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Goal of DNA copy number studies : Identification of altered
genome regions.

Understand tumor progression
Lead to personalized therapies

We focused on identification of breakpoints
Genomic signals from SNP arrays are bivariate
Breakpoints occur exactly at the same position in the
two-dimensions
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A change-point model
Biological assumption : DNA copy numbers or symmetrized B
allele frequency are piecewise constant
Statistical model for K change points at (t1, ...tK ) :

∀j = 1, . . . , n cj = γj + εj

where ∀k ∈ {1, . . . ,K + 1} ,∀j ∈ [tk−1, tk [ γj = Γk

Complexity

Challenges : K and (t1, ...tK ) are unknown
For a fixed K , the number of possible partitions :
CK

n−1 = O(nK−1)
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State of the art : Exact solution

One dimension
[Picard et al. (2005)] : complexity in O(Kn2)

[Rigaill et al.(2010)] : mean complexity in O(Knlog(n))

Two dimensions
Extension of [Picard et al. (2005)] : complexity in O(dKn2)
for smaller problems
[Mosen-Ansorena, D et al (2013)] : complexity in O(dKnl)
where l is the maximum length of segments
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State of the art : Heuristics

Type Name Method Dimension

Convex relaxation
FLASSO total variation distance with a

complexity in O(Kn) 1 d

GFLASSO Group fused Lasso solved by
LARS O(Knd) ≥2 d

Binary segmentation

CBS Circular binary segmentation 1d
CART Classification and regression tree 1 d

MCBS Multivariate circular binary seg-
mentation ≥2 d

PSCBS CBS on copy number then on B
allele frequency 2 d

RBS
Recursive binary segmentation
in 2 dimensions adaptation of
CART

2 d

Other PSCN HMM (hidden Markov Model) 2 d
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Two-step approaches for joint segmentation

[Gey,S and Lebarbier,E (2008)] and [Bleakley and Vert(2011)]
proposed two-step approaches.
So, we implemented a fast joint segmentation using CART in 2d
following by a pruning.
First step :

Running a fast but approximate segmentation method (RBS)
Second step

Pruning the final set of breakpoints using dynamic
programming that is slower but exact

Morgane Pierre-Jean Segmentation methods in cancer samples 10/ 24



Background
Methods

Performance evaluation
Conclusion

Classical modelization
State of the art
Two-step approaches

Binary Segmentation

Take the simple case : dimension is equal to 1 (d = 1) :
Hypothesis : H0 : No breakpoint vs H1 : Exactly one breakpoint.

The likelihood ratio statistic is given by max1≤i≤n |Zi |

Zi =

(
Si
i −

Sn−Si
n−i

)
√

1
i + 1

n−i

, (1)

And Si =
∑

1≤l≤i yl

If (d > 1) : the likelihood ratio statistic becomes max1≤i≤n ‖Zi‖22
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First step : Recursive Binary Segmentation (RBS)

Complexity : O(dnlog(K ))

First breakpoint
For each i : we
compute Zi : t1 =
arg max1≤i≤n ‖Zi‖22

fig/RBS0.pdf

fig/RBS1.pdf
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First step : Recursive Binary Segmentation (RBS)

Second breakpoint :
max1≤i≤t1 ‖Zi‖22
maxt1<i≤n ‖Zi‖22

Compute RSE for each
segment.
Keep the RSE which
bring the maximum
gain
Add the breakpoint to
the active set

fig/RBS3.pdf
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Simulated data creation

How did we create the simulated data ?

From a real data set

For each technology (Illumina or Affymetrix) we have
Several data sets with various level of contamination by
normal cells
Illumina : 34, 50, 79 and 100% of tumor cells
Affymetrix : 30, 50, 70 and 100% of tumor cells.

Breakpoints are known

State of segments are also known
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Affymetrix

fig/profileAffy50100.pdf

fig/profileAffyBaf50100.pdf
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Illumina

fig/profileIllu50100.pdf

fig/profileIlluBaf50100.pdf
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fig/TNTP.pdf

fig/legendTNTP.pdf
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Illumina : Use 2 dimensions provides good results

100 profiles, n = 5000, K = 5, purity = 79%, precision = 1

fig/figIllumina/CRL2324,BAF,ROC,n=5000,K=5,regSize=0,minL=100,pct=79,ponderation/CRL2324,BAF,ROC,n=5000,K=5,regSize=0,minL=100,pct=79,ponderation,tol=1,relax=-1,bySp2,B=100,CBS,DP,PSCN.pdf
fig/figIllumina/CRL2324,BAF,ROC,n=5000,K=5,regSize=0,minL=100,pct=79,ponderation/legend.pdf
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Illumina : Univariate methods are as good as bivariate

100 profiles, n = 5000, K = 5, purity = 100%, precision = 1
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Conclusion

Results

Creation of realistic simulated data

R package development ’jointSeg’ on R-forge.
https ://r-forge.r-project.org/R/ ?group_id=1562

Bivariate methods are not uniformly better than univariate

No superiority of one method

Perspective

Kernel approaches

Labelling

Other applications (several profiles, methylation data)
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