. (3.2.6)
e Compute estimates on the density of (X;*) which are uniform in m, using a Duhamel expansion and
a normalization method first introduced by [MPZ21] (Brownian setting with unbounded Holder drift)

and then exploited in [JM21] (Brownian setting with L? — LP drift) and [MZ22] (unbounded drift,
stable driven with multiplicative isotropic noise).

e Conclude with a compactness argument.

3.2.1 Weak solutions

Although mild solutions allow for a formal discussion on the density of the underlying process in the SDE
(3.1.1), they do not exhibit anything about its dynamics nor about its SDE interpretation. In order to build
the dynamics of the equation, [CdRM22a] introduced a weak formulation of the problem. To such end, they
used the notion of L* stochastic Young integral, in the sense of the definition first introduced by [CG16] and
[DD16].

In order to define the upcoming notion of solution, we need slightly stronger assumptions on «, 8. We
say that «, § satisfy a good relation for the dynamics (GRD) if the following holds:

1+4 l—a+2¢ 4 2
ac |12 pe|——t—0). (GRD)

This stronger condition is required in order for the following definition to make sense:
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Definition 3.3. We call weak solution of the formal SDE (8.1.1) a pair (Y, Z) of adapted processes on a
filtered space (0, F,{Fr}i>0,P) such that Z is an {Fr}i>o0 a-stable process and (Y, Z) satisfies

t t
Y,==x —|—/ B(s,Ys, ds) + Zy, P-a.s., E / B(s,Ys, ds)| < oo (3.2.7)
0 0

for any t € [0,T], where

h
B:(v,z,h) —~ / dr/ Palh — 1,z —y)b(v+r,y)dy (3.2.8)
0 Rd

and where the integral in (3.2.7) is understood as an L' stochastic Young integral and imposes the stronger
(GRD) condition.

With this explicit definition, it becomes fathomable to develop numerical schemes for the SDE. In par-
ticular, as Theorem 3.1 is proved under (GR), it is valid under the stronger (GRD) conditions and thus
holds for the density of weak solutions.

3.3 Estimates on the mollified SDE

In this section, we only consider the mollified SDE
dXi" =0"(t, XM dt + dZ;, (3.3.1)

where (b™)men € Cp° is an approximating sequence of the drift, as given by Proposition 2.1. As thus, this
SDE is a classical one, and we have strong well-posedness and uniqueness. In this setting, it is known that
the density of (X]")i>s exists for ¢ > s (see e.g. [Kol00] or [Lea85] for a more general additive noise). We
will prove the following theorem:

Theorem 3.2. Fiz the parameters T > 0 and © = {«,d, 8,7, p,q, ||b| L,,,_ng}. Assume (WP) holds. For

any m, consider the solution P™ to the martingale problem associated with (b™, LY, x) starting at time s and
denote (x}")ie(s,) the associated canonical process. For allt € (s,T], xi" admits a density '™ (s, x,t,-) such
that there exists C := C(T, 0, p) > 1 such that for all (x,y) € R?,

Cilﬁa(t —5Y - {E) < Fm(sa x,t,y) < Cpa(t —5Y— 1')7 (332)
C
|V1Fm(s7x,t,y)| < ﬁpa(t_svy_x)v (333)
(t—s)=
Cly —v'|”
Y(y,y') € RY, T (s, z,t,y) — T™(s,z,t,9)| < M (Pa(t = 8,y — ) +pa(t — 5,9y —2)),
AT
(3.3.4)
/ d m m ! C|y7y/|p !
Y(y,y') € R, VoI (s,2,t,y) — VoI (s,2,t, )] < W(pa(t*s,x*y)+pa(t*5,x*y))7
_ )=
(3.3.5)
for any p € (=B, —B+/2), where v :=28+a —1—- % — % > 0 is the “gap to singularity”.
Moreover, for any e € (0,—08) and p € (—=8,—8 +¢/2), fort' >t such that (' —t) < /2,
™ t.)—1Tm . t—t 1E
Palt — s,  — ) BL. .. (t—s)"=

We insist that this statement is uniform in m as C does not depend on m. We will see in the proof that
this is made possible by (2.1.6). We could in fact already obtain those bounds from [Kol00], but they would
not be uniform in m.
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Proof. We will prove Theorem 3.2 for T' € (0,1). To extend this proof to any T > 0, it suffices to use the
Chapman-Kolmogorov property of pq,.

As equation (3.3.1) can be understood in a classical way, we can perform a Duhamel expansion on the
density of the solution (see e.g. [MZ22]). Namely, ¥0 < s < t < T, V(x,y) € R?,

t
(s, z,t,y) = pa(t — s,y —x) + / /Fm(s, x,u, 2)b™ (u, 2)V.opa(t — u,y — 2) dz du. (3.3.7)

Let us now denote, for fixed (s, ) € [0,1] x R,

Fm(s7 1’? t? y)

m(t,y) = .
9o (t,y) P ET—

The aforementioned normalization method then consists in writing the following:

1 t
9iL(ty) S 1+ —)/

P /g&x(u, 2)b"™ (U, 2)pa (s, T, u, 2)Vpa(t — u,y — z) dz| du.

From this point, our goal is to use a Gronwall-Volterra lemma on this expansion. This will give us bounds
on g¢",, which we need to be uniform in m. In our case, we do not know much about ™, and the most we

might be able to rely on is that [[b™ —b[| . s — 0 (with 7 and 3 < B as defined in Propostion 2.1). On
—Pp.q

the flipside, we know a lot about the stable kernel p, and its derivatives. In particular, it is very smooth,

and we should be able to control its Besov norm rather well. Hence we will use the duality inequality (2.1.3)

and the product rule (2.1.2) with any p > max {ﬁ,d (zlz — 1) — B} = —f to derive:
+

1 t
oty 14— 7 (u, )™ (u, - — 8, —2)Vpa(t —u,y — )|[g-s d
gs,w( y)w +pa(t—8,y—$) s ||gs,w(u ) (U )HBg’qua(u S .13) poc( Uy )HBp/[jq/ u
1 t
< - - m . m . g . — _ . _
N1+pa(t_8,y_x) 5 9<% (us ) llse. MO™ (s )lgs IPalu — 8, = ) Vpalt —u,y )”Bp/i/ du,

Using (2.2.9), we get

t
() S 1+ [ g e 187 g,

R | (R R RAURP R FHCESs

We now need to retrieve ||g", (u,-)||gz, . on the Lh.s. to use a Gronwall-Volterra lemma.

9% (&, lse. o = g%t )l + Sl(lg)l]v’gllﬁvpa( 2 ) * g8t )| Lo
ve

= 1957 (8 Mz + TL o0l957 (L )]

The non-thermic part can already be estimated from (3.3.8). For the thermic part, let us mention that

since the space BS, ., is continuously embedded in the classical Holder space C?, the thermic part is in fact

a Holder modulus, which we control in the following way:
For (y,y') € (RY)? such that |y — /| > (t — s)=, we trivially have

|g;n:c(tvy) - gg?a:(tay )| S |(iy| Hgs :v HLoo .
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For (y,9') € (R4)? such that |y —y/| < (t — s)&, using (2.2.5), we have

'™ (s,z,t,y (s, x,t,y
|gg?x(ta y) _g;nx(tvy/” = ( : ) - ( : 7/ )
Palt =8,y —2) pa(t—sy — )
S, Fm(.S?l”t’ y) B Fm(57$7tay/) + Fm(s,x,t,y’) 1 o 1 -
pa(t—S,y—w) pa(t_87y_x) plx(t_s>y —l‘)
5 Fm(s,x7t,y)—Fm(s,aj,t,y’) +Fm(57$,t,y/) pa(t_say//_x)_pa(t_say_x)
Pt — s,y — ) Pa(t =5,y — 2)pa(t — s,y — )
< Fm<57:1;7t7y) - Fm(S,ZL‘,t,y/) + |y y | Hg H
~ Palt — s,y — ) (t— o L

It thus remains to control |I'"(s,z,t,y) — "™ (s, z,t,y")|. Using (2.2.5), we have
|Fm(sa Z‘,t,y) - Fm(S,.’L‘, t7yl)| < |pa(t —S5Y— .’II) _pa(t - Svyl - J?)‘
t
b [P b 0,2 (Tpalt 0 = 2) = Tpat — uyf — 2)] dedu

y—y'l
%j;¥0m< 55— )+ palt = 5,5/ — )

/ lg:a (e, llge, o 0™ (us )l IPale = 8, = @) [Vpalt —uy =) = Vpalt —u,y’ = lg-p du,

Using now (2.2.12) and the fact that |y — y'| < (¢t — s)é, we have

|Fm($,£,t7y) _Fm(saxvtvyl” |y y ‘p
||gsw ||B’;ooch ( )”BB
Palt — 5,y — ) Pa

% [(t—ur% # =] [ E o) ] ),

(t—u) =

We thus obtain

TL oolgs (t, )] S (t—ls)Z(l + /: g2, (s g, o N6™ (2t
X m [(t - U)77L2 + (u— s)’?dp} [(t —u)" % 4 (u— s)—g} EZ:Z))Z du).

This indicates that the thermic part of |g{",(u,-)|gz. . is not homogeneous to its non-thermic part. We
therefore introduce a normalized version of ||g¢", (u, -)|[gs, . on which to perform a Gronwall-Volterra lemma,
accounting for the right time singularity. Denote

o (8) =195 (b Ml zoe + (E = )5 TL o[98 (8 )] (3.3.9)

With the previous lemma, we can write

5 (1) 1+/n%m et 157 (g (3:.10)
(t —s)=" . t—s)a
ST (=)™ 4 (=) | [t =)+ (= s)7 L du

Notice that, because (u —s) < (t —s) <1,

£ £ £ ~
1w =)= g (u, e o = 1w =)= g% (u, ) Lo + (w0 = 8)=TL 987 (u, )] < g% (w).

38



Because of this, (3.3.10) yields

0 1+ [ EE Gy,
X (Zt_si)z [(t - u)chdP + (u— s)fa%} [(t — u)_g + (u— s)_ﬂ E;:Z Z du
SR U P (3.3.11)
+2p) , 1

+(u— s)_%’} du)

a

Egm(w) (- 5)" o o W
: </ (gu,—s);p(t_u) () [(t_“) o« + (u—s) ar’} [(t—u) 5

In the previous, the most singular term is the one involving powers of ¢t — u. Those are integrable if and only
if

>0—=1--—-——- —— — >0« -+ >0<:>p<—5+l,
« r o ap o« « «Q 2

d
1_T,<1+2f’+p> 1 1 d 2 v, 2(p—B)

which we assumed to hold. We see here that the threshold p < /2 — /3 is due to integrability of the previous
singularity, while the constraint p > —f comes from the above use of a duality inequality.

Using a Gronwall-Volterra lemma, we get
G () S 0 S 1.

using as well the bound [[0™],, gs < [|b]|;._gs from Proposition 2.1 and we thus obtain the uniform
p,q P,q
boundedness of g, (t).

From the definition of gi",(t,-) we obtain the upper bound of (3.3.2) and (3.3.4). To obtain the lower
bound of (3.3.2), it suffices to write

qufs ,Z— )

gsx(t y)>C — —————— 2" (u, 2)pa(u — 8,2 — ) Vpa(t —u,y — 2)dzdu

(3.3.12)

(t—sy—x — 8,2 — 1)

and to follow the same steps.

For items (3.3.3) and (3.3.5), it suffices to notice that the whole proof remains the same if we add a
derivative w.r.t. the initial value x, and using (2.2.2) to account for the gradient at the end. Namely, we
would have the following Duhamel-type expansion:

t
VI (s,2,t,y) = Vepa(t — s,y — x) + / /Vme(s, x,u, 2)b™ (U, 2)V,pao(t — u,y — 2) dz du.

In turn, this means we have to study

1 VI (s,2,t,y)

G?x(t? y) (t - 8) pa( —s,y— $) :

Computations then remain the same as in this section, up to a factor ((Z S))l = that will disappear through

time integration when using the Gronwall-Volterra lemma. To be precise, it exactly adds —r'/a to the
exponent of (u — s) in (3.3.11). Importantly, the condition allowing the integral to converge remains the
same. Denoting G, (t) := |G, (¢, )|z + (t — s)gTo‘;,OO[G;’k (t,-)], this means we obtain the uniform in m
boundedness of é;”gg(t), hence (3.3.3) and (3.3.5).
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Let us turn to the proof of (3.3.6). For ¢’ > ¢ such that ¢ — ¢ < ¢/2, using the duality inequality (2.1.3)
and the product rule (2.1.2), we have

|Fm(s,x,t,y) - Fm(svx7t/7y)| < |pa(t —5Y— {E) _pa(t/ —5Y— SC)|

/Fm(s,m,u, 2)0™(u, 2) [Vaopa(t —u,y — 2) — Vaopa(t' —u,y — 2)] dz| du

/Fm(sgr,u, 2™ (u, 2)Vopa (t' — u,y — 2) dz| du
Spalt = s,y =) = pa(t' — 5,y — o)

+ (6™ (u, ')HBg’q Hggfz(u, ')HB&)’oo [pa(u — 8, — ) [Vopalt —u,y — ) — Vopa(t' —u,y — )] HB;’Eq’ du

t/
I, okl = 5.0 = )t = ey = g du
t ’ s

Using the Holder modulus of the stable kernel, (2.2.4), for the first term and the Besov estimates (2.2.13)
and (2.2.11) for the second and third terms respectively

(t'—t)'=

= (pa(t — s,y — ) +pa(t' — s,y — 1))
(t—s)™=

€

+ 1w, )llgs (ig}g){; u (?_au)(iw—f)u [(u —s)Ta 4+ (t— u)ff} {(u —8) w4 (t— u)_a%}

a

X (pa(t — s,y —x) + pa(t’ — s,y — x)) du
S

- 9yt () (' —s) % e e 4 e
+/t b (“"”Bia(z_s)z(ztfi)é (a5 4 (¢ — 2] [l s) 3 4 (¢ — )]

X po(t' — s,y — ) du.

Recalling that we just proved the (uniform in m) boundedness of g, (u), we get, for any € € (0, —3) designed
to be small,

y—¢e

|Fm(37x’t7y) - Fm(sv‘r’tlay” 5 ((tlt))yi(poc(t -8y - CE) +p0¢(t/ -5y - 1:)) <1

t—s) «a

/

@

’

(t— s)% ' (t/ — S)% _e ’ .y _d , _d ' .
s ([ (i s et o)) w) )

The first integral converges if and only if

7,,/

d ! d
1—<1+’y—5+p—|—>>0 and 1—r<2p+)>0, (3.3.13)
« p «Q p

where

d
,y:a_l_g_7+267
r p

40



in which case

/: <( (t/S)ﬁ:p“l‘E [0 =8 &+ (- F [(us)—:w(tu)-fp])T |

u—s)a(t—u)
< (1 - g
e—(B+p)
@ .

AN

(' —s)

The second integral converges if and only if

! d / d
1T(1+p+)>0 and lr@p+>>0, (3.3.14)
« p « D
in which case
1
s . . T\
[ (G fum o et fum s -]
t — @ — @
S —s) (W — ) e
<(t’—s)j(t’— y=2(B+p)

Notice that choosing p € (—f8,—p8 + ¢/2), conditions (3.3.13) and (3.3.14) are fullfilled. Bounding non-
negative powers of t — s, t' —t and t’ — s by powers of T that then get absorbed in the underlying inequality
constant, we get

€

(1)

(t—s)'a

|Fm(83 x,t,y) - Fm(sama t/7y)| 5 (pa(t -5y - Z‘) +p0é(t/ —S5Y— 1’))

y== e—(B+e t— = o . o
X <1+(t—s)a(t/—s)(§+) (s)“(t/_s)ﬂ:(t/_t)Qier)>
(t -t
t—t)= e
< ((t ))75 (pa(t — s,y —x) + palt' — s,y — x)) (H—(t’—t) o p)
_ a5
t—t)
5((t))ws(Pa(t—S,y—$)+pa(t’—s,y—m)).
AT

Recalling that we are in the regime ¢’ — t < ¢/2, we obtain

P U t)
~ y—e °

e (3.3.15)

H ™ (s,z,t,-) — I'"™(s,z,t,-)
Pa(t — s, — )

L™ (s,2,t, ) =T (s,2,t',°)

e — . Again, it can be estimated from the
Pa(t—s, —x)

B%,00

Let us now turn to the thermic part of ‘
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p-Holder modulus of the same function. Let us write, for (y,y') € (R%)2 such that |y — /| < (t — s)=,
T (s, 2,8, y) =T (s, 2,8, y) =T (s, 2,8, 4') + T (s, 2,1, ¢/)]

< /0 (Vpa(t = 5,4 + My =) —2) = Vpalt' — 5,4 + XNy —¥') —2)) (¥ —y)dX

t
1
+/s ly—y/|<(t—u)a

— VP (t' —u,y + ANy —y') — 2)](y —y)dAdz

t
+/S v

— Vpa(t' —u,y —2) + Vpo (' —u,y — 2)]dz

/Fm(s,x,u, 2)b™ (u, 2) /0 (V2pa(t —u, v + Ay — ') — 2)

du

/Fm(s7 2, 2)b™ (U, 2) [Vpa(t — u,y — 2) — Vpa(t — u,y’ — 2)

du

t/
+ / /Fm(s, T, u, 2)b" (U, 2) [Vopa(t' —u,y — 2) — Vopa(t' —u,y' — 2)] dz| du
t
= Tl —|—T2 +T3—|—T4
Using the Holder modulus of the stable kernel, (2.2.4), we have
) tl —t ’Y;E P ’Y;E
AW 2 sy s WD " ) sy —a). (33.16)

e (s (t—s)

Similarly, for 75, using the Besov estimate on the convolution of stable kernels (2.2.13) and using the current
regime to raise |y —¢/|/(t — u)'/® to the power p, we have

t 1
<[ 1 ;
2 N/s |y,y/|§(t,u)a/o

/Fm(sa x, U, Z)bm<u7 Z) (V2pa(t —u, y/ + )\(y - y/) - Z)
— V2t —u,y + Ay —y') — 2)) (¥ —y)dzd\| du
(s, z,u,-)

! 1
S N T |
~ |y Yy ‘A |y*y’|§(t7u)c1x pa(u — 5, — .73) B .. ” ( ) )HBg‘q o

X Hpa(u — S8, — Jf) (Vzpoc(t — U, yl + )\(y - y/) - ) - v2pa(t/ —u, y/ + /\(y - y/) - )) ”B;/ﬁq/ dMdu

1
Sly—y’\"/ palt — 5,4 + My — ') — ) dA

/Ilb ez, ; (t S) (t;t) [<u—s)‘5+(t—u)—ﬂ (=) + (t =)~ ] du

Sly—y'1Ppalt — s,y*x)( —8)

X /5 <(u—3)p(t1_u)v—s+1+p [(u-s)fﬁ —|—(t—u)7§] [(u—s)_o% _|_(t_u)—jp}> du .

o

This integral converges if and only if

7! d ! d
1——(v—e+1+20+-]>0 and 1-= 2p+ >0,
a D a
which imposes p € (—8, —f8 + ¢/2). This yields

e—2(p+B) _p
(3

TSy —yPpalt —s,y—a)(t—s) = (' —t)s (t—s) =
Sly—yPpat —s,y —z)(t' —t) = (t—s)

(3.3.17)



For T3, let us write, using (??) twice along with the fact that |y — y'|°/(t — u)?/* > 1,

t| ) m
Y y| r (Sa$7u7'> m
EDS (t u)ﬁ D (ufs ~72E) ||b (ua')HBIffq ||pa(u—s,-—x) [vPa(t_%y_z) _poc(t/ _u>y_z)}|||3*,5,
s - o « ) Bgc,oo ’ pr',q
a5 ) [t =l =) =gt~ 0.y’ = 9]y 5 ) du
t| ol m o 2—€ o B+p
y—y° Gin(u) (' —t)= (' —s) = e _e _a _a
< 5 : > — U—38) o« 4+ (t—u) @ u—3s) er +(t—u) or
S A e erse=ae (LS RGO N SRRSO

X (Palt =5,y — ) + pa(t’ — s,y — ) + pa(t — 5,y — ) + pa(t’ — 5,9 — x)).

This integral is exactly the same which appeared in the previous computation, and we get

S

Ty Sly =y 1Ppalt — s,y — 2)(t' =)= (t—s)«. (3.3.18)

For Ty, using (2.2.9), we have

t/
T45/
¢

t/
S [ 10w llag, (alt = 55— )+ palt = 5.5/ ~ )
t ,

A fom o =] o= ]

™ (s,z,u,-)

b'”'L .
palu—s, —x) 6™ (u, )HBqu

P
Boo,oo

X |pa(u— 8, — ) [Vipa(t' —u,y — 2) — Vaopa(t' —u,y’ — 2)] ||B—/a / du
P ,q

This integral converges if and only if
/

d / d
1—T<1+2p+>>0 and 1—T<2p+>>0,
p « p

(0%

+p +p

which holds true for p € (—f,—f +¢/2). Recalling that ¢’ —¢ < t/2 so that (' —s)« < (t—s) = , we get

tl
Ty S / ”b(ua ')Hng (pa(t/ —S5Y— :U) +pa(t/ - 373// - .%'))
t

X LZ_?;;S: : Z))lz_p [(u — 5)7£ +(t— u)ff] [(u — 5)_0% +(t— u)_a%} du

B+p _r —2(B+p)
Sy =y Ppalt — s,y —2)(t' =)t —s) S =)
< /\p AV 1=c e=2(B+p)
Sy =yt — s,y —2)(t —s)=(t' —t)= (' =) =
B y—e
Sly=ypalt —s,y—a)(t—s)=(t' —t) = . (3.3.19)
Gathering (3.3.16), (3.3.17), (3.3.18) and (3.3.19), we obtain
rm ) —1m - ) w
Tog - (S,QJ,t, ) (S,$,t s ) 5 (t tzisia . (3320)
’ Pa(t —s,- — ) (t—s)"=

Along with (3.3.15), we obtain (3.3.6) for any € € (0, —3) and for any p € (=8, —f +£/2).

3.4 From the smooth approximation to the actual SDE

By Proposition 2.1, let (b™)mnmen be a sequence of smooth bounded functions s.t.

||b - b HL’”’—Bg,q mjo O? Vﬁ < 5)
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with 7 = r if r < 0o and for any 7 < co otherwise and let x > 1 :
m
ilg)\l Hb Hjjfsg,q < ’%”bHLffBQQ-
The following was already discussed in [CdRM22a], but we reproduce it here for the sake of completeness.

Tightness of the sequence of probability measures (P™),,cn

Notice that when considering the mollified equation (3.3.1), for every m, the martingale problem associated
with (0™, L% x) is well posed (see [CdRM22a]). Let us denote by P™ its solution and by (z}");>¢ the

associated canonical process. Let u,, = (ul ,...,ul ) where, Vi, u!, is a mild solution of the classical Cauchy
problem C(b™, L%, —b™,0,T) (i.e. with terminal condition u! (T,-) = 0 and source term —b7, the ‘!

component of ™), so that

(um(t, zm) + /Ot b™ (s, 2™) ds — u((),:z:))

0<t<T

is a P™-martingale, which we can express, through Itd’s formula, as
My s(tupm,x™) == / / [um (1, 20" + ) — U, (7, 2] )] N(dr, dz), Vs > v, (3.4.1)
v JRN{0}

where N is the compensated Poisson measure. It6’s formula now writes

2l —ayt = My s(Um, ™) + Zs — Zy — [um(8,20") — um (v, 27")] - (3.4.2)

S

We will use an Aldous criterion to prove the tightness of (P™),,,cn, which means we need a control of the
form E[| X" — X'P] < (s — v)¢ for some p > 0 and some ¢ > 0 (see Proposition 34.9 from [Basl1]). Since
Vi, u?, is the mild solution of the Cauchy problem C(b™, £, —b%,,0,T), we can write

1t (0, 2) = (5,27 < 1t (0, 22) = (0,27 + [t (0, 277) = (5,277, (3.4.3)

and use Proposition 9 from [CdRM22a] to get the required space and time controls. Namely, for the spatial
part, 3Cr s.t. Cp — 0 as T — 0 and |up, (v, ]") — um (v, 27")| < Cplzlr — 27*|. For the time part, we use the
Holder continuity in time of u,,. For M, s(um,x™), the control follows from the Burkholder-Davis-Gundy
inequality and, finally, for Zs — Z,,, it follows from (2.2.3) and the stationarity of Z.

Limit probability measure

We will now prove that any limit probability measure P is a martingale solution to (??) in the sense of
Definition 3.2. Let f € C([0,T],S(R%R)), g € C*(R%,R) with Dg € BY L (R%,R?). Let up, € C*'([0,T] xR?)
be the classical solution of the mollified Cauchy problem C(b™, L%, f,g,T), with Du,, € C2([0,T], Bg;éo_e)
for some 0 < ¢ <« 1. By Theorem 3.2, we have a uniform control of the modulus of continuity of w,,
and Du,,. By the Arzela-Ascoli Theorem, we can extract a subsequence (Um,, Dum, )k S.t. (Um,)r and
(D, )k converge uniformly on every compact subsets of [0, 7] x R? to some functions u € C%*(]0, 7] x R%)
and Du € C([0,T],B; 1), Ve € (0,¢) respectively (Du being the space-derivative of u). Because of this
uniform convergence, (3.1.4) holds for the limit, i.e.

T
Y(t,z) € [0,T] x R4 u(t,z) = P¥_,[g](x) —/t PLf — b Dul(s,x)ds, (3.4.4)

hence u is a mild solution to C(b, L%, f,9,T). Together with a control of the moments of X™ (which we
already obtained in the last paragraph), we deduce that

(u(t,xt) + /Ot f(s,zs)ds — u(O,a:o)>

0<t<T

is a P-martingale.
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Uniqueness of the limit probability measure

Let P and P be two solution of the martingale problem associated with (b, L%, ) for some zg € R?. Thus,

vf € C([0,T), S(R%,R)), taking g = 0,
: T
:EP s d )
VO £(s,) 5]

which is sufficient to prove uniqueness in law (see e.g. [EK86]).

T
U(O,’Io) - EP [/0 f(sa ‘rs) ds

Since X" = z*, I'™ is the density of the canonical process under P™. From the Arzela-Ascoli theorem
which can be applied from the estimates derived in Theorem 3.2, we can extract a subsequence (I'"*, VT ),
s.t. (T'"*)y and (V™) converge uniformly on every compact subset to some functions I" and V,I" (V,T'
being indeed the gradient of T'). By the uniqueness results from [CdRM22a], T is the time marginal of P,
and enjoys the estimates of Theorem 3.1.

O
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Part 111

Discretization schemes for singular
drift SDEs
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Chapter 4

Weak Error on the densities for the
Euler scheme of stable additive SDEs
with Holder drift

This chapter is based on the article [FM24], written with Stéphane Menozzi! and published in Stochastic
Processes and their Applications. Therein, we are interested in the Euler-Maruyama dicretization of the
SDE

dX, = b(t,X,)dt + dZ,,  Xo=x €R?,
where Z; is a symmetric isotropic d-dimensional a-stable process, o € (1, 2] and the drift b € L™ ([O, T],CP(RY, Rd))7
B € (0,1), is bounded and Holder regular in space. Using an Euler scheme with a randomization of the time
variable, we show that, denoting v := a + 8 — 1, the weak error on densities related to this discretization
converges at the rate v/a.

4.1 Introduction

For a fixed finite time horizon T > 0, we are interested in the Euler-Maruyama dicretization of the SDE
dX; =b(t, Xy)dt + dZ;, Xo =z, Yt € [0, T, (4.1.1)

where Z; is a symmetric isotropic d-dimensional a-stable process, o € (1,2] and b € L™ ([0, T],CP(RY, Rd))7
B € (0,1), i.e. it is bounded and Hélder regular in space. In this setting, weak well-posedness holds for
(4.1.1) since the natural condition

y=F4+a—-1>0 <= f+a>1, (4.1.2)

is always satisfied. The condition (4.1.2) actually ensures weak well-posedness for the SDE (4.1.1), even in
the super-critical case « € (0, 1], provided the drift is time homogeneous or bounded in time (see [TTW74],
[MP14], [CZZ21], see also [Pril2], [CZZ21] for strong well-posedness established under the more stringent
condition 4+ a/2 > 1).

The goal of this paper is to prove a convergence rate for the weak error on densities associated with an
appropriate Euler scheme for (4.1.1).

4.1.1 Definition of the scheme

We will use a discretization scheme with n time steps over [0, 7], with constant step size h := T/n. For the
rest of this paper, we denote, Vk € {0,...,n}, ¢ := kh and Vs > 0,71 := hl3] € (s — h,s], which is the last

ILaboratoire de Mathématiques et Modélisation d’Evry (LaMME), UMR CNRS 8071, Université d’Evry Val d’Essonne-Paris
Saclay, 23 Boulevard de France, 91037 Evry, stephane dot menozzi at univ-evry dot fr
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grid point before time s. Namely, if s € [ty, tiy1), 7" = t.

We define a step of the Euler scheme, starting from X, = z, as

Xp o= XP A hb(Us, X[) + (Ziyy — Z1,), k€N, (4.1.3)
where the (Ug)ren are independent random variables, independent as well from the driving noise, s.t.

U U([tk,tk+1]), i-e. Uy is uniform on the time interval [tg,tr+1]. We consider the corresponding
time interpolation defined as the solution to

(law)

AX{ = 0(Upp jp, XJ) At + dZ,. (4.1.4)

As b is bounded, equation (4.1.4) is well-posed and X' admits a density for ¢ > 0. We can refer to this end
to [FJM24] for related estimates. We will denote by I'*(0,,,-) this density at time ¢ € (0, T] when starting
from z at time 0.

4.1.2 Euler scheme - state of the art

For all 0 < s <t < T, it is known that the unique weak solution to (4.1.1), starting in  at time s admits a
density, which we will denote I'(s, x,t,-). It has as well been established in [MZ22] that in the current setting
I enjoys two-sided stable heat kernel estimates for a € (1,2) whereas this property can already be derived
from Friedman [Fri64] (under some additional smoothness in time for b) or [MPZ21] in the Brownian case.
In this paper, we are interested in the weak error on densities, which is defined as the quantity

ID(s,2,t,y) — T (s, 2, t,)|. (4.1.5)

In particular we want to bound it, up to a multiplicative constant, by the product of an appropriate power
of the time step h and a density which provides an upper bound for the one of the driving noise. This
would then in particular allow to integrate against possibly irregular test functions having the corresponding
convergence rate.

The general definition of the weak error is

(c:(f,t,l‘, h) = EO,J; [f(Xth) - f(Xt)] ) (416)

for f belonging to a suitable class of test functions, and where the meaning of the expectation subscript for
the rest of the paper is Eg ,[-] := E[-| X} = X = ).

Deriving convergence results for the weak error involves studying the PDE
(D5 +b(s,2) -V + LYY u(s,z) =0on [0,T) x RY, u(T,-) = f on R, (4.1.7)

where £¢ is the generator of the noise. When the coefficients of (4.1.1) and the test function f are smooth,
the seminal paper of Talay and Tubaro ([TT90]) gives a convergence rate of order 1 in h in the Brownian
case. Similar results were obtained for the densities in [KM02] and [KM10] respectively in the Brownian and
pure-jump settings. With S-Holder coefficients and again a smooth f in (4.1.6), the work of Mikulevicius
and Platen ([MP91]) proves a convergence in h% in the Brownian case. This result was extended to densities
in [KM17]. In these works, when applying Itd’s formula, authors use the regularity of the drift to treat
terms of the form b(r, X") — b(U,n,, X,) but do not exploit the full parabolic bootstrap associated with
the PDE (4.1.7). Note that this approacfl intrinsically leads to a strong convergence order and that all the
previously quoted results are for an SDE with multiplicative noise which is as well g-Hoélder continuous in
space. In that setting, we believe that the rate is sharp. However, for an additive noise as in (4.1.1) (or a
multiplicative noise with smooth diffusion coefficient), the rate can be significantly improved.

In the Brownian setting, one way to proceed is to use the stochastic sewing lemma introduced in [Lé&20],

which allows to quantify the discretization error along rough functionals of the Brownian path. In the spe-
cific case of a S-Holder continuous drift and terminal condition f, in the work [Hol24], the author improves
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the convergence rate from [MP91] to hE , € >0. We aim to extend this result to the pure-jump setting
a € (1,2] and to a more general class of test functions by working on densities achieving as well ¢ = 0.
Let us also mention the work [LL21], which proves a strong (i.e. on trajectories) rate of convergence of
order 1/2 (up to a logarithmic factor) in the Brownian setting for L} — L? drifts under the Krylov-Rockner
type condition d/p + 2/q < 1. However, the use of stochastic sewing techniques still does not allow to take
full advantage of the parabolic bootstrap associated with the fundamental solution of (4.1.7) when the test
function is rough, e.g. Dirac masses leading to the weak error on densities.

In the current work, we precisely focus on these types of errors of the form £(dy,t,x,h) (where §, is the
Dirac mass at point y). From It&’s formula, (4.1.6) and (4.1.7), this formally writes

£(b,.t.2,h) =Eqy Uot (b(r,XT) b(Uyn ny X ))) V.T(r, 2, t,y) | xn dr | . (4.1.8)

To analyze the corresponding error, a new idea was introduced in [BJ22]. The drift was therein assumed to
be merely measurable and bounded so that no rate could be a priori derived from the difference in (4.1.8).
The point then consists in using the regularity of the solution to (4.1.7) instead of that of b. Namely, writing

Eo.[b(r, X) - VT (r, XP t,y) — b(r, X1 - VT (r, X5 8, y)]

= /[Fh(O,x,r, 2) = TM0, 2,7, 2)|b(r, 2) - VT (r, 2, t,9) dz (4.1.9)

one can exploit some additional (or-bootstrapped regularity) of I'" in its forward time variable. Namely,
it was proved in the Brownian setting of [BJ22] that for a bounded drift, this regularity was of order 1/2,
which actually formally corresponds to the exponent /o (with + defined in (4.1.2)) when taking 8 = 0. This
result still holds in the current setting with 8 € (0, 1) and provides a significant improvement, corresponding
to the expected regularity deriving from the parabolic bootstrap in the forward variable, when compared to
the g-Holder regularity of b in space. To handle the error from (4.1.8) one would need as well to investigate
a space sensitivity of the gradient of the density I' in its backward variable. This could as well be done by
exploiting the parabolic bootstrap.

On the other hand, we also have to account for terms involving b(r, X;;) — b(Urn/p, Xr). One way to
achieve the expected convergence rate is to make strong assumptions on the time regularity of b: we would
need b(-, z) to be v/a-Hélder. Importantly, without making any assumption on the time regularity of the
drift, those terms can be handled thanks to the randomization of the time argument introduced in (4.1.3),
which allows for a convenient use of the Fubini theorem in the error analysis (see (4.2.10) below). This
averaging procedure can somehow be seen as well as a regularization by noise phenomenon.

Let us mention that for the proofs below we will not rely on the previous expansion of the error, which
we presented here in order to give an idea of the main crucial steps and tools for the error analysis, but on
the Duhamel representations of the densities expanded using the density of the driving noise as proxy (see
Proposition 4.3 below).

From the above techniques (forward time regularity of I'" and time randomization), a rate of order

w > 0 is derived in [JM24a] and [FJM24], respectively in the Brownian and pure-jump settings,

for a Lebebgue drift in LY — L2 for the difference of the densities (4.1.5). Comparing this rate to that of [LL21],
although 1/« is lost due to the gradient in (4.1.9) (time singularity induced by the gradient of the density of
the noise), one sees that the convergence rate displays explicitly the “gap to singularity” a—1— (d/p+ a/q)
or Serrin condition in that setting (critical stable parabolic scaling in Lebesgue spaces).

In Theorem 4.1, we derive a weak error rate in ha, where v := 4+ a — 1 is the corresponding “gap

to singularity” in the Holder case. Importantly, if we interpret — (% + %) as the regularity in the former
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works?, there is continuity of the rate of the convergence w.r.t. the regularity of the drift. Continuity
w.r.t. the stability index « also holds when comparing Theorem 4.1 to the results in [Hol24] (and getting
rid of the ¢ in the rate therein), thus extending the former to a more general class of test functions and noises.

The restriction to the sub-critical case o € (1,2), for which the intensity of the driving noise somehow
dominates the drift in small time, is here required mainly for approximation purposes. Again, in the [CZZ21]
paper, weak well-posedness is obtained under (4.1.2) without the restriction « € (1,2). On the other hand,
as we are interested in heat kernel estimates, it is also well known, see e.g. Kulik et al. [KK18], [Kull9],
[MZ22], that in the super-critical regime « € (0,1) for which the Holder regularity needs to be large enough
to compensate the lower regularizing effects of the noise, considerations on some flows related to the drift in
(4.1.1) are needed. These aspects become a rather difficult issue when considering associated discretization
schemes (see Konakov et al. [KM23] in connection with stochastic algorithms of Robbins Monro type).

The paper is organized as follows: in Section 4.1.3 we specify some properties of the driving noise in
(4.1.1). Section 4.1.4 is then dedicated to the statement of the main results (we give some controls on the
densities of the SDE and the Euler scheme in Proposition 4.1 and the convergence rate for the weak error in
Theorem 4.1). Section 4.2 is devoted to the proof of the main theorem. The proof is achieved via exploiting
some additional quantitative properties of the density of the driving noise, the Duhamel representation of
the densities (see Proposition 4.3) and the regularity results of Proposition 4.1 which are in turn proved in
Section 4.3.

4.1.3 Driving noise and related density properties

Let us denote by £* the generator of the driving noise Z and p,, : R;\{0} x R? — R its density. In the case
a =2, L is the usual normalized Laplacian %A. The noise is a Brownian Motion and its gaussian marginal
densities are explicit.

When « € (1,2), in whole generality, the generator of a symmetric stable process writes, V¢ € C5°(R% R)
(smooth compactly supported functions),

£79() =pv. [ [ola+2) = ola)] o(d2)
o [ [ B p0) - sl (a0 5L

(see [Sat99] for the polar decomposition of the stable Lévy measure) where 4 is a symmetric measure on the
unit sphere S?~1. We will here restrict to the case where ; = m the Lebesgue measure on the sphere but it is
very likely that the analysis below can be extended to the case where u is symmetric and 3k > 1: VA € RY,

C™'m(d¢) < p(dg) < Cm(df),

i.e. it is equivalent to the Lebesgue measure on the sphere. Indeed, in that setting Watanabe (see [Wat07],
Theorem 1.5) and Kolokoltsov ([Kol00], Propositions 2.1-2.5) showed that if C~tm(d¢) < u(d¢) < Cm(dE),
the following estimates hold: there exists a constant C' depending only on «,d, s.t. Yv € Ry \{0}, z € R?,

—(d+a) —(d+a)
clva <1 + |Zl|> < pa(v,2) < Cv <1 + Zl|> . (4.1.10)

Va Va

On the other hand let us mention that the sole non-degeneracy condition

WINE [N < R

2actually this exponent naturally appears as the negative regularity parameter when embedding the time-space Lebesgue
space in a Besov space with infinite integrability indexes (which can be identified with a usual Holder space when the regularity
index is positive), see e.g. [Saw18].
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does not allow to derive global heat kernel estimates for the noise density. In [Wat07], Watanabe investigates
the behavior of the density of an a-stable process in terms of properties fulfilled by the support of its spectral
measure u. From this work, we know that whenever the measure p is not equivalent to the Lebesgue measure
m on the unit sphere, accurate estimates on the density of the stable process are delicate to obtain.

From now on, and in particular in Section 4.3 which is dedicated to the proof of technical lemmas, we
will be using the prozy notation

_d 2] ~ @) .
Cov~ @ <1+—1) if a € (1,2)

va

d 2 9 v > O,Z e Rd, (4111)
(2mcv) ™2 exp (—c‘l%) ,c>1 ifa=2,

Pa(v,2) =

where, for a € (1,2), C, is chosen so that Vo > 0, [ pa(v,y) dy = 1, and ¢ := ¢(d) is a global given constant
for a = 2. We will explicitly rely on the global bounds provided by p,. Observe importantly that, keeping
in mind that (4.1.10), in the pure jump case, there exists C' > 1 s.t. for all (v,z) € R;\{0} x R%,

Cilﬁa(v,z) < pa(v,2) < Cpu(v, 2), (4.1.12)

and the results could be stated with either the proxy density p,, or the density p, of the noise itself. However,
the equivalence in (4.1.12) fails in the Gaussian case, due to the exponential tails. This is why the results will
be stated in terms of p,. Observe as well that from the definition in (4.1.11) we readily have the following
important properties:

- (Approximate) convolution property: there exists a constant ¢ > 1 s.t. for all u,v € R, \{0}, x,y € R%,

[ otz = 2)pa(vy = 2)dz < cpalu v,y - o) (4.1.13)
Rd

In particular, for & = 2 the convolution is exact and ¢ = 1.

- Time-scale for the spatial moments: for all 0 < § < a, v € (1,2) and for all 6 > 0 if & = 2, there exists Cy s
s.t.

s
o

/ 12’ Pa(v, 2) dz < Ca5v (4.1.14)
Rd

Further properties related to the density of the driving noise, notably concerning its time-space deriva-
tives, are stated in Lemma 4.2 below.

4.1.4 Main results

We first give some important estimates concerning the densities of the SDE (4.1.1) and its associated Euler
scheme (4.1.4).

Proposition 4.1 (Density estimates for the diffusion and its Euler scheme). The unique weak solution to
Equation (4.1.1) starting from x at time s € [0,T] admits for allt € (s,T] a density T'(s,z,t,-). Furthermore
there exists a constant C := C(d,b,a,T) s.t. for all y € R the following upper-bound holds:

D(s,z,t,y) < Cpa(t — s,y — x), (4.1.15)

with po defined in (4.1.11), as well as the following control for the Hélder regularity in the forward time
variable:

t e
VO<s<t<t' <T, |t—t|<(t—s), T(s,z,t,y) —T(s,z,t',y)| < C((t'vﬁa(tl —s,y—x). (4.1.16)

Also, for e € (0,7 A1], there exists C. := C.(d,b,a,T) s.t. forall 0 < s < t < T, z,y,w € R? s.t.
ly —w| < (t—s)7,

— ’YE
P ) =L )] < €. (250} Tplt—sw =), 5= A =2 (@11)
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Similarly, for any positive integer n and h = %, the corresponding Euler scheme X" defined in (4.1.4)

starting from x € R at time ty := kh, k € [0,n — 1] admits for t € (tx,T] a transition density D" (t;,,z,t,-),
for which, for all y € R%:

Also, for all 0 < t; <ty <T, x,y,w € RY, |y —w| < (t ftj)i,

ly — w|+hi
(te — 1)
Existence of the densities and the related Aronson type bounds (4.1.15) and (4.1.18) readily follow from
[JM24a] and [FJM24]. The sensitivity controls (4.1.16), (4.1.17) and (4.1.19) are proven in Section 4.3.

Remark 4.1 (About additional controls on the density of the SDE and the Euler scheme). Let us point
out that the densities T',T'" also satisfy additional controls. Namely, some gradient controls in the backward

spatial variable could be established. Anyhow, for the error analysis, these controls are not needed. They
could be derived following the approach of [FIM24].

Ye
|Fh(tj7xatk7y)_Fh(tjaxatkaw” SCE ( ) ﬁa(tk—tjvw_w)' (4119)

The main result of the paper is then the following theorem.

Theorem 4.1 (Convergence Rate for the stable-driven Euler scheme with L°C? drift). Denoting by T' and
" the respective densities of the SDE (4.1.1) and its Euler scheme defined in (4.1.3), there exists a constant
C:=C(d,b,a,T) < 00 s.t. for all h =T /n with n € N*, and all t € (0,T], z,y € R%,

D0, ,,9) = T(0,2,1,9)| < C(1+47%)hpa(t,y — ), (4.1.20)
where v = 4+« — 1> 0 is again the “gap to singularity” defined in (4.1.2).

Remark 4.2 (Weak error involving an additional test function). Let us mention that if one is interested in
the weak error for some test function f, E(f,x,t,h) = Eq .[f(X]) — f(X}1)], as soon as f is § € [B, 1]-Hélder
(not necessarily bounded) then, a rate can be derived as a consequence of the convergence of |T'(s,xz,t,y) —
Th(s,z,t,y)| using a simple cancellation argument:

E(feat) = [ (O =)0t f0)dy = [ (T =D)0.,9)((5) = S (@) o
E(f, 28, 1)] gcﬁ(ut—%)/ Paltyy— D)o —ylPdy < GO+t 2)ttnd,
Rd (4.1.11)

Precisely, the smoothness of f allows to absorb the time-singularity from (4.1.20) in small time.

4.2 Proof of the main results

We begin this section with recalling some quantitative properties of the density of the driving noise as well
as the Duhamel representations of the densities which will be the starting point to analyze the corresponding
error.

4.2.1 Representation and Estimates on the densities of the diffusion and its
Euler scheme

As in the papers [JM24a], [FIJM24] in which the weak error was investigated for Lebesgue drifts, we will
expand the densities of the SDE and its Euler scheme along the underlying heat equation. In particular,
since the drift we consider is here bounded, existence of the density and related Aronson type upper-bounds
readily follow from these works (see e.g. Propositions 2.1. and 2.3 in [JM24a] for the Brownian case and
Theorem 1 and Proposition 1 in [FJM24] for the pure jump one).

In the current Holder setting in space, in order to explicitly take advantage of the additional spatial

regularity we will rely on appropriate cancellation techniques. We start recalling some useful controls for
the underlying heat kernel p,, the density of the driving noise Z.
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Controls on the density of the stable noise

Proposition 4.2 (Density estimates for the heat equation). There exists C > 1,¢ > 1 s.t. for all 0 < s <
t<T, (z,w) € (RY?2, and any muti-index ¢ € N, |¢| € {1,2}, 0 € {0,1},

_ —d—a—|(]
VS palt — 5,0 — )] < Ot — )~ O+ (1 " (|tw—)|) L ae(1,2),

|00V pa(t —s,w—x)| < Ot — s)f(ewﬂ%d)gé(t —sw—1a), a=2, (4.2.1)

2
exp(— ;Eu) stands for the Gaussian density of the Gaussian vector with variance ¢l .

|w — 2|P|0¢Vipalt — 5,0 — )| < C(t — 8) 70T polt — s, w — ), (4.2.2)

and, for w' € R? s.t. |w—w'| < (t—s)a,

B=1¢l
=y

lw — |P|0%Vpa (t — s,w —x + (w—w')) | <Ot —5) "= fu(t —s,w — ). (4.2.3)

Proof. The estimates in (4.2.1) are plain to prove directly if « = 2. Turning now to « € (1,2), since we have
assumed Z to be isotropic, it is well known that the spatial derivatives of the density of the driving noise
enjoy better concentration properties, see e.g. Lemma 2.8 in [MZ22], which proves (4.2.1) for § = 0. For
0 = 1, let us proceed as follows: for |w — | < (t — )=, the bound follows from the Fourier representation of
the density:

Pa(t,x) = (Qﬂ)_d/exp [iz - €] exp [—cat|€]|Y] dE, ca > 0. (4.2.4)

For |w —z| > (t — s)é, let us recall that the density of the isotropic stable process can be expressed as:

Dot — s,w — ) :/ g(r,w—x)pS% (t—s,r)dr
0

:Aw““w_@@;;i%%<L@j§i>w’

where g : (r,z) € Ry x R? — (27r) %2 exp [—|z|?/(2r)] denotes the standard gaussian density and pge,
stands for the density of the a/2 stable subordinator. Hence, integrating by parts,

/000 g(r,w — x)0y (Q_L)ipsa/z (1, (15—7“8)3>) ar
_ZLiSA ﬂnw_@@—;3%5<L@jéi)W

e 1 T T
+ W —T)————5O0pPgasz | 1, ———5 dr
/o 9( )(t—s)a Psas ( (ts)a)ts ]

atpa(t —Sw—= .I)

2 o 1 T
=——|pt—s,w—1x)— O (rg(r,w — ) ———5Dpgase (1, —— | dr
e [m )= [ ot = o) pes (1) ]
2 ° 1 T
=——" rorg(r,w — ) ———5Pgasz | 1, ———= | dr.
a(t—s)/o 9( )(t—s)EpS/ ( (t—s)a>
Recalling that 0,g(r,z) = (— £ 4 %)g(r,x), we have, for ¢ s.t. [¢| € {1,2},
L (BN g [P [af?
1rVS0,g(r, z)| < (rél + <r> rTTexp | = - < MEE exp 7/\277" , (4.2.5)
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for some A > 1. Plugging this into the previous equation and setting u = |w — x|?/r, we get

1 < 1 |w — x|? 1 T
Vo ot — s, w — < —_ A o 1, —— ] d
| z tp,( S w :L')|Nt_s/0 T\g|2+d eXp|: o (t—S)%ps /2 (t—S)% T

1¢1+d
1 * (w—z*\ " ? Au 1 lw—x? \ |w— x|
< A D e (1 du.
Nt—s/o ( u P (t_s)%ps a u(t —s)a u? “

Using now the global bound on the law of the stable subordinator (see e.g. the proof of Lemma 4.8 in [?],
in particular how the global bound is derived from Equation (4.8)):

Vs >0,  pgae(l,s) Ss7i7%,
we have,
_ I¢l+d I =1
1 00 2 3 A 1 _ 2 2 _ 2
Vot sl 5 o [T ()T e || (lmh ) ey,
t—sJo u 2 (t—s)a \u(t—s)a U

oo
S fw — wl_lq_d_“/ u S ey [—)\;] du < Jw — x| ~l¢=d=e
0

—d-a-c]
< (t= 8)% + Jw— af) K== < (¢ — )~ (+16%) (”M) o

recalling for the last line that [w — x| > (£ — s)=. This concludes the proof of (4.2.1).

An important consequence of the above estimates is precisely (4.2.2). Namely, for « € (1,2) we get

_ _ B . I<]
0= 2l |0V palt — 5w — )] < C(t — )= +25 ('w') (1 ; M) Palt — 5,0 — )
(-9 (=)
ﬁjﬂpa(t — S, w — ).

<C(t—s)70F
Also, for a = 2,

B

w—=T
Jtts)i) gé(t — S, W — I‘)
B—1¢l

<C(t—s)"" 7 polt — s,w — ).

o= a1t = s = )] < Cle - 970

In that case the concentration constant is slightly deteriorated whereas in the pure jump case we took
advantage of the concentration improvement for the derivatives. In any case (4.2.2) is proven. Equation
(4.2.3) follows from the same proof as (4.2.2) noting that in the diagonal regime |w — w'| < (£ — )=,

Dot — s,w—z+ (w—w")) < CPhu(t —s,w—1x), ac€ (1,2),
ge(t —s,w —x+ (w—w")) <Cga(t —s,w—1x),c<c, a=2.

Hence, |w — w’| can be seen as a negligible perturbation. O

Duhamel representation for the densities

To compute the error rate, we will start from the following Duhamel representations, which are proved
respectively in [JM24a] and [FJM24] for « = 2 and « € (1,2):

Proposition 4.3 (Duhamel representations for the densities of the SDE and the Euler scheme). The density
D(s,z,t,-) of the unique weak solution to Equation (4.1.1) starting from x at time s € [0,T) admits the
following Duhamel representation: for allt € (s,T], y € RY,

t
L(s,z,t,y) = pa(t — s,y —x) — / Es o [b(r, X)) - Vypa(t —r,y — X,)] dr, (4.2.6)
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where the expectation subscript means that Xs = x.
Similarly, for k € [0,n — 1], t € (t,T], the density of X}' admits, conditionally to X[L = x, a transition
density T"(ty,, x,t,-), which again enjoys a Duhamel type representation: for all y € R,

t
D, 1,) = palt — trsy = )~ [ Eue (WU X2y) - Vypalt = 1oy = XP)] dr (4.2.7)

tr

where the expectation subscript means that X{Z_ =ux.

4.2.2 Proof of Theorem 4.1

In this section we will use for two quantities A and B the symbol A < B whenever there exists a constant
C:=C(d,b,a,T) st. A< CB. Namely,

A< B« 3C:=C(d,b,a,T), A<CB. (4.2.8)

Starting from Proposition 4.3 and comparing the Duhamel formula of the scheme, (4.2.7), to that of the
diffusion, (4.2.6), we get

Fh(07x7ta y) - F(O’ .I‘,t,y)

t
= Eop. [/ (b(s, Xo) - Vypalt — 5,5 = Xo) = (Ui jps X)) - Vypat — 5,y — Xf)) ds} :
O S

In the previous equation and the rest of this paper, we denote Eg ,[-] := E[:|Xo = X{ = z]. We will split the
error in the following way:

I'"(0,2,t,y) — T'(0,z,t,y)

h
= / Eo,e [0(s, Xs) - Vypa(t — s,y — Xs) — b(Uo, @) - Vypa (t — s,y — Xf)] ds
’ Tthfh
+ / Eo» [b(s,Xs) - Vypa(t — s,y — Xs) — b(s, X,,.sh) -Vypalt — s,y — XTsh)] ds
h
h_p
EO T |:b S X'rh : ypa(t —5Y— X‘rf) - b(S>X7}—Lh) : vypa(t -5y - X—,}—Lh):| ds

/ Eo,x [b (Urn s X -(Vypa(t—s,y—ng)—Vypa(t—s,y—X?))} ds
/ = [b (Urnjns X h : (Vypa(t —Urnynsy —ng) — Vypa(t — Svy—ng))} ds

t

T /} Eo. [b(s,Xs) Vypalt = 5,y = Xo) = b(Upn s X1) - Vypa(t — 5, - Xﬁ)} ds
7' —h

= A1+ Ag+ Az + Ay + As + Ag, (429)

where we exploited that:

T, —h
/ o,z {b(U[T;L/h], X)) - Vypalt = Upes gy — ng)} ds
; : :
L/h 1

tiy1 i+1
= h/ / Eo,. [b (r, X} ") Vypa(t—r,y—XZ)} dsdr

- / Eo [bs, X15) - Vypalt — 5,9~ X14)] ds, (4.2.10)
: : :
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for the correspondence between the last term in Az and the first one in As.

For Ay, we rely on the fact that we work on the first time step, and thus we do not even need the
smoothing effect in (t — s)? provided by the drift in (4.2.2). Let us first expand the expectation:

h
Ay = / / (F(O,x, 5,2)0(8,2) - Vypalt — s,y — 2) = T(0,2, 8, 2)b(Un, ) - Vypalt — s,y — z)) dzds.
0

Assuming w.l.o.g. that t > 2h so that for s € (0,h), (t —s)~& < (t/2)" &, then using (4.1.18), (4.1.15),
(4.2.1) and the boundedness of b, we have

|A|</ / 1 (8,2 — 2)pa(t — s,y — z)dzds

Q

1 1
Sﬁa(t7y_x) ( )1 dsgpa(tvy_x)ht_g

1— 1

WSt % < Palt,y — x)hat s, (4.2.11)

2|

QR

/S ﬁa(tvy - I)h

exploiting the convolution property (4.1.13) of the density p,> for the second inequality and recalling that
h <t for the last inequality.

Let us turn to As. Expanding the inner expectation and using the time regularity of I" in the forward
time variable (see (4.1.16))

T —h
|Ag| = |/ / [F(O,x,s,z) —TI(0, :E,Tg,z)] b(s,z) - Vypa(t — s,y — z)dzds

l
// la Otszfac)(tfs)*épa(tfs,yfz)dzds,

using as well (4.2.1) for the last inequality. Again, from (4.1.13), along with the fact that s — 7% < h and
that for s > h, (7h)71 < 2571, we can write

t
IAzliﬁa(ty—w)h%/ 57w (t— )% ds S Palt,y — 2)he. (4.2.12)
h

The term Ag, which is the one that will allow to apply a Gronwall type argument, will be treated at the
end of the current error analysis.

Let us turn to the term Ay in (4.2.9), which is by far the more delicate. Let us then introduce the
following lemma:

Lemma 4.1 (Smoothing effect of the drift). Let ¢ be a multi-index with length 1 < |¢| <2 and § € {0,1}.
Then, for all (v,9) € (RH)2, 0<h<t/2<s<tP —h<T,r>0,

‘/rh (0,2, 77, 2)b(r, 2) A0 VSpalt — 710 — 2) d2| S Palt,y — 2)(t — 7y ~0F 7= <1+ (T;L)*%). (4.2.13)
Proof. Let use the following cancellation argument:
I:= /I‘h(O x, 7 2)b (r,z)@fvgpa(t—Tf,l)—z) dz

/[rh(o €T, Ts ,Z)b(?”, Z) - Fh(O,I,T:', U)b(ﬂ U)]afvgpa(t - T:lv v — Z) dz

Swhich is actually just an approzimate convolution property in the pure jump case.
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Then, using the regularity of b and (4.1.19), taking therein £ such that 7. > 3, we have
IT"(0,2, 7", 2)b(r, z) — D" (0,2, 7", 9)b(r, )|
(Ip—2[+h=)”
(7l
B

B4 (f— )2
Spalrhz =l 2l (1 1) 8) ¢ T g ),

S pu(Ts}'l’ z = 33)|U - Zlﬁ + ”bHL"O [p (Tshv g = x) +pa( Tsy D — )1|t)7z|°‘2‘r;‘:| (4'2'14)

where We used the fact that we consider times s > t/2 to write po (77,9 —2) < pa(t,y — 2) and the fact that
for s <7/ —h, h <t — 7P for the last inequality. Plugging this into I and using (4.2.2), we get (4.2.13). O

Going back to the bound for A4, conditioning w.r.t. o(X”, Urnyn) (the sigma-algebra generated by the
random variables X, and U.n) and using the harmonicity of the (gradient of the) stable heat kernel (or

Itd’s formula between 7 and s) in order to get rid of the noise increment, we can write that for any bounded
and measurable ¢ : R? x R — R,

E |:vypa (t —5Y—= SO(X%" UT;”) + (Zs - Z‘rsh)) |U(X£§a U‘rsh/h)] = Vypa (t - Tshay - <p(X-,}—27/7 Ufrsh)) .

(4.2.15)
Using this, we get
t/2
Ay = / Eo,» |:b(U.,-Sh/h,X7}_21) . (Vypa(t — 8,y — th) — Vypalt — s,y — Xf))] ds
" Tthfh
+/ EO,z {b(Urs’?/han}-L’L) : (vypa( Y — X‘r“) - vypa(t -5y (X‘rh + ZS - ZTSh))):| ds
t/2 ®

T, —h
+/ EO,z |:b(UT;L/h7X:'Lh) : (vypa(t —5Y - (th + Zs - Z.,.h))
t/2 : ° °
—Vypalt = 5,y = (XLy +0(Ung g X2 ) (s = 70) + Z, = Z11)) )| ds

t/2
= /h EO,I [b(U P /hs ,,.h) ’ (Vypoz( $Y — XT"‘) - vypa(t - Ts Y= (ng + b(UTsh/ha X:_ZL)(S - T:))))} ds
T, —h
+ // Eo.e (DU s XLn) - (Vypalt = s,y = XP4) = Vypalt = 7l y = X04) )| ds
t/2
'rth h
+ / EO,JC {b(Urf/ha th) ' (Vypa(t - Tsha Yy— X—,}—lh)
t/2 ° s
~Vypalt = T8y = (XP 4 b(Ug s XL ) (s = 7)) )| ds
= A41 —|— A42 + A43. (42.16)

For Ay, there is no need to compensate for singularities in (¢ — s) on the considered time interval:

t/2 T, hip

|Ag1| =

Fh 0, m,Ts ,2) b(r,z)[Vypa(tfs,yfz) nypa(thsh,yfz)

+vypa( - s?y_z)_vypa(t_ 57y—Z—b(’l” Z)(S_T ))} dZdeS|
t/2 _ h - -
/ /pa T,z — 2)||b|| Lo {((8 7s') (s = 7 Ibll }pa(t—Tsh,y—z)dzds

+
t—s)ta (t—7h)a

t/2
Spalty-ohi [ ({697 4] s
h

a1
s

< Palt,y — x)hat!™ zﬁa(t,y—m)h%tfg. (4.2.17)
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For Ayo, we will make the same time sensitivity appear and then expand it with a Taylor formula:

h_h hh
1
/ / /I‘h (0,2, 71, 2)b(r, 2) - [Vypalt — s,y —2) fvypa(tfﬁf,yfz)] dzdrds
t/2

h—h Th4h 1
1
/ / /Fh 0,z,7", 2) r7z)~/ OV ypa(t — s+ (s — 1),y — 2)(s — ") dpdz dr ds.
t/2 0

Then, using the same cancellation techniques as in the proof of (4.2.13) with y =y, we get

h—h h
_B t S —T, _
|Age| S 1+t e / / t—s—i—,us—T)h)) +;Bpoé(t—&—Tf—s—l—,u(s—Tsh),y—yc)d/ids

h—h h
B B ¢ (s —7)
< _ « T s/
SPa(ty—x)(1+1 )/ =5 ds
2 (t—Th)HEE

h
T, —h

<pa(t,y—x>(1+t—§)h/ (t— 5) 155" ds
t/2

< Palt,y —2)(L+t™ )t — 1+ 1) < palt,y —2)(1+t oo, (4.2.18)

Let us turn to Ays, let us write

h_h T, hih
1
A43 // / /Fh 0 €z, T ) % b(Ta Z) ! [vypoé(t - T£L7y - Z) - v’wpa(t - T:vw”w:y—z—b(r,y)(s—'rf)
2

+ vaa( 5h7 )‘w:y—z—b(r,y)(s—‘ri”) - vypa (t - T:a Y- (Z + b(T, Z)(S — Ts )))] dzdrds
= A431 + A432. (4219)
We carefully mention that this additional pivot is needed in order to use cancellation arguments for the first
term (in order to have a drift which does not depend on the spatial integration variable) and to take full

force of the regularity of the drift for the second one. For Ays;1, we use a Taylor expansion and then (4.2.13):

Iz

T,L h 1 T, hip
|Ays1| = ‘ / /Fh (0, x,TS ,2)b(r, 2)

/ vaa - w)‘w:y—z—,ub(r,y)(s—fsh)'b(ray)(si’r )d,udZdeS
h_h 1 Ty hth ( _ )
(112 / / /paty ub(r,y) (5 — ) — 2) 1Bl e —= 2 dpdr ds
t/2 (t—7h)s"
h—h
<4t D) paltyy — a)h / (t— )% ds.
t/2

Recalling that p, (t,y — ub(r, y)(s — %) — ) < pa(t, y — x) for the second inequality (with a slight notational
abuse in the gaussian case since the variance is then modified). Now, if (2—3)/a <1 <= o+ > 2 (which
is e.g. always the case in the Brownian setting), the time integral is convergent and uniformly bounded in h.
The term Ays; then has order h regarding the time step. If now (2 — 8)/a = 1, it has order h|In(h)| < h=.
We can thus assume w.l.o.g. that (2 — 8)/a > 1. Then,

N 28
|Ags1] S L+t )pa(t,y —2)h(t — 7 + h)' ™=
S (L4t ) paltyy — 2)ha T 072 S polt,y —a)(1+ ¢ %)h7, (4.2.20)

Let us turn to Ay3o, which we first expand with a Taylor formula:

—=hq [ri+h
Aysgp = / / /I‘h (0 :C,TS ,2)b(r, 2)
t/2

/ vaoz ) |w:y7z7[b(r,z)7u[b(r,y)fb(r,z)]](S*Tsh) : [b(?", y) - b(?", Z)](S - T ) d/.L dzdrds.
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Since t — ;‘ > s — Th using the boundedness and the Holder regularity of b and then (4.2.3), we have
|va0£ ( T ’LU) |w y—z—[b(r,z)—pb(r,y)—b(r,z)]](s—7F) ° [b(T, y) - b(’l“, Z)”
< (t— )T Bt —Th Y — 2), (4.2.21)
thus yielding, with the same computations of the time integrals as for Ays31,

h
T —h

Azl < (1+f§)ﬁa(t7y*$)/ (s — 7Y (t — 70 %52 ds
t/2
<1+t %) palt,y — x)ha. (4.2.22)

Plugging (4.2.20) and (4.2.22) into (4.2.19) and from (4.2.17), (4.2.18) and (4.2.16) , we obtain

Adl S (141 5)palt,y — 2)h?. (4.2.23)

Observe now that the term Aj in (4.2.9) could be handled just as Ay and Ays above. Indeed, the
time variable is there randomized, but once expanded through the density, the quantity is really similar.
Importantly, it makes a pure time sensitivity of the stable kernel appear. This therefore yields

A5 S (1417 5)palt,y — 2)h*. (4.2.24)

It thus remains to handle the contribution Ag associated with the last time steps. The quantities involved
can actually again be estimated using cancellation arguments. Write:

t
|Ag] < / Eo,» [b(s Xs)  Vypa(t — 5,y = Xs) = b(Urn s h) Vypa(t—s,y—Xf)} ds

h__

/ / (0,s,,2)b(s, z) — (O,s,az,y)b(s,y))Vypa(t — s,y —z)dzds
h—h

T, hip
/ : / J(E 0.8 2300, 2) ~ 0, )b ) ) Tyt — 5.5 — 2) s
h —h

=: Ag1 + Ag2.

Using (4.2.14) for Agz and the corresponding inequality based on the Holder estimate (4.1.17) for the density
of the diffusion (still taking therein e s.t. 7. > ), and exploiting (4.2.2) as in the proof of Lemma (4.2.13),
we then get:

t
A 5/ (=) 05 (6= 9) 5R%) (1 (7))l —2) ds S (L1 5)paty—2)h?. (4.225)
Tth—h
Gathering estimates (4.2.11), (4.2.12), (4.2.23), (4.2.24), (4.2.25), we have
00, 2t ) = T(0,,,9)| S Palt,y — 2)he (1+175)

'/ EOQJ[ (s, X, ) Vypal(t —Tsh’,y—XTg)—b(s,th,)~Vypa(t—7'sh,y—Xf,})] ds (4.2.26)

Set

"0, z,u,z) —T(0,z,u, 2
- s D022 T
(z,2)€(R4)2 pa(uv z = J})
Observe from (4.1.18) and (4.1.15) that f;, is bounded uniformly in & and the time variable. We then have,
using (4.2.2), the boundedness of b and the convolution property of the stable kernel,

h _ 5 t h
|F (0,1’7t,y) F(O,i’,f,y” Shg(].—‘rt_g)-f- _ 1 / fh(TS)l
Pa(t,y — ) Palty —x) Jp (t—7h)a

(1+t5)+/ht (fh(Tsh) ds.

t Th)é

S

(4.2.27)

/Pa(T 2 — 2)Pa(t — Ty — 2)dzds

QR

Sh
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The previous bound being uniform in = and y, we get

fh(t>5h”(1+t—5>+/tmds_

W (t—r)E

Q

Using a discrete Gronwall-Volterra lemma, we obtain Theorem 4.1.

4.3 Proof of the regularity results from Proposition 4.1

This section is devoted to the proof of the controls (4.1.17), (4.1.19) concerning the Hélder continuity in
space in the forward variable for the density of the diffusion and the scheme respectively as well as to (4.1.16),
Holder regularity in time in the forward time variable. These estimates were crucial in order to prove the
main theorem in the previous section. Importantly, we achieve respectively the order v. = (yA1l) —¢, € >0
in space and v/« in time.

Note that the lower exponent attained in space is sufficient for the previous proof of the main result to
work. We actually used the spatial regularity of the densities of the diffusion and the scheme in a cancellation
argument involving a product with the drift (see former (4.2.14)). In this context, we just need in practice
the lower order S-regularity corresponding to the spatial smoothness of the drift. Indeed, for 5 € (0,1) one
can find € s.t. (yA1l)—e > . We mention as well that this first spatial estimate actually allows in a second
time to derive the expected exponent v when v < 1 for the Hélder regularity in the forward variable. The
proof is provided for completeness (since we actually insisted on the parabolic bootstrap phenomenon) for
the diffusion in Appendix 4.4.

We start this section recalling some usual yet important controls on the density of the driving noise that
we will profusely use in order to prove (4.1.16). The proof is somehow standard and can be e.g. found in
[FIM24] for « € (1,2) and [JM24a] in the gaussian case.

Lemma 4.2 (Stable sensitivities - Estimates on the a-stable kernel). For each multi-index ¢ with length
I¢| <2, and for all 0 <u <’ < T, (x,2') € (R)2, 6 € (0,1],

o Time Hoélder reqularity:

u—u'l’ _
|Vipa(u, ) — Vipa (v, 2)| S Ju—w]? 0+m‘ (Pa(u, @) + Po (v, x)) . (4.3.1)
w’ T s
e Spatial Holder regularity:
¢ ¢ N < (lz=2' 1 o,
|VSpa(u, ) = Vipa(u,a)| S = A1) g (Bl 2) + Pa(u,2')). (4.3.2)
& us

4.3.1 Proof of the spatial regularity

We start this section providing the estimate (4.1.17) for the diffusion. We could actually have established
(4.1.19) only and then derive (4.1.17) passing to the limit exploiting the convergence in law of the Euler
scheme to the diffusion, which would have allowed to transfer the estimates on densities. However, we provide
a complete proof on the diffusion first since it is actually simpler than the one for the scheme and already
emphasizes the key ideas, which will as well appear in the proof of (4.1.16) (time regularity).

Proof of (4.1.17): forward spatial Ho6lder regularity for the diffusion
Define, for 7 > 0 meant to be small (viewed as a spatial viscosity parameter),

hi’g(t) = sup { _ |].—‘(S,1'7t, Z),_ F(87 xvtlv ZI)‘(t — S)j/ }
' (z2eRi)2 | (Pa(t — 8,2 = 2) + pa(t — 5,2/ —x)) (|2 — 2'| V)=
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T (s,z,t,2)—T(s,,t,2")|
Pa(t—s,z2—x)+Po (t—s,2' —x)
N~ < +o0o. W.lo.g., we take s = 0 for simplicity and assume 7T is small, in particular 7' < 1. Let us write
for 0 <t <T,x,y,y € R? the following:

Since we already know from (4.1.15) that < oo, we immediately have hSi(t) <

~

(0,2, t,y") = T(0,2,t,y) = pa(t,y" — ) = palt,y — )

t/2
/ / (0,2,8,2)b(s,2) - (Vypa(t — s,y — 2) — Vypa(t — s,y' — 2)) dzds

t=(ly'=ylvm)®
+ / /F(O,x7 $,2)b(s,2) - (Vypa(t — s,y — 2) — Vypa(t — s,y — 2)) dzds
t/2

t
+ / /F(O,J;, $,2)b(s,2) - (Vypa(t — s,y — 2) = Vypa(t — s,y — 2)) dzds
(Iy"=ylvn)
= A1+A2+A3+A4.
We tacitly assume as well that (|’ — y| V )¢ < ¢/2 since otherwise, i.e. in the off-diagonal case, the expected

control [(T(0, z,t,y) — (0, z,t,9/))t s | /[(Ba(t,y — ) + Pa(t, v —2))(|y — y'| V7)7] < C readily follows from
the Aronson type bounds (4.1.15).

For A;, we use the regularity of the stable kernel, (4.3.2) to write
A4l < ‘y B y/|’75 — = /
181 S T (Palt,y = 2) + Paltsy — ). (4.3.3)

For Ao, using again (4.3.2), we write

_ Z)| < |y B y,|’)lE

~ (t_s)LH(pa(t_svy_z)+pa(t_svy/_Z))

IVypalt — s,y —2) = Vypa(t — s,y
which yields, along with (4.1.18) and the convolution property (4.1.13) of pq,

t/2
|As] </ /pa (s,2 — 2)||b]| L (|y ?JEH (Pa(t — 8,y — 2) + Pa(t — 8,4 — 2))dzds

Iy y'|e (
+o=

Ot(tvy_x) +]5a(t’y/_m))7 (434)

where 5. :=  — ¢, noting that fory =a+8—-1€[1,2),7.+1 —a=2—(a+¢) < 8 —¢ and recalling that
we have assumed T to be small.

For Ag, using a Taylor expansion and then a cancellation argument, we have

t—(ly—y'Ivn)®
A?’:/ // (0,2,5,2)b(s,2) - Vipa(t — s,y + Ay’ —y) —2)(y/ —y) dAdzds

t—(ly—y'|vn)*
:/ // (0,,5,2)b(s, 2) — (0,2, 5,y + Ay — 1))b(s,5 + MY — )]

Vypa( 5,9+ Ay —y) — 2)(y —y)dzdAds. (4.3.5)
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We then write
|F(0a z,s, Z)b(sa Z) - F(Ov z,Ss,Y + A(y/ - y))b(sa Yy + )‘(yl - y))|

/ _ —_ ’YE
< |y + ') — 5|85 _ o pem ly + Ay —y) — 2|
~ |y A(y y) Z| pa(S,Z l’) ||bHL (hO,a:(s) 3 e \y+>\(y/7y)fz|§5é

ly+ Ay —y) —2|° _ _ ,
+ ) aisad ) a5, = )+ Bals,y AW~ 1) — @)
Sly+ Ay —y) -2 <1+8 g <1+ Sz(l)pT]h, 2 (7 ))) (ﬁa(s,zx)+ﬁa(s,y+/\(y’y)fv)>,
re

(4.3.6)

recalling that 8 < 4. for the last inequality. Plugging this into (4.3.5) and using (4.2.2), recalling that on
the considered time integration, (¢t — s) > |y’ — y|® (local diagonal regime), we get,

t—(ly—y'|vy)™ B8
|A3|5/ //p D)+ Palsy AW ) o) (14 87F (14 s 1520)
re

ly -y /
X —————— D, (t—s,y+ Ay —y) — 2z)dzdAds

1+“ra B pa
(t—s)
t—(ly=y'Iv)® 1 8 ly — '
s / / Pa(t,y + )\(y/ —y)—z)[1+s"« 1+ sup hS’ZU‘) =5 dAds
t/2 0 re(0,1] (t—s)" a

t—(ly—y'|vn)® ly — /|
< (ﬁa(t,y—x)+ﬁa(t7y’—$))/ 1+s7a [1+ sup hou(r) | | ———5—=5 ds,

t/2 r€(0,7) (t— )"

where, for the two last inequalities, we use the fact that for s > ¢/2, up to a modification of the underlying
variance in the Brownian case, po(s,y + Ay —vy) — ) < Pa(t,y + Ay — y) — x) and since |y — ¢'| < te,
Doty + ANy —y) — ) < pa(t,y — x) + Pa(t,y’ — x) with the same previous abuse of notation if o = 2.
Finally, noting from the above definition of y.= (1 A) — e that (1+v. — 8)/a < 1 <= 7 > ., this yields

83| S (Palt;y — @) + Palt,y' — ) [y — ¢/t = <1+t— <1+ sup hg(r ))) (4.3.7)

r€(0,T]

For A4, write:

|Ay] <

t
/ /[F(O, z,8,2)b(s,z) —T(0,z,s,y)b(s,y)] - Vypa(t — s,y — z)dzds
(ly"—ylvn)

+

¢
/ /[F(O, z,8,2)b(s,z) —T(0,2,5,y)b(s,y)] - Vypalt — s,y — 2z)dzds
t—(ly’—ylvn)

S/t /ﬁa(S,Z—x) l—i—s_g 1+ sup hSZ( ) ﬁa(t—s,y—z)—i—zja(ﬁ—s,y’—z) dzds,
t=(ly'=ylvm)= r€(0,7] (t—s)o"a

where we used (4.3.6) (with respectively A = 0 and A = 1 therein) and (4.2.2) for the second inequality. We
get:

[A4|S(Pa(t,y — @) + Dalt,y" — 2))(|y" =yl V)" <1+tg <1+ sup hgii(r )))

re(0,T]

- <1+t—5 <1+ sup h(r ))) (4.3.8)
re(0,T]

SPaltyy — @) + Palt,y’ — 2))(|y' —yl v )=t ™=
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where we also used the fact that (J[y—y’|Vn)® < ¢/2 as previously mentioned for the last inequality. Gathering
estimates (4.3.3), (4.3.4), (4.3.7) and (4.3.8) and considering the fact that |y — y/|7= < (|y/ —y| V 1), we
obtain

|F(O7$,t, y) - F(Ov ﬂf,t,y/)‘ SJ (ﬁa(t’ Yy— 1") +ﬁa(t,y/ - t

to(1+t a)+t = sup ho't(s)
s€(0,T]

Noting that all the exponents of ¢ appearing in brackets in the above equation are positive, we get, in turn
taking the supremum for ¢ € (0, 7] on the Lh.s.

1+ 7% sup hoh(r)

hoa(t) <
re(0,T]

Provided T is small enough, we obtain the (uniform in 1) boundedness of hgg Taking the limit n — 0
concludes the proof of (4.1.17). O

Proof of (4.1.19): forward spatial Holder regularity for the scheme
Let € such that 7. = (YA 1) —e > 8 and set

9s): ( ) = su { ‘Fh(s>x7taz)_Fh(57$7t;2/)|(t_s)%g }
s,z : (z,2")€(R%)? (poe(t — 8,2 — .Z‘) —I—pa(t e~ 33)) (|Z _ Z’|—|—hé)%

We emphasize that the time shift in the Duhamel representation of the scheme (4.2.7), associated with the
term b(Uyn jp,, X2 )Vypa(t —s,y— X1), induces the additional term in h'/® in the normalization. Intuitively,
this can be explamed since if |y’ — y|® < h, then, close to the time-boundary, i.e. for s close to ¢, the local
drift transition of the scheme of order s — 7/ is not negligible w.r.t t —s. When looking at the diffusion, this
is usually dealt with by introducing a cut-off level at ¢ — |/ — y|®. But on the remaining time interval, one

can still have s — 7/ > |3/ — y|* and the drift somehow prevails for the scheme.

Let us importantly p01nt out that, from the Aronson type inequality (4.1.18) for the scheme, it readily
follows that gf (t) S h™« < 4o0. In particular, this means that this quantity can be used in a Gronwall
or circular type procedure as we actually do below.

Let us then introduce the following lemma:

Lemma 4.3 (Smoothing effect of the drift). Let ¢ be a multi-index with length 1 < |¢| < 2. Then, for all
(,9) € (RH2,0<t/2<s<t<T,r>0,

’/Fh (0 xms ,2) (nz)Vgpa(t—Tsh,\j—z)dz

® >
S—

Ry — L&l 1 g(f)l,;(,r
FRA (= Th ) 1+ — 42
Th

Se (1

B=I¢]

< ((t o ) Palt,y — ). (4.3.9)

S

Proof of Lemma 4.3. To prove this, let us use the following cancellation argument
Fim [T 7 000 2) Vipalt oy = ) s

/[Fh(() z, 70 2)b(r, 2) — TM(0, 2,7, 9)b(r, 1) Vypa(t — 5,9 — 2) dz. (4.3.10)
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Then, we write similarly to (4.3.6),

(0, 2,7, 2)b(s, 2) = T*(0,2, 7", 9)b(s, )]

’ '8

S I — 21 palrl' 2 = @) + bl (1+90:5 (7! >)W (Palrls 2 = 2) + pa(rl,n — 1))
1 1 gg,;(Til) _ h — h
§(|Ufz|+ha)6 1+ (Th)g + (’h>§ (pa(Ts,fo)era(Ts,l)f:E)). (4'3'11)

Plugging this into (4.3.10) and using (4.2.2), we get

’/Fh (0,2, 7", 2) b(r,z)Vgpa(t—T:‘,n—z)dz

s-lcl 5 I¢ 1 ghe(rhy
5((t-7’£) a E(t—Tsh)_7) <1+( RV + »T = > [pa(tm—x)—l—pa(@h,n—xﬂ
Using the fact that s > ¢/2, up to a modification of the underlying variance in the Brownian case, p, (7,9 —
z) S Palt,n — ), we obtain (4.3.9). 0

Let us first write

"0, ,t,y") = T"(0,2,t,y) = pa(t,y' — x) — palt,y — z)

t/2 T, hip
/ / /FhOx,Ts,z b(r, 2)

XEon.p [Vypa(t — s,y — XM fvy/pa(tfs,y'fo)} dzdrds

'rh—i-h
—|—/ / /FhOx,TS,zb(r,z)
¢

X Ern oy [Vypalt — s,y — X!) = Vypa(t — s,y — XI)] dzdrds
=: A1+ Ag + Ag, (4312)

where we denoted E» . .[-] := E[ |XTh = 2,Upnp, = 7). For Ay, we use (4.3.2) to write

< |y7y/|’YE — — /
S tT(pa(t,y—pra(ty - 1))

/| e
< (y=yl*vh)=

1AL = [palt,y —2) = pal(t,y —

(Palt,y — ) + Pa(t,y — ). (4.3.13)

2
2

For Ay, we use (4.3.2) to write
|Vypa(t — s,y —w) — Vypa(t — s,y —w
which yields, similarly to (4.3.4),

t/2
|Asg| </ /p,l (12,2 — ) ||b|| L

’YE
X /ﬁa(s —Tsh,w )%(pa(t — 8,y — W) + Pa(t — s,y —w))dwdzds

(t—s
—J0Vh 1=
,S (|y ytﬂe ) (pa(t7y - Z‘) +ﬁa(ta y/ - Z‘)), (4314)

64



using the fact that the terms in (¢ — s) can be taken out from the integral on the considered time interval.

For As, let us develop the conditional expectation as follows:

Erno [Vpalt — s,y — X2) = Vypa(t — 5,0/ — X[
i, [Vapa (= 5 — (2 450 2) (5 — 7 + Zo — Z,0)]
—Errep [Vypa (t =50 = (2 +6(r,2) (s = 7) + Zs — Z11))]
= VyDa (t—Tsh,y —z=b(rz)(s —Tsh)) — Vypa (t—TSh,y’ —z—=b(r,z)(s— Tsh))
= Vu,Pa (t — 7' ws) lws=y—z—b(r,2)(s—7) — Vo, Pa (t = /' wy) |y —y—z—b(r,y) (s—71)

h h
+ vwlpa (t — Ts awl) |w1=y—z—b(r,y)(s—7—s") - vwipoé (t —Ts ﬂw/l) ‘wi:y/—z—b(r,y/)(s—rg)

+ V'w’lpoz (t - Tsha wi) |wi:y’fz7b(r,y’)(sfrsh) - vwépa (t - Tsh7 wl2) |w’2:y’7z7b(r7z)(sf7':’)

1
= _/0 vzzulpa (t - Tsh7 w1 — /’L[b(Tv Z) - b(?“, y)](S - Tsh)) |w1:yfsz(r,y)(sf7'sh) : [b (Ta Z) —b (T’ y)] (S - Tsh) d/J/
+ lepa (t - T:, wl) |w1:y—z—b(r,y)(s—7b}}) - vw;pa (t - Tsha w’l) ‘w;:y/—z—b(r,y/)(s—n’,‘)

1
+ /O vfy’lpa (t - T:a wll - ,U,[b(ﬂ Z) - b(T‘, y/)](S - T:)) ‘w;:y’—z—b(r,y’)(s—rb’,‘) : [b (Tv Z) —b (Tv y/)] (S - T:) d.u’a

(4.3.15)

yielding the corresponding terms Agy, Asy and Ags once plugged into (4.3.12). For As; and Agss, since

t —7h > s — 7! using the boundedness and the Holder regularity of b and then (4.2.3), for § € {y,y'},
|v12Dp04 (t - Tshv w — 2 [b(’]", Z) - b(’]", g)] (S - Tg))'@:g—z—b(r,'g)(s—n’l) : [b (7", Z) —b (Tv g)]
8=2 _ -
St—=7) % Palt =715 — 2). (4.3.16)

This then yields, using again s — 7/ < ¢ — 7/

s

B—2

t
|A31|+A33|5// /ﬁa(ff,szv)(s*Tﬁ‘)(t*r?) = (Palt — 7'y — 2) 4 palt — 7'y — 2)) dzds
t/2

t

< (Baltyy — @) + Palt,y’ — 2)) hE / (- by g
t/2

Note that, by definition, v, = ((a +8-1)A 1) —e<a+p—1—¢,so that

1+/B_2_7€:a+ﬁ_2_’YE:7_76_12_1+6>71,

@ @ @ @
using as well that « > 1 for the last inequality. In turn, we obtain

Je  y—veta—1
o

|Ag1| +|As3| S (Palt,y — ) + Palt,y’ —x)) R et

S Paltyy —2) +palt,y — ) (ly —y/|*VR) ST

Y=veta-1
a

(4.3.17)

Let us turn to Ags, which we split into two parts depending on whether the inner gradient is in diagonal

65



(and in that case using a Taylor expansion) or off-diagonal regime:

t—|y—y’|*Vh 1 hih
Agp = / / /Fh (0, CE,TS ,2)b(r, z)

/ Vo Pa (t—7wi+p[y —y— (s =70 ,0) =00 0)]) hur—ysmbrg) (s

=y = (s =m0 (ry) —b(ry)] dudzdrds

t 1 T:'+h
+ / 1 / / T (0, 2, 71, 2)b(r, 2)
t—ly—y'|2vh It Jrn

X lepa (t - Tshv ’11)1) |w1:y7z7b(r,y)(sfrsh) - vw’lpa (t - Tsh7 w{[ dzdrds

[

=:Az21 + Aszao.

For Asa1, we use (4.3.9) with y =y —b(r,y)(s—72)+ [y —y — (b(r,y') = b(r,y))(s — 7")]. Note that the
term in hP/* < <(t—rT,) )ﬁ/o‘ on the associated time regime for Ags;.
Using as well the fact that, in the regime |y —y/| < ta,
Palt,y—x—=b(ry) (s —70) +ply —y— (0 (ry) —b(r,y))(s —7)]) Spalty — )
to obtain

t—|y—y'|*Vh — |+ (s = M)y — /|8 1 gh,; Tsh
Aol  paltiy ) | =y o= =Pl Gy (14— 4 =) o
t/2 (t—71h)== h

S

Recall that on the considered time interval t —s > |y — y|* V h and |y — 3| < t=. From the fact that
s—71h <t— 7l we then get

t/2

1+t = (14 sup g™ ), (4.3.18)
re(0,T]

using as well % > —1 <= 7 > . for the last inequality.
For A3z, denote, for y € {y,y'},

t 1 hih
d322(9) 32/ ﬁ/
t—|y—y’|*Vh Th

/Fh(O x,Tbh,z)b(r,z) = [Vnpa (t—T:,L,l) —z=>b(r,y)(s—, ))] dz

B t—ly—y'|*Vh i 1 h.e( h
Aso1| S po (t,y — h%t§+ ! o e t—Tlelaw 1+ +9073;(S) ds
~ Y Yy -y o -
-

— de Y —e
Sha(ty—z)(he + ]y —y[e)t =

drds

so that |Agas| < d322(y) + J322(y'). Similarly to Aszp;, we now use (4.3.9) with vy =y — b(r,n) (s — 77)
observing that on the considered time integration interval the term in A%/ of (4.3.9) remains:

t 1 ha; T;L
6322<n>5m<t,n—x>/ (€= +nri@-)7%) (1+ =0
t—|y—y’|*Vh (Tg)a (TSh)E
S Palty—2)(|ly—y/|*Vh)a (1 e (1 + s?pT] 93,’5(7“))) : (4.3.19)
re(0,
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Gathering (4.3.17), (4.3.18) and (4.3.19), we obtain

de
o

[As| S (Pa(ty — ) + Palt,y’ = 2)) (ly —y/|* V h)

x (Ht_fz <1+ sup_gy's (r )))[Iy Y14V R) TR T +t”*”5“1}. (4.3.20)

re(0,T]

Along with (4.3.13) and (4.3.14), we eventually get

Je— 35

‘Fh(OWI'r?t?y) _Fh(07x7tay/)|t%€ <1 T
b (t,y — b (t,y — —ylevmE~S T
(Pa(t,y — @) +Palt,y’ — ) (Jy — y'|* V h)

+ <1+t5 <1+ sup gQ,’i(T))) [(Iy 2 R A R A

TE(O T)

Ye— /s

S1+T555 47755 4 sup ghe(r) {t";‘* Hi”*a;“‘?],

re(0,T]

using as well that |y’ — y|* V h <t for the last inequality. Since v — 8 = a — 1 > 0, Equation (4.1.19) then
follows taking the supremum in time in the previous inequality provided T is small enough. (I

4.3.2 Proof of (4.1.16): forward time Holder regularity for the diffusion

Proof of (4.1.16). We proceed here with the proof of the forward time sensitivity. Importantly, the proof
will use the previously proved claim (4.1.17) which actually also gives S-Holder sensitivity since 5 < 7.
W.lo.g. we take s = 0 for notational simplicity. Starting from the Duhamel representation (4.2.6) and using
cancellation arguments, we have for 0 < t <t/ < T, z,y € R?,

F<O7xat7y)_r(07$7t/7y) poz(t y— pa(t y—l')

/ / (0,2,8,2)b(r,z) - Vypa(t' — s,y — 2)dzds

+ / /I‘(O, x,8,2)b(r, z) - [Vypa(t’ — 8,y —2)— Vypa(t — s,y — z)]dzds

ty—x —pa(t',y — )

/ / (0,2, 8,2)b(r, z) = T(0,z,s,9)b(r,y)] - Vypa(t' — s,y — z)dzds

+/0 /r(o,az,s,z)b(m)

(Vypa(t' — s,y — 2) = Vypa(t — s,y — 2)] dzds
=: Hi + Hy + H3. (4321)

For Hy, we directly use (4.3.1) to write

t—t)a
21 = bty = 2) = palt'sy = )| § =D patty — ), (4322

a

For Ha, let us use the regularity of b and the forward spatial regularity of ', (4.1.17) to write:

1 —z
D0, 2,5, 2)b(5, 2) — (0, 2,8, 9)b(5, )| S Pals, 2 — @)y — 2 (1+ﬁ) NP Uk PP
Sa S«
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Plugging this into Hy and using the fact that for s > ¢, po(s,y — ) < Pa(t,y — x) along with (4.2.2), we
have

| Hs| </ /pa S,z —1x) |y—z|5 <1+) IVypa(t' — s,y — z)|dzds

/ / (s,y —x) Z' IVypa(t' — s,y — 2)|dzds

5/ /f’a(S,Z—l‘ <1+)t—s c*pa(t—sy—z)dzds

+paty—a:/ / z - Dot — s,y —2)|dzds

s
Spalt,y—x)(1+t~ a)t—t) (4.3.24)
For Hj, let us split it into three parts again, using a cancellation argument on two of them:

t— (f —t)

H; = / / (0,2,8,2)b(r, 2) - [Vypa(t' — s,y — 2) = Vypa(t — s,y — z)] dzds

t—(t' —t)
/t / (0,2, s,2)b(r,z) = (0,2, 8,y)b(r,y)] - [Vypa(t' — s,y — 2) — Vypa(t — s,y — )] dzds

(t/ t)

+ / / [F(O7xa S, Z)b(?“, Z) - F(O,]}, Say)b(ra y)] ) [vypoz(t/ —5Y—- Z) - Vypa(t —5Y—- Z)] dzds
t—t
=: H31 + Hs3z + Has.

For Hsy, notice that for s < (t — (t' —t))/2 =t —1¢'/2, ' —s > 3t'/2 —t and t — s > t'/2, there will be no
time singularities in (¢t — s) or (¢’ — s) to integrate. There is thus no need to use a cancellation argument to
derive a smoothing effect. Using simply (4.3.1), we get

t— (t —t)

| H31l </ /pa §,2— 1) b||Loo(()Zj1[pa(t'—s,y—z)—l—pa(t—s,y—z)} dzds

o

St —)7t5 [Palt,y — 2) + Palt’,y — 7)) (4.3.25)

For Hjo, notice that on the considered time interval, t' — s > 2(t' — t), so we are at the right time scale to
use a Taylor expansion in time:

t—(t'—t) 1
/ / [[(0,z,s,2)b(r,z) — (0, z,s,y)b(r,y)] - / hVypal(t — s+ At —t),y — 2)(t' — t)d\dzds.
! 0

(t’ t)

Using (4.3.23) and then (4.2.2) along with the fact that for on the considered time interval, we have t — s+
At —t) <t —sand po(s,y — ) < Palt,y — ), we get

t—(t'—t)
|Hso| S (¢ —t /t /{ﬁa(s,z—x) (1—}—3‘5) —i—ﬁa(s,y—x)s_g}

(t’ t)

1
X / ly — 2|°10:Vypa(t — s + ANt —t),y — 2)|dAdzds
0

(t/ t)

t—(t'—t)
(' —t / /[ﬁa(s,z—x) (1+8_g)+ﬁa(t»y—x)s_§} (t—s)” 1+ﬁo¢1p (t— s,y —2)|dzds

St — )7L+t %)palt,y — ), (4.3.26)
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observing that —1 4 (8 — 1)/« < —1 for the last inequality.
For Hss, we take advantage of the fact that we integrate on a time interval whose length corresponds to

the time difference. This means we can use the smoothing in time effect for each term of the difference (no
need to expand in space the difference of the gradients). Namely,

|Hss| <

~/t—(t’—t) / [0(0,z,s,2)b(r,z) = T(0,z,s,y)b(r,y)] - Vypa(t' — s,y — 2)

+

t
/ / (0, z,s,2)b(r,z) = (0, z,s,y)b(r,y)] - Vypa(t — s,y — z)dzds
t—(t/—t)

B—=1

t , ,
S/ /[ﬁa(s,z—x) (1457%) 4 Palty —2)s 5] (1 = )5
t—(t' —t)
X (ﬁa(t —5Y—- Z) +ﬁa(t/ - S,y — Z)) d.ZdS7

using again (4.3.23) for the last inequality. This eventually yields

Has| S (' = )% (14 t7%) (Balt,y — 2) + Palt',y — ). (4.3.27)

Gathering estimates (4.3.22), (4.3.24), (4.3.25), (4.3.26) and (4.3.27), we obtain

- t) " Balt,y — @) + Palt',y — )], (4.3.28)

|F(0,x,t,y) - F(vaat/ay” S (

which precisely gives (4.1.16) since we have assumed s = 0. O

4.4 About the full parabolic bootstrap in the forward variable for
the diffusion

The point of this section is to provide a proof of the full parabolic bootstrap for the diffusion in its forward
variable in the case a + 8 — 1 < 1. Indeed, when a + 3 — 1 > 1, it cannot be expected to have an exponent
greater than 1 and (4.1.17) is already sharp.

Namely, we prove the following : there exists C := C(d, b, , T) s.t. forall0 < s <t < T, (z,y,w) € (R)3
st ly—w| < (t—s)a,

IT(s,z,t,y) — (s, z,t,w)| < C (H) Dot — s,w — ). (4.4.1)

The approach is very similar to the previous one to show (4.1.17) and we present here the result for the

sake of completeness only as we do not make use of it. Equation (4.1.17) (taking € therein s.t. v. = ) is
enough for the proof of Theorem 4.1.

Proof. Set, for 7 meant to be small,

hZa:(t) = su { _ |F(S,l‘,t,2)__ F(S,.Z‘7t/72/)|<t—8)g : }
' (2,2")€(R4)2 (pa(t75,27$)+pa(t75,z 7‘1‘)) (|ZﬁZ ‘\/77)“’
that — I (s,2,t,2) =T (s,,t,2")|

Pa(t—s,z—x)+Pa (t—s,2' —x)
777 < 4o00. W.lo.g., we take s = 0 for simplicity and assume T is small, in particular T" < 1. Let us write

Since we already know from (4.1.15)

< oo, we immediately have hl (t) <

~
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for 0 <t <T,(z,y,y") € (RY)? the following:
F(Oa ‘T,tay/) - F(vavtay) - pa(tay/ - :IZ) 7po¢(t7y - x)

t/2
+ / /F(O,x, $,2)b(s,2) - (Vypa(t — s,y — 2) = Vypa(t — s,y — 2)) dzds
0

t—(ly' —ylvn)©
+ / /F(O,x, $,2)b(s,2) - (Vypa(t — s,y — 2) = Vypa(t — s,y' — 2)) dzds
t)2

t
+ / /F(O,x, $,2)b(s,2) - (Vypa(t — s,y — 2) = Vypa(t — s,y — 2)) dzds
t—=(ly'—ylvn)~
=: A1+ Ao+ Az + Ay
We tacitly assume as well that (|’ — y| V)¢ < t/2 since otherwise, i.e. in the off-diagonal case, the expected

control [(T'(0,z,t,y) — T(0,z,t, y Nt=]/[(Pa(t,y — ) + Pa(t,y’ — )|y — ¥'| V1)7] < C readily follows from
the Aronson type bounds (4.1.15).

For A1, we use the regularity of the stable kernel, (4.3.2) to write
ly—y'|" _ ’
A < til(pa(t,y—x)—&—pa(t,y —x)). (4.4.2)

For Ao, using again (4.3.2), we write

ly—y'

L—u(pa(tfs,yfz) Jrﬁa(t*s’y/ 72))
(t—s)=

[Vypa(t =5,y = 2) = Vypa(t —5,y" = 2)| <
which yields, along with (4.1.18) and the convolution property (4.1.13) of pq,
o2 ly—y'" ’
[Ag] S / /?a(&z - 90)||bHL°°W(ﬁa(t —5,Y—2) +DPalt — 5,y —2))dzds
0 —8)

cly=yr oy
S tT(pa(ty—x) +Palt,y’ — ). (4.4.3)

For Ag, using a Taylor expansion and then a cancellation argument, we have

t—(ly—y'|vn)® 1
As = / // (0, z,s,2)b(s, 2) - Vflpa(t -8,y + /\(y/ —y) — Z)(y' —y)drdzds
t/2 0

t

t—(y—y'|v)™ 1
= //2 [) /[F(O,SC,S,Z)b(S,Z) *F(O,:E,s’er)\(y/ *y))b(s,er/\(y/ 7y))]
Vopalt — s,y + Ay —y) — 2)(y' —y) dzdAds. (4.4.4)

We then write, using (4.1.17) with e > 0 s.t. 7. = § when |[y+A(y —y) —z| < s= and a triangular inequality
when |y + \(y' —y) — 2| > v,
‘F(Oa Zz,s, Z)b(57 Z) - F(Ov z,8,y + A(y, - y))b(sa Y+ A(y/ - y))|
Sly+ AW —y) = 2 Pals, 2 — )
ly + My —y) — 2/

— _ — /7 _
+ [10]| L sé \y+>\(y’—y)—z|§s% (Pa(s,2 —2) + Pa(s,y + Ay —y) — x))
_B8 _ _
S+ —y) -2 (14+57%) (pacs,z — &) + Pals,y + AW — ) —x>>. (4.4.5)
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Plugging this into (4.4.4) and using (4.2.2), recalling that on the considered time integration (t—s) > |y’ —y|®
(local diagonal regime), we get for v1 € (v, 1),

t—(ly=y'[v)™ 1 , 8
Aol 5 [ [ [ patsz=2)+ palssy 4 A0 = ) - ) (145757)
t 0

/2
ly—y'|™ '
X ————Palt — 5,y + ANy —y) — z)dzd)ds
(t—s)" o
t=(ly=y'[vm)* 1 5 y —y' "
5/ / ﬁa(tay+>‘(y/*y)*$) (1+57E> | 1+|~r1*5 dAds
t/2 0 (t—s) o>
. t=(ly—y'Ivm* s ly — /|
S (altoy—2) +altey’ = o) [ (1+5%) L ds,
t/2 (t — S) a

where, for the two last inequalities, we use the fact that for s > ¢/2, up to a modification of the underlying
variance in the Brownian case, po(s,y + Ay —vy) — ) < Pa(t,y + Ay — y) — x) and since |y — ¢'| < te,
Pty + Ay —y) — ) < Palt,y — ) + pa(t,y’ — x) with the same previous abuse of notation if a@ = 2.
Finally, noting from the above 71, that (1 4+~ — 8)/a > 1 <= ~; > ~, this yields

|As] S Palt,y — )+ Pty —2) [y =" (ly =¥ | V)™ S Palt,y — ) + Palt,y’ — ) (ly —y'| V).

(4.4.6)
For Ay, write:
t
ads| | 100,25 2)0(5.2) = PO, 5.0)b(5.0)] - Fypalt = 5. — =) d= s
t—(ly'—ylvn)>
t
+ / /[I‘(O, z,8,2)b(s,2) = T(0, 2,5,y )b(s,y)] - Vypa(t — s,y — 2z)dzds
t—(ly'—ylvn)~
t _ _ /
t—s,y— t—sy —
< [ potoiz =) (14578 ) B AR 0 = D g,
t—(ly'—ylvm)= (t—s)a"a
where we used (4.1.17), with 7. = 8 and (4.2.2) for the second inequality. We get:
_ _ _8
AlSBaltsy — ) + Balt,y = @)l —ylv ) (1+¢75). (44.7)
Gathering estimates (4.4.2), (4.4.3), (4.4.6) and (4.4.7), we obtain
I — oyl v n)Y _
00,2,) = D0, 2,69 £ (Baltyy — o) + ey’ — o) WUV g 23],
Noting that v — 8 = a — 1 > 0, we get, in turn
hg o (t) S 1.
Taking the limit 7 — 0 concludes the proof of (4.4.1).
[
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Chapter 5

Weak well-posedness and weak

discretization error for stable-driven
SDEs with Lebesgue drift

This chapter is based on the article [FJM24] written with Stéphane Menozzi and Benjamin Jourdain and
published in the IMA Journal of Numerical Analysis. Therein, we are interested in the discretization of
stable driven SDEs with additive noise for @ € (1,2) and L9 — LP drift under the Serrin type condition
% + % < a — 1. We show weak existence and uniqueness as well as heat kernel estimates for the SDE and

obtain a convergence rate of order é(a —-1- (% + %)) for the difference of the densities for the Euler scheme
approximation involving suitably cutoffed and time randomized drifts.

5.1 Introduction

For a fixed time horizon T" > 0, we are interested in the weak well-posedness and the Euler-Maruyama
dicretization of the SDE

dX; = b(t,Xt) dt + dZt, Xog ==, vVt € [O,T], (511)

where b belongs to the Lebesgue space L4([0, T, LP(R%)) := {f 20, T) x R« ||t = || f(¢, MzellLago.ry) < oo}
=: L9— LP and Z; is a symmetric non-degenerate d-dimensional a-stable process, whose spectral measure is
equivalent to the Lebesgue measure on the unit sphere S~! (see Subsection 5.1.4 for detailed assumptions
on the noise).

We will work under the integrability condition

T % a1, ae(1,2). (5.1.2)
p q

This condition can be seen as the a-stable extension of the Krylov-Rockner condition for Brownian-driven
SDEs (see [KR05]), although not guaranteeing strong well-posedness in the strictly stable setting (o < 2).
To this end, some additional smoothness conditions on the drift naturally appear, expressed in terms of
Bessel potential spaces (see [XZ20]).

1 Université Paris-Saclay, Laboratoire de Mathématiques et Modélisation d’Evry (LaMME), 23 boulevard de France, 91 037
Evry7 France

2Cermics, Ecole des Ponts, INRIA, Marne-la-Vallée, France.
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In this paper, we first establish well-posedness of (5.1.1) through the study of a suitably associated Euler
scheme, for which we prove heat kernel estimates. These then allow to follow the usual route to derive
well-posedness: tightness, identification of a martingale problem solution and stability. As a consequence of
this approach, we derive Duhamel-type expansions for the densities of the Euler scheme and the diffusion,
which paves the way for an error analysis.

There has recently been a growing interest for SDEs of the type (5.1.1) which involve a singular drift,
both from the theoretical and numerical points of view. Drifts of the above form indeed appear in some
physics-related models, having in mind, for example, the Biot-Savart kernel or Keller-Segel-type equations.

This paper can be viewed as a stable-driven extension of [JM24b], in which the corresponding Brownian
case was addressed for the weak error. Stable processes naturally appear when modelling anomalous diffusion
phenomena (see [Esc06] for the fractional Keller-Segel model and [MS12] for general fractional models). It
is therefore important to be able to quantify how discretization schemes can approximate (5.1.1).

5.1.1 Definition of the Euler scheme

Since we consider a potentially unbounded drift coefficient, it is natural to introduce a cutoff for the dis-
cretization scheme. For a time step size h, the two cutoffs we consider are the following:

o If p = g =00, we simply take V(¢,y) € [0,T] x R, br(t,y) = l_)h(t,y) =b(t,y).
e Otherwise, we set

1

min { |b(t, )|, Bh~ 55

. d
bh(t,y) = |b(t, y)| b<t7y)1|b(t,y)|>07 (t,y) S [07T] x R%, (513)
_ min < |b(t, y)|, Bha !
bh(t,y) = { |b(t y)| b(t»y)ltzh,\b(t,y)|>07 (ta y) € [OvT] X Rda (514)

for some constant B > 0 which can be chosen freely as long as it does not depend on h nor T

The first option has a cutoff level related to the integrability condition (5.1.2), while the second one is related
to the auto-similarity index of the driving noise. The latter also artificially sets the drift to 0 on the first
step (we will see later that this allows in particular to compute estimates on the gradient of the density of
the Euler scheme). The idea behind this cutoff level is to make sure the contribution of the drift does not
dominate over that of the stable noise on each time step of the scheme.

As it will be observed from Theorem 5.2, both cutoffs lead to the same convergence rate for the error
associated with the densities of the corresponding schemes. Since, by (5.1.2), % -1< faip — %, the first
one actually cuts at a lower level, possibly yielding less singular values, and therefore more stability, from a
numerical perspective. On the other hand, the auto-similarity related cutoff, which has to be reinforced on

the first time-step, also is very natural.

We then define a discretization scheme with n time steps over [0, 7], with constant step size h := T'/n.
For the rest of this paper, we denote, Vk € {1,...,n},t; := kh and Vs > 0,7/ := h[ 2| € (s — h, s], which is
the last grid point before time s. Namely, if s € [tg, tg41), TSh = tg.

In order to avoid assumptions on the drift b beyond integrability and measurability, we are led to ran-
domize the evaluations of b, (resp. by) in the time variable. For each k € {0,...,n — 1}, we will draw a
random variable Uy, according to the uniform law on [kh, (k+1)h], independently of each other and the noise
(Zt)t>0. We can then define a step of the Euler scheme as

xh

th+1

= Xp, + (Zuor — Zu,) + hbn(Ur, X}, ), (5.1.5)
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and its time interpolation as the solution to
AX[ = dZ; + ba(U £}, X 1) dt. (5.1.6)
Similarly, for the alternative cutoff, we define

Xh

tht1

= ch + (Ztk+1 - Ztk) + hBh(Ukngc)7 (517)
and its time interpolation as the solution to
dX{ = dZ; + bp(U 1), X D) dt. (5.1.8)

As by, and by, are bounded, the schemes (5.1.6) and (5.1.8) are well defined and admit densities in positive
times. We will denote by I'*(0,z,t,-) and I'*(0,z,t,-) their respective densities at time ¢ € (0,7] when
starting from x at time 0.

5.1.2 Well-posedness - state of the art

Let us recall that weak well-posedness is often investigated through the parabolic PDE which is naturally
associated with the SDE (5.1.1)

(05 + b(s,2) - Vo + LY u(s, ) = f(s,2) on [0,T) x RY, u(t,z) = g(x) on R, (5.1.9)

where £ is the generator of the noise and f and g are suitable functions. Bearing in mind that, in the
B-Holder setting, the associated parabolic regularity gain is 8 4 «, the regularity condition 8 + « > 1 natu-
rally appears to define the gradient of the solution. Let us point out that this condition already appeablack
in the seminal work of [TTW74]. For weak and strong well-posedness in the Holder setting, we can e.g.
refer to [MP14] and [CZZ21], which also includes the super-critical case. Since we do not have any regularity
available on the drift b, we are naturally led to consider sub-critical regimes for the stability index (i.e. a > 1).

Establishing estimates on the gradient of the solution to the PDE naturally leads to weak uniqueness in
the multidimensional setting for (5.1.1) through the martingale problem. In this paper, under (5.1.2), we
obtain such estimates exploiting heat kernel estimates for the density I'* of X" and taking the limit as h
goes to 0. Keep in mind that some additional smoothness is required to derive strong well-posedness in the
multidimensional case.

In the strictly stable and time-homogeneous setting with mere integrability assumptions on the drift,
weak existence and uniqueness of a solution to (5.1.1) was first investigated in [Por94] in R and extended
to the multidimensional case in [PP95] under the condition % < a — 1 by constructing the density using its

d
parametrix expansion. When considering the embedding LP(R?) < Bss(R?) (the latter being the Besov
space with regularity —%), the previous condition is then consistent with the condition o+ 8 > 1 appearing
in the Holder case.
Let us also mention the work [CdRM22a], in which weak well-posedness is proved for distributional drifts

1-a+2+44
in the Besov-Lebesgue space L? — BJ | under the condition 3 > % In view of this threshold, our

well-posedness result can be seen as an extension of this work for g = 0.

Our approach to well-posedness naturally provides heat kernel estimates for both the discretization
scheme and the limit SDE that quantify the behavior of their time marginal laws. Namely, as detailed in the
seminal work by Kolokoltsov [Kol00], for a smooth bounded drift, the time marginals of the solution (5.1.1)
and the noise behave alike. This work was then extended in various directions, mostly for Holder continuous
drifts (see [KK18], [Kull9], [CHZ20] and [MZ22]), and more recently for distributional drifts (see [PvZ22]
in the Brownian setting and [Fit23] in the strictly stable case). In those works, the authors again establish
that the time marginal laws of the process have a density which is “equivalent” (i.e. bounded from above
and below) to the density of the noise, and that the spatial gradients exhibit the same time singularities and
decay rates (see Theorem 5.1 below in the current Lebesgue setting).
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5.1.3 Euler scheme - state of the art

For the discretization of singular drift diffusions, a rather vast literature exists, although it mostly focuses on
the Brownian setting for an additive noise. A first approach consists in using the sewing lemma (see [Lé20])
in order to obtain results on the strong error rate, which is defined as the convergence rate of

sup |X; — Xth\
t€(0,T)

(5.1.10)

Lr

for some r > 1. This was done in the work of Lé and Ling ([LL21]), who obtain a convergence in h2|In(h)|
under the Krylov-Rockner condition % + % < 1 (see also [DGI22]) even with multiplicative noise (when the
corresponding coefficient is Lipschitz in the spatial variable) for the semi-discrete scheme where the time-
variable of the coefficients is not discretized. This is a remarkable result since, up to the logarithmic factor,
this corresponds to the convergence rate for the strong error associated with a Brownian SDE with Lipschitz
coefficients with non-trivial diffusion term. It remains open to understand whether the strong convergence

rate improves in terms of the gap to criticity 1 — (% + %) in the additive noise case.

The main contribution of the sewing lemma consists in bounding L" norms of the form

|

that is, the strong error associated with local differences of the path along an irregular function with suitable
integrability properties.

t
/ b(s, X1 — b(s, X7, ) ds
i s

T] , (5.1.11)

On the other hand, deriving weak error rates usually involves studying the PDE (5.1.9) or the associated
Duhamel representation. Indeed, the weak error is related to the difference between the density of the SDE
(5.1.1) and that of the corresponding Euler scheme (5.1.6). Using the Duhamel representations satisfied by
the respective transition densities I' and I'"* of the diffusion and its Euler scheme, we will estimate

‘F(07$7tay) - Fh(071‘7t’ y)|

This approach allows to integrate against any type of irregular test functions enjoying suitable integrability
properties.

When the coefficients of (5.1.1) are smooth, the seminal paper of Talay and Tubaro ([TT90]) gives a
convergence of order 1 in h. With S-Holder coefficients, the work of Mikulevicius and Platen ([MP91])

proves a convergence in h% in the Brownian case. In these works, for u solving (5.1.9) with smooth terminal
condition g and no source term f, applying It6’s formula, the error writes

E(g,t, 2, h) = Eoulg(X{) — 9(X4)] = Eouu(t, X}') — (0, z)]
= Eo. [ /0 (b X} = bl X0) ) - Fulr, X1 dr} :

where the index 0,2 of the expectation sign means that the scheme is started from X(’)L =z at time 0. The

authors then use classic Schauder type estimates, see e.g. [Fri64], to control |Vu||p~. From the S-Holder
continuity of the drift, the following bound is then derived

t
E(g,t, 2, h) < C||Vau g / Eo.e [\Xﬁ - thﬂ dr < C||Vul|zh?. (5.1.12)
A !

The above final rate then comes from the magnitude of the increment of the Euler scheme on one time step in
the L?(P) norm. However, one can see that this essentially consists in using strong error analysis techniques
to derive a weak error rate, which does not seem adequate.
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In the current work, we want to investigate errors of the form £(d,,t, z, h) (where §, is the dirac mass at
point y). This formally writes

t
E(6,.t,7,h) = o U (b(r, XMy - b(TTh,th))) SNLD(r, 20t ) |aen dr| (5.1.13)
0 T "

where T' is the density of (5.1.1). When comparing this equation to (5.1.11), we see that, in the weak
setting, an additional gradient term appears. Whenever this term is not regular enough, which is the case
in the current Lebesgue setting, it lowers the time integrability properties of the irregular function that we
want to investigate. However, in the specific case of a Holder continuous drift and terminal condition g,
this additional term can be handled using sewing techniques. Doing so in [Hol24], the author improves the
convergence rate in (5.1.12) to K. The study of the weak error for Holder coefficients and a final Dirac
mass will be the topic of an upcoming work.

In the irregular setting, for the weak error associated with the densities, two additional tricks turn out
to be useful for the error analysis. The first one is the randomization of the time variable which permits to
replace b(7/, X",) by b(r, X",) in (5.1.13) (up to some error term on [r{,#]). The second one, introduced in
[BJ22] in order to tackle mere bounded drifts, consists in writing

EO,x[b(ra Xr}}) : VF(Ta vaﬂlv t, y) - b(?”, Xh ) : VF(Ta X"}'L7}~L , b, y)]

h
Tr

= /[l"h(O,x,r7 2) = TM0, 2,7, 2)]b(r, 2) - VT(r, 2, t,y) dz (5.1.14)

and exploiting the regularity in the forward time variable of I'" instead of that of b- VI. In [JM24b], authors
use this technique with a drift in L? — L? to derive a rate of order 3, where v :=1 — 4 _ 2 i the so-called
“gap to singularity” or “gap to criticity”. Note that, with respect to the rate obtained in [LL21], due to the
additional gradient term in VT in (5.1.14) (as opposed to (5.1.11)), an order % is lost on the convergence
rate. However, the techniques developed therein allow to take advantage of the gap to singularity.

As mentioned, the rate for the strong error under the Krylov-Réckner condition is (at least) %7 up to a
logarithmic factor. Since we expect the weak error rate to be at least as good, it remains to understand how
to improve it beyond 1.

In Theorem 5.2, we obtain a weak error rate in ha, where our “gap to singularity” is now defined as
yi=a—1- (% + %) > 0. Importantly, there is continuity w.r.t. the stability index for the associated error
rates.

5.1.4 Driving noise and related density properties

Let us denote by £* the generator of the driving noise Z. In the case o = 2, £ is the usual Laplacian 1 A.

When « € (1,2), in whole generality, the generator of a symmetric stable process writes, V¢ € Cg"(RdQ, R)
(smooth compactly supported functions),

LYG(x) = p.v. / [¢(z + 2) — ¢(z)] v(dz):= lim [¢(z + 2) — ¢(z)] v(d2)

R =0 J)2)>e

B ot o) — bl dp
= [ 0t +00) — o tae)

i.e. p.v. stands for the principal value and p is a finite measure on the unit sphere S%~1 such that u(A4) =
pu({€ €S9t —¢ € A}) for each Borel subset A of ST1. We refer to [Sat99] for the polar decomposition of
the spectral measure.

This general setting will not allow us to derive heat kernel estimates, because it does not lead to global
estimates of the noise density. In [Wat07], Watanabe investigates the behavior of the density of an a-stable
process in terms of properties fulfilled by the support of its spectral measure. From this work, we know that
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whenever the measure p is not equivalent to the Lebesgue measure m on the unit sphere, accurate estimates
on the density of the stable process are delicate to obtain. However, Watanabe (see [Wat07], Theorem 1.5)
and Kolokoltsov ([Kol00], Propositions 2.1-2.5) showed that if

cIm(d€) < p(d€) < em(d€) for some ¢ € [1, +00), (5.1.15)

the following estimates hold for the density z ~ p, (v, z) of Z, with respect to the Lebesgue measure on R?
when v > 0 : there exists a constant C depending only on a,d, s.t. Vv € R}, 2 € R?,

—(d+a) —(d+a)
clva (1 + |zl|> < pa(v,2) < Co~ @ <1 + ‘ZJ ) : (5.1.16)

Va Vo

As our approach heavily relies on these global bounds, we assume that p satisfies (5.1.15).
Note that in Section 5.2.1 and Appendix 5.5 which are dedicated to technical lemmas, we will be using
the proxy notation

Palv,2) i= —= (1 + 1) , v>0,z€RY (5.1.17)
Vo Vo
where C,, is chosen so that Vv > 0, [ pa(v,y) dy = 1, because we therein explicitly rely on the global bounds

provided by p,. In the rest of the paper, we will prefer the notation p,, directly referring to the density of
the noise. Note as well that, with these notations at hand, equation (5.1.16) then also yields:

_ C’*l
1 <
C™ ' Pa(v,2) < oA

_ C _ -~

Pa(v,2) < pa(v,2) < o Pa(v,2) < Cpa (v, 2),
«

for some constant C' > 1.

Further properties related to the density of the driving noise are stated in Lemmas 5.1 and 5.2 below.

5.1.5 Main results

We are now in position to state the main results of the current work. The first result concerns the well-
posedness of (5.1.1).

Theorem 5.1 (Weak existence and density estimates for the diffusion). Assume (5.1.2). The stochastic
differential equation (5.1.1) admits a weak solution such that for each t € (0,T], X; admits a density y —
[(0,t,z,y) w.r.t. the Lebesque measure such that 3C := C(b,T) < oo : Vt € (0,T],V(x,y) € (RY)?,

0(0,2,t,y) < Cpalt,y — ), (5.1.18)

and this density is the unique solution to the following Duhamel representation among functions of (t,y) €
[0, T] x R? satisfying (5.1.18):

t
vt € (0,T], Vy € RY, L0,z,t,y) = pa(t,y — ) —/ / I'0,z,7,2)b(r, 2).Vypa(t —r,y — z) dzdr. (5.1.19)
0 JRd

Furthermore, there exists a unique solution to the martingale problem related to b -V + L% starting from x
at time 0 in the sense of Definition 5.1 (see page 102 below).

Finally, let us define the “gap to singularity” as

Ni—a—1— (g+%) > 0. (5.1.20)

Then, T has the following regularity in the forward spatial variable: ¥t € (0,T],Y(x,y,") € (R?)3,

1—\ _1—\ / <C‘y_y/|’y/\t% _ !/
IT'(0,2,t,y) —T(0,2,t,9y")| < CF—"5—— (pa(t,y — ) + pu(t,y' — 2)). (5.1.21)

a
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The proof of the heat kernel estimates for the diffusion heavily relies on the following heat kernel estimates
for the density the Euler schemes (5.1.6) and (5.1.8).

Proposition 5.1 (Density estimates for the Euler scheme). Assume (5.1.2). Set h = L n e N*. Let X"
be the scheme defined in (5.1.6) (resp. X" the scheme defined in (5.1.8)) starting from o € R? at time 0.
Then, for all 0 < ty := kh <t < T, k € {0,--- ,n—1},(z,y) € (R)?, the random variable X} admits,
conditionally to Xthk =z, a density " (ty, z,t,-), which enjoys the following Duhamel representation: for all
y €RY,
t
T (te, 2, t,y) = pa(t —th,y — ) — /

tr

B [bn(Ug 1, X2) - Vypa(t = ryy — XJ)] ar, (5.1.22)

where the index ty,x of the expectation sign means that the scheme (Xf’)re[tk’T] 1s started from X{; =z
at time t,. Similarly, the random variable X}' admits, conditionally to )_([L = x, a transition density
Th(ty, x,t,-), which enjoys the following Duhamel representation: for all y € RY,

t
T (ty, 2., y) = palt — to,y — @) — / Et\o [bh(UL%J L XR) - Vypalt =1y — Xf})} dr. (5.1.23)
tr

Furthermore, there exists a finite constant C' not depending on h = % such that for all k € [0,n — 1],t €
(tkaT]7x7y7y/ S Rd7

T (tg, x,t,y) < Cpalt —ty,y — ) (5.1.24)
and

|Fh(tka (E7t7y/) - Fh(tlﬁ'r’t’ y)|

y_y/'y/\ t—tr a
| (zlt t()v 2 (palt =ty = 2) + palt — tiyf — ), (5.1.25)
1)

<C

for v defined in (5.1.20). Also, for all 0 <k <€ <mn, t € [ty,tii1],7,y €RY,

(t —tg)=

‘Fh(tkvxvtay)_Fh(tkvxvtfvy” <C ol
(te — te)=

Pa(t —th,y — z), (5.1.26)

and the same estimates hold with T" replacing T".

Our second main result, requiring the results of Theorem 5.1, states a weak convergence rate bound for
the Euler schemes (5.1.6) and (5.1.8) :

Theorem 5.2 (Convergence Rate for the stable-driven Euler-Maruyama scheme with L9— LP drift). Assume
that (5.1.2) holds. There exists a constant C < oo s.t. for all h = T/n with n € N*, and all t € (0,71,
z,y € R?

00,2, t,y) — T(0,2,t,y)| < Chapa(t,y — ),
resp. [F(0,2,t,y) — T(0,2,1,9)] < Ch¥ pa(t,y — ).

5.1.6 Notations and conventions
We will use the following notations :
e A < B if there exists a constant C' > 1, which depends only on «,d, p, q,b, T, such that A < CB.

e A =< B if there exists a constant C' > 1, which depends only on «,d,p,q,b, T, such that C™1B < A <
CB.

e For ¢ € [1,400], we always denote by ¢’ € [1, +o0] its conjugate exponent, i.e. % + ei' =1
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Also,
e The symbol x stands for the convolution operator in space.

e The integrals appearing in the computations for which we omit the integration domain must be un-
derstood as integral over the whole spatial domain R%. It will be clear from context and shortens the

writing.
e For a,b € N with a < b, the notation [a,b] := [a,b] N N is the corresponding integer valued interval
{a,a+1,--- b}

The article is organized as follows. The proof of Theorem 5.2 is developed in Section 5.2 (assuming that
the controls of Theorem 5.1 hold). Section 5.3 is dedicated to the proof of the estimates for the schemes.
The proof of Theorem 5.1 is presented in Section 5.4.1. The proof of some technical results are gathered in
Appendix 5.5.

5.2 Proof of the convergence rate for the error (Theorem 5.2)

5.2.1 Technical tools

We will profusely use the following technical lemmas which hold for any stability index a € (1,2) and are
proved in Appendix 5.5:

Lemma 5.1 (Stable sensitivities - Estimates on the a-stable kernel). For each multi-index ¢ with length
I¢| <2, and for all 0 <u <’ < T, (x,2") € (RY)?,

e Bounds for space and time derivatives: for all € {0,1},

Pa(u, )
105V 5pa(u, )| < R (5.2.1)
e Spatial Holder regularity: for all 6 € (0,1],
¢ ¢ / |:C — 1‘/‘6 1 1
|Vipa(u,z) — Vipa(u,2')| S T A1) — (palu, ) + palu,z’)). (5.2.2)
o us
e Time Holder regularity: for all 8 € (0,1],
u—1u 0
|V§pa(u,:17) - Vgpa(u’,xﬂ S % (Pa(u, ) + po (v, x)) . (5.2.3)
u @
e Time scales for spatial moments: for all £ € [1,+00] and é € [0, % +a),
_d s
lpa (s ) - [°ll e < Cumsrte (5.2.4)
e Convolution: for all (v,y) € (RY)%, 0<s<u<t<T,L>1,
1 1
[Pa(t = u, - = y)pa(u—s,2 —)[[Le S -+ = | Pa(t — 5,2 —y). (5.2.5)
(t—u)az  (u—8)ar

Integration of an L* function in a spatial stable convolution: for all (z,y) € (R)%, 0<s<u<t<T,
0>1,¢ € L'(RR),

1 1
- %] palt = s,y = )¢l e. (5.26)

ot —u,z2—x 2)|pa(u—s,y—2)dz S d
[ at Nopalu =8y =2)ds £ | e+ o
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Lemma 5.2 (Feynman-Kac partial differential equation). Let t > 0 and ¢ : R — R be a C? function with
bounded derivatives. Then the function v(s,y) = ls<ipa(t — 8,) x ¢(y) + Ls—t(y) is C12 on [0,1] x R? and
satisfies the Feynman-Kac partial differential equation

Y(s,y) € [0,t) x RY, d,v(s,y) + LY (s,y) =0, v(t,y) = o(y).

Lemma 5.3 (Integration of the drift in a spatial stable time-space convolution). Let 0 <u < v <t < T
and B1,B2 € Ry. Let b € L([0,T], LP(RY)) with p,q such that (5.1.2) holds.

e Singular case. If v <t and

q <d +ﬁ1> >1 and q (d +52) <1,

ap ap
then,
v 1 1
[J /pa(r, z—x)|b(r, 2)|pa(t —r,y — z)mﬁ dr
< pa(t,y — ) ((v - u)%l_(ﬁﬁ'ﬁ?) + (v —u) P2 (t — v)%ﬂ_ﬁl). (5.2.7)

o Integrable case. If

d d
q < +ﬁ1> <1 and q ( +ﬂ2> <1,
ap

then,

v 1 1 a1
| etz =lbtralpatt =iy = )= dr S palty = a)lo = 0O (525

The previous lemma will be used to treat the main error terms in the analysis of the error. The most

common use case is when f; = 0 and 81 = 1 (we are thus in case (5.2.8)) and u = h,v = 7/* — h. This
configuration appears when we previously used (5.2.1) to bound the gradient of p,(t — 7,y — z) and that no
other singularities come into play. The case 52 > 0 with an additional singular in 7 factor is needed for the
proof of Theorem 5.2 (which will require setting 82 = 1).
We will also use (5.2.7) whenever there is an additional singularity in (¢ — ) which makes the previous
integral non-convergent (see e.g. (5.2.22)). This will actually happen in order to obtain exactly the gap -
defined (5.1.20) in the convergence rate or in the Holder exponents for the density, see e.g. Section 5.3.3 for
the proof of the Holder regularity of the density of the scheme stated in Proposition 5.1.

—(d+a)
Remark 5.1. From the definition of pa(u,z) = 5 (1 + I—i‘) introduced in (5.1.17), one can gather
the following: ‘
Let x € R and u > 0.

o If |z| > un (off-diagonal regime),

_ u
o If |z| < uw (diagonal regime),
1
Pa(u, ) X —. (5.2.10)
U

Those two regimes will be central in our proofs. The scales which we consider for these regimes derive
from the self-similarity of the noise. Let us as well point out that the diagonal bound in (5.2.10) is also a
global upper bound for both p, and p,.

The next lemma is very important since it precisely emphasizes that the drift by, (resp. by,) is actually a
negligible term w.r.t. the scale of the underlying noise for a one-step transition of the corresponding scheme.
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Lemma 5.4 (About the cutoff on a one-step transition). Here, by, € {bs,bn} stands for one of the two
drifts considered for the schemes.

e For all (u,r) € (0,T)%, s < min(u, h), (z,y) € (RY)?, and each multi-index ¢ € N¢ with length |¢| < 1,

Pa(u, y) )

1<l
U

IV palu,y — sbu(r,z))| < (5.2.11)

e For all (u,r) € (0,T)?,s < min(u, h), (x,y,y") € (RY)3, for each multi-index ¢ € N with length |¢| < 1,
and for all § € (0,1],

ly =y
s
U

19 bty — sbi(r,2)) — V¥paluyf — s (r, )] < ( A 1) L (el ) + Pl ).

¢ (5.2.12)

5.2.2 Proof of the error bounds of Theorem 5.2
Comparing the Duhamel formula of the scheme, (5.1.22), to that of the diffusion, (5.1.19), we get
Fh(o’ xZ, t7 y) - F(O7 x, ta y)

¢ t
= / / I'(0,z,s,2)b(s,2).Vypa(t — s,y —z)dzds — Eg » [/ bn(U s, Th) Vypa(t — s,y — XM ds] .
0 JRd
Respectively, for the alternative scheme involving by,
f‘h(o’ x, t7 y) - F(O7 €z, ta y)
¢ ¢
= / / I'(0,z,s,2)b(s,2).Vypa(t — s,y —2)dzds — Eg » [/ Eh(UL%J,th) Vypa(t — s,y — XM ds] .
o JRre o !

The error admits the following decomposition:

t
Fh(oa z, t7 y) - F(07 z, tv y) = / /[F(Oa z,s, Z) - Fh(oa z,s, Z)}b(& Z) : Vypa(t —5Y—= Z) dzds
0
'rthf
=+ 1{t23h} / /Fh(owxa S, Z)(b(87 Z) - bh(57 Z)) ’ Vypa(t —S5Y— Z) dzds
t1
T, —h
+1>3my / /[Fh((),x, 5,2) =0, 2,71, 2)]bn(s, 2) - Vypa(t — s,y — z)dzds
t1
+ 1{t>3h} Eo . l:bh(ULs/hJa 1) - (Vypa(t = Upsyngsy — X) = Vypalt — s,y — X[))| ds

h/tw/ /pa (8,2 =& = bp(r,2)s) (b(s, 2) = ba(r,2)) - Vypa(t — s,y — z) dzdrds

7' "+h
+1{t>h}h/ o / //Fh (0,2, 7", w)p (s—rsh,z—w—bh(r,w)(s—rsh))

x (b(s, z) — bp(r,w)) - Vypa(t — s,y — z) dzdwdrds
=: Al +A2+A3+A4+A5+A6, (5.2.13)

where, for the last term, we use that for s € (¢1,7], not belonging to the discretization grid and ¢ :
R? x R x R — R measurable and bounded, since X[ = X", + Z, — Zn + by (U2}, X, ) (s — 7]') with X,
Zs — Zyn and U| ¢ | independent, we can write L

o [o(X0 X0, U 1)

T, )
/ //qﬁ w, 2, ") TM(0, 2, 7 w)pa (s — 70 2 — w — b (r,w) (s — 7)) dzdwdr.  (5.2.14)
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Similarly, we define
fh(oaxat,y) - F(O,l’,t, y) = A1 + AQ + A?) + A4 + A5 + AG?
where by, is replaced by by,.

For Ao, As, Ay, we suppose that ¢ > 3h (otherwise these contributions vanish) and rely on the fact that
the current integration time is distinct from 0 and from ¢, meaning that we can rely on the smoothness
properties of the integrands on the considered time intervals. For As, Ag, on the opposite, we rely on the
smallness of the considered time intervals. The figure below shows the nature of the various terms in the
error expansion.
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\ t1 Tth —h Tth
f ; ;
0 t
Aq
Gronwall lemma
AV}
Cutoff error terms
Ag . . h
Forward time regularity of I'
Ay
Stable sensitivities
Aj
“«—> Overall error on the first full time step
Ag
—> Overall error on the last full time step

Figure 5.1: Splitting of the error (holds for both A; and A;, i € [1,6]).

Let us first deal with A,. Since this term vanishes when p = ¢ = oo (the same is true for A, when
h < (]|bl|pee—pe/B)T==), we assume that either p < oo or ¢ < co. Let A > 1. Using the fact that
Vy € Ry, 1y>1y < y ™1, we obtain that Vf : R — R, YO > 0,

flipsoy < FACN

This allows us to control the cutoff error in the following way:

1

|b—bh|=(|b|—3h—a%—a) < |bl1 Ca 1 < PBYTARGEE OO, (5.2.15)
+ =

Respectively

L < |b|>\Bl_)\h(1_é)(A_l).

b—8" = (bl = Bha~") < blL,
n |b|>Bha

Along with the use of (5.1.24) and (5.2.1), we obtain

Tth—h
|As] = |1g>3n) / /I‘h(O,x, 5,2)(b(s,2) — bu(s, 2)) - Vypa(t — s,y — z)dzds
t1

h—n
1 t t — —
< hf(alﬁa)(l*)‘)/ /pa(s,z—xﬂb(s,z)\)‘p—a( S’yi ?) dz ds.
th (t—s)a

Let us check that we can choose

1
A=1+—2— =1+
d 1
o T

71
o
Ty

with 1 € (v, 1], (5.2.16)

SIS

small enough so that p = £ and ¢ = { satisfy p > 1 and ¢ > 1. This is indeed possible since, by the definition
(5.1.20) of v and (5.1.2),

d+ 2 Y+
pv = L > 1 and ql > L >1
1+—ngg a—1 I+ = o}
P q P q
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Morever, in order to estimate the time integrals that will appear below after the application of Holder’s
inequality, let us observe that A\ > 1 and since

1 d
= -+ 2 (1+2=]] =1,
q—1l—g=z |a ap S+
[1dx A 1 da
wehave—(g) [—i— } (1—) [+]<—1.
A a  ap q a  ap

Using the identity Vf : R = R,Vu € Ry, Vp > p, ||f”||L£ = || fIl%, and (5.2.6) with ¢ =
inequality, Holder’s inequality in time and the last inequality combined with (¢t — 7/* + h) > h, we get

(e t_ ) -
D] < B+ 1>/ /pa 2)b(s, )M=Y =2) 4 g,
ty (t—s)a
1 1 1
< RO, <ty—x>/ L | —
t1 (t—s)a sar  (t—s)or
d 1)(A-1 mh A 1 1
< W& +HO-D,, <t,y—x>/ 1505, )3 | g + | ds
t satip (t—s)=Tar
< hEHDODp 8y — 2)s = [b(s, )10, ¢
T, —h 1 1 . (%1)/
X —+ S
/tl s@GHE)  (1— 5B (ES)
0 1 1_dx 1 1_dx
< nlsr +g) A= Upalt,y—2) (A = (=g + R) “p)
< AEFDODH=E A G D, (1y - o)
ghapa(t,y—x).

The same computations with the same choice of A yield [Ag| < h(1=a)A= Dpl-5-2(5

W polt,y — ) S hopa(t,y —

x).

p then Young’s

(5.2.17)

Ti)palty — ) S

We now turn our attention to As, for which we mainly rely on the Hélder regularity of I'* in time

(equation (5.1.26) of Proposition 5.1).

(5.1.26), we can write

Vs > tq, |

h_p
a5 [ [
7 T —h
[ e
31 (Tsh)a

_ 2
I"(0,z,s,2) —T"0,z,7", 2)| < upa( z—x).
(mh)=
We plug this into the definition of As, using as well |b,| < |b| (resp. |bx| < |b]):
™ha
Ts ———pa(s, z — 2)|b(s, 2)||Vypa(t — s,y — 2)| dzds
z)[b(s, 2)[[Vypa(t — s,y — 2)|dz ds.

We assume t > 3h, otherwise this contribution vanishes.

Using

We now deal with the gradient using (5.2.1) and notice that since s > #; > h then (7)~! < 257! to write

L, [rh 1
Y Ay
t—s

S Pa(s, 2 — x)|b(s, 2)|pa(t — s,y — z)dzds

Q\H

<h? //t Tz Pelsz = o 2lpalt — sy = 2)dzds
mpE
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Using (5.2.8) (with u = 0,v =, = 1/a, B2 = v/a so that ZEL — (8; + B5) = 0), we obtain
|As| S hepal(t,y — ). (5.2.18)

For A4, we first expand the expectation with the known densities using (5.2.14):

T, —h
A4:/ on{bh(Uls/hJ, W) (Vpalt = Ulsng,y — Xh W) — Vpalt — s,y — XM) | ds
ty

:Li/ M0, 2,85, 2) ///p — 2= ba(r,2)(s — 1))

Jj=1 J
X bh(rvz) . (vPa(t - Y- Z) - Vpa(t — S,y — w))dzdwdrds

We then derive, using (5.1.24) and (5.2.11),

L2 ti+r 1 fli+t
_ _ )
INED> / E/ //r (0,2, 15, 2)pe(s — t,w — 2 — ba(r, 2)(s — £;))[b(r 2)|
j=1 Jti tj

X (|Vpa(t —ry—2) = Vpa(t — s,y — 2)| + |[Vpa(t — s,y — 2) — Vpa(t — s,y — w)|) dzdwdrds
L J -2

/ﬁll/m//pat 2= @)pals —tjw = 2)|b(r, 2)

(|Vpa(t —ry—2)—Vpa(t— s,y —2)|+|Vpalt — s,y — 2) — Vpo(t — s,y — w)|) dzdwdrds.

(5.2.19)
Next, we use (5.2.3) to write
< |T — S|
[Vpa(t —ry —2) = Vpa(t —s,y — 2)| S W(l’a(t—r Y —2) +palt —s,y—2)).
Since r —s < h,t >3h and t —r V s > h, we can use (5.1.16) to deduce that
r—s
IVpa(t —r,y —2) — Vpa(t — s,y — 2)| S (tl_r)p'rlpa(t Ty — 2),
which also yields, for any v; € (v, ], recalling that r — s <t —r,
1
r— sl
Voot —ry—2)—Vpa(t—s,y—2)| < (tl_r)“Jrlpo‘(t —ry—2). (5.2.20)

For the second term in (5.2.19), assuming that 71 € (v, 1] , we deduce from (5.2.2) that

2 = wp

(t . 5) 1

¥t = 5.5~ 2) = Vralt = s,y =) 5 (0 A1) g Gl =iy = 2) palt = sy = ).

(5.2.21)
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Plugging (5.2.21) and (5.2.20) into (5.2.19), we can write

L -2 ok 1

j+1 1 j+1 |T
AVIRS / / //pa j»Z = T)pals tj,w—Z)|b(r,z)|pa(t—r,y—z)ﬁdzdwdrds

J t—r) a

] .
1 J+1 _
/ / //pa 12— T)pals tj,wz)|b(r,z)|pa(t5,yz)%dzdwdrds

(t—s)a

:~\v~

|
I;)d

-2

>

0

+

M

1

‘—H

S

lnl2 ti+1 1 i+
0 [T [ etz - aas — tiw - 2l
-1 7t t
|z_w|'Y1
X t—s,y—w
pa( Yy )<(t—8)11

= A} + A} + AL (5.2.22)

<.

/\1) ! —dzdwdrds
(t—s)e

Let us treat A). From the Fubini theorem, we integrate first in w using the fact that p, is a probability
density:

i+ ] j+1 ‘7"_5|’Y1
/ / /pa sz —x)|b(r, 2)|pa(t — 7,y — )ﬁ dzdrds. (5.2.23)

(t—r
Then, using t;l < 2r~1 and (5.1.16) along with the fact that |r — s| < h, we get
L]—2

j+1 " j+1 1
A}l S Z / he— / /pa ‘b T, z)|pa( T,y—z)ﬁ dzdrds

j:1 t—T «

{8 IR 1
g/ he /pa(r,z—m)b(r,z)|pa(t—r,y—z)()lmdzdr.

2 t—r)

Using (5.2.7) (singular case with u = t1,v = 7" — h, 81 = (1 + 1)/, B2 = 0 and noting that since ¢ > 3h,
v—u>h), we get

A Spalty —2)h ™ (W= 4 (=t
< palt,y — )b, (5.2.24)

Let us treat A% defined in (5.2.22). We integrate in w using (5.2.4) and use the fact that s —t; < h:
ti+1 1 i+ |z — w|™
A? = Z / / //pa (tj, 2 = 2)pals —tj,w — 2)|b(r, 2)|pa(t — s,y — 2) ——— 5 dzdwdrds
= t; (t—s

Lﬂ 2t s
L1 s—t
/t /t /pa jr 2 —x)|b(r, 2)|pa(t — s, y—z)(()l)erl dzdrds

o+

t—s) «a

- ’i N i1 1 Ll 1
< hie / / /pa iz —x)|b(r, 2)|pa(t — s,y — 2')71er1 dzdrds.
tj (t_ 8)

o

Notice that in the previous integral, as above p,(tj, 2 —2) S pa(r,z—z) and po(t—s,y—2) S pa(t—r,y—2),
11“ < 1+'Yl This yields

() e

wl L£1-1 1
Ai / /pa r,z — x)|b(r, 2)|pa(t — r, y—z)( )le dzdr,
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which is the right form to use (5.2.7) with the same parameters as for Al. Doing so, we obtain similarly

y=1

21
Aiﬁpa(t’y—x)h“l(t—ttﬁfl) o
< palt,y — x)he. (5.2.25)

Let us now turn to the term A} in (5.2.22):
e Global off-diagonal case: |z — y| > t=, then, since |y — x| < |y — w| + |z — w| + |z — x|, at least

one of the stable transitions in A} will be off-diagonal as well. In this case, we will actually manage to
retrieve the global final regime for p,(¢,y — x) from the inner densities in A3.

1
—If[z—a|> 3z —y| > %té 2 t5, we can write

L
pa(t]’z_x) 5 |Z—x|d+a ~ |$—y|d+a spa(t7x_y)

We can then compute

I' ti+ t
11 Jt+1
3,1 . -
Ai \z y|>ta — /tj /t //1|z z|>Lz— yPaltj, 2 — )

|z — w|™ 1
X pa(s —tj,w— 2)|b(r, 2)|pa(t — s,y —w) | ———=1 A1) ——— dzdwdrds
(EDERATENE:
Lil=2 4, t;
J 1 J+1
Spalty—z) > / E/ //pa(sftj,w—z) (5.2.26)
j=1 Yl tj
|z — w|™
X |b(’l"72)|pa(t -5y - w)ilm dzdwdrds
(t—s)"=
Lil—2 ti+1 1 rtite
Spa(t,y—x) / E/ Hb(?",')HLp dr
j=1 7t tj

Note that 1 < d+«a — g, allowing us to use (5.2.4):

)1 d

IPals —tj,w =) - —w|™ Lo S (s —t5) 27,

yielding, once integrating in w,

h tit1 1 .t %70%
A31 Spalt,y — ) Z / ||b(r,.)\|L,, dr%ds
" (t—s)at
LEl-1 4 a1 1
Np(l(t y_-r)/ e ap q = dS
b (t—s)a
Spa(t,y—a:)h%l*a%fihpé_%
st m)h%7 (5.2.27)

the last inequality being true only if 1 — é — T <0, which is always possible to satisfy since the
choice of v, € (7, 1] is free.
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—If|lz—w[> Lz -yl > %té7 remarking that s —t; < h and 0 < 2 + % < 1, we can write

s —t s —t t s —t hata

pa(s_tjvw_z)rs |w—z|d+0"\’ t X ‘.’E—y|d+aN n pa(t,$_y)5 t%+1 pa(tl‘—y),

and then compute

L tit1 t
1 Jj+1
3.2,
Ay =1 y|>t% /t /t //1|z w|>3ao—y|Palts, 2 = )
= J
‘Z—’LU|71

— A
(t—s)e
yi1q Lt J 2
h 3+i-1

j+1 j+1
2 LT e
+y

X |b(r, 2)|pa(t — s,y — w)idzdwdrds
(t—s)7

1
X pa(s —t;,w — 2)|b(r, 2)|pa(t — s,y — w) ( 1) Wdzdwdrds
_):

Spalt,y *1’)

|+

]-2

1 |y
h“+1 1% j+1 F+1 1
Spa(tayfx 5 Z / / /pa ]a |b(7” Z)|Wd2d7’d8

l
q

paei e b i 1
< palt,y — o) ——— / [b(r, )| e dr/ [Pa(ts,- —iv)lle'(ist

t%"'% = t; t— )é
+ LEl-2
ha EA | 1
w0y ¥ [ s
taTq J=1 t; tor (t — S)a

using (5.2.4) (with 6 = 0) and the Holder inequality in space for the antepenultimate inequality
and the Holder inequality in time for the last one.
Next, remarking that h < ¢; and therefore tj_l < 2571, we can write

~

ha (1 1

3,2

A4 Spoc(tay_x)t1+l/ ds.
@ q 0

sap (tfs)é

Hence,

ha b 1
Aiz §pa(t7y - (E) 1+;t1_0%’_%/ d_ 1 dA
taTyq 0 Aop (1*)\)‘1

S palt,y — 2)he, (5.2.28)
recalling the definition of ~ in (5.1.20) for the last inequality.

—Ifly—w| > iz —y|l > %té > (t —s)=, we can write

t—s t
pa(t_57y_w) 5 |y—w|d+a ~ ‘.’Ii—y|d+a Spa(t7x_y).
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This yields, using (5.2.4) to bound |pa(s —tj,z — )|z — ||| L1,

Lil=2 4, t;
1 [+
33._ 1 .
Ay \z yl>ta Z /t h/t //1Iy*w\>%\$*ylpa(t1’z z)
j=1 “t i

|z — w|" 1
X pa(s —t;,w — 2)|b(r, 2)|pa(t — s,y — w) — A1 - dzdwdrds
(t—s)= (t—s)=
Lil=2 4, t
1 J+1

< paltyy — ) Z/ / [ [ pattsz = alpals — tjw -2

¢
x b, )2

)1+71 dzdwdrds (5.2.29)

— S

B

L2

] i1 i+1 —t;)

Spalt,y —x) E / / (s 1+ﬂ/1 /pa(tj,zfx)|b(7",z)|dzd7"ds.
— t—S o
i=1

Next, we use s — t; < h, a Holder inequality in z and (5.2.4):

Ja
2172

L+t 1
3,3 Lo
MY Spalty a3 [T bl dr [ palty, )l g ds
j=1 t; t; (t — S) @
l£1-2 4
11 ] 1
Npa(tayix)h « 4 / d_ 1+~1 dS
j=1 tj tor (t - S) “

Choosing 1 € (v, 1] such that H'% > 1 we conclude that

1ty

A3 < po(tyy —a)h e i w (=1 + h) e S palt,y — 2)hE, (5.2.30)

e Global diagonal case: |z — y| < t=. We will use the fact that Palt,y — ) < =% to replace one

of the local transitions with p, (¢, — x), and then the computations will be the same as in the global
off-diagonal case:

4
o

—ift; <t/2, pa(t—s,y—w) S (t—s)"& St-
as from (5.2.29),

= pa(t,y — ), and the computations are the same

Qla

d
< -

—ift; > /2, pa(tj,z—x) S t; = pa(t,y — x), and the computations are the same as from

(5.2.26).

St

Overall, gathering the estimates (5.2.27), (5.2.28) and (5.2.30) as well as the estimates from the global

diagonal case, we obtain A3 < p,(t,y — 2)h=, which together with (5.2.25), (5.2.24) and (5.2.22) eventually
yields

Ay S palt,y — )b, (5.2.31)
as intended. As we only used |b,| < b for Az and Ay, the estimations remain valid for Az and Ay.

Let us turn our attention to As in (5.2.13) (first time step). Note that, even though a term b(s, z) —bp (1, z)
appears in Ag, its smallness actually follows from the fact that it only covers the first time step (over (0, t1At)).

Thus, we will bound Ay using the triangular inequality |b(s, z) — by (r, z)| < |b(s, 2)| + hT e (resp. using
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|br.(r, )| = 0 for r < h), and then compute a bound for each term. Namely,

1 1Nt h
|As| = E/ / /pa(s,z—x—bh(r,x)s)(b(s,z) —by(r,x)) - Vypa(t — s,y — z) dzdrds
0 0

1 tiNt h ) 1
S */ / /Pa(s,z—x —bp(r,x)s) <|b(s 2)|+h™ (Tp—a) — palt—s,y—2)dzdrds.
hJo 0 (t—s)a

Since in our current integrals, using (5.2.11), pa(s, 2 —  — bp(r, 2)s) < pa(s,z — ), we can write
ti AL 1
|A5\§/ /pa(s,z—;E)|b(s,z)|7lpa(t—s,y—z)dzds
0 (t—s)a

tl/\t d 1 1
+/ /pa(s,zf:c)h_aip_aip (t—s,y—z)dzds.
0 (t—s)

We then use (5.2.8) with u =0, v =t; At, f1 = é and (2 = 0 for the first term in the right-hand side and
the convolution properties of the stable kernel for the second one to conclude that :

25| S palt,y —w)h=. (5.2.32)

resp. |As| < palt,y — z)h=. (5.2.33)
Let us now turn to Ag in (5.2.13), for which the same reasoning as for Ay applies, although this time we

are working on the last time step, over (7" — h) Vt1,t). Let t > h (otherwise, Ag vanishes). Using (5.1.24),
(5.2.11) and (5.2.1), we can write

1 t T +}L
_h‘/(h ot / //I‘hOxJS,w (s—T:,z—w—bh(r,w)(s—Tsh))
T —h)Vity

X (b(s, z) — bp(r,w)) - Vpa(t — s,y — z) dzdwdrds

/ //Pa Z)pal(s Tf,z—w)|b(s,z)\wdzdwds
h)Vty (t—s)=

T, hih
at_ yd T
/ / //pa Z)pa(s Tf,z—w)|b(r,w)|wdzdwdrds
(Tt h)\/tl (t — S)E

=: A6 + A%.

For A}, we first use the convolution properties of the stable kernel in w and then apply (5.2.8) with u =
(th—h)Vt,v=t, B = é and (2 = 0 to obtain

t

e t_ )

Aés/ /pa(s,z—x)|b(s,z)|p—( %Y )dzds<pa(t y— a)h*.
(i =h)Vty (t—s)=

For A2, we use the convolution properties of the stable kernel in z and (5.2.6)

T +h h
all =755y —
A2 < / / /pa T w— ) \b(r,w)|p (- yl w) dwdrds
—h)Vi (t—s)a

Th+h
palt, )/ L, 1 ! / b(r, )| v drd
y— T, :)||Le drds
b Jr —nyvis (Tsh)“%’ (t—TSh)a% (t—s)x Jon

< palt Y~ /t L L 4
~ P Yy—x 4 S.
: (h-myve [ (th)@5 (¢ —rh)es | (=)=




Remarking that ¢t — 7" > ¢ — s, that 7/ > h and (t — (7} — h) V t;) < 2h we get

ds

t 1 )
A% Spa(t?y_x)hié/ hfﬁ + —
(T8 —h)Vts (t—s)er | (t—s)

SPalty = o)W F (WH (L= (7 = ) VR) T 4 (= (= B) V) TE )

< palt,y —x)he.

Q=

This is also a valid bound for |Ag| as we only used |by| < |b].

Now that, plugging the above computations for Ag and (5.2.17), (5.2.18), (5.2.31), (5.2.32) in

and using (5.2.1) for Aq, we obtain
IT"(0,2,t,y) = T(0,2,t,y)| S palt,y — x)h=

o t— y Y T
/ /|F 0,z,s,%) F(O,x,s,z)”b(s,z)\wdzds.
(t—s)a
Setting for all v € (0,71,
f(u) ‘= sup |Fh(ov L, U, Z) — F(O,Jj,u, Z)‘
x,z€R4 pa(uv Z = x)

)

we use (5.2.34) then (5.2.5) and Holder’s inequality in time to obtain :

Palt - Sy =2 z)
f(t) < ha + sup //f $)Pals,z — x)|b(s, z dzds
)< xyEdeaty )b(s, 2) | ——5— TEpE:
f(s)
<ShE + su / w8 = 2)palt = 8,5 — ) o [b(s, )| o ——2r ds
iy | el et =yl I e

N o) |1 1 T\
< p3 EAC/EE — ) as| .
s /0 ((t—s)i soﬁiﬂv—F(t—s)tflr»]) °

Up to a convexity inequality, we thus obtain the estimate

s sw¥ v [ T

1 1
T )dq,] ds.

ser  (t—s)er

Q\'“

(5.2.13)

(5.2.34)

(5.2.35)

Since qE/ + % < 1, this permits to conclude by a suitable Grénwall-Volterra lemma (see e.g. Lemma 2.2 and

Example 2.4 [Zhal0]) which ensures that

X
a

ft) s h=,

The same reasoning applies for scheme involving by, which concludes the proof of Theorem 5.2.

5.3 Proof of Proposition 5.1: Duhamel representation for the den-

sity of the schemes and associated controls

5.3.1 Duhamel representation for the density of the scheme

Let us first prove (5.1.22). Let t € (¢, T, ¢ be a C? function with compact support and v(s,y) = Ls<tpa(t —
5,)%p(y) + Le=¢p(y). According to Lemma 5.2, v is C1'2 on [0,¢] x R? and satisfies the Feynman-Kac partial

differential equation
V(s,y) € [0,t) x R, sv(s,y) + Lv(s,y) = 0.
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Applying It6’s formula between t; and t to v(s, X) where (X"

. )se[tk,T] denotes the Euler scheme started
from Xt}; = z and evolving according to (5.1.6), we obtain :

t
O(X}) = vlti @) + M, + [ Vols, X2) - bn (U5, X0 ) ds,
tr :
where M]' , = ftk fRd\{o} ( s, XM +a) —v(s, X ))N(ds,dx), in which N is the compensated Poisson

measure associated with Z. Taking now the expectation (recalling that (M}

ir s)selty,] 15 @ martingale) and
using Fubini’s theorem, we derive

t
[ o ezt dy = oltio) + [ B [Vols, X2) by (Vg X0 )| .

ty

Using the definition of v, we get
/¢(y)Fh(tk,x7t,y) dy

= / Palt —trw = y)d(y) dy + / () /t t Bty |Vupalt =5, XL = y) - b (U5, X2 )| dsay.

Since ¢ is arbitrary and p,(t — s, ) is even, we deduce that dy a.e.,
t
Tty 2,1, y) = pa(t — te,  — 1) —/ Eto {vypa(t— s,y — XM by, (UL X )} ds. (5.3.1)
t

We will see later that (5.3.1) actually holds for all y € R? as a consequence of the Holder regularity of I'* in
the forward space variable. This concludes the proof of (5.1.22).

5.3.2 Heat kernel bounds for the scheme

We will now prove inequality (5.1.24), upper stable bound for the density of the scheme, in 3 steps. First,
we will prove it for ¢ € (t,tx+1], using only the definition of the cutoffed drift and assuming h < 1. Then,
we will prove it between t; and ty, when ¢ — t, is small enough at a macro scale. We will finally chain the
previous estimates to obtain (5.1.24) for any time interval (¢x,t] C [0,T].

Step 1 : ¢t € (tg,tgt1]

Remarking that when t € (ty, tp41], V2 € RY, T (ty, x,t,2) = + ttk“ Pa(t —tg,z —x — (t —tg)bp(r,x)) dr

(vesp. I (tg, x,t,2) = + ttk’““ Pa(t—tg, 2—x—(t—11)bp(r, 2)) dr), we obtain (5.1.24) in the case t € (tx, tx11]

using (5.2.11) from Lemma 5.4 to get rid of the drift.
Step 2 : t —t; small enough

Recall that for j € {k,---,[t/h] — 1} and r € [t;,t;41], X = Xt’_l]_ +(Zr — Zy;) + bh(Uj,Xt}_‘j)(r —t;).
Using this and the independence between X{;, (Zr — Zy;) and Uj;, we have, starting from the Duhamel
representation (5.1.22),

-1 o

T (tr, 2, t,y) = palt — th,y — ) Z / Etk, ypa(t—r,y—Xf)-bh (Uj,Xthjﬂ dr
:pa(t_tk:ay_x)

f%]—l t_7+1/\t1 1 N N N
_ /t 7 /t . {Vypa (t =1y —X{ = (Zr — Zy;) — bals, X)) (r — tj)> - by, (8, thﬂ dsdr.
=k Yt J
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Using Fubini’s and Lebesgue’s theorems and the convolution property of the stable density,
Euye [Vopa (t =1y = X = (Ze = Z0) = bals, X[ )(r = 1)) < bn (5. X0 )|

= /Etk,m [Vypa (t—r,y—ij —z— bh(s,Xthj)(r —tj)> - by, (S,Xthjﬂ pa(r —t;,z)dz

=E o [Vy </pa (tfr,nythj fszh(s,Xthj)( ))pa( ],z)dz) by, (S,XZ>:|
—E, . [vypa (t — .,y — X[ — by (s, X)) (r —tj)) by (thhﬂ .

Hence

tep1 AL 1

tey1
I‘h(tk,x,t Y) = pa(t —tp,y —x) — / h/ Vypa (t —th,y —x — bp(s,x)(r — ty)) - b (s,2) dzdsdr

tr
[%]7 ti+1At i1
- / / / (tryx,t5,2)Vypa (t —tj,y — 2 — bp(s, 2)(r —t;)) - by (s, 2) dzdsdr.
j=k+1 t

(5.3.2)

Note that we have not used any property related to by, here, so the same holds with (", b;,) in place of (I'", by,).

Set for j € {k+1,--- ,n}, myj == sup, ,cra % Observe from the previous one-step part that

there exists C' > 1 s.t. my ; < C"~ k < +00. The point of step 2 is to make this bound uniform in n. Using
(5.2.11) to get rid of the negligible cutoffed drift, we get, forn > ¢ > k41> 1:

T (ty, x,t bet1 1 e
(kw’L' 279) < 1+/ h(t/ |bh(87$)|deT

pa(te tk7y I) ~ L 7tk) 12
i+l ] J+1 —t — 1
/ / / B2 1) _po (te — tj,y — 2) |bu(s, 2)| dzds dr.
=) 7 Par te—tk,y T)  (te—t;)

In the first integral, we use the bound |by| < har (the bound remains valid for by, since the latter vanishes
on the first time step) and in the second we use t; —t; > t; — s for s € [tj, tj+1] and then bound my, ; from
above:

Fh(tkuxatby)
Palte —th,y — )

B —ty, 2 —
R L wa [ B2 28 (4= s, 2) b(s, 2) 2 ds.
(to—t)% | selbrti-1) tersJ (te— )= Palt iy )"

We are now in the right setting to apply (5.2.8) (with u = tx11,v = tg, 51 = 1/, B2 = 0), which readily
gives

>
—
|
2
3
|

Fh(tkaxatiay)

<1
Palte —te,y — )

~

S| ==

ol
max m;w(tg 7tk+1)a

— +
(te — tr) JElk+1,6-1]

SlJr(tzftk)

2R

.,
+ max mp i(typ — 1 o
jelk+1,6-1] k(e = ti)
<1+ max  my(te—tpe1)a
~ j€ﬂk+1,f*1ﬂ k7]( 14 k"rl)

Taking the supremum over (z,y) € R? in the L.h.s., and remarking that the r.h.s. is non-decreasing with ¢,
along with the definition of <, we get

max my; <C+C(ty—t 5 max  my
jelkrig (e =)™ | R )k
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for some constant C' not depending on h. Thus, if C(t, — t;)a < 1, then

C
max

mpy; < ————————. 5.3.3
jelkrri T T Oty — t)® (5.3.3)

In particular, it is bounded uniformly in h for k, ¢ s.t. (t; — tr) < c~7.

As we only used the fact that |by| < b for the main term, which remains true with b, instead of by, the same
T (te,@,t5,y)

estimates hold for my, ; := sup, ,cgra ol —try—a)

Remark 5.2. Note that in the Gaussian setting, a precise control of the variance was required because of
the exponential structure of the Gaussian tails (see [JM24b]). In the stable setting, as the tails of the stable
kernel are polynomaial, these controls are not required.

Step 3 : chaining the previous estimates

In order to obtain the result for any arbitrary time interval, we will now chain the previous estimates. This
will be done in the following way: denote § = C~~ and let us first suppose that h < min{6, 1}, which implies
that 7)' > §. Let t > 0s.t. t—t, > 6 andlet J = [£52]—1 < ZL. We will first divide (¢, t) into a main term

6

(over (tg,tr + J7J')) composed of J slices of size 74 (and thus on which we can use (5.3.3)) and a remainder
term (over (t; + J7}',t)). This remainder term will then be split into two terms again ((t; + J72,7/*) and
(7F,1)), in order to account for the fact that ¢ does not necessarily belong to the discretization grid. Over

(ty + J7l, 7]'), as we work on the grid, we will use (5.3.3) again, and over (7, ), we will use the cutoff and
(5.5.3).

With the convention yy = =,

Fh(tkaxvta y) = /

J
(Rd)J TIT" e+ G = Dmdyimnste + 573 )T (b + T4yt y) dys .y
R "

7j=1

J
< /( . L misGoniz mritz 1Py = vi- )T (b + 78yt y) dyr dy..
R .
j=1

Using the boundedness of Mgy (-1)| 2 | kgl 2> We get

J

Tt x,t,y) S / 1 el ys = yim )T (b + Tyt y) dyn . dyy
(RD7 5254

S /pa(JTeh,yJ —yo)T"(te + J 74y, ty) Ay
Pay attention that the constants grow exponentially fast with J, but J < %. Remarking that

Fh(tk + JTélvyJatay) = /Fh(tk + ‘]T9h7yJ7Tth7 Z)Fh(Ttha tha y) dz

Smk-‘rJI.%Jthh’\/pOl(tk+J7—0h7yJ7Tth7'Z)pa(Tthathay) dZ

Spa(tk + JT0h7yJ7t7y)a

we obtain, by convolution,

Tty 2, y) S paltr, @, y).
When h > 6, then % < % and the conclusion remains valid by chaining in a similar way with 7} replaced
by h the estimate derived in Step 1. The same reasoning applied to I'* gives

fh(tka z,t, y) SJ poc(tkv z,t, y)7
which concludes the proof of (5.1.24).
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5.3.3 Holder regularity of I'” in the forward variables

We will establish here the Holder properties for the density of the scheme stated in Proposition 5.1. We
begin with the forward time variable and discuss the forward space variable later on.

Hoélder regularity of I'* in the forward time variable

Let us now prove (5.1.26). Let 0 < k </ <n, v,y € RY and t € [t;, tr41].

tk t‘j t‘g tg‘Jrl tn

Going back to (5.3.2), we can write:

T (te, o, te,y) — T (tk, 2, t,y) = palte — thyy — @) — Pa(t — th,y — @)

tht1 tht1
- — / / [Vpa (te = te, w) = Vpa (t = b, W)y o, (5.2) (r—tr) * bn (85@) dsdr
tr tk

1 ti+1 ptit1
{e>k+2} Z / / / (tk,2,t5,2)[Vpa (te — t;, w)
t; t;

j=k+1
— Vpa (t — tj, w)]w=y—z—bh(s,z)(r—tj) ~bp (s, 2) dzdsdr

1 t prteta
+ o / / /Fh(tk,my te, 2)bn(s,2) - Vpa(t —te,y — 2 — bu(s, 2)(r — tg)) dzdsdr
te Jtp
=: A1+ As + Az + Ay (534)
Resp. D" (ty, z,te,y) — T (tg, o, t,y) =: Ay + Ay + Az + Ay for the scheme involving by,.
For A; (which is actually the same as A;), we use (5.2.3) and t — tp < t; — tp then t —t, <t — t;:

t—1

¢ t—ty
Al -2

t— 1t

) Pa(t — tk,y — ). (5.3.5)
F(?r As, let us first bound [Vpa (te — tr, w) = Vpa (8= te, W)] ey sy (s,0) (r—t,)» USING again (5.2.3) along
with t — ¢t <ty — tg:
t—1ty
(VDo (te = ti, w) = Vpa (= tr, 0)|ymy— oy (5,0) (r—t) S (tlt)lLlpa(t =tk y — @ = bp(s,x)(r — tx))
— ) s

In our current integral, r —t;, <t —ty, which means that, using (5.2.11), we get po(t —tx,y —x —bp, (5 x)(r—
1
q

Ta):

tr)) S palt — tr, @ —y). We can thus compute the following bound for Ay (recalling that |by| < h™ a5

1 tey1 tht1
|Ag] = / / [Vpa (te = ti, w) = Vpa (t = ti, W)] ey vy (5,2)(r—ty) * On (8, 2) dsdr
tr tr

tht1 tht1 t—ty
sal L et ey et )l dsdr

t—1 Bt

5 Wpa(t—tk,y—x)/ ‘bh<87.'1?)|d8
— Uk o tr
t—ty d _1

| . —
ANTIRTEE S

Using the fact that ¢t — tx >ty — tx, > h, we get

(t —tg,y — x)h' " ora,

t—t t—1t ~
|A2swfpa(t—tk,y—x)hl‘i‘fp‘és( ‘) Palt = tiy — 2)h. (5.3.6)
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For the alternative scheme, we would have used the inequality |by,| < hé_l, which yields

J
Bal < ) palt =ty — ).

t—ty t— 1ty
———1Pat =ty — ) S (
-y RN

For As, note that for all j € [k+1,¢—1], denoting u = t,—t; and v’ =t —t;, we cansee v/ —u =t —t; €
[0, h] as a small perturbation at the scale of u or w’. This allows us to use (5.2.3) along with t —¢; < t, — t;
and then (5.2.11):

t—ty
[Vpa (te —tj,w) — Vpg (t —t,w) |w:yfszh(s,z)(r7tj) S mpa(t —tj,y—z—bp(s,2)(r —t;))
t—1ty
< mpa( —tj,y — 2).

For the computations on Aj, we assume that £ > k 4+ 2 and introduce an exponent v, € (vy,«]. Here, we
singularize some of the estimates in order to obtain the expected Holder rate involving . This is somehow
a flexibility of the scheme: since we stay away from the final time ¢ for this contribution, we can afford to
make non-integrable exponents appear. Those terms will be handled with Lemma 5.3 (eq. (5.2.7)). Namely,
using |by| < b and the stable upper-bound (5.1.24), we get

tj1 ti1 t—1t
|A3| < = Z Fh (tr, x, t,2) ¢ —————Palt —tj,y — 2)|b(s, 2)| dzdsdr
W2, GRS
-1 tiy1 ¢t Rl
< z/t (t(tj)ﬂ“/p““ a5 — )palt — g,y — 2)|b(s, 2)] dz ds
j=kt17t -

~ U (-t
S Z / 7w1+1/pa(tj—tk,z—z)pa(t—tj,y—z)|b(s,z)|dzds
skt (t=t)

o(t—t)®
+ — pa(té—l—tk,Z—I)pa(t—té—lay_Z)|b(5775)|d2d3
te—1 (t_tf 1) «

= AL+ AL
Assume ¢ > k + 3 (otherwise A} vanishes). In A}, which only contains non-singular integrals, we now

approximate the discrete (t;);er+1,1—2] With s in the corresponding time integrals to apply (5.2.7) with
u=tg1,v="tr1,p1 = (1 +1)/a,B2=0:

te—1 (?f—154)77l
Al < Li>ras) — T Pal(s —ti, 2 — 2)pa(t — s,z — y)|b(s, z)| dzds
tha1 (t‘* S) @

ahiet =
Spalt—tiy =)t —t)? [ty —tn) T 4 (E—ten) T

—71

Spalt —tiy —x)(t —t) T h =",

where, for the last inequality, we used ty_1 —tp41 > hsince ¢ —1> (k+1)+ 1, t—ty1=t—ty+h>h
and v — v < 0.
For A2 (last time step), let us first use the convolution estimate (5.2.6):

t—t)) e 1 1 te
A2 < palt— thyy — a)—L—10) L + ]/ 16(s, )l ds.

(t—t(_l)’YlT-H tr_1 —tk)ﬂip (t—tg,1)ap to_1

+1
Using L L d] L =T < has "5 and applying Holder’s inequality to the integral,
(te—1—ty) P (t—te—1)op | (t—te— 1) a
we obtain:

1 d

A3 S palt —thyy —2)(t —te) = h™ o~

—1,te) HL‘Z/
1 Y71

SPalt =ty —x)(t —tg)«h™ =
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Gathering both estimates and recalling that ¢t —t, < h and v — vy, < 0, we obtain
8| S palt — thyy — ) (t — te)=. (5.3.7)

Let us now bound Ay in (5.3.4). Recalling that from its definition, |b,| < |b] (resp. |bn| < |b]), we can write,
using also (5.1.24) and (5.2.11):

(t—tg)l_é tes1
|Ay] gih / /pa(tg—tk,z—x)|b(s,z)|pa(t—tg,z—y)dzds.
te

We can now bound |A,| using (5.2.6), then (¢, —t;) ™! < (t —t,)~! and finally t — ¢, < h:

t—t)l"% 1 1 tei
Ayl g 1) _ N palt—tiy—a) [ lo(s, )|z ds
h
(te — tk) ap (t — tg) op te

(t—t,) " ar

poc(t —tk,y — x)Hb”Lq*LT’Hl(te,tzz+1)HL‘1'

(t—to)*palt — te,y — ). (5.3.8)

As, for Az and Ay, we only used the fact that [by| < [b], the same estimations still hold for the alternative
scheme involving b,. Plugging the estimates (5.3.5)-(5.3.8) into (5.3.4) concludes the proof of (5.1.26).

Holder regularity of I'* in the forward space variable

Let us now prove (5.1.25). This property is important to prove that any limit point of the law induced by
the Euler scheme solves the martingale problem and that its marginals will satisfy heat kernel estimates
through a compactness type argument (see Section 5.4.1 for details).

e Off-diagonal regime: |y —¢/| > (t — t;,)'/°.

In this case, using the stable upper bound (5.1.24), we only need to write
I (t, 2, t,y") = D" (b, 2, 6, y)] S T (s 2, 6,3)) + T (b, 2,8 )

S Palt =iy — ) + pal(t —te,y — @)

SRV NCEIALY

~ ol

(t—tp)>

Palt —try — @) +palt —tr,y —z)).

e Diagonal regime: |y—v/| < (t—t;)"/®. Note that in this setting, pa (t —tg, y — ) =< po (t —tr, 3y’ — ).
In this case, we go back to (5.3.2), denoting ¢ = [t/h] —1 (so that t € (tg,ts+1]) and we write, similarly
0 (5.3.4):

Th(ty,,t, ') — T (tg, 2, t,y) = pal(t — tr,y' — 2) — pa(t — tr,y — )

tkr1i Nt ptryr
—f/ / [Vpa(t —ti,y —w) — Vpa(t — te,y — w)]we oty (s,2) (r—ty) - Dn(8, @) dsdr

ti+1 ti+1
/ / /I‘h (tr,z,t5,2)
t; t

[Vpa 7y/ - ) Vpoz( tjv Yy — w)]w:z—i—bh(s,z)(r—tj) . bh(sa Z) dzdsdr

1é>k+1/ / / (tos 2, L0, 2

(Vpa(t —te,y —w) — Vpa(t — te,y — W) weztby (s,2)(r—t0) - b1 (5, 2) dzdsdr
=: Al + Az + A3 + A4. (539)

j=k+1
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Resp. T (ty, z,t,y") — T (tg, z,t,y) =: Ay + Ay + Az + Ay for the scheme with by,.
Those terms will be treated in similar way than for the time sensitivities, up to the fact that we will
use the Holder regularity in space of p, (5.2.2) instead of its Holder regularity in time (5.2.3).

For A; (which is the same as A1), we directly use (5.2.2) with # = 1 and the diagonal regime:

y—y
1S (tt)t(pa(t —ti, Yy — ) + pa(t —tr,y — x))
)
|y_y/"y ’
S = t)E (Pa(t = tr, Y — @) + palt = tr,y — 2)). (5.3.10)

For Ag, we first use (5.2.12) to bound [Vp, (t —tg, x +br(s,2)(r —tx) —y') — Vpa (t —ti, z+ by (s, x)(r—
tr) —y)] and get rid of the drift:

IVpa(t —tr, ¥ —x = bu(s,z)(r —t)) — Vpa(t —tr,y — x — bp(s, x)(r — tg))|
< =¥

S )g(pa(t*tmy'*x)era(t*tk,y*:v))-
PR

We then compute, recalling from the definition (5.1.3) that |bp| < h e (resp. |bp| < ha 1),

ly— /| fera At
Ay S ———5(Palt —ti,y — ) +Pa(f—tk7y—$))/ b (s, )| ds

Nt —ty)a N
! _d_1
- thp1 At —tp)h ™ or a
SLyh(pa(t_tkyy/—7«')+pa(t—tk,y—x))( + )L
(t_tk)o‘ (t—tk)a
ly =¥l . s
SW(pa(titk’y 7$)+p@(t7tk,y7‘x))(tk+1/\t*tk) ahTar 4
—ty)w
A < |y_y/| , i
vesp- A2 S ST Rall — ey =) Fpalt — by = @) (s A=t AR
— )=

In our current diagonal regime, we can write ('yfy)‘l < (‘ZJ:&y )ll , which, along with x4 At —t < h,
t—ty) o —tg) @

yields
<=yl oy t—t he 5.3.11
2N(t_tk)%(pa(—k,y—x)+pa(—k,y—x)) “. (5.3.11)
A < ly=yr e — _ _
resp. S )1(pa(t tr,y' — ) + pa(t —tr,y — x)).
)3

For As, we first use (5.2.12) and (5.1.24) to write, for v; € (v, 1]

-1 tj+1 ‘ oM
y =y 1
Ay < / /at—t,z—x y=y™ ) L
052 ), et )<<ttj>’i )(tmé
X (pa(t_tjﬂy _Z) +pa(t_tj7y/ - Z)) |bh(572>‘d2d8‘

Then, we will proceed differently depending on whether, at the current time ¢;, the spatial difference
ly — /| we are interested in is in the diagonal regime w.r.t. the corresponding time scale t —¢;. To
this end, let us split between what we call meso-scale diagonal and off-diagonal regimes (respectively
ly—o/| < (t—t;)= and |y — /| > (t — tj)é). This meso-scale dichotomy did not appear in the proof
of the Hélder time-regularity of I'*. It does now because of technical reasons: we need to retrieve the
loss induced by the introduction of 1 € (7, @], which can only be done in the mesoscopic diagonal case.
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Let us point out that |y — ¢/| < (t —t;)« <= j < % Set jmax 1= [%J A (0 —2). We

recall that, when ¢; is close to ¢, a local off-diagonal regime might appear. With the previous notations
it will precisely be the case from ¢;, . 11 to ¢, whenever jmax < £ —2 . We can thus write

y—y\
AS Sljmaxzé_ ‘ |1+'y / /pa tf 1= tk7z - x)
(t—te—1)

(Pa(t —ti—1,y — 2) + pa(t — te—1,y" — 2)) |bu(s, 2)| dzds

j+1 1
TS [ [t —tsmo—is

j=fmax+1 (t_tj)%
X (pa(t —tj,y — 2) + pa(t — tj,y — 2)) |ba(s, z)|dzds
J /Jﬂ/pa bz a) ly — yllzl1
j=k+1 t (t_t)
X (pa(t —tj,y — 2) + pa(t — tj,y — 2)) |ba(s, z)|dzds
=AFPE L AQP + AP

For the first term, we first use |by| < |b] and (5.2.6), then Holder’s inequality for the time integral and
last t —ty_1 =t —ty; + h > h to obtain:

at —te,y — )+ pat —tp,y —x 1 1 te
A3EDGE 5]9( kY )+p (l kY ) —+ - / 6(s, )| z» ds
(t —te—1)= (te—1 —te)or  (t —te—1)?? | Jte
—_ 'Y
« oy
(t—te—1)=
1 1 1 1
S Palt = thyy — ) + palt —tr,y' — ) T [ = t+ d]hl !
(t—=te—1)= | (te—1 —ti)>r  (t—tp—1)
— 'Y
« oyl
(t—te_1)=

S Palt —te,y — ) + pa(t — te,y' — ) [y =o'

Next, note that in the integrals appearing in AP and AP we canuset —s <t — t; for s € [tj,tj41]
Together with [b| < ||, this yields

te 1
AP+ AP <1, / /pa S N

1
timax+1 (t - S) &

X (poc(t —5Y—- Z) +po¢(t - s7yl - Z)) |b(87 Z)| dzds
Ljmax — ' m
—|—/ /pa(s—tk,z—z)iw yl‘ﬂl
tht1 (t—s)"a"

X (pa(t = s,y — 2) + palt = s,y — 2)) b(s, 2)| dz ds.

For A9, we simply use (5.2.8), with u =t 11,0 =1t,,81 = 1/a, 2 = 0.
For AY,

— if (e — thg1) >t —tj,.., we use (5.2.7) with u = tpy1,v =¢t;,..,01 = (n1 +1)/a,B2 = 0.

1

— if 3(tju. — thr1) <t — tj,.., we use the bound (t — s)"@ < (t—

tjrnax)_’YTI fOI" S S tjmax then
apply (5.2.8) with u = ti1,0 = b, f1 = 1/a, B2 = 0.
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This yields

AQP + AP S (palt = thyy = 2) + Pt =ty = 2)) (¢ = bt 1) L2

Y1 Y— 'Yl
1y = V1" e — thr1) =+ (=)@

21 ok
«

= )™ W = 060 Ly it

}1 5 (Fmax —tht 1) >t —tjax

S Palt = tiy = @) + palt = st/ = 2) [(E = 1) Ly

’Y*’Yl
Hy = 1 (= i)

Since (¢ —tj0+1) < [y — ¥'|% if jmax <€ —2and (¢t —¢;,,.) > |y —y'|*, we obtain
AFP + AP S (palt —te,y — 2) +palt =ty — ) [y — o] (5.3.12)

Finally, for A4, we suppose that £ > &k + 1 since otherwise this term vanishes. Using again (5.2.12), we
get
|Vypa(t —te,y' —w) = Vypalt — te, Y — W) w=ztby (5,2) (r—t0)
< |y B y/"‘/ /
W(Pa(t —to,y —2) +palt —te,y — 2)),
— )=

yielding, along with (5.1.24) and |bs| < |b],

y

Ay < Lyl'ﬂ/ /pa te —th, 2 — 2)(palt —te,y' — 2) + pa(t — to,y — 2))|b(s, 2)| dz ds.
(tftp ty

Let

¢
dy : {y,y'} 39 n—>/ /pa(tg —tgy 2 — T)pa(t — te, 9 — 2)|b(s, 2)| dz ds,
te

so that |A4| < (lyiyw(dél( y) +da(y’)). Let us then bound dy using the convolution inequality (5.2.6).

t—ty

For vy € {y,y'},
t
DS [ [ alte —tuz = alpalt ~ iy = Hlb(s,2) dzds
ty

< 1

1
N[ S ]pa(t—tk, . / Ib(s, )| e ds
(tz — tk) ap (t - tg) "P

1 1
S Palt =ty ) — 2) bl La—re | L1000l o [ -+ d]
(te —tg)or  (t—tg)or

1 d
5 pa(t - tka n— IL’)(t - tf)l 4,
where, for the last inequality, we used the fact that ¢, — t;, >t — t,. Plugging this into |A4| yields

A4l S Dot —ti,y — @) +Pa(t —ti,y' —2))|ly — /|7 (t —tg) "a or o=
5 (pa(t - tkay - {E) +pa(t - tkay/ - x))'@/ - y/|’y' (5313)

The estimates for Az and A4 remain valid for A3z and Ay since we only used |by,| < |b]. Plugging the
estimations (5.3.10)-(5.3.13) into (5.3.9) concludes the proof of (5.1.25) and of Proposition 5.1.
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5.4 Proof of existence of a unique weak solution and heat kernel
estimates for the SDE (5.1.1) (Theorem 5.1)

5.4.1 Uniqueness of solutions to the Duhamel formulation (5.1.19) satisfying the
estimation (5.1.18)
Assume that T’y and T's both satisfy the estimation (5.1.18) and the Duhamel formula. Then

Fl O7xatay _FQ(Oax7t7y
1 (t) = sup T4 ( ) )y
yeRd Palt,y — )

is bounded on (0,7] and we can write for all (t,y) € (0,T] x R%:

t
[(0,2,t,y) — T2(0,2,t,y) = / /b(r, z) - Vypa(t —r,y — 2) [[2(0,z,7,2) —T1(0, 2,7, 2)] dzdr.
0

We deduce that for (¢,9) € (0,7] x R?,

’I‘l(oaxvtvy) B FZ(O,xvta y) ‘ <
pa<t7y - JJ)

e [ B Tapalt =y = 2z — )

Using (5.2.1) and (5.2.6), we get:

r t,y)—T t “lb(r, - 1 1
‘ 1(va7 ay) 2(0,%, vy) ’ < || (Tv )Hip — + MI( )d
pa(t>y—$) 0 (t—?“)a rap (t—r)ap

Taking the supremum over y € R? on the Lh.s. and applying Hélder’s inequality in time, we get like in the
last step of the proof of Theorem 5.2

1 1
a T

rer  (t—r)er

dr.

Wememmfsff“”{

t—r)a

[e3

immediately deduce I'y = I's.

Since L + i—qz; < 1, Lemma 2.2 and Example 2.4 [Zhal0] ensure that V¢ € (0,T], u,(t) = 0, from which we

5.4.2 Tightness of the laws P" of ((X")scjo7)n and P" of ((X")sciom))n

n
Let B" := Eq, [IOT ‘bh(UL%JaX:—LSh)

(5.1.2), p/n > 1, q/n > 1 and n(d/p+a/q) < a. Using |by| < Bh™ %5 "% on the first time step then |by| < 0],
(5.1.24), Holder’s inequality and (5.2.4) with § = 0, we obtain

ds}, where 1 > 1 is chosen sufficiently close to 1 in order that, under

n—1

177 bt 1 Ert1 n h
B < Bl q+Z [b(r, )| T*(0, 2, 4, y) dy dr ds
l—d _1 s n
5 h™ " ar a4+ Z ‘b(’l",y” pa(tk’y_x) dydT
tr

n—1

<Mfw*a+§j/’ 16 & [pa (b = @)1 oy

_dn

1_d _1 tk+1
swﬂ7+2/ £ P bt
k=1"tk
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We then write

dn

tky1  dn tht1 dn
[ a B el < [ b1 ar
tk tk

and use a Holder inequality to obtain from the condition n(d/p+a/q) < « which ensures that —(%)’ Z—Z > —1,

tn @
B < S dr ) T x e (b, )|
< r r [l = llo(r, o1l 2
t1
1—<d _ 1 1o—m(-4 41
Shima e I GEEED b7, (5.4.1)

~

In the same way,

_ T — _ n T — — n 1
B :=Ep. [/ ‘bh(UL%prh) dé’] =Eq l/ ’bh(UL%J,th) ds| ST G b)), -
0 s h s
By Holder’s inequality, we have
t n—1 T n %]
VO<u<t<T, / bh(UL%J,X:}h)dS S(t—u)T / ‘bh(UL}ijvx-,,—lh) ds . (542)
u ° 0 ‘ s

and the same estimation holds with (b, X") replaced by (bs, X"). Since by (5.2.4) applied with § = 1,
E[|Z; — Z,|] < (t — u) =, setting ¢ = (1 - %) AL >0, we deduce that

VO <u<t<T, E[IXP - X +E[X] - X3 S (t— ), (5.4.3)

where the constant associated with the < symbol is independent of h. This ensures the tightness of the
laws P" of X" and P" of (X") on the space D(]0,T],R?) of cadlag functions endowed with the Skorokhod
topology (see Proposition 34.9 from [Basll] for example). Let (55)8 c0.7] denote the canonical process on
this space.

We may then extract a subsequence, still denoted by (P") (resp. (P")), such that P" (resp. (P")) weakly
converges to some limit probability P on D([0,T],R?) as h — 0. For u,t € [0,T] outside the at most
countable set {s € (0,7] : P(|¢ — &—| > 0) > 0}, the law of (X", X}*) (vesp. (X, X])) converges to
Po(&y,&) 7" so that (5.4.3) combined with the right-continuity of sample-paths ensures that supg<,, ;<7 (t—
u)~¢ fD([O,T],Rd) |€& — &u|P(d€) < 0o. As a consequence

{s€(0,T): P(J¢&s —&~—|>0)>0} =10 (5.4.4)

and for each t € (0, T, the distribution I'*(0, z,¢,y) dy of X} (resp. T'"(0,z,¢,y) dy of X]*) converges weakly
to P, = Po&; . By (5.1.24) and (5.1.25), the Ascoli-Arzela theorem ensures that we can extract a further
subsequence such that y — I'(0,z,t,y) (resp. y + I'(0,z,t,y)) converges uniformly on the compact subsets
of R? to some limit y ~ I'(0,z,t,y) so that P;(dy) = I'(0,z,t,y) dy. Taking the limit » — 0 into (5.1.24)
and (5.1.25) ensures that I' satisfies (5.1.18) and (5.1.21).

We are next going to prove that the limit probability measure P solves the following martingale problem.

Definition 5.1 (Martingale Problem). A probability measure P on the space D([0,T],R?) of cadlag functions
with time-marginals (P;)ycjo,1], solves the martingale problem related to b-V + LY and x € Re if :

(i) Py =6,
(ii) for a.a. t € (0,T], P,(dy) = p(t,y) dy for some p € LY ((0,T], L? (RY)),
(iii) for all C*2? function f on [0,T] x R? bounded together with its derivatives, the process

{Mtf: £(t&) — £(0,€) — / ((as+ca>f<s7fs>+b<s,§s>~w<s,ss>)ds} .

0<t<T

is a P martingale.
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Let us point out that, in the current singular drift setting, condition (i¢) which guarantees that

T
/ / Ib(s, £,)] dsP(d€) < oo
D([O,T],Rd) 0

is somehow the minimal one required for all the terms in (M) to be well defined.

Before checking that the limit probability measure P solves the martingale problem, let us prove that
this implies that T' solves (5.1.19), which concludes the proof of Theorem 5.1 (in fact, for this purpose, it
would be enough to check that the limit probability measure associated with either the schemes X" or the
schemes X" solves the martingale problem). Let t € (0,7] and ¢ : R — R be a C* function with compact
support. Choosing f(s,2) = 1jo4)(8)pa(t — s,-) * ¢(2) + Ly 1(s5)(¢(2) — (s — t)L¥P(2)) which, according to
Lemma 5.2, satisfies (9, + L) f(s,z) = 0 for (s, z) € [0,#] x R? and writing the centering of M, (introduced
in Definition 5.1) under P, we obtain that

t
o(y)T(0,z,t,y)dy = / o(Y)pa(t,z —y)dy + / / (0, z,s,2)b(s,z) - V.f(s,z)dzds.
Rd R4 0 Rd

Using (5.1.18) and (5.2.1) to justify the use of Fubini’s theorem and the fact that for s € (0,7, pa(s,-) is
an even function, we deduce that

t
. ¢(y)r(0’ z, ta y) dy = /d ¢(y) < Ot(tv Yy — £E) - / F(Oa z,s, Z)b(sa Z) ! vypoz(Sa Yy — Z) d$> dy
R R 0
Since ¢ is arbitrary, we conclude that (0,7] x R? > (¢,y) + T(0, z,t, y) satisfies (5.1.19).

5.4.3 Any limit point solves the martingale problem

Let us now prove that the limit point P solves the martingale problem associated with (5.1.1) and intro-
duced in Definition 5.1. Since for each h, X! = z = X[, one has Py = §,. Moreover, for t € (0,7,

P,(dy) = T'(0, z,t,y)dy with T satisfying (5.1.18). By (5.2.4) applied with 6 = 0, |T'(0, z, ¢, )|l » < Ct @
where the right-hand side belongs to L7 ([0,T]) since q’aip < 1 by (5.1.2). As a consequence, I'(0, z,-,-) €

L9 ((0,T], L* (R%)). Therefore properties (i) and (ii) in Definition 5.1 hold.
Let f:[0,7] x R = R be C!*? and bounded together with its derivatives, 1 : (R?)? — R be continuous
and bounded, 0 <s; < ... <s, <u <t <T with u>0and F : D([0,T], Rd) — R be defined by

(&) = <f(t,§t) — fu, &) — /ut [(0s + L) f(5,85) +b(s,&s) - VIf(5,84)] d8> P(€syrnr€s,). (5:45)
In order to prove that P satisfies (i7¢) in Definition 5.1, we will show that fD([o,T],Rd) F(&P(dg) =0.
Proof of limj_,o E[F(X")] = 0 = limj,_,o E[F(X")].
Using It6’s formula, we can write

t t
£ XP) = £l X0) = ME = M2+ [ VA5 XE) by U Xl ds+ [ (0.4 £ (5, K1) d,
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with M!' = [7 fRd\{O} (f(r, Xh 4+z)— f(r, XM ))N(dr, dz) where N is the compensated Poisson measure

associated with Z. Since M" is a martingale, taking expectations, we get:
PO = [ ([ (30101 ) = o6 X09) 956 X0 05 ) 6L XL
=& [(f 0t X8 (900,50 = 9105 X8) ) v, )
+E (/t (bh(ULs/hJang) - bh(s,Xi})) -V f(s, X]n) ds) ¢(X51,...,X;;)}

+E (/t (bh(s,X%) — b(s,X%)) -V (s, X) ds) w(xgl,._.,xfp)}

+E </t (bCs, X2) - 0 f (5, X1 = b(s, XYV f (5, X1 ) ds) w<x§l,...,xgp)]
= A1t -A2 + Az + Ay (5.4.6)

In the same way, E[F(X")] = Ay + Ay + Az + Ay where A; is defined like A; with (X", by,) replaced by
(X" by) fori € {1,--- ,4}.
For A1, we first write, using |by,| < h~ %57 and conditioning w.r.t. Fro=o(X], 0<u<1l),

Er ,Vf(5,X3) = Vf(s, X)

<V fllo<Er , |XE — X2

< |V*fllL~EF, V} 08 (U /ny, X2 dr + | Zs = Zp|

|

Q=

S 41
SIVEfllze [/hh ap " adp + (s — 7
SV fllzhe.

Using this bound along with |bj,| < |b| and (5.4.1), we can compute
2 1 ! h 2 1
A1 S [l Vo fllLh~E ; b(Us/nys X7l ds| S ¢l IV fllzeh.

The same bound holds for |A;| since the larger cutoff [b,| < ha~=! does not deteriorate the estimation of
Er h|Vf(s,Xf) - Vf(s,th)| where ]-"T? = O'(Xg, 0<u< Tf)

For Ay, supposing that h is small enough to ensure that 7" < 7/*, we split the time integral into three
terms: a main term over (7 + h,7/') which matches the time grid, and two terms around the edges, over
(u, 7! + h) and (7], t) respectively. For the main term, we will use the following cancellation:

h

E V (00 U1 pngs XI2) = bn(s, X12)) - V. (5, X0 ) s

fTL‘+h = 0
hih

For the other two terms, we use that |by(Ujs/nj, X2) — bu(s, X2)| < [bn(Uysyng, X5)| + [bn(s, X)) S

B~ % and the inequalities ™+ h—u<handt— 1] <h to write

Ag] < [l |V £l L~E l /

[w, 7l +h][r] t]

(‘bh(ULs/hJ,sthﬂ + |bh(s7ng)|) ds}
_d _ 1
Sl |V fllpeeh' " or 5.

In the same way, |Ag| < ||[t]|p |V f]|Leho.
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When p = ¢ = co, Aj vanishes. Otherwise, applying (5.2.15) with A = n where 1 > 1 is such that (5.4.1)
holds, we get

t
1As] < [l |V Lo b5+ D0 DE V lb<s,x£¢>|”d3} S bl |V Lo B+ DD,

Since [b — b"| < W"Bl*nh(l*é)("*l), we obtain in the same way that |Az| < H1/’||L°°||Vf||Looh(lfé)(”’1).
For A4, we have

’E; - Ut (b(s XDV F(s, Xt — b(s, Xh)Vf(&Xj)) ds]

//|bsz V(2 ’r’w Ry XDy 7l ) TR = XD s, 2)| dzds.

Assuming w.l.o.g. that h is small enough to have 7' — h > s,,, we deduce that:

t
|A4|5|\w||m/ //|b<s,z>-w<z>||rh<rz:—h,y,r£,z>—rh<r£—h,y,s,z)|r (0,2, 7" — h, ) dzdy ds.

Then, we use the Holder regularity (5.1.26) of I'" in the forward time variable:

h o
(s —
|Ay] < ||¢|\Loo||VfHLoo/ //|bs z —ih)lp (s—rg—l—h,z— )Fh(o x, 7- — h,y)dzdyds.

Since s — 7" < h and 7% — 7" + h > s — u, we get, using (5.1.24), Holder’s inequality and (5.2.4)

18] £ [0l IV 7l o R / // LD s nl ez = (ol = oy = )y s
|b
Sl V£ h= (5,2 —x)dzds
Bl b(s, -
< 1l 19 / %d
u (S —U)Esup
Finally, using Holder’s inequality in time and =2 a% = é, we obtain

Al Sl IV fllzoe bl za—roh® (¢ = u)=.

The same estimation holds for [A4|. Putting together the previous estimates on (A;);e(1,... 43 in (5.4.6) we
obtain limj,_,¢ E [F(Xh)} = 0. In the same way, limj_,o E [F(X'h)] =0

P solves the martingale problem.

In this paragraph, we only consider the case when P is the limit of the laws of the schemes X h since the
argument is exactly the same when P is the limit of the laws of the schemes X". The lack of continuity of
the functional F on D([0,T],R?) prevents from deducing immediately that fD([O ),R%) F(&P(dE) = 0. Let

us first suppose that p < oo and set § = ¢lgcoo + %]ﬂ«m- We have % + % < a— 1. We introduce for

e € (0,1], a smooth and bounded function b, such that lim._,q ||bc —b||pa_r» = 0. The functional F; defined
like F' in (5.4.5), but with b, replacing b is bounded. According to (5.4.4), for fixed € € (0, 1], P gives full
weight to continuity points of F. and since limj,_,o E[F(X")] = 0, we have

/D([O ryny P = iy E[F.(X™)] = Jim E[F.(X") - F(X")],
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We deduce that

/ F(€)P(de)
D([O,T],Rd)

One has, using (5.1.24), then Holder’s inequality in space together with (5.2.4) applied with (¢,6) = (p,0)
and last Holder’s inequality in time,

< limsup/ |F(€) — F.(€)|P(d€) + limsup lim sup E[| FL(X") — F(X™)|].
D([0,T],R?)

e—0 e—0 h—0

t

E[[Fo(X") — F(X™)|] <[]l |V ] oo / Eflb- (s, X!") — b(s, X)) ds

u

t
<0l IV Fl / / 1be(5,) — (s, ) [pa(s, y — 7) dy ds

‘ be(s,.) — b(s,. p
§|\1/J||Lm\|Vf||LQQ/ Ibes,) = bls, e 5

Sap

(1l d
Sl IV £l b = bl oot~ (GFa5).

Since the same estimation holds for fD([O 7).RY) |F(&)—F-(&)|P(d€), because the heat kernel estimates hold as
well for the limit point, we conclude that fD([O 7),R4) F(§)P(d¢) = 0. Taking f, 9, u, s1,...,p, t in countable
dense subsets, we deduce that P satisfies (i) in Definition 5.1.

Let us now deal with the case p = co. We set (p,q) = ((aiql%, @lgcoo + (f—_dl, 301 4—oo. We have
% + 5§ < a—1. We introduce for e € (0,1}, a smooth and bounded function b. such that [[be[lpa—r <
2||bl|La—r and, for each K € N*, setting b (t,x) = 1_g xja(2)be(t, ) and b5 (t,2) = 1|_f gja(x)b(t, z),
we have lim._,q ||bX — b%||a_rs = 0. The above reasoning when p < oo remains valid once we now bound
E[|F.(X") — F(X")|] from above by

t
IIT/JIILwIIVfHLw/ E[b (s, X2) — b5 (s, X2) + (b= (s, )| e + [16(s, )| o)Ly xn ] ds

u

t 1/q'
Sl |V £l e <|b§< — b5 pa_ ot (EE5) 4 |[b) oo ( / (P(IX"| > K))* ds) ) :

According to (5.4.3), fi(P(|X§’\ > K))? ds can be made arbitrarily small uniformly in h for K large enough
while for fixed K, ||b5 — %] sa_1s goes to 0 with . This concludes the proof.

5.4.4 Uniqueness of the solution to the martingale problem

For this paragraph, we assume p,q < oo (otherwise, we can proceed in a similar way to the previous
paragraph to mollify the drift). Let (b,,)men denote a sequence of bounded smooth approximating functions
st. ||b—bn|lpa—rr — 0 as m — co. We study the mollified equation

(0s + LY + by - V) (s, x) = f(s, ), (5,2) € [0,t) x R, up, (t,-) = 0. (5.4.7)

It is well known that for a smooth compactly supported f, (5.4.7) has a unique smooth bounded classi-
cal solution (see [MP14]). Furthermore, the following Schauder estimates (whose proofs are postponed to
Appendix 5.5.5) hold:

Lemma 5.5 (Schauder). Let f : [0,7] x R? — R be C1'? with compact support and (um,)men denote the
sequence of classical solutions to the mollified PDEs (5.4.7). Then, for all{ € [0, (y+1)/a), for all0 < s <
s' < t, for all z € R, and for all m € N,

[Vmllze SN fllzes, (5.4.8)

(s, 2) = um(s, )| S I8" — 8| fl| == (5.4.9)
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Let P! and P? be solutions of the martingale problem associated with b-V + £ and = € R? in the sense
of Definition 5.1. Let f be a smooth bounded function. For all m € N, denote u,, € C*([0,7],C%(R% R)) the
classical solution to the Cauchy problem associated with (5.4.7) with source term f. For i € {1, 2},

{M:m = um(svgs) - um(oa 31‘) - /Os(ar + L + b- V)um(’r? €7‘) dT} <5410)
0<s<t

is a Pl-martingale. Equations (5.4.9) and (5.4.8) allow us to apply the Ascoli-Arzela theorem to (u,,): let
(tm,, )k be a subsequence of (U, ) which converges uniformly on every compact subset of [0,¢] x R? to some
Uoo. Now, taking p* € L7 ((0,T], L (R?)) such that P}(dy) = p(t,y) dy, taking expectations in (5.4.10) and
using the Fubini theorem, we have, when s — ¢,

EF [/ f(r &) dr} = —Um, (0, ) / / me — ) - Vi, (1, 2)p" (1, 2) dz dr. (5.4.11)

Since p' € LY (0,7, 7 (R%)), using a Hélder inequality in space and then one in time along with the fact
that ||Vumk ||z is bounded uniformly in k (from Equation (5.4.8)), we obtain

b, — )+ Vg, (1, 2)p" (1, 2) dz dr

S 1Vt e 1 = byl oo 167 - — 0.
Thus, takmg the limit as k goes to oo in (5.4.11), we obtain
1 t 2 t
E”F [/ f(r &) dr] = —uuo(0,2) = EF { f(r &) dr] , (5.4.12)
0 0

which readily gives P! = P? (see e.g. Theorem 4.2 in [EKS86]).

5.5 Proof of the technical lemmas involving the stable density

5.5.1 Proof of Lemma 5.1 (Stable Sensitivities)
Item (5.2.1) directly follows from Section 2 in [Kol00]. Let us prove (5.2.2).

e Diagonal case: |z —2/| < u'/®. Since we are looking at a small perturbation in the space variable,
it makes sense to use a Taylor expansion:

1
|V§pa(u,z) — Vpal(u,z) )| = / VoVspa(u, 2’ + (x — 2)A) - (x — ') d)\’

!
1+|c\|/ Pa(u, ' + (x — 2" )N) d),

using (5.2.1) and p, < Po (see (5.1.16) and (5.1.17)) for the last inequality. Up to a modification of
the underlying constant,

M — 2! —d—a o —d—a
Balua + (2 —2)\) S u~? (2+ l+<>l) <ut (2_ le—a| |w1|>

T ~ E
U U o U o
. ']\ "
Sue (1+ ) < Pa(u, ')
U
We conclude the proof in the diagonal case noting that for all 8 € (0, 1], o= = cll < (l fll )0.
u« u o

e Off-diagonal case: |z — 2’| > u!/®. In this case, a Taylor expansion in space is not relevant. We
simply use the fact that 1 = 2=%1 T A1 and (5.2.1):

u

o
|VEpalu,z) = Vipa(u,a’)| < (lajuf' ) (|Vspa(u,2)| + |Vipalu,2)|)

< (BB A0) o )+ ).
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This concludes the proof of (5.2.2).

Let us now prove (5.2.3). Let 0 < u < u’ <T. Assume first |u — v/| <

wle

1
|V§pa(u,x) — Vgpa(u’,mﬂ = / OtV Spa (u+ (u' —u)\, x)(u' — ) dA
0

i~

1

1

5/0 ot o EPe (A A
u u —u

ju—u'| [*

o
Q

S Palu+ (v —w)A, x) dA,

i
wlts Jo

recalling that u’ > w for the last inequality. We now discuss in function of the position of the spatial variable
x w.r.t. the current time u.

e Diagonal case: |z| < u!'/®. Then,

Palut (0 —wA@) $ (ut (0 —wA) "% Su® = palu, @) = pa(u,)
e Off-diagonal case: |z| > u!/®.
B u+ (v —u) U _
pa(u + (’U,I - u))\,x) /S ;ld—&-a ) S |x|d+a xp@(“‘?x) Xpa(u,x).

Note that the condition |u’ —u| < § is actually needed only for the second above inequality. Namely, it
ensures that the term A(u’ — u) has the same magnitude than u (otherwise the previous expansions are
useless and the estimation is direct as discussed below).

In turn, we obtain
u—u'|’
wf e

u—u|
e pa(,2) S
u @

|V§pa(u, Sﬂ) - Vgpa(u',x)| ,S pa(ua Z)v

for all 6 € (0, 1].
In the case |u — /| > §, we simply write using (5.2.1)

—'INO
[VSpaln ) ~ Vipalet, )] < (21 1) (198patu, )] + 19Epatat, )
u—

04 1sl (pa(u,x)+pa(u'7x)),
u «

~

which concludes the proof of (5.2.3).
Let us now prove (5.2.4). Using p, =< pa, we can write

’ ’ ’ 1 1 /
Ipatus - U5 = [ patusn) Wi dy S [ < x a9 dy.
R Rd U (1 4 @)
u o
Set z = yu’é:
’ d1_p el 1 V4
Ipatu, )| - €l S w0+ | 2
« Lt Rd (1+ |ZD€ (d+a)

which converges whenever ¢/({ —d —a)+d—-1< -1« (<d+a— Zi/, in which case we obtain

T
lpa (e, )| - [l e S w™ar s
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Let us now prove the convolution part (5.2.5). Denote

3= Palt —u, - = y)palu— s, — )|

1 1 1 1
<
~ / (t — ’u,)%/ X (d+a)t x (’LL _ S)%/ X (d+o)t’ dz. (551)
(t u)a (u s)a

We now discuss in function of the magnitude of the distance |z — y| w.r.t. to the global time scale ¢t — s.

e Diagonal case: |z —y| < (t — )1/
In this case, either (£ —u) > (¢t —s) or (u—s) > 1(t — s), we can then use the global diagonal bound
in (5.5.1) for the correspondmg density.

—If(t—u) > i(t—s),

Q.

1 1 1 1 1 )
Js - X / % dz < .

(t — u)% (U/ — 5)%(4’71) (u _ S) (1 N |I Zl >(d+o¢)€ de
(u— s)a

Since (t —u) > %(t—s)7 L <L 0 =pa(t—s,y—=x), and
(t—w)a ~ (t—s)&

1

< B, (t — Y

— If (u—s) > 1(t — s), we readily obtain by symmetry

1

<pot—soz—y)l ——
IS Dot — 5,2 —y) (t—u)g(el_l)'

e Off-diagonal case: |z —y| > (t — s)"/@

In this case, either |z — 2| > 3|z —y| or [z — y| > |z — yl, i.e. one of the two contributions in J is
in the off-diagonal regime, allowing us to use (5.2.9). In this case we split the upper-bound for J in
(5.5.1) as follows:

1 1 L Qe—eapp oyt T Loz 31—yl N
35/ r X @) X m (d+a)£’ dz =: 31 + Js.
(t _u) > (1 + |zfy|1 > (U_ S) “ (1 + z—z] >
(t—u)w (u—s)%
— For Jy, |z — 2| > |z —y| > L(t — s)1/*, we get
1 1 1 1
Iz e Z X CIeST / P X (@ a)e Ha—z1> 3oy 97
(1 + Iz—yll) (1 + Iz—y|1>
(u—s) e (t—u)e
/ 1 1 1
- ¢
S Palu—s,2—y) (t—u)%(f/’l) /(t_u)g X 2’1|x—z\Z%\f6—y|dZ

(d+a)
(1 + L=l )
(t—u)«

) ﬁa(u — 5T = y) = |$_uy_‘3+w < |$_ty_‘?i+a = pa(t — 5T = y), and
1
(t—u)a@=1’

1/«

Since |z —y| > (u — s)
I S Palt—s,a—y)*

— For Jy, |z —y| > %|x —y| > %(t — 5)1/®, the same computations give, when swapping the roles of
|z — 2| and |y — z|,
1

-1

5.5.2
— (5.5.2)

j2 Sﬁa(tisax 7y)€’
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In each case, we have established that

_ _ L 1 1 N
[Pa(t —u,- = y)Pa(u — s, = )||pw =T < 71 T T | Palt —s,2—y)
(t—u)e @ (u—s)e 7
1 1 _
5 d + d pa(t_37m_y)7
(t—u)az  (u—s)ar

which concludes the proof of (5.2.5).
Equation (5.2.6) then eventually follows from (5.2.5) and Holder’s inequality.

5.5.2 Proof of Lemma 5.2 (Feynman-Kac partial differential equation)

Recall that for u > 0,z € R%:

Do, 2) = 7(27lr>d /Rd exp(u®,, (C)) exp(—i¢ - z) d¢,
d
Dp.a(C) = xp(iC - p€) ~ U (dS) ol = ~Cous [ 16+ € u(dE). Coa >0,
Ry JSd-1 P gd—1

being the Khinchin exponent associated with the operator £¢. It is thus direct to see from the non-
degeneracy assumption (5.1.15) that there exists ¢ > 0 s.t. V¢ € RY, [g, [¢ - &]*u(d€) > ¢[¢|* so that
exp(u®,,0(€)) < exp(—cCq,qul¢|*). We deduce that p, is smooth on R% x R? and

Dupa (i, 2) = ﬁ /R D) xp(1y 0 (C)) exp(iC - ) .

Since, by symmetry of the measure y and Fubini’s theorem,

Bl Q) ep(uba(O) = [ [ [ lexp(eic- p6) = 1)L [ explic- alpaluz) da

— [ (explic = p) — explic ) pan ) doudg)
Ry JSd—1 JRd p

d
— [ [ explic ) (a4 06) ~ palus ) o)
Ry JSd—1 JRd P
:/ exp(iC - ) LYDq (u, x) dz,
Rd
one has 9,pq(u,2) = L (u, 2).

The fact that v solves the Feynman-Kac partial differential equation on [0,¢) x R? is easily deduced using
(5.1.16) and (5.2.1) to apply Lebesgue’s and Fubini’s theorems. Last, for s € [0, ),

lo(s,9) — d(y)] = /

Rd

:/Rd

and Lebesgue’s theorem ensures that the right-hand side converges to 0 as s goes to t.

6 (y—(t=9)%2) —0)| (t = 5)Epalt —s,(t —)¥2) dz

6 (y—(t-9)7%z) —oy)

pa(l,2)dz,

We refer to [Kol00] (in particular the introduction, Proposition 2.5 and Section 3) for additional details
and properties about the density pq.

110



5.5.3 Proof of Lemma 5.3: stable time-space convolutions with Lebesgue func-
tion

Let us first use (5.2.6) with £ = p and then Hélder’s inequality in time:

v 1
I, .3, (u,v) ::/ /pa(r,z —x)|b(r, 2)|pa(t —r,y — Z)WTBQ dzdr

1 n 1 1 1 q
— —dr
ras (t—r)aip (t —r)Prrb

< paltyy — ) / 16(r, )l e

! 1 1 1 1 o’
< _
~ P (t7 Y x) / dq’ + 4 ’ 7 dr
« u ,,,[iqp (t—’r‘)% (t_r)‘Zﬁl T(IﬁQ

= pa(t>y - x)Sﬂl;B2 (u,v).

Set A = == (v —u), then
Sﬂl,ﬁz(uvv)q/
! 1 1 1 1
gv—u/ -+ 7 7 3 dA
S A VY (t_u_A(v_u))qu} (Ao — )7 (w4 A — )7

Assume first that ¢/ (aip + ﬂi> <1, i € {1,2} (integrable case). Then,

Sgy,p, (u,v)?

, 1
<(v— u>1,%,q1(51+ﬁ2) /
0

1 1 1 1 aq/
-+ , o A S (v — )t TSR
)\% (1_)\)?171 (1 — \)4'Pr \1'B2

and
Ipy (1, 0) S paltyy — w)(v —w)' "o~ an = (H0)
which, recalling (5.1.20), gives (5.2.8).
Let us now consider the case ¢’ (o% + 51) > 1,4 (a% + Bg) < 1 (singular case) with v < t. We then
write:

/

Sgy .6, (u,v)?

1
1 1
<l 1= (st Br+B2) / dA
(’U U) 0 ap+ﬂ2)(t u o )\)q/ﬁl + (ﬂ o )\)q/(o%,"rﬁl)Aq’Bg

v—Uu v—Uu

1 1
, 1
<(n _ \1—0 (ai+ﬂ1+52)< : )
Sto—w) e A, g
’ t 4
S - T G (14 (L2 gy )
S(v— u)lfq,(%+ﬁl+62) (v —u)79 ﬁz(t _ U)l*q’(o%}‘FBl).

Hence, in the divergent case we have established
Iy 52(0,0) S Paltyy — o) (0 — ) =438 4 ()82 (s — o)),

which precisely gives (5.2.7). This concludes the proof of Lemma 5.3.
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5.5.4 Proof of Lemma 5.4 (About the cutoff on a one-step transition)
Using the fact that p, < P, and |y — sbp(r,x)| > |y| — s|br(r, z)|, we get for 0 < s < min(u, h),

1 — sbp(r,z)\ Y1 s —(d+a)
Pal(u,y — sbp(r,2)) S — (2+y Z( )> <= (21|bh(r,x)+|yl|>
U U« U« U« U
—(d+a) —(d4a)
1 1 1 y
Sd(2—sl_ah_adp‘§+|yl|> §d<2_ha+|y1|>
uw ua ua uw
—(d+a)
1
s (1) S, (5:5.3)
U« U

provided h < 1 for the last inequality, which we can assume w.l.o.g.
In the case of by, we derive similarly,

—(d+a) —(d+a)
_ 1 _ 1
Do,y — sbp(r,z)) < — (2—Slbh(r7m)+ lyj) <= <2—h0+ y|)

Uo U U U uw
—(d+a)
1
5d<1+|y1|) = Pa(u,y)
U o U

This proves (5.2.11) for |{| = 0. For 0 < || < 1, one simply needs to apply (5.2.1) beforehands. For the
proof of (5.2.12), it is enough to apply (5.2.2) to |VSpa(u,y — sbu(r,z)) — VSpa(u,y’ — sby(r,z))|, where
by, € {bn,br}, which yields

|V<pa(u, y — sby(r, ) — Vopa(u,y’ — sby(r, x))’

< |y _y/|6 1 /
~ Ué Al <l (Pa(u7y_35h<r7$))+l7a(uay _Sbh(T,w))),
a U«

for all *¢ € (0,1] and then use (5.2.11) to get rid of the drift in the previous equation.

5.5.5 Proof of Lemma 5.5: Schauder estimates for the mollified PDE (5.4.7)

Let m € N and u,, denote the classical solution to (5.4.7). For s € (0,t],x € R%, computing u,, (t, ) + (Z; —
Zs) — um(s,z) by Ito’s formula and taking expectations, we obtain

t(5,2) =—/:/fmy)pa(r—s,y—mdydr

+ / /bm(r, Y) - Vi (1, y)pa(r — s,y — x) dy dr
=:I1(s,x) + Iz(s, ). (5.5.4)

Let us first prove the gradient bound (5.4.8). For Iy, using that f is bounded on [0,T] x R? along with
(5.2.1), we get

t
V(5. )] s/ /If(r,y)llvmpa(r—&y—x)ldydr
S t 1
< anm_m/ /pa(T—S,y—x))dydr
¢ 1

(r—s x
< Hf||L°°fL°°/ Wdr

Sflle—re-
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For I, let us first note that due to standard Schauder estimates (see [MP14]), we already know that Vi, (r, )
is bounded (although not necessarily uniformly in m) for all € [0,¢]. We can thus write, using a Holder
inequality, then (5.2.4), and finally a Holder inequality in time,

t
Vs, )] < / IVt )| = / bon(r, ) P — 5,y — ) dy dr

t
1
< / It o o

r—s)er

t N
< lbmllLa—rzr (/ IVt (7, ) Lo ———7 dr) :
s (r—s)er

Gathering the previous estimates, we have

t
’ ’ ’ ’ 1
IVtm (s, )T S NFIT—poe + IImeI‘iq_Lp/ IVt (7, )| L oo ——— dr-
S r —

S)qu

Since % < 1, using Lemma 2.2 and Example 2.4 [Zhal0], we deduce (5.4.8).
Let us now prove (5.4.9). Using the previous notations, we can write

[um (s, @) — um (s, x)| < | (s, x) — I1(s,2)| + |I2(s', z) — Ia(s, 2)|.
For the first term, using (5.2.3) with § = ¢, for any £ € [0, (y + 1)/a) and ¢ = 0, we readily have
[L(s,2) = Li(s, )| S 18" = sl fllpoe—po=-
For the second term, using (5.2.3) with 8§ = £ and ¢ =0, as well as (5.2.1), we can write

¢ s —sl¢
12(5,0) = a5, 5 [ [ 1) T () el = = 0) 4 par = 5.9 = )y

+ / / bm (7, y) - Vum (1, y)[palr — s,y — x) dy dr.
Using then a Holder inequality in space, (5.2.4), a Holder inequality in time and the previously established

boundedness of Vu,,, we get

1

t 7
1 1 1
|12(s", @) = In(5,2)| S [Ibmllza—rr | Vitm|lze]s" — s/* (/ (r—s)7¢ [ T dq’l dr>

s’ 1 q’
TP Y e (/ dq/dr> ~
s (r—s)er

d 1 d
q’(§+><q’<7++)=1,
ap a o ap

which concludes the proof of (5.4.9).

Notice now that
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Chapter 6

Weak Error on the densities for the
Euler scheme of stable additive SDEs
with Besov drift

This chapter is based on a work in progress with Stéphane Menozzi and Elena Issoglio. Therein, we are
interested in the Fuler-Maruyama dicretization of the formal SDE

dX; = b(t, X;)dt + dZ;,  Xo=x €RY,

where Z; is a symmetric isotropic d-dimensional a-stable process, « € (1,2) and the drift b € L" ([0, 7], ng(Rd, Rd)),
B < 0 is distributional and the parameters satisfy some constraints which guarantee weak-well posedness.
Defining an appropriate Euler scheme, we show that, denoting v := a + 28 — d/p — a/r — 1 > 0, the weak

error on densities related to this discretization converges at the rate (y — €)/a for any € € (0,7).

6.1 Introduction
For a fixed finite time horizon T" > 0, we are interested in the Euler-Maruyama dicretization of the formal
SDE .
X, ::c—i—/ b(s, X)ds + dZ,,  Vee[0,T), (6.1.1)
0

where Z; is a symmetric isotropic d-dimensional a-stable process, o € (1,2) and b € L™ ([0, 77, Bqu(Rd, R)),
B < 0. In this pure-jump setting, it was established in [CdRM22a] that well-posedness of the generalized
martingale problem holds for the generator formally associated with (6.1.1) under the condition

1+4 l—a+d49
ae |12 pe|——1—0], (6.1.2)

which we assume to hold throughout this paper. Density estimates on the time marginals of (6.1.1) were
obtained in [Fit23].

The goal of this paper is to prove a convergence rate for the weak error on densities associated with an
appropriate Euler scheme for (6.1.1). The proof consists in approaching b(-, -) with a sequence (b(-,-, k))n>0
of bounded Holder functions, where the mollification parameter h is also the time step of the scheme.

6.1.1 Definition of the scheme

To introduce the scheme associated with the formal previous SDE (6.1.1), one first needs to recall that the
precise meaning to be given to the SDE, following [CdRJM22] in the pure-jump setting, inspired by [DD16]
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in the Brownian setting, is:

t
Xi=z +/ b(s, Xs, ds) + Z, (6.1.3)
0

where for all (s, z) € [0,7] x R4, h > 0,

s+h s+h
b(s,z,h) = / /b(u, Y)pa(u— s,z —y)dydu = / P b(u, z) du, (6.1.4)

Pa(v,-) denoting the density of the a-stable driving noise (Z,),>0 at time v and P the associated semi-
group. The integral in (6.1.3) is intended as a Young integral obtained by passing to the limit in a suitable
procedure aimed at reconstructing the drift (see again [CdRJM22]). The resulting drift in (6.1.3) is, per
se, a Dirichlet process (as it had already been indicated in the literature, see e.g. [ABM20] and references
therein). Importantly, the dynamics in (6.1.3) also naturally provides a corresponding approximation scheme
to be analyzed. Note that, in order to give a precise meaning to the integral appearing in (6.1.3), we need

the following condition:
1+ 4 l—a+ 24 20
o€ 17’1’,2 B e +,0 , (6.1.5)

T

which is more stringent than (6.1.2). Interestingly enough, this condition does not appear elsewhere in the
present work since we only consider the time marginals of the process.

We will use a discretization scheme with n time steps over [0, 7], with constant step size h := T'/n. For
the rest of this paper, we denote, Vk € {0,...,n},t; := kh and Vs > 0,7/ := hl3] € (s — h, s], which is the
last grid point before time s. Namely, if s € [tg,txr1), T2 = ti.

We can now define the related Euler scheme X", starting from X(})‘ = x, on the time grid as

— Zy,.

h
Xf, i

i1

= X[ +b(t;, X' h) + Z, (6.1.6)

i+l

We have precisely plugged the expression (6.1.4), which served to define the limit dynamics (6.1.3) for the
SDE, with a time argument corresponding to the chosen time step.

Set now for (s, z) € [0, T)\(kh)refo,... n} X RY,
bn(s,z) :== P _,b(s,z2). (6.1.7)

Observe from that definition that, on any time step, the drift also writes as

tit1
b(t;, X/ h) = E[bh(Ui,Xt’?i)|Xt’i]h:/ by (u, X{") du, (6.1.8)
ti
where the (Ug)ren are independent random variables, independent as well from the driving noise, s.t.
U (law) U([tk, tk+1]), i-e. Uy is uniform on the time interval [tg, t511].

From a practical viewpoint, the above time and spatial expectations will anyhow have to be approximated
if one was to fully implement this discretization. These computations are however case-dependent. We men-
tion that a usual way to spare one of these approximations consists in randomizing the time, namely this
amounts to consider [;(tl-, X[:,h) = b,(U;, X fh) This approach was successfully carried out for Lebesgue
drifts (see [JM24b], [FIM24]) and also allowed in the spatial Holder setting to achieve the somehow expected
convergence rates without any requirements on the time regularity (see [FM24]).

Anyhow, in the current singular setting it seems difficult to benefit from such an effect in the sense that

without any additional time integration we do not have controls on the approximate drift norm. This can
be seen e.g. in (6.2.5) below or in the proof of the sensitivity analysis involving the local transitions (see
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proof of control (6.3.11)).

The representation (6.1.4) naturally suggests to extend the dynamics of the scheme in continuous time
as follows
t
X:l:X:_L}L+b(Tth,X:_lh,t*Tth)+Zt727_h :Xh}L+/ bh(S,Xhh)dS+Zt*Z7.h, (619)
t t t Tt h Tt t

Te

which gives an extension in integral form which is similar to the dynamics of Euler schemes involving non-
singular drifts, i.e. it is an [t0 type process and the approximate drift appears through a usual time integral.

6.1.2 FEuler Scheme - State of the art

Estimates on the weak error involving a suitably smooth test function have been studied for a long time. In
the Brownian setting, we can mention, the seminal works of [TT90] (smooth coefficients and test function)
and [MP91] (non-degeneracy and Hélder coefficients). Going to density (i.e. taking a dirac mass as test func-
tion) requires some additional non-degeneracy of the noise. We can refer to see [?] in a suitable Hérmander
setting and [KMO02] in a non-degenerate case, which deal with smooth coefficients as well as [KM10] for
stable-driven SDEs with smooth coefficients. The key tool to derive these results resides in studying the
smoothness of the backward Kolmogorov equation with the corresponding test function.

When the coefficients are smooth, the aforementioned works prove that the weak error rate of the Euler
scheme is of order 1 with respect to the time step h. When the drift and the (possibly non-trivial) diffusion
coefficients are n-Holder, in the brownian setting, the expected rate falls to h? (see [MP91] for smooth test
functions and [KM17] for the error on densities). To the best of the authors’ knowledge, this has not yet
been proven in the pure-jump setting o < 2, but an associated rate of order 1/« would be expected.

For a more detailed review of those topics, we refer to the introduction of [FM24].

Recently, a series of works considered the Euler approximation of SDEs with stable additive noise and
low-regularity drifts and a randomization in the time variable for the scheme. The first work in this direction
goes back to [BJ22], which addressed the case of a Brownian SDE with bounded drift, achieving a conver-
gence rate of order 1/2 up to a logarithmic factor for the total variation error. The ideas introduced therein
have been generalised in [JM24a] in order to handle Lebesgue drifts in L} — L? under the Krylov-Rockner
condition 2/q + d/p < 1. The achieved rate on densities then writes (1 —2/q — d/p)/2, which corresponds
to the margin in the Krylov-Réckner condition multiplied by the self-similarity index of the noise. This has
been extended to the strictly stable case in [FJM24] under the condition «/q + d/p < a — 1, achieving the
rate (¢« — 1 — a/q — d/p)/a, although in this setting, the above condition only ensures weak well-posedness
of the underlying SDE (see [XZ20] for the conditions leading to strong well-posedness). Eventually, in a
Holder setting, it was derived in [FM24] that for bounded n-Hdélder (in space) coefficients with a € (1, 2],
the convergence rate writes (a+n—1)/a. Keeping in mind that weak well-posedness holds for a4+n—1 >0
(see [CZZ21]), this rate again corresponds to the margin multiplied by the self-similarity index of the noise.
All those works rely on first deriving heat kernel estimates for the diffusion and the scheme in order to
bypass the lack of regularity of the drift. In the present work, we manage to apply this approach to handle
Besov drifts through the previously introduced scheme, achieving, up to some ¢ > 0 (which is intrisic to the
dsitributional setting), a rate which corresponds to the margin appearing in the condition required for weak
well-posedness multiplied by the self-similarity index of the noise, thus emphasizing the robustness of the
approach.

Nevertheless, another approach has proven fruitful when handling SDEs with (possibly fractional) brow-
nian noise, mainly to derive strong error rates, leading, surprisingly, to better convergence rates using the
stochastic sewing lemma (see [Lé20]). In the Krylov-Rockner setting, the strong error rate derived in [LL21]
is 1/2 up to a logarithmic factor. For the weak error, an approach involving the stochastic sewing lemma has
been successfully applied by [Hol24] for Holder drifts, leading to the rate (n+1)/2, up to some £ > 0 (which
is intrisic to the sewing lemma), thus achieving similar rates to those discussed in the previous paragraph in
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an analog setting.

Let us also mention [?] in a brownian scalar setting, who derived a convergence rate for the strong error
with a distributional drift. The results of the current paper are, to the best of our knowledge, the first ones
concerning multi-dimensional SDEs with distributional drifts in the strictly stable setting.

6.1.3 Driving noise and related density properties

Let us denote by L* the generator of the driving noise Z. When a € (1, 2), in whole generality, the generator
of a symmetric stable process writes, V¢ € C5°(R%, R) (smooth compactly supported functions),

£(x) = pv. / 6z + 2) — $(x)] (dz)

Rd
d
=pv [ [ 6+ o) — gl (et

(see [Sat99] for the polar decomposition of the stable Lévy measure) where 4 is a symmetric measure on the
unit sphere S?~1. We will here restrict to the case where = m the Lebesgue measure on the sphere but it is
very likely that the analysis below can be extended to the case where u is symmetric and 3k > 1: VA € RY,

C™'m(d¢) < p(dg) < Cm(df),

i.e. it is equivalent to the Lebesgue measure on the sphere. Indeed, in that setting Watanabe (see [Wat07],
Theorem 1.5) and Kolokoltsov ([Kol00], Propositions 2.1-2.5) showed that if C~1m/(d¢) < p(d¢) < Cm(dE),
the following estimates hold: denoting p,(v,-) the density of the noise at time v, there exists a constant C'
depending only on «,d, s.t. Yo € R,z € R?,

—(d+a) —(d+a)
C o (1 + |Zl|) < pa(v,2) < Cv (1 + zl|> . (6.1.10)
Vo Ve

Note that, additionally to the previous non-degeneracy condition, in order to have the estimates on the
derivatives of p, appearing in Lemma 6.2, some smoothness is required on the Lebesgue density of pu.
On the other hand let us mention that the sole non-degeneracy condition

KNS A€ < wlA

does not allow to derive global heat kernel estimates for the noise density. In [Wat07], Watanabe investigates
the behavior of the density of an a-stable process in terms of properties fulfilled by the support of its spectral
measure u. From this work, we know that whenever the measure p is not equivalent to the Lebesgue measure
m on the unit sphere, accurate estimates on the density of the stable process can be delicate to obtain.

Let us now introduce

—(d+a)
Da(v,2) == Cov ™ (1 + |21) v >0,z €RY (6.1.11)

Va
where C,, is chosen so that Vv > 0, [ po(v,y)dy = 1. Observe as well that from the definition in (6.1.11) we
readily have the following important properties:
Lemma 6.1 (Convolution properties and spatial moment for ).
e (Approzimate) convolution property: there exists ¢ > 1 s.t. for all (u,v) € (R%)?, (z,y) € (RY)?,

/ Do, 2 — 2)pa(v,y — 2)dz < P (u + v,y — ). (6.1.12)
Rd
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o Time-scale for the spatial moments: for all0 < 0 < a,a € (1,2) and for all 6 > 0 if « = 2, there exists
Ca76 s.t.

/ |2°Pa(v, 2) dz < Co 507 (6.1.13)
Rd
From now on, we will use assume w.l.o.g that 0 < T' < 1. The results below can be extended to an

abitrary fixed 7' > 0 through a simple iteration procedure. For two quantities A and B the symbol A < B
whenever there exists a constant C := C(d, b, a) s.t. A < CB. Namely,

A< B« 3C:=C(d,b,a), AL CB. (6.1.14)

We will also use the notation A < B whenever A < B and B < A. Also, for any ¢ € [1,00], ¢/ will always
denote its conjugate exponent, i.e. % + 71, =1.

Lemma 6.2 (Stable sensitivities - Estimates on the a-stable kernel). For each multi-index ¢ with length
I¢| €2, and for all 0 < u < v’ < 400, (2,2') € (R?)?,

Spatial derivatives: for all § € {0,1},

1
|00V ipalu, 2)| S 51 Palu, 2). (6.1.15)
u «
e Time Holder regularity: for all 0 € [0,1],
Svr¢ Sv7¢ / <|U—ul|0 = —
|00 Vipa(u, z) — 03 Vipa(u',2)| < T (Pa(u, 2) + Pa(u/, 2)). (6.1.16)
u «

Spatial Holder regularity: for all 6 € [0,1],

z—2|° 1 B B

|00V ipa(u, z) — 05Vipa(u, /)| S (' = N 1) i (Palu,2) + Palu, 2')). (6.1.17)

a u o
o Convolution
Va,y € (RH2, VO <s<u<t, V0 >1,
1 1

|Pa(t —u,- — y)Pa(u— s,z — )| v S - + - | Pa(t —s,2 —y). (6.1.18)

(t—u)azc  (u—s)ar

e Besov norm
For all ¥ € Ry, (¢,m) € [1,+00]?
_9_ _d
1Pa(t, gy St7a"a7 (6.1.19)

The controls of Lemma 6.2 are somehow standard. A proof can be found e.g. in [FJM24]. Importantly,
note that those controls are valid both for p, and p,.

6.1.4 DMain results

We first give the following bounds concerning the densities of the SDE (6.1.1) and its associated scheme
(6.1.9), assuming (6.1.2) holds. Let us state the following controls:

Proposition 6.1 (Heat kernel estimates for the densities).
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o Heat kernel bound for the density of the Euler scheme: for all p € (—f,v— ) there exists C= C(d, b, a)
such that for all (z,y,y") € (R)3, ¢ >0,
I'*(0,2,t,y) < Cpalt,y — ), (6.1.20)
h N _h ly—y'°
[T*(0,z,t,y") —T"(0,z,t,y)| < Ctigpa(t, y—x). (6.1.21)

Consequently, in terms of Besov spaces (see Subsection 6.2.1 below for a precise definition)

<C(14t49), (6.1.22)

Fh(07 z,t, )
B 0o

Dalt, — )

e Heat kernel and Sensitivity bounds for the density of the SDE: for all p € (—f8,7 — ), there exists
C= C(d,b, ) such that for all (z,y,y’) € (R))3, t € (0,T],

[0, z,t,y) < Cpu(t,y — x), (6.1.23)
)
ID(0,z,t,9) — T(0, 2, t,y)| < (J'ytiﬁy‘pa(t, y— ). (6.1.24)

Consequently, in terms of Besov spaces,

Moreover, it holds that for all e > 0,t" € (¢t,T] such that |t —t'| < /2,

F(Ov xz, t? )

i) <Ol +1t7%), (6.1.25)

o
=

o) — . f— %
HF(O,m,pt, ()t/ r((;,)a:,t ) < c% (6.1.26)
oY y T B&,,oc =

The bound (6.1.25) was obtained in [Fit23], (6.1.26) would follow from the same lines but is detailed for
self-containedness in Appendix 6.6. The main result of the paper is the following theorem:

Theorem 6.1 (Convergence Rate for the stable-driven Euler scheme with Besov drift). Denoting by T' and
T'" the respective densities of the SDE (6.1.1) and its Euler scheme defined in (6.1.9), for all e > 0,p > —f3
there exists a constant C := C(d,b,a,T,e,p) < 00 s.t. for all h = T/n with n € N*, and all t € (0,7,
z,y €RY,

‘Fh(oa z,t, y) - F(Ov z,t, y)| < Ch%pa(t’ Y- JU), (6127)

where v =28 — g — %+ a—1>0 is the “gap to singularity” in the Besov case.

6.2 About Besov spaces and related controls on the mollified drift

6.2.1 Definition and related properties

We first recall that denoting by S’(R?) the dual space of the Schwartz class S(R?), for £,m € (0, +oc], ¥ € R,
the Besov space Bzm can be characterized with

B = {/ € SR : Iflleg, = IF (@F (Nl + T (f) < o0},

1 N
d m
( e L XOS f||zz) for 1< m < oo,
Tom(f) =9 Vo Y (6.2.1)
sup o=/ (0, ) % flle | form = o,
ve(0,1]
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with * denoting the spatial convolution, n being any non-negative integer (strictly) greater than ¥/, the
function ¢ being a C3°-function (infinitely differentiable function with compact support) such that ¢(0) # 0,
and P (v, -) denoting the density function at time v of the d-dimensional isotropic stable process.

For our analysis we will rely on the following important inequalities:

e Product rule: for all ¥ € R, (¢,m) € [1,+00]? and p > max (19, 719), Y(f,g) € B2 . xBY

00,00 £,m>

£ -glleg.. < II7llez. . lleg. - (6.2.2)

See Theorem 4.37 in [Saw18] for a proof.

e Duality inequality: for all ¥ € R, (¢,m) € [1,4+00]?, with m’ and ¢ respective conjugates of m and /,
and (f,g) € B}, x B"

’
,m’?

[ 19t < 151y, ol (6:23)

See Proposition 6.6 in [LR02] for a proof.

e Young inequality: for all ¥ € R, (¢,m) € [1,+00]?, for any § € R and for (¢1,f3) € [1,00]? and
(m1, ma) € (0,00]? such that

14 1 1 n 1 q 1 < 1 n 1
S T an i T
€0 by m = mp o my’
there exists C' such that, for f € B?;:fh and g € Bgzmz,
£ *dlleg,, < ClFlag-s Nl - (6.2.4)

See Theorem 2.2 in [KS21] for a proof (or [Sawl8]).

6.2.2 Controls for the mollified drift

Let us now state some important properties of the chosen approximate drift.
Lemma 6.3. [Useful bounds for by,] There exists C > 1 s.t. for all h > 0 and all (s,z) € [0,T] xR?, s # 7],

e Pointwise control Vs
b1 (5. 2)] < Os — 7" 2 [b(s, ) g - (6.2.5)

o Time-integrated pointwise control

/ by (u, 2) du| < C(s — 737 |b]l L _gs - (6.2.6)
Tf’ p,q
e Spatial Holder modulus of the integrated drift
For all (z,2') € RY?, (€ [-B,a—1+B—d/p—a/r),
° ’ 1ey L4i=8=¢
(bh(u,z) —bp(u, 2 )) du| < Clz = 2'|*ha" o ||b]| 1, _gs - (6.2.7)
Tg’ p,q
e Besov norm of the mollified drift
on (s, gz, < 16(5. s (6.2.8)
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Proof. Let us recall the definition of by:
ba(s,-) i= P2 b(s,) = pals — 7, ) % b(s, ). (6.2.9)

Using the duality inequality (6.2.3) and the estimate on the besov norm of p,, (6.1.19), we immediately
obtain (6.2.5). Using the same arguments for the integrand, we have

d

S S é_i
on(u ) du < [ patu =g 100y, du< [ (= )25 . gy, du (6:2:10)
5 du o B1_Ll_d B
S”bHLT—Bg,q( 7_;1 (UTgh)"'/(f"rzi)) S CHbHLT_Bg’q(S_TS) r ap o,

This proves (6.2.6). Similarly, for ¢ € [-8,a — 1+ 8 — d/p — «/r), using this time the Young inequality
(6.2.4), we have

/S (bp(u,z) — by (u,2")) du

h
S
§|zfz'\4/ [|6n(u,)||ge  du
Th Rathey
S

s B_¢_a
<l = 21 [ =78 g 1060 g, du < [ = 21 [ (=736 o, ) g,

h
s

s du o
<le = Ml-ot, [, - rrerg)” <01/
s s

R A

This proves (6.2.7). Eventually, (6.2.8) follows from the Young inequality (6.2.4) and the fact that the BY
norm of the stable kernel is uniformly bounded. O

Let us also state the following lemma, which indicates that the deviation induced by the mollified drift
over a single time step can be neglected at the scale of the noise:

Lemma 6.4 (The approximate singular drift in the density of the driving noise). There exists C' s.t. for
0<s<t<Tstt—s>s—71"and (z,7) € (R?, for all k, |k| <2,

VEpa (t — 8,z — / bn(u, 2" du)
o

Proof. Write from (6.1.15),

|V§pa <t — 8,2 — / br(u,2) du)
Th

< (ti)kﬁ (t—s,2). (6.2.11)

SL‘M@X <t — 8,2 — bh(u, 2" du)

1
<
— Ikl d d+a
(t—S)aJra 9 _ \fhbh(uz)du|+ ‘Z‘l
(t— S)” (t—s)«
C 1
<
Tt — ) H+e 1—8 dia
(t —s) <2 (s— -,—h)a g |z|1)
(t—s)«
C C _
= %] hal(t — s, 2),

(t—s)+s (142 )“"“S(t—s)'a

(t—s) o

for h sufficiently small, using (6.2.6) for the last but one inequality and up to a modification of C from line
to line. This proves (6.2.11). O
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6.3 Tools for the proof of Theorem 6.1

6.3.1 Duhamel expansion of the densities

Proposition 6.2 (Duhamel representations for the densities of the SDE and the Euler scheme). The density
T(s,x,t,-) of the unique weak solution to Equation (6.1.1) starting from x at time s € [0,T) admits the
following Duhamel representation: for all t € (s,T], y € R%,

t
L(s,z,t,y) = pa(t — s,y —x) — / Eso [b(r, X)) - Vypa(t —r,y — X,)] dr. (6.3.1)

Similarly, for k € [0,n — 1], t € (t,T), the density of X}' admits, conditionally to X{Z = x, a transition
density T (ty,, x,t,-), which enjoys a Duhamel type representation: for all y € R,

t
Fh(tk7x7t7y) :pa(t_tlﬁy_'r) _/ Etk,w |:bh(r’X7}—L,h) Vypa(t—r,y—Xf)} d?". (632)
L "

Proof. Tt is plain to prove, from (6.2.5), that, for any ¢ > 0, the above scheme admits a density which we
denote I'*. Indeed, the scheme can be viewed as the Euler scheme associated with the solution to the SDE

AxP" = e, (t, XM dt + 47, (6.3.3)

which has L™ — L* drift, albeit with L™ — L* norm depending on h. As a consequence of [FJM24], it follows
that I'* enjoys the Duhamel-type representation (6.3.2).

As for (6.3.1), it is a consequence of the mollification procedure considered in [Fit23] (see Section 4
therein).

O
6.3.2 Auxiliary estimates
Estimates for the density of stable processes
The following estimates will be needed for the error analysis below.
Lemma 6.5 (Besov estimates for p,). Let § < 0.
o V0 <s <t V(zy) e (R V(e (-B,1], Vke€{0,1},
¢ ¢
_ Palt,z—y) s & te
1Pa(s @ =) Vypalt = s,y = g—p S = t= + I+—+
v Bl ™ (t—s)& sa  (t—s)ar s& (t—s)%
(6.3.4)

o V0 <s <t V(z,y) € (R)?j €{0,1}, V¢ € (=B + v, 1], Vk € {0,1},

Pa(t, x — B—j
IT(0,z, s, ~)V’;pa(t =5,y —)|lg-s+iv S Paltiz—y) ﬁy) o
p’,q’ (t — S)a

e V0 < s <t V(z,y,w) € (RH3, V¢ e (-p,1],

palsz ) | VPalt=sw =)  Vpalt—sy—)
A Da(t,w — ) Palt,y —x B2,
pr",q
w — yl¢ 1 1 t% té
N%tﬁ Tt — ||\t t——<|- (6:3.6)
(t—S) x Sap (t—S)O‘P Sa (t—s)a
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e VO < s <t V(z,yy)e R, st |y —y| < t%, j €{0,1}, V¢, p € (=B +jv,1)%, Vk € {0,1},
||F(Oa Z,s, )(v]gjpo/(t —5Y— ) - v];p()t(t - Svy, - '))HB_/B";J"V

_ ly —y'|P goin | 1 1 te ta
<Pa(t,z —y)———F—t + [+t =+ —7F. 6.3.7
f\/pOé 7 P
T s@  (t—s)@ s& (t—s)a (631
e Vh<s<tl—h,relrh h+h), V(z,y) € (R)?2, V¢ e (-B,1], ¥§ € [0,1),
L0, 2,78, ) [Vypalt = s,y =) = Vypalt =1,y = )|lg—s
<
w(ty—x) 8 | 1 1 tw tw
< (s—rylalby =),z b 1+ = —. 6.3.8
( ) (t—S) s+o saip (t—s)uip sé (t—s)é ( )

o Vh<s< 7l —h, relrhrl+h), Yayy)e RN,V pe (-B12 ly—y|<t, V5 e(0,1),¥0 ¢
{0,1},

[pa(rse =) (079 ypalt =y =) = O Vypalt = 19/ =) [lgs

¢
Palt,y—x) 8| 1 1 ta ta
< |y —f|lp 22T 7 44
Sly-vl (t—s)é+9+fit Sadp+(t_s)adp 1+s§+(t—s)§ : (6.3.9)

e Vh<s<7th—h,re(th th+hn),Y(z,y,y) € (R V¢ pec (-B,17 ly—v| < té, V5 €[0,1),v0 €
[T (0,2, 70, ) [0 Vypa(t =1,y =) = 0/ Vypalt =1,y = )]|lg-s

¢ ¢
1 1 to te
A —— | 1=+ ——]. (6.3.10)
ser  (t—s)or sa (t—s)w

e Vh<s<7l—h,V(z,y) € (RY2, V(€ (-4,1],

< /|p p(,(t Yy— ) t%

Sl—v

Fh(ovxanv )(Vypa(t - Tsha y—- ) - Vypa(t - 7;17?/ - ( + / bh(ua ) du)))

-8
Bp’[,q’

<
te te
1+ ——+
a (t—Th

P N 1

<p — —Pd
S Palt,y — ) =) t o +(t_7h)a%
S S

~|. (6.3.11
)

o Vh<s <7l —h V(wyy)e R, [y—y|<tx, V¢ pe (=p,1%VAe0,1],

(o, LL‘,TS7~)(V2 ot —Tsh,y—(~-‘r)\/k br(u, ) du)) — Vipa(t — 72y — +)\/ by (u
></ by (u

Sly =y halt,y — @)

-8B
Bp’,q’

ts te
1+ z =+ = |-
(th)s  (t—1h)=
(6.3.12)

B3 1 n 1
(t—rhyaté ()@ (t—Th)ar

The bounds (6.3.4), (6.3.6) have been proved in Lemma 3 of [Fit23]. Equation (6.3.5) relies on the same
proof as (6.3.6). The other estimates are proved in Section 6.5.1, and the approach therein would also readily
give the previously mentioned bounds.
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6.4 Proof of Theorem 6.1

We will proceed by controlling the B2, ., norm of (I'"*(0,z,¢,) — (0, 2,t,-))/Pa(t,- — =) using the fact that
for those exponents, it writes
(C=I™)(0,2,t,2)  (D=T")(0,2,t,2")
Pa(t,z—2) Dalt,?—x)
ERrC

- Fh(oa z,t, ) _ F(Oafvta )

B%, oo A H ﬁa(tf - x)

+ sup
Lo  z#z'€Rd

H Fh(O,x,t, ) - F(O,.T,t, )
pa(t7 T .Z')

(6.4.1)
We will first control de L> norm in Subsection 6.4.2 and then, using the same error decomposition, we
will control the Hélder modulus in 6.4.3

6.4.1 Decomposition of the error

Fh(ovxata y) - F(Oa x,t,y)

h
— [ B o5 X0) - Dypalt = 5.y = X) ~ bu(s,2) - Vit = 5.~ X0)] ds
’ ' —h
+ / t Eo,e [b(s, Xs) - Vypa(t — s,y — X;) — b(s, Xon) - Vypa(t — s,y — XT;I)} ds
hT’L—h
+ / B (b5, X)) - Vypalt — 5,y — Xon) = bu(5. Xo0) - Vypa(t — 5,9 — X)) ds
hr,th
+ / 4 Eo.z |:bh(S,XT&h) “Vypa(t — s,y — X7n) — bh(s,X%) - Vypa(t — s,y — th)} ds
h‘rth—h
+ /h Eo,x {bh(s,Xf;l) . (Vypa(t — 8,y — be;j,) — Vypal(t —s,y — X;L))} ds

t
+ / Eo,» {b(s, Xs) - Vypa(t —s,y — X5) — bh(s,th) -Vypal(t — s,y — X;’)] ds
‘rthfh °

= (Al + AQ + Ag + A4 + A5 + Aﬁ)(O, Z, t, y) (642)
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\ h Tth —h Tth
F +
0 t
Aq
«—> Overall error on the first full time step
Ay
Forward time regularity of T"
As
Approximation error for b
Ay
Gronwall lemma
As

Spatial regularity of the driving noise

—> Overall error on the last full time step

Figure 6.1: Splitting of the error

6.4.2 Control of the supremum norm

Term A;: first time step. For A;, we rely on the fact that we work on the first time step. Let us first
expand the expectation:

A1(07 :I:?t? y)
h
:/ / (F(O,x, 5,2)b(s,2) - Vypa(t — s,y — 2) — I'"0,2,s,2)by(s, x) - Vypalt — s,y — z)) dzds
0
::(AM + A1,2) 0,z,t,y).

For A4 1, which involves the distributional b, we have to rely on the duality inequality in Besov spaces (6.2.3).
Assuming w.l.o.g. that ¢ > 2h so that (¢t — s) < ¢, then using (6.3.5) (taking therein ¢ € (—3,1)), we get

h
IAl,l(Oa a:,t,y)| S / ||b(87 ')Hng”F(O,J), S, )vypa(t —5Y—- ')”B‘/ﬁ , ds
0 ’ p’,q

_ h ta 1 ta ta
Shattw=a) [ 0eleg, oy | g [t ts)gl ds
o’ 7
<Pty — )bl g, ( / e {1 " 1} e ds)
0 S ap ter ] §a
S Paltyy — )B17F (R BT 4 pm
< Palt,y —x)hat 5. (6.4.3)
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For A; 2, using the L bound of by, (6.2.5), (6.1.20) and (6.1.15), we get

1
t)l/ﬁa(s,z—x)pa(t—s,y—z)dzds
P (¢t — g)a

S Pa
< Palt.y —2)hSha 5175 < Palt,y — 2)hit ™5, (6.4.4)
recalling that h <t for the last inequality. We eventually get:

|A1(0’$7t7y)| §ﬁa(t7y—$)h%t_§- (645)
Term A,: time sensitivity of the density of the SDE. Let us turn to As. Expanding the expectation,

using the product rule (6.2.2), then the duality inequality (6.2.3), the heat kernel estimate (6.1.26) and the
control (6.3.4), we get for ¢,p > —f,

|A2(0,2,t,y)] (6.4.6)

h—h
/ / (0,2,8,2) = T(0, 2,71, 2)]b(s, 2) - Vypa(t — s,y — 2) dzds

s/h 1G5 g,

0,z,s,-) —I'(0,z,77,)

718

Dals, — )

”ﬁa(sa C x)vypa(t -5y — ')HBjB , ds
P ,q

o
Bo,00

h—h By 2= 8 < <
_ ¢ (s—7) = ta 1 1 ta te
< — . S - - e
SPalt,y w)/ 16(s, Mgp , —== + + ds
3 Br.a e (t— S)é Saip (t — s)aip sé (t— s)é
Th_h ' ' L
y—e B¢ ¢ 1 1 1 1 1 1 I
<p — & tata S — "
SPa(t,y — ) 1ol e (/ =ctr I + + ds)
L7 (Bp,q) h s” a+ (t — S)T o Saip (t — S)le Sé (t — S)é

t
1 1 1 1
<_at, . o' L+éb . / + +
~P ( Yy ) || HL (B,‘f,q) o ST/[w—§+p+aip+§] (t—S)T/é ST/['Y*;er_;'_aip] (t—s)w[é+g]

i
7

n 1 1 n 1 1 q
S
PSR (TG ] (g R

_ —e B¢ 1 _(y—etpy d L C 1 _B_pyeqy(dA 428 d_ 1y
SPalty = o)h T OGS b g ) S Pally — )RR
—1-24284 4
Shalty - TR R
Palt,y — w)h = 15" (6.4.7)

where we also used for the last but one inequality that all time singularities are integrable (Da S. a E.: si
qui bisogna pensare a ¢, p come —f + 1 per 1 piccolo).

Note that this term is not optimally controlled: one would expect to obtain a bound in hEt—%. This is
due to the fact that the heat kernel estimate (6.1.26) only allows to reach the rate (y — ¢)/a (getting rid
of the ¢ here is doable at the expense of more involved computations, however this is not the case for other
terms down the line). The extra singularity in t~& is due to the use of a product rule. It would have been
more natural to try to control the besov norm ||[['(0, 2, s,-) — T'(0,z, 71, )|V ,pa (t — s,y — g-p , directly

p,q

sy gy

(i.e. without normalizing by ps (s, — x)). However we were not able to achieve the desired rate this way as
the previous norm involves the forward regularity of I' in space and in time simultaneously, thus lowering
the achievable thresholds.

Term Ajz: approximation of the singular drift. Let us turn to Az. Expanding the inner expectation
and using the proof of Proposition 2 in [CARJM22] to write ||b(s, ) — Pb(s,-)|[gs-~ S ha||b(s, Nlge , we
p,q p,q
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derive, using this time (6.2.3) and (6.3.5) (noticing for the latter that on the considered time interval, s < 7)
for (€ (=8+v,—28+7),

—h
|A30xty|—‘/ / Om,TS,z [b(s,z) — bp(s,2)] - Vopa(t — s,y — z)dzds

S/h ||b( S, ) Ph ( S, ”Bg;z“’ ||F 0 x,Ts,~)Vypa( - 7y7.)||87’/.;+/7 ds

t — < <
(e} t? - 2= ]- 1 ta ta
Sh? HMS,Nngp(E x>f0tﬁu [( Y | EANTS R
— §)a t—8)or Sap t—s)o Sa
< Palt,y — )Rt (6.4.8)

Term A4: Gronwall or circular type argument. Due to the singular drift, this term emphasizes that
in order to derive the main theorem, not only will we need to control the supremum of the difference but as
well a kind of Holder modulus. Namely, for p € (=3, —8 + ),

|A4(Oa IL',t,y)|

h—h
/ = [bh(s, X,1) - Vypa(t — s,y — Xon) — bp(s, X)) - Vypalt — s,y — th)] ds
h s 8 S s

T;’—h
(T —T")(0, 2,7, 2)bx(s, 2)Vypalt — s,y — 2z) dzds
Rd
Tt —h h h
¢ (F,F )(O vaev') = h
< m@om%H O - -l

Let us now recall that:

(Ffrh)(oﬁvﬂ—sh)y) (F Fh)(o z T:, Y )

H(F "0, z, 7k, ) H (L —Th)(0,z,7r,-) v s Pa (Tl y—2) / Pa(TIy —)
pa( Ty — :L‘) B% oo (Ts [ 33) L y#y’' €R? Iy ) |p
T - rh 0, z,7",- T — )0, z,7h, -
O] g ()Y
— ) Lo pa( Th, . — )
Set now, for s € (h,T],
(F*Fh)(o,x,s,) £ ((Frh)(ovxa*sv'))
Ghp(S) == — +seH — , 6.4.9
oty = || sty (E0 (6.4.9)

where we set the overall value for ¢ to be € := 2(p+ /), which can be chossen as small as desired. Thanks to
the heat kernel estimates (6.1.25) and (6.1.22), we already know that gy ,(s) is finite. We carefully mention
that the additional normalization in s& for the Holder modulus is the natural one associated with the spatial
p-Holder modulus of continuity of the stable heat kernel. With these notations at hand we write:

1A4(0, 2,8, y)[ < sup I o(8)Pa(t;y — )

se(h,
B < <
1 ta 1 1 te te
1b(s, Mgz~ ——— | — + =t ds
/ Bragh (t—s)o |sar  (t—s)ar | |s5 (t—s)e
—B—pty _ -5
S osup gnp()tT & Palty—a)= sup gn,(s)t = palt,y— ), (6.4.10)
s€(h,T) s€(h,T)

where we again used (6.3.4) with ¢ € (—f, 1) for the last but one inequality. The above contribution actually
emphasizes that, in order to control the error on the densities we actually need to control a related Holder
modulus of continuity. Let us as well point out that for the time contribution to be small (in order to perform
the circular argument on the quantity g, ,) we will as well assume w.l.o.g. that v > /2.
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Term Aj: spatial sensitivities of the driving noise. Let us now turn to
T, —h
A5(05 t,l‘,y) :/ EO!I I:bh<s>X7{Lh) ’ (vypa(t —8Y— X:L’L) - vypa(t —5Y— X;L>)1| ds
h ? °
T{"fh
:/ Eo,» [hh(s,ng) . (Vypa(t—s,y—sth)
h
_Vypa (t - :7 Yy— (XTh + / bh(ua Xqi—zh) du)>>‘| d87
Th °

using the harmonicity of the stable heat kernel (or martingale property of the driving noise). Write now,

|A5 (0,2,t,y)|
7h s
(0, 2,7, 2)bu(s, 2) - (Vypalt — s,y — 2) —Vypalt — 0y — (z+/ by (u,z)du)) | dzdrds
R4 Th
Tt '—h
(0, 2,70, 2)by(s, 2) - (Vypalt — s,y — 2) — Vypa(t — 70,y — 2)) dedrds
R4
'rthfh

0 , T, Th ho2)by(r, 2) - (Vypa(t—Tsh,y—z)

Rd

_vypOz(t - Tsh7y - (Z +/ bh<u?X7}—Lh) du))) dzdrds| =: |A51(Oax7t7y)‘ + |A52(O,l’,t,y)|~
T;L °

For Asq, using the duality inequality (6.2.3) and (6.3.8), we have

‘rthfh
ds

|As51(0, 2, t,y)| S/ /Fh(O x, T, ho2)by(s, 2) - (Vypa(t—Tsh,y—z) —Vypa(t—s,y—z)) dz
h

h

T, —h
S /h ||bh(87 ')HBg’q”Fh(O z, Tsh7 ) (vypa(t - Tsh7y - ) - Vypa(t —5Y— )) ”B;,ﬁq, ds

' —h hy2, 2 = =
B t S — T, ata 1 1 ta to
Shalty—) [ ool S | e e B g
h P(t—s)a |ser (t—s) sa  (t—s)a
< Palt.y —x)ht 5. (6.4.11)

On the other hand, using this time (6.3.11),

|A52(0,1’7t,y)|
‘rthfh s
S / th(sv‘)”ng Fh(O,x,T‘f’,')<vypa(t77‘;1,y7~) 7vypa(t77_‘?7y* ('+/h bh(uv)du))) ds
h s T Bf/B/
h_p =8 ,8 < <
t h™a ta 1 1 to to
<pn — .
Spaltw—o) [ sl + " ds
) " LR (COE TRk N COEN Ok
SPhalty—a)h’s tw (6.4.12)
From (6.4.11) and (6.4.12) we thus derive:
|A5(0, 2,1, )| < Palt,y — 2)hFt5. (6.4.13)
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Term Ag: last time steps. This term is handled very much like Ay, in the sense that the smallness will
come from each contribution and not from sensitivities, since the time-interval is itself small. Namely,

|A6(07xat,y)‘

t
/} Eo.» [b(s,XS) -Vypa(t — s,y — Xs) — bh(s,sth) -Vypal(t — s,y — Xsh)] ds
tLih

t
< / Eo,x [bh(s,Xf{l)~Vypa(t—s,y—Xsh)] ds

t
/ Eow [b(s, Xs) - Vypalt — 5,y — X,)] ds| +
. -

h

t

= (18611 + 186.21) (0,2, £, 1),

Using the duality inequality (6.2.3) and (6.3.5), we have, for { > —f so that 26 — 1+ ( < 0,

t
Besatw)l 5 [ b5, Yl 170,25, )yt =55 =), s

B

t
ta
< Palt,y — / b(s,)|asg ——
Np 9 x ) B
oty =2) [ 106y

~—
Q=

) st o[ 1 £ ’
S Palt,y —2)|bll - _gp 1= e I e 07 o ds
N ar’ 2
m—h ter  (t—s)er | (t—s)=
p-d4¢
Sty ot [ i B g
<5 1,8
S Doty —x)hot™ . (6.4.14)

Write now similarly for Ag o, using the L> bound of by, (6.2.5), the fact that I'* < p,, (see Proposition 6.1)
and (6.1.15), we get

_d B _ _
\Amommw/ / eI g, (7 R s gt sy 2) dds
L/
<nitn—a) /t ] i)
Pall, Yy — T ; o as
’ rho (s =) - )
S Palt,y — D) TFTFTEYE S pa(ty —2)hFRTE S palty —2)hEFEE. (6415

From (6.4.14), (6.4.15), we eventually get:

8

|86(0,2,t,9)| < Palt,y —x)hat . (6.4.16)
Putting together the controls (6.4.5), (6.4.7), (6.4.8), (6.4.10), (6.4.13), (6.4.16) we derive:

|(F_Fh)(07tuxay)| < 1”32
—~ hie t3e 4 sup g o, 6.4.17
Pa(t,y — ) s€(h,T) o (3)1 ( )

bl

)
P
Boo,oo

p > —f appeared in the r.h.s. of (6.4.10). This is particular means that, in order to make a circular/Gronwall
type argument we need to control the corresponding normalized Besov norm for the error in its final variable
through its decomposition in (6.4.2). To this end, we will mainly reproduce the former computations ob-
serving that we still have some margin in the time singularities. We will here focus on the p-Holder modulus
of continuity in the diagonal regime (for the current time considered and the final variable), since otherwise

6.4.3 Control of the Holder modulus for the error
" (0,z,7" ) ’

It was seen in the control of the previous term A4 that a contribution in SUP¢ (0,77 H (Fp G
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the previous controls on the supremum norm already provide the estimates

. Namely, we consider for all

(6.4.18)

(y,y') € RD2 s.t. |y —y/| < ta the quantity
(C—I")(0,t,2,y) (T - Fh)(07t7ﬂc,y’)’
ﬁ(x(ta Yy — I) ﬁoc(ta y/ - 1’)
L —Th)(0,¢ — (T =T")(0,t,z,y 1
_|( ).t 2,y) — ( )(0, ,x,y)+{7 : }r 0.4, 2.4/)
pa(t,y—x) pa<t7y _aj) pa t Y —
< (F*Fh)(o,t’x,y) — (F*Fh)(()?t,x’y/) |y7y/|/) ’(F_Fh 0 t € y ’
~ - =+ 5 —
pa(t7y_x) tw pa(t7y —l‘)
(F_Fh)(o?t’x’y) — (F_Fh)(ovt’x7y/) |y_y/|p (F_Fh)(o?t’x")
S - + - :
pa(t,y*n’f) to pa(ta' 71’) L>

using Lemma 6.2 for the first inequality. We will thus now focus on the first term using the error expansion
(6.4.2). With a slight abuse of notation from now on, for 3,3’ € R? we will denote for i € {1, --

Ai((])xvtayay/) = Ai(07$7tay/) - Ai(oaxvtay/)a

where the terms A, (0, z,t,y), A;(0,2,t,y") are those introduced in (6.4.2).

Term Aq:
expand the expectation:

A1 0 x, t yay)
/ / (0,2,5,2)b(s,2) - (Vypalt — s,y — 2) — Vypa(t — 5,9 — 2))
—T™0,x,s,2)bs(s,z) - (Vypa(t —

::(Al,l + Am)(O, z,t,y,y')-

8,y —2) — Vypa(t —

For A; 1, which involves the distributional b, we have to rely on duality inequalities in Besov spaces
w.l.o.g. that ¢ > 2h so that (¢t — s) < t and using (6.3.7) (taking therein ¢ € (—5,1)), we get

|A1,1(07 x, ta Y, y/)|

h
< / 105, Vg, IP(0.,5,) (Vypalt = 5.5 =) = Typalt = .9/ =) g ds

1 + 1
a7 (t—s)%

1
¢r! =
h r (B—1—p) 1 1 t o
L~—B? t « dr! + dr! ¢cr! ds
pa 0 S ap toer ] STa
d —1— S B=l—pte d
+ t

~&te
< Palt,y — )|y — ylPhat

h B

ta
<p — —q|P . L —
Sralty =2y [l s

§ﬁa(t,y*$)| '

For Ay 2, using the L*> bound of by, (6.2.5), (6.1.22) and (6.1.17), we get
|A1,2(07xat7y7yl)|

s,y — z))) dzds

’6}

first time step. For A;, we rely on the fact that we work on the first time step. Let us first

. Assuming

(6.4.19)

h _ P
_d 4B y—y _ _ _
< [ e ag, N [ als s Bl a2 Al =y )z
0 )

t—8) =
Shaltyy — @)y —ylh!' =L

B+tp

_ y,1_B _1+p _ 2, _Btp
Palt,y — )|y —ylPha ha ot Shalt,y — )|y —ylPhat™ =,
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recalling that h <t for the last inequality. We eventually get:

B+tp

18100, 2,t,5,9)| S Palt,y — @)y — yl?het™ =" (6.4.21)

Term A,: time sensitivity of the density of the SDE. Let us turn to A,. Expanding the expectation,

using the product rule (6.2.2), the duality inequality (6.2.3) in Besov spaces, the heat kernel estimate (6.1.26)
and the control (6.3.9), we get for ¢ > —p,

|82(0,2,t,y,9)|
h—h
0(0,2,8,2) —T(0,2, 7", 2)]b(s, 2) - (Vypalt — 5,y — 2) — Vypa(t — s,y — 2)) dzds

Tth—h
< /h (s, g

r0,,s,:) —T0,2,7", ")

)

Pa(s, - — ) B oo
X ”]5(1(57 T x)<vypoc(t —S5Y— ) - Vypa(t - S,y’ - '))HBf/ﬁ , ds
p,q

h_ — 3 < <

T —h (s — )% te 1 1 ta te
<—’P‘t—/ b(s, - s + —+——| ds
SY—yrp y—z S B —
=AMl I i |t s | | e
_ —e e—fB-—2
Palt,y =)y —y/|Ph= t =, (6.4.22)

choosing (, p, for the last inequality such that r’ (é + 2+ p% + é) < 1 so that the integral converges for

s — t. For such p, since v — e < 1, the exponents of s in the previous are always integrable and the integral
also converges for s — 0.

Term Ajz: approximation of the singular drift. Let us turn to Az. Expanding the inner expectation
and from the proof of Proposition 2 in [CARJM22] we derive, using (6.3.7) with some { > —f5 + 7,

IAs(Owtyy |
h_h

r(o, x,Tg ,2) [b(s,z) — br(s, 2)] -

/N

Vypa(t — s,y — 2) — VypDa(t — s, — z)) dzds

Tth—h
S /h [6(5,) — P25, g D0, 72, ) (Vpalt — 5.5 — ) — Vpalt = 8,5/ — ) g
h_h — < <
5 t t,x —y) 8= 1 1 ta ta
S O e TR L
| h HBP’q (t—s)ata (t—s)% sar | | (t—s)s  sa

Notice that, this time, since { > —/ + 7, the previous integral is always singular near s = ¢. Recalling that
e =2(p+ ) > 0 (which can be chosen as small as desired) and taking ( = v — 8 + £/2, then using a Holder
inequality in time and the fact that t — 7/ + h < h, we get

ds.

y=28-p=¢

(t—7f+h) & ShTE |y -yl (6.4.23)

1850, 2,t,y.5/)| S haly —ylPt= 5

Term Ay: Gronwall or circular type argument. We now need to control the Hélder norm of the term
associated with the Gronwall or circular type argument. Namely, for p € (—3, =3+ ) and y,y’ € R? in the
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global diagonal regime w.r.t. time ¢:

|A4(07 z, t7 Y, y/)|

T, —h
/ {EO,z |:bh(37X'rQ) : vypa(t —5Y— XT:L) - bh(Swah) . vypa(t —5Y— th):|
A : : s s

—Eoz [bh(s,XTsh) “Vypalt — s,y — Xon) — bh(s,Xf@,) - Vypalt — s,y — th)] } ds

s g

'rthfh
< br(s,)||as
J R R T e e -

X |Pa(rds- = &) (Vpa(t =5,y =) = Vpalt — s,4" =) llg-s ds

<ly—y') S(up]gh,p( $)Pa(t,y — )

’(F "0, z,7h, )

Sly—=9'[” sup gn(s)t p,
s€(h,T

' —h
= / / (T =T (0,2, 7, 2)bi (s, 2) (Vypalt — 8,y — 2) — Vypalt — s,y — 2)) dzds
h R4

(6.4.24)

keeping in mind the definition (6.4.9) and using (6.3.9) with ¢, p € (=8, 1) for the last but one inequality,

with /(1

+L+ L+ <L

Term Aj: spatial sensitivities of the driving noise. Let us now turn to

AS(Ov tv Z,Y, y/)

:/hnh—h {Eo,a: [bh(s,ng) : (Vypa(t — 5,9 — sth) — Vypalt— s,y — Xf))}

—Eoe {bh(stq}—Lsh) : (Vypa(t_ 5,9 _X:—:h) — Vypalt — s,y _Xh )}}

T, —h
:/ E07w [bh(S,th) : <vypa(t_57y_th) —Vypa<t—7's,y— X—,—h +/ bh
h s s s

_(Vypa(t—s’y’_th)—Vypa(t—q'sib’y/—(th—l—/ bh(u,X du )] ds,
s s -
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using the harmonicity of the stable heat kernel (or martingale property of the driving noise). Write now,

IAs 0,2, t,9,9')|
h_p

Rd

—(Vypa(t—s,y’—Z)—Vypa(t—tf,y’—(zﬂL/ bh(u,Z)dU)))> dzdrds

h_h
< / / Fh 0, a?,TS,z)bh(s z) - (Vypa(t—s,y—z)—Vypa(t—rsh,y—z)
Rd

_(vypa(t - S7y/ - Z) - Vypa(t - T;L7y/ - Z))) dzdrds

h
T, —h

(O T ,2)bp(r, 2) - (Vypa(t_Tsh?y_Z)
Rd

Vypalt— Ty — (24 / bp (u, =) du))

S

f<vypa(t77kf,y’ —z)— Vypa(tfﬁf,y’ — (z+/

:Z|A51(O,J},t, y7y/)| + |A52(Oaxat7yvy,)|'

by, (u, 2) du)))) dzdrds

h

s

For p € (=8, -8 + ) we have:

|A51(0’$7t3y7y/)|
/ I‘h(O x, T, ,z)bh(s z) - (Vypa(t — T£L7y —2) = Vypa(t — s,y — 2)
Rd

T, '—h
5/
(vypa(t Sh y, 2’) : ypa(t - 57y, - Z))) d ’ dS

h—h
/ / d)\/ Fh 0, X, Ty ,Z)bh(s Z) (atvypa(t_ (Tsh +)‘(S _T;L))ay_ Z)
Rd
— Vot — (Th+ X5 — 1),y — 2) dz’ ds

<h/ ln (s gz

/ TR (0, 2,7, ) (07t — (7 + A(s — 7)),y — ) — BV ypalt — (7 + A(s — 7). 4/

From (6.3.10), we get for {,p € (—5,1),

|A51(07£L',t, yvy/)|

h_h =
‘ 2 Palt,y —) 5
s |y_y/|p/h 164 (s, )HBB h= (t— )1+w+pt“

_ v, 8 T —h 1 1 1 t ta
Sy =9 halt,y — z)hots / 1o |t = | | =T T
h (t—s) a Sap (t—S)O‘p S« (t—s)a

—(B+p)—(B+C) _ y—e e

Sy =¥ [P Paltyy — x)hat s (t— 7] + h) - =y —¥["Palt,y — z)h "= t2=,
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I‘h 0,z,7, ,z)bh(s z) - (Vypa(t—&y—z) —Vypa(t—T JY — z+/ by (u, z) du))

— Mg drds.
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using as well (6.2.8) for the last inequality and taking ¢ such that e = (84 p) + (8+ () (i.e. (=p)

other hand, using (6.2.8) and (6.3.12), we have

|A52(0,£L’,t,y7y/)|

r
< [ Il [ o
h “Jo
~Vipalt =7l +)\/ by (u )/ bn(u,-) du

D0, ) (Vapalt = 7oy = (42 [ o) du)

e3>

. On the

<| /‘p* (t )té o Hb( ,.) p.q °
SNVY =Y [T Pall,y —X)te ; (t—T;L)HTp

=8 _ _B+p
Sly =y IR palt,y —a)t™ ="

From (6.4.25) and (6.4.26) we thus derive:

150, 2,t,y,y)| S |y — ¥/ [PPalt,y — )b 2=,

(6.4.27)

Term Ag: last time steps This term is once again handled very much like A;, in the sense that the

smallness will come from each contribution and not from sensitivities. Namely,

|A6(Oax7t7yay,)‘

= /Ti Eo.e [b(5, X) - (Vypalt = 5.y = X) = Vypalt = .5’ = X,) )|

—Eoz [bh(s, X;L;L) . (Vypa(t — 5,9 — X"~ Vypalt — s,y — X;L))} ds‘

IN

/t Eo.x {b(s, Xs) - (Vypa(t =5,y —Xs) — Vypalt — s,y — Xs)>] ds

h
T —h

/ B [ou(s. X2 (Vypalt = sy — X0 = Vypalt -/~ X1))] s

h
' —h

= (|A6,1| + |A6,2|) (Oa Zz, t7 Y, y,)

+

Using (6.3.7) (taking therein ¢ € (—f,1)), we first get
|A6,1 (Oa x, t7 Y, y/)|

t
S / oGl 00,5 N (Vupalt =5,y =) = Vypalt =5,/ =) )l ds

v
t

t B < <
to 1 1 to to
Sly =y |Ppalt,y — / b(s, - — |+ 1+ —+
~ Y% 9 X S, B 7
=yt =) [ ey, o | e

t

_ B _ (ke

S |y—y'|ppa(t,y—x)”bHLriBquta (/ (t—s) T( * )
+h

S o s T

o Btp

Sy =y [ Palt,y —x)hot™ = .
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Write now similarly for Ag 2, using the L bound of by, (6.2.5), the fact that I'* < p,, (see (6.1.20)) and
(6.1.17), we get

186,2(0, 2,1, y,y")|
d B
<ly - W/ / b5, Vg (5 = 7207558 s, 2 — )Pt — 5,y — =) dz ds
. t 1 -\
Sly =y 1"pa(t,y — x) / a (1+2) x5 ds
mi=h (s — ) GETS) (E— 5) G FE (t—s) =

_Bte _ _1_1_.d 28 _ a,_ B+
Sly =y 1P = 1)~ palty —o)h' 7T TE TS Sy — o [Phalty — )bt (6.4.29)
From (6.4.28), (6.4.29), we eventually get:
e
1860, 8.5, 5) S ly =y I"Palt,y — x)hat =" (6.4.30)
Putting together the controls (6.4.21), (6.4.22), (6.4.23), (6.4.24), (6.4.27), (6.4.30) we derive from (6.4.18):
I —T")(0,z,t,y) — (T —=T™)(0,z,t,y hee . -5
ol JO.z.1,y) ~ JO.2 89| ¢ pazeye | g hp(s)t . (6.4.31)

?a(t7y_$)‘y_y/|p s€(h,T)
Recall now for clarity the expression of (6.4.17)

|(F_Fh)(07taxay)| < S5
— Sh™at2a + sup gn,(s)t
pa(tay - x) s€(h,T) p( )

y—
a

bl

We can now use (6.4.17) and (6.4.31) to derive, recalling that we set ¢ = 2(p + 3):

|F(O,$,t7y) - Ph(07$,t7y)| + tﬁ |<F - Fh)(O,x,t, y) - (F - Fh)(()?wata y/)|
sup — o —
(w.v")E(R)? Pa(t,y — ) Palt,y — )y —y'|P

£

_
ShYS + sup g (s)t e .
s€(h,T)

which rewrites from (6.4.9) and (6.4.18):

.
+ sup gn,p(s)tT .
s€(h,T)

ol

gh,p(t) S hW;E

Since the exponent of ¢ in the above was chosen to be non-negative, we can take the supremum in ¢ € (h, T
in the above equation to derive, for a constant C' > 1,

e -5
sup gp,(t) <C (hwa + sup gp,(s)T a2> ,
te(h,T| s€(h,T)

which for T small enough (i.e. =<1 /2) eventually yields:

sup gn.,(t) <2Ch™s <h'e .
te(h,T)

The theorem is proved.

6.5 Proof of technical Lemmas

6.5.1 Proof of Lemma 6.5
Proofs of (6.3.7),(6.3.8), (6.3.9) and (6.3.10)
Let us first prove (6.3.7). Denote q3%(-) := I'(0,2,5,") (Vypa(t — 8,y — ) = Vypalt — 5,4" — ), of which

we will control the B;,_ﬁ o norm using the thermic characterization
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lazylls—s = ll6(D Yzl + T

Thermic part

a3

We assume w.l.o.g. that ¢t <1 and ¢ < +00. Let us recall the definition of the thermic part and split it in

two parts:

t
B sti1d dv By s dv ERW; s /
Tolasal’ = [ o 0,p0(w.) waz QI + / SR 0 palv, ) * a3 (1,

—B,(0,6) 1 _s J(t,1
=: 7;’,5’( )[qx’y] + T/ ’ )[qx,y]
For the upper part on (,1), using a L!
Toa

~

v

— L' convolution inequality, we get

1
’ d’U B ’ ’
BN get1e < / L+, (v, |9, IT(0, 2, 5, ) (Vypalt — 5,9 — ) = Vypal
t

t—sy =)L,

Using the pointwise estimate (6.1.17) (in the case |y — /| < (t — s)a) and (6.1.23), then (6.1.18), we have

for any p € (~5,1],
HF(O’J:’ 5, ) (vypa(t —$Y— ) - vy’pa(t -

This yields

—B(t,1 _ ly —y'|?
Ty S Pty =)
_ y—yl’
S Palt,y — ) | p|+1
(t—s)%
For the lower part, let us write
[|Ovpa (v, )*qu Lp’ = ’/aﬂpa

/’/&;pa(vz

—w)q

ly —y'|°

s,y' - )) ”LP’ S Palt,y — x)w
— 8) «

’
p

s,t
py(w)dw| dz

w) [a3 (w) — 43 (2)] duw

1
- +

sap

/

P
dz,

1

(t—s>$]'

(6.5.1)

(6.5.2)

using a cancellation argument for the last equality. Next, let us distinguish whether this difference is in

diagonal or off-diagonal regime.

. 1 .
e Diagonal case: |z —w| < sa. Let us write

a5y (w) — a3, (2)

=T(0,z,s,w) [ (Vypalt — s,y —w) — Vypalt — s,y — w))
— [T(0,2,8,2) =T(0,z,5,w)] (Vypa(t — s,y — 2) — Vypa(

— (Vypal(t — s,y —2) —
t—s,9y —2))

Vy/pa (t

= F(O,x,s,w)(/o (Vopa(t — s,y —w— ANz —w)) = Vipa(t — s,y —w — ANz —w))] (w

+[(Vypa(t — s,y — w) = Vypa(t — s
— [T(0,2,8,2) = T(0,z,5,w)] (Vypa(t — s,y — 2)
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- Svyl _Z))

z)dA]l

1
z—w|<(t—s)™

/ /
W = w) = (Vypalt =5,y =2) = Vypalt=sy/ =) ]I _ o)
— Vy/pa(t



Using the regularity of p,, (6.1.17) and the forward regularity of T', (6.1.24), we get, for any ¢ € (0, 1],
a5y (w) — a3, (2)]

ly—y'|” |2 —wl®
(t — 8)%“ (t — s)é

< Pals,w —x) (/0 Dot — 8,y —w — Az —w)) + Pa(t — s,y —w— Az —w))] dA

| 1
|z—w|<(t—s) @

/

+(]§o¢(tfsay*w) +ﬁa(t*5ay/ 7’[1)) +pa(tfsvyfz) +Z_)a(tfs’y

- Z))'|z—w\><t—s>%>
ly—y'1P |z —wl® _ _ _ )
+ (t S)Lﬂ < (pa(s,z—m)—l—pa(s,w—x)) (pa(t—s,y—z)—I—pa(t—s,y _Z))
— o Sa

ly =y |z —wl
(t— )& (t—s)%
ly =yl |z —wl

(t—s) s

S Pa(s,w —2) (Palt — 8,y — W) + Pa(t — s,y/ —w))

+pa(872_$) (pa(t_svy_z)+pa(t_svy/_Z)) ) (653)

using the current diagonal regime to write that po(t — s,y —w — AM(z —w)) < Pt — s,y — w) (and the same
estimate for y') and po (s, w — x) < Pa(s, z — x).

e Off-diagonal case: |z — w| > s=. Using a triangular inequality, (6.1.17), (6.1.23) and the fact that
@ > 1, we trivially have the following:
ly—y'1” |z —wl

(tfs)pT+1 s&

|92y (w) — 425, (2)] S Pals,w — ) (Pa(t — 8,y —w) + Pa(t — 5, — w))

ly —y'1P |z —wl

(t—3s) e sa

+ Pa(s,2 — 1) (Pa(t — 8,y — 2) + Palt — 5,9 — 2)) (6.5.4)

Gathering (6.5.3) and (6.5.4), we have

|92y (w) — 43, (2)] S Pals,w — ) (Pa(t — 5,y —w) + Pa(t — 5, — w))

ly—y'” ||z —wl® | [z —w|
pt1 < + <

(t—s)= sa (t—s)a

ly—y'I° |z —wl

(t—s)% s%

+ Pa(8,2 — 1) (Pa(t — 8,y — 2) + Palt — 5,4 — 2)) (6.5.5)

Plugging this in (6.5.2), we get

’
p

0o azi i, = | | [ oupatoz = iy s

</ (/p< )5, — ) (Bt — 5, — ) + Balt — 5,5/ — w))

Y —wl¢ —wl¢ P
L =y Pz wf |z de) &

p+1 < <
S«

(t—s)= (t—s)a

-1—/(/v_lpa(v,z—w)pa(s,z—x) (Palt — s,y — 2) + Da(t — s,y — 2))

P —wl¢ P’
O et 8 2 L P (6.5.6)
(t— s)pil sa

From this point, we derive a smoothing effect in v by using the moments estimate (6.1.13). It is immediate
for the second term, whereas for the first one, due to the order of integration, we need to use an L' — L?
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convolution inequality. This yields

/
||8vpa (U7 ) * qfv,,ty”ip’
/
1+ <
v Haly — g

éD /@a(s’w_x)@a(t_sﬂy_w)+]5a(t—s7y'—w)))pl dw

/

U_1+é|y_yl|p _< " _ _ _ / p
| ——= 5 " (Pa(s;z =) (Pa(t — s,y — 2) + Pa(t — 5,4 — 2)))" dz

(t—s)

v_1+§ P P 1 1 b ,
< (vl 578+ (t—s)75] | Palty—a). (6.5.7)
(t—S) o Sap (t—s) ap

Going back to the definition of 7;7)5,’(0’0, we thus obtain, taking ¢ > —(, and recalling that we are in the

regime |y —y'| < t=

1
—8,(0, y—y” |1 1 1 1 _ _ boare a
7;/751( t) S-’ | ; 7(—"_ < d + d (pa(t;y_x)+pa(t,yl_x)) Uq o 1d’l}
(t—S) a Sa (t—s)E Sap (t*S)al’ 0
ly—y|” |1 1 1 _ B¢
N o |t < = T - | Palt,y —a)t =
(t—s) @ S (t—s)u S ap (t_s)ap

This finally yields

< <
_ y—y° ta ta 1 1 B
A A | +—+ + Palt,y — ). (6.5.8)
P ,q Y ( —S)p::l S% (tfs)é sadp (t—s)wip

Non-thermic part
Noticing that

1F(@) > azyllLe S IF @)z llazy e
we see that (6.5.8) is also a valid bound for the non-thermic part of ||q§’7‘;||87/g E

This concludes the proof of (6.3.7).

Equation (6.3.8) follows from the same proof, using the Holder regularity in time of the stable kernel
instead of its regularity in space (i.e. (6.1.16) instead of (6.1.17)), as well as the forward spatial regularity
of T'* instead of that of I' (i.e. (6.1.21) instead of (6.1.24)).

Equations (6.3.9) and (6.3.10) also follow from the same proof, using the standard pointwise estimate
Y(y.y',2) € (R)?, 7 €0,1),

_ e
OV ypa(t — 1y — 2) — AV ypa(t — 1y — 2)| S -yl (Pa(t =71y —2) + Dot =7y —2))  (6.5.9)

(t —r)att

and the fact that for the considered time variables, s < 7 =< 7! to deal with the stable kernel. For the
estimate (6.3.10), we also rely on the heat kernel estimate (6.1.21) for the forward spatial regularity of I'*
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Proof of (6.3.11) and (6.3.12)

Proof of (6.3.11): Hoélder regularity involving the one step transition.
The proof of (6.3.11) is somehow close to the one in the previous subsection. Denote this time

q;ﬁ;h(') = Fh(ovxaTshv ) Vypoc(t - Tgay - ) - vypoz (t - Tshvy - /h bh(“’? ) du)] .

For s € [h,7]' — h], we want to estimate Hq;’fy’hHB_ﬁ = [ F(@)xas il o + 7;,_7’5, [ash"]. As above let us
P ,q

start with the thermic part of the norm.
Thermic part
Let us split the thermic part into two parts:
7Z%@TW:A“?MHDW&%@J*@ﬂﬁ}+[1?MHmwmm@J*@mﬁy
= Tyl T
For the upper part on (¢,1), we use the L! — L' convolution inequality to write

1

7,15.,1 N ’ / BY_ / . ’

T lazy € [ o O o, pa (o a1, do
t

Observe now carefully from the pointwise control (6.2.6) on by, , the spatial regularity (6.1.17) of p,, the
heat kernel bound (6.1.20) and the Lebesgue estimate (6.1.18) that

s,t,h

Fh(oa'r»Tshu ) lvypa(t - T;LJJ - ) - vypoé <t - shay - ( + /h bh(ua ) du)>‘|

”qz,y ”LP/ =
v
_1_d B 5
<]§ (ty_x)((S_TSh)l = ap+a||bHLr,Bg)q) ( 1 . 1 )
~ (t—Th)ats Thas  (t— )

using as well Lemma 6.4 for the last inequality, i.e. the drift component is negligible w.r.t. the increment of
the noise on the corresponding considered time intervals. Hence,

y+1-8

(Wbl g,)

146
(t -7+

—B,(t,1 _
T 50D [qeb) < palt,y — @)

- Pl e, [ 1 1
p - o 5.1

s s

taking § = 1 for the last inequality.

Let us now turn to the lower part, for which we use the following cancellation argument:

p/
[0vpa (v, -) * qi’,tgjh dz

o s,t,h
P = / ‘/&,pa(v,z —w)qz," (w) dw

’

P

= / ‘ /&,pa(v,z - w)[q;’zh(w) - qfcty’h(z)] dw| dz. (6.5.11)

We now introduce a diagonal/off-diagonal splitting based on the position of [w — z| w.r.t. (7})=.
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e Diagonal case: |w — z| < (7/)=. In this case, the contribution into brackets in (6.5.11) can be
bounded as follows: for all ¢ € [0,1], u

using (6.1.21) and (6.1.20), we have for ¢ € (=3, —28),

g3t (w) — q3b" lfh(O x fsvw)(Vypa(t—Ts”,y—w)—Vypa(t Y (w+/

4y (2)] =

S

bn (1, w) du))
b
- Fh(oaxa T;l? Z) (Vypa(t B T:L’y -

Z) B Vypa(t . 7_:’ y— (Z + /Ti bh(u, Z) dU)))] |
(0,2, 70, 2)| (fTh i )i )

s ls (t—’rh)a

+Fh(0x77—s,z)(/ d)\‘Vypa —rhy— z—l—)\/ by, (u, z) du) /bhuz

—Vypa(t—r Y — w—!-/\/ by, (u w)du))/ bh(u,w)du)‘)

sy ls

<00, 2, 7 w) —

Pat — 70y —w)

7+1 8
it G ] PP
~ (t—7hyata

h
TS

[(Palrlw =)+ pa(rl 2 —2))

ﬁa(t_Tshvy_w)}
(rl)*
w+1 8
w—2|°h™="[1Bll s
+Pa(rl2 — ) FB (ot — iy = 2) 4 Balt = Ty — w))
(t—Th)ata
S
\f (bh u,z) — by, u,w)) dul¢ wi1s
+Pa(1), 2 = 2)pa(t = 7l'yy — w) = blle s ,»
(t—7h)a+s L8
using thoroughly (6.2.11) from Lemma 6.4. From (6.2.7), we eventually derive (recalling that t—72 > h
and y+1—-p8—-(>0):

— 4|¢
s s w z _
03" (w) — a3 ()] S (L_m; [ (Bl

S

taking § = 1 for the last inequality. The terms that are a priori delicate to integrate in (6. 5 11) are
those emphasizing a cross dependence on the mtegmtwn variables, namely p, (10, 2—2)po (t—71, y—w).
Anyhow, in the current diagonal regime |w — z| < (7, M)% | it holds that

pa(th, 2 — 2)p

Wt =7y —w) < pa(thw — 2)palt — I,y — w)
which eventually gives, in the considered diagonal regime

(y=8)
s, N |w—z|4h « 1
a3 b (w) — a3h" (2)] < (

(6.5.12)
+ [7(1(7—571“ —)Pa(t —

»
N
~

—w +ﬁa(7—:72 .%');5a(t—’7' Y — )]
e Off-diagonal case

2w — 2| > (th

)=. In that case, the contribution into brackets in (6.5.11) can be
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bounded as follows: for all ¢ € (-4, 1],

Jaz 5" (w) — a35" ()] =

[Fh(o x,Tf,?U)(Vypa(t—Tsh,y—w)—Vypa(t—Tsh,y—(w—i—/ bh(u,w)du)))

h
s

_ Fh(ow,ff,z)(vypa(t — Tsh7y —2z) = Vypal(t — Tsh,y —(z+ /h by (u, 2) du)))} ‘

|lw — z|< 1

(rh (t—r,

‘/ uwdu

Jr/ AP (1], 2 — 2)po(t — Ty — (er/\/ by (u, z) du)) ’/ bhuz)duH
0 Th

)2 [/Olpa(T yw— ) dApa(t — 7Ly — (w+)\/TS by, (u, w) du))

h
s

\w - Z|C he"

CORNCGREOE

(Palrl w0 = @)Palt = 7ty = w) 4 Pa(rl 2 — @)Palt — 7Ly — 2))

using (6.2.6) and (6.2.11) for the last inequality, recalling as well that ¢ — 7/ > h.

Plugging this control and (6.5.12) into (6.5.11) yields, using the L' — L*" convolution inequality:

v+ E 1 1 1 1
||avpa(va')*qi:t7h”LP’ < T {( =+ g} ( - T pa<t y—x)
[ e — « T

(t—7)e Hrh) ByEs (-l

This eventually gives:

o _ 1 1 1 1 B+¢
T/ /(Ot q;th Pa tay_l' 1 2 d + d + tT’ 6.5.13
R T A O T (6513

Qlr

which together with (6.5.10) gives that the bound for the thermic part indeed corresponds to the one of the
statement.

Non Thermic part. Write:
1F (o) az" o < IF@) e llas " ll o

so that from the previous computations (using again (6.2.6) and (6.2.11))

W bl 1 1

[e3 r B

/8 * :E’ t,h Npa t L _Bp-,q

|| ( ) q Y ||LP ( v ) (t—TSh)é (Th)adp (t*’rsh)aip

S

From this last inequality, (6.5.10) and (6.5.13), the statement (6.3.11) is proved.
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Proof of (6.3.12): yet another control involving the one step transition
Let us now turn to the proof of (6.3.12). Using the product rule for Besov spaces (6.2.2), we can write

alrl) (Vipalt = 7ty = (41 [ () du) = pale = b/ = (42 [ bn(u)dw)
T T

X / b (u, ) du)

B
S |Palrlt @) (Vipalt = 7y +A/ on () dw) = Vpa(t = 7y’ = (X [ balu)dw)
= B,
X / by (u, ) du (6.5.14)
Th BLAte

for any € > 0. Then, write, using Lemma 6.3 twice,

s s f bp(u,z)du — f br(u, ') dul
/ by (u, ) du = / by (u, ) du + sup AT
Th BLAte Th oo z#£z'€(R4)2 ‘Z -z |
’ < hw+1 B + hw+176 < h'y+1 €

Equation (6.3.12) then follows from controlling the previous B;,’Bq, norm in the same way as for (6.3.11).
Namely, denoting this time

ayh" ()
Vipa (t—r,y +>\/ b (u )-Vf,pa<t—ff,y’—(~+/\/ hh(u,-)dU)ﬂ
Th

=T"0,z,7",-)
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we have, in the diagonal regime |z — w| < (7/)=, using (6.1.17) and Lemma 6.3 profusely,

Jazy" (w) — azy" (=)

=T"0,z, 7" w) [V2 (t—’]’ Y — w+)\/ by (u w)du)) —Vzpa (t_Tsh7i‘/I_(w+)‘/h bﬂu,w)du))}
Vzpa (t—Ts,y z+)\/ by, (u z)du)) —Vzp (t—Ts,y —(z—i—)\/ bﬂu,z)du))}

s

—T"0,z,7", 2)

s ls

ly —y'|°
2,6
(- 0)i e

(t—T Yy —y) - (z—i—)\/ibh(u,z)du))

[Fh(O ;v,TSh,w) Fh(O x,Tg,z)]

[pa(t =7ty —w) + palt — 70y — w)]

+ Pa(th 2 — 2 <

S

3 _h AN
VypOé (t Ts 3y +/’L(y y) (w+A/7- bh(u’w) du)) ‘dully_ylg(t_.r;z)i

n
ly—y'|°

= h _ A _
m(%(t—T Y —2) Pt — Ty —w) + Pa(t— Iy —2) + Pa(t — Ty — w))
S

¢
| 1
ly—y'|>(t—7h)=

t_Tsay w)+pa( _Tshvy/_w)]

X

z—w+ )\/i(bh(u,z) — bp(u,w))du)

_ lw—2zC Jy—y°
gpa(TSMU—:C) 42 [a(

(rh)s (t—Tl)ata

ly—y'I°
(1= byt

s ¢
z—w+ )\/ (b (u, z) — by (u, w)) du)

h
s

+Z30é(7-sh7z 717)

X[ﬁa(thsh,yfz)+ﬁa(t77—shay7w)+ﬁa(t77—£7y/7z)+ﬁa(t77—:ay/*w)]
lw—2° Jy—y

(Fh)E (t—7h)ETE [Palt =7y —w) +palt = 7y — w)]

Sﬁa(Tng_x)

RN [ Rl /A A TN S S S _ ho

+ Pa(7 2 — @) s |2 = w|* [Pa(t = 7Ly — 2) + Pt — 71y — 2) + Palt — 7Ly — w)
(¢ — )5
+]3a(t_7_:7y,_w)]'

We can again get rid of the cross terms in the integration variable in the above inequality recalling that in
the considered diagonal regime |w — z| < (7/) it holds that pa (7", 2 — 2) < pa (7, w — ). The rest of the
proof is similar to the one of (6.3.11).

6.6 Proof of the heat-kernel estimates of Proposition 6.1

6.6.1 Heat-kernel bounds for the Euler scheme: proof of (6.1.22).
Proof of (6.1.22). First, let us state that the duhamel representation (6.3.2)

t
M0, 2,t,) = pal(t,y — a) — / Eo. [bh(s, X))V ypalt — s,y — Xg)] ds (6.6.1)
; ;

was already obtained in [FJM24] because b, can be seen as a Lebesgue drift.

Similarly to the proof of the main theorem, we will control H% for p € (—5,v — ) using a

B%,00

circular argument.
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Control of the supremum norm

We write the Duhamel formula as follows:

h
C0,2,0.9) = paltey —2) = [ Eou [bu(s. X0 - Typalt sy — XD)] ds

t
—/ [bh(s XT,L)oVypa(t—s,y—Xf)} ds
h
=: A1(y) + Aa(y) + As(y).
For A,, using (6.2.5), (6.2.11) and (6.1.15),

|Ag| =

br(s,2) - pa (s,z —x —/ bp(r,x) dr) Vypa(t — s,y — z)dzds
0

// “E 8 b5, llgs P (5,2 — ) (= )" palt — s,y — 2) dzds

7% < Palt,y — w)hit 5, (6.6.2)
For Aj, using the harmonicity of the stable kernel, for p > —3,

|As| = ‘/ /Fh (0, 1’,7'9,2 )b (s, 2) - VyDa (thh,yz/ bh(r,z)dr> dzds

h .
5/ L0, z, 70, )
h

s ls

pa( sv'im)

[16n (s, gz

P
Boo,oo

X ﬁa(’rshffx)vypa (thh,y~/ bh(rv')dr>
o

Using a triangular inequality, (6.3.11) (in which we can trivially replace I'* with p,) and (6.3.4), we have
for ¢ = ¢g and for any ¢ € (0, 1],

S
ﬁa(TSh,- — z)Vypa (t—TSh,y— . —/ by (r, ) dr)
Th -8
s B / ’
P ,q

pa( ;17_1:> lvypa (t_T£L7y_'_/h bh(’l”,')d’/'> _vypa (t_T:’y_')‘|

ds.
B;’I,jq'

B,
+ Hﬁa(Tsha C x)vypoz (t - Tshay - ) HB*/B ,
5 ta 1 1 ta
Palt,y x)(l—i—h ) _ —+ 1+ + (6.6.3)
sE(t—rl)a (e (- 1) ()5 (=75
Set now, for s € (0,77,
" 0,z,s,2) " 0,z,s,2")
. I 0,.13,3,' L Pa(5,2—T)  Pa(s,2 —T L rr O,JZ,S,
np(s) := H_ ( ) +st sup [ Lol fc;)( o) | > st ( ) (6.6.4)
Dal(8, =) || oo 242/ (RH)? |z — 2/| Dals, — ) BL.
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Plugging this and (6.6.3) into Aj along with (6.2.8) yields
t
80l S 7ty =) [ G Db e,

8
y ta [1+ 1
4
(a

sa(t—1h)a [(th)as  (t—7h)ar

Note that, on the considered time interval, s < T;L, yielding

b4k 1 1 te ta
Bl Spa by =) sup Gupls) | |t | |1 b | ds
s€(h,T) 0 S« (t — S) o Sap (t — 8) ap Sa (t _ S)E
_ y—B—p -
SPa(t,y—x)t" "o sup gn,(s). (6.6.5)

s€(h,T)
Gathering (6.6.2) and (6.6.5), we get recalling that p can be chosen so that v — 8 — p > 0,

<1 Lt sup  gn,p($). (6.6.6)
Lo s€(h,T)

H Fh(oaxata )
ﬁa(ta T 1‘)

Control of the Holder modulus

We will now control the p-Holder modulus of T7(0,z,t,-)/pa(t,- — x) in the diagonal regime, i.e. for
(y,y) € (RY)? such that |y — /| < = (since otherwise the required control is trivial). Similarly to the proof
of the main theorem, let us write, using (6.1.17) (which readily extends to P, instead of ps),

(0, z,t (0, z,t,vy (0, z,t,y) — T"(0, 2, ¢,y 1
_ ( , Ly ay) — ( 71'/, ay) <‘ ( ,.Z‘,_,y) ( , Ty >y) +Fh(0,$7t,y') _ - — -
Pat,y—z)  Palt,y’ — ) Pa(t,y — ) Palt,y — )  Palt,y’ — )
(0, z,t,y) — T"(0,z,t,vy — /|7 |70, 2, ¢, -
5‘ (,x,:y) 0,z,t,9)] |y pyl 7( r,t,-) (6.6.7)
pa(tay - .’Ii) to pa<t7 T I‘) [o°

The error expansion for [['"(0,z,t,y) — T*(0,x,t,v’)| writes
Fh(oa z, tv y) - Fh(ov z, tv yl) = pa(ta Yy — 1.) - poz(ta y/ - ZL’)

h
— / Eo.x [bh(s,th) (Vypa(t — s,y — Xhy - Vypalt—s,y — Xf))} ds
o !

t
- / EO,w I:hh(svx.,}—lh) . (Vypa(t —5Y—- X?) - vy’pa(t - Svyl - Xf)):| ds
h El
= A1y, y') + Doly, y) + As(y, ),

where with a slight abuse of notation we do not emphasize the dependence of these quantities on z,¢ and a
priori on h (we will actually prove that the estimates are uniform w.r.t. this last parameter). For Ay, using
(6.1.17), we have

_ P
81008 = lpalty =)~ paltsy’ 0 £ LT gy - ), (6:65)

a
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For A,, using (6.2.5), (6.2.11) and (6.1.17),

|A2(yay/)‘ = bh(svx) * Pa (S,Z - _/ bh(?ﬁ, .13) d’l") [vypoc(t —5Y—- Z) - Vy'pa(t - Say/ - Z)] dzds
0
- _ |y_y/‘p _ _ /
/ /3 o “Hb )”BQ_qpa (s,z—x)W[pa(t—s,y—z)%-pa(t—s,y —z)]dzds
: Y=
1
_ P Mo _ et "
< Baltoy— Dy P lbl_gp | [ 55T (1575 s
: 0
_ _1_d B8 _14p
< Paltyy —a)ly —ylPh! T E T
o 1 - P
< Palty — )y — ylPhs he—a o 5pa<t,y—x>'yt—ﬂh%f§. (6.6.9)

For Aj, using the harmonicity of the stable kernel, for p > —3,

1As(y, y)

‘/ /I‘h 0,2, 7", 2)by (s, 2)
. lvypa <t—7'sh,y—z—/} hh(r,z)dr> — VyDa <t_7—:ay/—2_/h bh(r,z)dr>] dzds

K Fh(o,x,’rh,')
SR e o= I LICBI S

s
X

ﬁa(Tshv c— )

00,00

vypa <t_7-.s}>lay_'_/ bh(ra')df) _Vy'pa <t_7-sh7yl_'_/ bh(ra')dr>‘|
Th Th

Similarly to the computations performed to prove (6.3.12) (in which we again take p, instead of T'"*) and
the definition of gy ,(s) along with (6.2.8) yields, for ¢ € (—f,1],

ds.
B;’éq’

pa(rl, =)

t
1As(, )] < P (b — ) /h 3 (T 605, s

y=8 < <
P(1+h= 1 1 to tw
|y Y | ( 1+p ) d + 14 C + 3 ds
Ee-F [@F B[ @E o
_ Y—B—2p -
SPalty—a)ly =y 1Pt sup Gn,(s), (6.6.10)
s€(h,T)

h

using the fact that s < 77 on the considered time interval. We then have, plugging (6.6.8), (6.6.9) and

(6.6.10) into (6.6.7),

00,2, ty)  T™0,2,ty)| _
pa(t7y_m) pa(t7yl_x)

p pESrE
Y = y'1° pmse sup  Gn.p(s), (6.6.11)
te s€(h,T]

N

which, together with (6.6.6) and recalling that v — 8 — p can be chosen to be positive, concludes the proof
of (6.1.22). O
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6.6.2 Time sensitivity of the heat-kernel: proof of (6.1.26).
Let us assume ¢’ > ¢ and 0 < ¢ —¢ < £ and write from the Duhamel representation (6.3.1) of the density

that:

F(Oaxat,y) - F(Oax7t/7y) :pa(t7y - Z‘) - pa(tl7y - Z‘)
t
— / Et, z {b(s,Xs) . (Vypa(t —8,y—Xs) = Vypa(t' — s,y — Xg))] ds
0
(6.6.12)

-l-/tt/ Ety.z {b(S,XS). (Vypa(t’ — S,y—XS))] ds.

Thus, from (6.1.16) we get:

y—¢

t—t\ " _
) Pa(t,y —x)
/F(O,x, 8, 2)b(s, 2) (Vypa(t’ -8,y —2) — Vypa(t — s,y — z)) dz‘ ds

(0,2, t,y) = T(0,,¢', )| 5(

/F(O7 z,8,2)b(s,2)Vypa(t' — s,y — z) dz| ds.

Using now the product rule (6.2.2) and (6.1.25), (6.3.4) (taking therein ¢ € (—/,1)), we get for p > —f,

y—¢e

t—t\ " _
L0,2,t,9) =T, )| S (=) " Paltiy—2)
¢
r0,z,s,-) i
+/o [16(s, Mge a5 — 1) 1Pa(s, —$)<Vypa(t—8,y—')—vypa(t 59— ))HBfﬂ,dS
fo 9 B’;oyoo
t/
0, z,s,-) _
+/ b(s, )|as || ——"12% Da(s,  —2)Vypa(t' — s,y _s ds
T B e IR 2 Mo,
N s M =t)F s 1 1 e ()=
<p _ ~a N
Spalte—p)| (=) " + [ s )leg, s — (t) + + ds
( t 0 Pt (s sir o (t—s)wr | [ s5 (t—s)F
t’ "< "<
1 1 1 ta ta
[ s g, 57 | —— | |
t (t' —s)= ser  (t' —s)er sa (t'—s)a
_ t—t\ 5
spa@,x—y)(( —)
¢ _ o (<l ¢! 1
B y—¢e S ol 1 t o t e e
+||b||Lr B? (tl)a(t/_t) ° (/ y—et1,, o T dr’ < + o ds)
0 (t—S) S ap (t—g) P S« (t—s)a
sy 11 1 1 ks 3
0, OF ([ | | D a)
P t (' —s)o [sor  (#' —s)or | (' —8) =
recalling that, since ¢ —t <t/2,t'/s <1, s € [t,t']. Hence,
|F(O7 x’ t7 y) - F(07 x? tl7y)|
_ t—t\ B / y—e j_1_p_ y—etl d S_p o,y 1—Li_1_d _¢
(G ]
_ t—t\ & _Btp_ e —e
Spa(t,as—y)(( —) " bl g, avﬂ(t/_t)va).
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We thus get:

. —_— / M ,— e
LO,2,t,-) =T (0,2, ¢, )| (t t) “ (6.6.13)
pa(tlax - ) ~ ¢ 7

provided 8 + p < -y, which can always be achieved taking p = —3 + n for n < . It now remains to control
the thermic part of the Besov norm, i.e. with the notation of (6.2.1) the quantity

oo

r'o,zt,-)—IT0,z,t,-) 12 a ~  (D(0,z,t,-) = T(0,,t,-))
T2 o — = sup v o ||0yPa * — .
’ < Pa(t', — ) ) UE[OI,)l] 192 Da(t's- — ) Iz
Write now from the expansion (6.6.12):
r0,x,t,-) —T0,z,t,-)
D
()
. —_ — / - —_
gTopooo(pa(t7 7‘%) pa(ta ‘T))
’ p(x(t/a —Z‘)
+ T2 0 / / 0,z,s,2)b sz)(Vpa(t —s, )—Vpa(t—s,-—z))dzds)
+TL / / (0,2, 8,2)b(s,2)Vpa(t' — s, dzds) Z ot ). (6.6.14)
Write:
. —_ — / PR—
cho - 1(x,t,t’) = sup o8 OuPalv,”) * (Pal(t, z) — pa(t', z))

velo,1] Pa(t',- — ) Lo

Recall that t,¢ are assumed to be small and that, in that setting, ¢ appears as a natural cutting level in the
study of the thermic part of the norm. Namely, for v > t we readily get from (6.1.16) and (6.1.16)

‘8;3 (0,5 Palte—2) =palt- —2)) | =t 1
v pa(t/’_ _x) Lo N t’YaE 'U
In particular:
’ ==
P al\ly " — — Pall " — B & 1
sup viTw OvPa (v, ) x (Pat = $>, Palt =) S ‘ wtf‘a 1L (6.6.15)
vE[t,1] Pa(t',- — 1) oo t o to
Write now for v € [0,], for all y € R%:
~ (Pa(t,- — ) = pa(t',- — x))
avp(x('l)7 )* ﬁa(t/,' —(E) (y)
_ _ (Pa(t,z —x) —=pa(t',z —2))  (Palt,y — ) —pa(t',y — 7))
= ’/8vpa(va ) Z)( ﬁa(t/a y— .’E) ﬁa(t/,y _ .’b) ) dZ
1 _ (Pa(t, — @) —pa(t', - —x))
< — 1
~o (/pa(v,y Z)lly*2\>t52 ‘ Pa(l',  — ) oo 1z

_ it — [ E|y—2|p
+/pa(v’y_z)1\y72|§ti i ta )

using a spatial Taylor expansion and (6.1.16) (recalling as well that the diagonal regime holds for the non
thermic densities) for the last inequality. Hence, from (6.6.13),

Gyﬁa(va ) * (pa(t’ - x) — pa(t/7 — x)) (y)‘

pa(t/,'—l')
11 Jt—#|==

Do (V,y — 2)|y — 2|Pdz <
S = /pa(y )Ny — 2| S

1

s
=

~
o F

1)
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Hence,
y—€

1-£2 ~ (pa(t7_$)_pa(t/a_x)) |t_t/| * 1
sup v «||0yPalv, ) * — Lo < ——,
vel0,t] |Oue ) Pa(t',- =) ” tes ta
which together with (6.6.15) yields
-t 1
T o (@, t,t) S %tﬁ :
which is precisely the expected expected bound.
Let us now turn to 72  3(,t,t')
1 v
Tof;,oo,3(xv t,t') = T2 % (m/ /F(O, x,8,2)b(8,2)Vpa(t' — s, — 2)dz ds).
alb, " — t

We proceed with the same previous dichotomy for the time variable:

- For v € [t, 1] write:

OpPalv, ) * <m /t /F(O,aj7 $,2)b(8,2)Vpa(t' — s, — 2)dz ds)

Lo

c [ 1
<z — /1o b Voot —s,-—2)d d
S = [T s e Tl =5 = )0z s
1 /t/ 1 r(0,x,s,-) _
<= b(s,")||lae sup — ‘ B A Pals, 2, )Vpa(t' — s,y —)|g-¢ ds
o) 16( )IIBp,qyedea(t,’,fy) P52, llgs. _ 1Pa (5,2, ) VDal( Hep,,q,
, <
1 [t 1 1 1 e e
Sy [ g5 e (0F | L L
v ¢ P,q (t — S)Q Sap (t/ — S) ap Sa (t/ — 8) (<3

where we used (6.1.25) and (6.3.4) for the last inequality, where p,{ > —3. We get:

) 1 g ,
OvPa (v, ) * <W/t /F(O,ac7 8,2)b(s,2)Vpa(t' —s,- — z)dz ds>

1
1 v 1 1 -
Sy bl e, 548 : | ds
v P t (' =s)a [(—s)or | [('—s)~

(' _t)%a+$+§.

Lo

S

1 P 1 1 d 1 P
<Z s =)t G taata) = 2 —%
NUHbHLungt (' —1) v U”bHLuij,qt

Eventually, choosing —28 — ( + & = p.

1—2
sup v a
veElt,1]

1 v
OyPa(v, ) * 77/ /I‘O,x,s,zbs,zvat'—s,o—z dzds
ulr) (pa(t,7._x)t (0,25, 2)b(s. ) T ) )

<@ —t) et
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- For v € [0,t], write for all y € R%:

- 1
|O0vPa (v, -) * (W

— /tt,/F(O,x,s,z)b(

(0, z, s, 2)b(s, 2)Vpa (t' — s, w — 2)

$,2)Vpa(t —s,- —2)dz ds) (y)]

(0, z,s,2)b(s ,Z)Vpa(

ha(v,y = w) -

s,y—z)) dzdwds

Pa(t',w — x) Pa(t',y — )
/ /|ap v,y w|‘/ (©.2,5 00, VPt~ 5,0 =2
v _
Pa(t',w — )
F
(0,2, 5,2)b(s,2)Vpa(t' — s,y — )dz dw ds
Pa(t',y — )
tl
_ I'o0,z,s,-)
5 b(s, - 8 /81;]9(1 v, Y — W #
s, [ 1000 = )| LB b
R e
Po(t',w — ) Doty — )
[ Pa(v,y — w) ¢ >‘a 1 s, (@)
S [16(s, )l g ———w—y[dw = I < <
(6.3.6) Jt poa v sap (t' —s)a Sa
1
t’ b
<p1tE ek ds
~v Hb”LT—Bg,q () t ot — 8)7'/(1;%4-‘1-0%4'%)
SuTE Bl gy, (#)TEFEEE (¢ — )RR
5 _1+“||b||Lr 8. (t/)—g(t/_t)w;s+f2c—a25+s 5 _H_“Hb”LT B2, (t) g(t —t)
provided —2¢ — 28 4+ >0 <= (< — 3+ 5. Together with (6.6.17) we eventually get:
Tog,oo,3(w7t7t/) 5 (t ) g(t - t) (6618)
Let us now turn to 7%  o(x,t,t)
TL ooz, t,t')=T2 (; /t /F(O x,8,2)b(s, z) (Vpa(t’ -8, —2) = Vpa(t—s,-— z)) dzds).
00,00,2\*1 ¥y 00,00 ﬁa(t/7 —:U) 0 s Ly 9y ) ) )

We proceed with the same previous dichotomy for the time variable:

- For v € [t, 1] write:

_ :E) /Ot/F(O,x,S,Z>b(S,Z) (Vpa(t' — 8, — z) — Vpa(t -5, — z)) dZdS)

- 1
OuBa(v,)* (m

LOO
— /F(O,z,s,z)b(s,z)(Vpa(t’—s,~—z)—Vpa(t—s,-—z))dz ds
pa yt X es
1 r0,x,s,-) _

b(s — ‘pa s, —x)(Vpa(t' — s,y —-) — Vpa(t —s

/n Mo, 10 5 |5t 1205 = 2)(Talt = 5= = T
¢
te 1 1 EY to
<t [ty s E - | e | s
o E ey T
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using (6.3.8) (with p, in place of I'*) for the last inequality. Thus,

OpPal(v,-) * (]5&(15/»1_3”) /Ot/F(O,x, s,2)b(s, 2) (Vpa(t’ —8,-—2)— Vpa(t—s, - — z)) dz ds)

I oe

7"’ r/ i/
1(t ; ) t[H—( /t e 1 1 n 1 1 N 1 =
1,_ ) 15 I S S S
T B 0 (t—s)" G5 | s (t—s)ar | |s5  (t—s)s
1 —e 1 c
S =) bl g, phas (i) < Ly o 12
v

which yields, taking p+ 5 —¢ <0,

o 1 ¢
sup v' % || 0yfa(v,) * | = //FO,mS,zbS,z Vpa(t' =5, = 2) = Vpa(t — s, — 2) ) dzds
s Pa(v. ) (mt',-x) [ ] 102520605 2) (Vi ) = Vpal ) N
<(t—t)= ||b||LT B2, e, (6.6.19)
- For v € [0,t]: write for all y € R%:
. 1 ¢ ,
‘avpa(vv ) * (MA /F(vaa S, Z)b(sa Z) (vpa(t -5 = Z) - Vpa(t -5 = Z)) dz ds) (y)|
t—2[t' —t| (0, z,s, 2)b(s, z)(Vpa( —s,w — 2) —Vpa(t—s,wfz)>
= 8’0 o
A WOl paltw )
I‘(O7x,s,z)b(s,z)(Vpa(t’ —s,y—2)— Vpa(t —s,y — z)) ) dud
- zdwds
pa(tlvy - aj)
¢ r_ _ —
n / //avﬁa(v7y_w)<I‘(0,m,s,z)b_(s,z,)ij(t s,w—2z) T(0,2,s,2)b ( s, )Vpa( -5,y Z))dzdwds
t—2|t" —t| Pa(t';w — ) Pa(t, )
t [0, z, 8, 2)b(s, 2)Vpa(t — s,w —2z)  T(0,z,s,2)b(s,2)Vpa(t — s,y — 2)
+ 8U~a 1)7 —w ) b ) — b (03 ) _ b ) b — ) (0% ) dzdwds
Jeapa ] St ol w—) ety —2) )

::(Tl =+ T2 + T3)(Ua t7t,7$ay)'

Note that the terms (T3 4+ T3)(v,t,t',z,y) can be handled just as we did before for the lower cut in the
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thermic variable for 72 _ 3(x,t,t"). On the other hand:

Ti(v,t,t', 2, y)
t—2t’ —t| 0,z,s,2)b(s,2)0,Vpa(u,w — 2)|y= '_t)—s
<[ [ o [T [ty (RO 0T i
B (0, z, s, 2)b(s, 2)0, Vpa (u, y—Z)|u A —t)— s) dzdwds| (' — 1)
pa(t/ Y-
t—2[t' —t| I'0,x,s
<[ [ el /\avpa R i W
@ BOO,Oo
% ‘ Pa(S, C x)Bqua(uaw - ')|u=t+)\(t’—t)—s B pa(sv t x)auvpa(uay - ')|u=t+)\(t’—t)—s dw ds(t' - t)
ﬁa(t/a w — 73) ]3@(75/, y= x) Bp_’ﬁq’

t _ nae
< ) -2 Pa(v,y — w) Te (') 1 1
5 JRLCRIRE ( [Py au T c+—
1 1
x |(t)e | ———+ =] +1
(t’—s)é s

1
t—2|t" —t| d 7
P NS :
~U ||b||Lr_B§,q(t) (t'—1) o Sr%(t’ . (L Sane)

SoTHE b g ()EFTE (W — 1) TR 2
p,q

(t' —t)ds

p\b —

~

_ < ’y e —2¢— 2/i+57£ _ _ P
Sv 1+allbllu,e,gq(t’) G S STl g (#) TR — )

provided —£ — > + 55 > 0 for the above integral to converge. These computations, together with (6.6.19)
eventually ylelds

Tol::,oo,Q(x’ t, tl) 5 (t/)_§ (t/ - t) En )
which together with (6.6.18), (6.6.16) and (6.6.14) gives the claim.
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