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À Jean-Baptiste et Marius,

To Cassandre

“Essentially, all models are wrong,

but some are useful”

George E. P. Box,

Empirical Model-Building and Response Surfaces
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ma thèse. Merci à tous pour vos questions et remarques pertinentes qui ont fait avancer

ce travail de thèse.
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longues discussions. Merci à toutes les deux d’être venues courir avec moi. Virginie et

Florent bonne continuation.
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Plus généralement, merci à tous les membres du LaMME et plus particulièrement
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Chapter 1

General introduction

1.1 Context in molecular biology

All living beings are composed of cells with predefined genetic functions. The De-

oxyribonucleic acid (DNA) is the molecule, located in all cells, that carries most of

the genetic instructions. Thanks to these instructions, cells are able to grow, develop,

function and reproduce. The DNA sequence can be seen as an oriented sequence of

characters from an alphabet composed of only four different letters (A, T, C, and G).

These letters are in fact molecules which are nitrogenous bases and where A is Adenine

molecule, T is Thymine, C is Cytosine and G is Guanine. The DNA is arranged in

chromosomes (Fig. 1.1). Each cell of the human body is generally composed of pairs

of chromosomes, each inherited from one parent, and each existing in two DNA copies.

The chromosomes are divided into 22 autosomal pairs and 1 sexual one (Figure 1.2).

Each chromosome is composed of several genes with specific functions, where a gene

may be defined as a part of the DNA sequence that contains instructions to allow the

cell to function correctly [Alberts et al., 2010].

Genetic information exists at several levels that it is possible to measure: genome,

epigenome, transcriptome, proteome and metabolome [Ritchie et al., 2015]. At the

genome level, only the DNA molecule is studied in its original form. Epigenome stud-

ies focus on cellular and physiological phenotypic trait variations due to external or

environmental factors. These variations can switch genes on and off and affect how

cells express genes [Moore, 2015]. Transcriptome studies mainly focus on gene expres-

sions and proteome studies focus on protein expressions. Metabolites are molecules

that have various functions, including fuel generation, structure, signaling, stimulation

and inhibition of enzymes, the catalysis activity of their own, defense, and interactions
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CHAPTER 1. GENERAL INTRODUCTION

with other organisms. The metabolomic is the study of the chemical processes that

involve the metabolites [Daviss, 2005].

Figure 1.1 – From the cell to the DNA. (Property of US National Human Genome Research

Institute)

Figure 1.2 – 22 pairs of numbered chromosomes (called autosomes) plus one pair of sex chro-

mosomes (the X and Y chromosomes). (Property of National Library of Medicine)

However, mutations frequently occur during cell life. Most of these mutations are

repaired by the molecule itself but some are too severe to be repaired and produce se-

rious damages at the level of the cell regulation. Common mutations include insertions

and deletions of parts of the DNA sequence. When these mutations occur during cell

life and are not repaired, they may be responsible for cancers. In the next section, we

explain in detail the alterations that can occur in tumoral genomes.

2



CHAPTER 1. GENERAL INTRODUCTION

1.2 Cancer

Cancer is a heterogeneous disease [Marusyk and Polyak, 2010] which is characterized

by an abnormal proliferation of cells. The notion of heterogeneity in cancerology can

be defined at least at two different levels:

• Differences between tumors of the same disease in different patients (inter-tumour

heterogeneity)

• Differences between cancer cells within a single tumor of one patient (intra-tumour

heterogeneity).

First, tumor cells are often located in a given tissue but can eventually spread to other

parts of the body by the intermediate of the blood. The result of this phenomenon

is metastatic cancer which may compromise complete remission of patients. Genetic

and epigenetic differences found between the cancer cells within a single primary tu-

mor could explain why some cells remain resistant to drugs and cause relapses [Wagle

et al., 2011]. An important goal of current cancer research is to better understand the

underlying mechanisms and to characterize genomic mutations within tumor cells in

order to improve diagnosis and prognosis and eventually provide best-adapted drugs

for each patient. In this way, the Cancer Genome Atlas Research Network (TCGA

[Weinstein et al., 2013]) and also the International Cancer Genome Consortium (ICGC

[Zhang et al., 2011])have led inter-tumor heterogeneity studies. Inter-tumor studies

collect one sample per patient, typically from solid tumors, and perform analysis to

compare alterations profiles across the patient.

Studies are performed at several levels of the genomic information. But, it is well

established that cancer cells come from damages at the levels of genes responsible for

the regulation of the cell division [Cooper, 2000], and as a result, several mechanisms

are modified. Cancer cells often originate from different subclones harboring specific

mutational, expression or DNA copy number profiles [Navin et al., 2010, Rasmussen

et al., 2011, Oesper et al., 2013]. The intra-tumor heterogeneity challenges our under-

standing of the mechanisms of oncogenesis and disease progression. The inter-tumor

heterogeneity studies are older and started by study expression data of tumor from

several patients [Badea, 2008, Inamura et al., 2005, Collisson et al., 2011]. Dissect-

ing the genetic heterogeneity of tumors and cancers could help to refine the molecular

subtyping of tumors, predicting drug resistance and building personalized treatment

options [Marusyk et al., 2012].

In this thesis, we focus on the changes at DNA copy number level. In fact, it is well

known that gains and losses of parts or entire chromosomes [Hanahan and Weinberg,

3



CHAPTER 1. GENERAL INTRODUCTION

2011] can be observed in cancer (an example of karyotype from bladder cancer is shown

in Fig. 1.3). These modifications can directly or indirectly affect the gene expression

levels. In consequence, some cell functions may be incorrectly regulated. For example,

multiple oncogenes can be duplicated at DNA copy number levels and aggravate the

proliferation of tumor cells. Generalities about the technologies developed to analyze

DNA copy number alterations are detailed in the next section.

Figure 1.3 – A normal human karyotype (left) where each color corresponds to a chromosome

(humans have precisely two copies of each chromosome). A bladder cancer cell karyotype (right)

where extra copies of some chromosomes are present (which characterize cancer cells). Source:

https://www.sciencedaily.com/releases/2011/07/110726163519.html

1.3 Quantifying genomic features of tumor cells

To study the genome (not only in cancer research), high throughput molecular bio-

logical techniques have been developed in the last twenty years, and several efficient

technologies have been designed to identify biomarkers involved in genetic diseases and

cancers. DNA microarrays and high throughput sequencing technologies are two kinds

of emergent technologies developed to quantify the various levels of genetic information.

DNA microarrays and since ten years high throughput sequencing technologies (Whole

genome sequencing (WGS) and Whole exome sequencing (WES)) are used to detect

biomarkers involved in genetic diseases and cancers. In this section, we briefly explain

the technologies that can be used in the context of cancerology to measure the DNA

copy number in tumor cells.

4
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CHAPTER 1. GENERAL INTRODUCTION

1.3.1 DNA microarray data

DNA microarrays were first produced by the company Affymetrix in 1991 but they

starting being used in 1995 [Schena et al., 1995]. Microarrays were first used to mea-

sure gene expression and more particularly to compare expression in tumor cells to

expression in normal cells. Then, those to analyze DNA copy number have been de-

signed at the same time in 1992 [Kallioniemi et al., 1992]. In 1998, microarrays were

developed to genotype multiple regions of the genome (called loci) [Wang et al., 1998].

Data from two types of DNA microarrays have been studied in this thesis: Compara-

tive Genomic Hybridization (CGH) arrays and Single nucleotide polymorphism (SNP)

arrays.

CGH arrays have been developed to measure the total DNA copy number at pre-

defined loci on the genome with a high-resolution scale. The principle is the following:

DNA from a reference and a test are collected and labeled with two different fluo-

rophores. Then, cleaning and scanning of the arrays have been performed in order to

do image processing by an image analysis software (see Fig. 1.4). The signal obtained

from these arrays after the image processing is summarized by the ratio between the

amount of the test and reference DNA. An example of signals obtained from CGH

arrays are presented in section 1.4.

Figure 1.4 – Principle array-CGH (extract from [Barillot et al., 2012])

SNP arrays. A Single-Nucleotide Polymorphism (SNP) (pronounced snip) is defined

by a variation of the DNA sequence occurring at a single genome position. It is charac-

terized by a nucleotide - A, T, C, or G - which differs between members of a population

(or between paired chromosomes in an individual). For instance, the DNA fragment

sequence at the top of Fig. 1.5 is AAGCCTA and AAGCTTA for the DNA fragment
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sequence on the bottom. In most cases, we say that there are two alleles : C and T

(denoted arbitrarily by allele A and B). In most cases, SNPs only have two alleles.

Figure 1.5 – What is a SNP? Source: http://www.dnabaser.com/articles/SNP/

SNP-single-nucleotide-polymorphism.html

SNP arrays measure allele quantities at a large number of predefined loci. The SNP

arrays are used to study small variations between whole genomes [Visscher et al., 2012].

Indeed, it is possible to compare if a SNP appears more frequently in a population which

suffers from a particular disease than in a healthy population. However, SNP arrays can

also be used to study genetic abnormalities in cancer. In fact, by measuring intensities

of alleles at predefined loci, it is possible to deduce the DNA copy number but also the

genotypes AA or BB (the homozygous) or AB (the heterozygous) of each locus.

Formally, for each j = 1, . . . , J , let us denote by θAj and θBj the signal intensities

measured at SNP j for alleles A and B, respectively. θAj and θBj are proportionate to

the allele quantity.

We define the first dimension of the signal by the total DNA copy number that is

proportionate to SNP j by θtj = θtAj + θtBj (sum of quantity of allele A and allele B in

the tumor sample denoted t). If a reference sample is available, it is possible to measure

the total DNA copy number in the tumor sample by :

cj = 2×
θtj

θrAj + θrBj
(1.1)

where θrAj and θrBj are the intensities at the same location in the reference sample

6
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denoted r.

The second dimension of the signal from SNP arrays is the B allele fraction (BAF).

The BAF is defined at SNP j by:

btj =
θtBj

θtAj + θtBj
(1.2)

and is between 0 and 1.

For example, in a normal cell with two DNA copies, BAF is close to 0 if only allele

A is observed, 1 if only allele B is observed, and 0.5 if both of allele A and B are

observed. Thereafter, the heterozygous in the germline refers to the genotype in the

normal cells of the patient.

1.3.2 High-throughput sequencing data

DNA sequencing is usually used to determine the sequence from single gene to entire

genomes. This technology provides ordered sequences of nucleotides present at the level

of DNA or Ribonucleic acid (RNA) and allows us to detect mutations typically linked

to diseases at a higher resolution than DNA microarrays.

Whole genome sequencing (WGS)

High-throughput sequencing (HTS) is a recent technology which allows us to se-

quence DNA and RNA much quicker and cheaper than Sanger sequencing. Whole

genome sequencing consists in collecting DNA sample and then determining the iden-

tity of the nucleotides (A, T, C, G) that compose the genomes of a living being. The

first step is to cut the whole DNA sequence into short fragments between 10bp and

100bp. After a step of replication, the start and the end of the all replicated fragments

are sequenced and read (Fig. 1.6). Then, each fragment, called read, is aligned to a

reference sequence. The depth of sequencing is the number of times a nucleotide is read

during the process. For instance, a depth of 100x means that in mean the number of

reads with a part aligned at this position is close to 100.

Whole exome sequencing (WES)

However, the exons (Fig. 1.7) represent only 1,5% of the human genome [Venter

et al., 2001] are short DNA sequences that lead to transcripts. In addition, the disease-

causing variants are in majority in exons. Before performing the sequencing, the coding

portion of the genome is captured and then sequenced (see Fig. 1.8 for more details).

As a result, it is possible to sequence more deeply a small part of the genome for a

same cost than the whole genome.

7
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Figure 1.6 – Whole genome sequencing (Property of US National Human Genome Research

Institute)

In cancer research, this technology allows us to recover both DNA copy number

alterations,in addition to mutations which can drive the evolution of cancer and somatic

events like translocations. In order to be able to analyze this kind of data, we have to

adapt our statistical methods.

8
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Figure 1.7 – Gene (Property of US National Human Genome Research Institute )

Figure 1.8 – Whole exome sequencing Source: http://biol1020-2012-2.blogspot.fr/2012/

08/a-new-breast-cancer-susceptibility-gene.html
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1.4 DNA copy number data in cancerology

In this thesis, we focused on genomic alterations in tumor cells at the level of the

DNA copy number. This section describes the notations and variables used along the

manuscript.

1.4.1 Total copy number and B allele fraction

As explained in section 1.2, in tumor cells, parts of a chromosome of various sizes

(from kilobases to a chromosome arm) may be deleted, or copied several times. As

a result, DNA copy numbers in tumor cells are piecewise constant along the genome.

For illustration, Figure 1.9 displays an example of copy number signals that may be

obtained from SNP-array data. Red vertical lines represent change points. In this

particular example, the first region [0-2200] is normal, the second one [2200-6100] is

a region where one of the parental chromosomes has been duplicated, and the third

one [6100-10000] is a region of uniparental disomy called also Copy neutral loss of

heterozygosity (cn-LOH), that is, a region where one of the parental chromosomes has

been duplicated and the other one deleted. The top panel represents estimates of the

Total copy number (TCN) (denoted by c). The bottom panel represents estimates

of BAF (denoted by b). We refer to section 1.3.1 for an explanation of how these

estimates may be obtained and to [Neuvial et al., 2011] for normalization of these

quantities. In the normal region [0-2200], the total copy number is centered around

two copies and allelic ratios have three modes centered at 0, 1/2 and 1. These modes

correspond to homozygous SNPs AA (b = 0) and BB (b = 1), and heterozygous SNPs

AB (b = 1/2). We note that in the second region where the tumor has 3 copies of DNA,

the average observed signal is substantially below the true copy number. This is due

to the presence of normal cells in the “tumor sample”, a phenomenon known as normal

contamination which shrinks the observed signals toward two copies of DNA. We can

refer to [Neuvial et al., 2011] for a more detailed explanation of this phenomenon and

other sources of non-calibration in DNA copy number signals, such as the ploidy of the

tumor. One important observation is that change points occur at the same position in

both dimensions. This is explained by the fact that a change in only one of the parental

copy numbers is reflected in both c and b. Therefore, it makes sense to analyze both

dimensions of the signal jointly in order to identify change points. In the following, we

denote by J the number of loci and respectively by cj and by bj the total copy number

and the B allele fraction at the locus j for all j = 1, . . . , J .

Note that, the second dimension (BAF) makes it possible the detection of cn-LOH

events from a normal region. This corresponds to the third region in Fig. 1.9). Biolog-
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Figure 1.9 – Example SNP array data. Total copy numbers (c), allelic ratios (b) along 10,000

genomic loci. Red vertical lines represent change points, and red horizontal lines represent

mean signal levels between two change points. SNPs that are heterozygous in the germline are

colored in black; all of of the other loci are colored in gray.

ically, one parental copy has been lost when the other parental copy has been gained.

Parental copy number estimation is detail in section 1.4.3.

1.4.2 DoH transformation

In order to facilitate the separation between the different altered regions (called math-

ematically segmentation), allelic ratios (b) are generally transformed into unimodal

signals, as originally proposed in [Staaf et al., 2008]. This transformation is motivated

by the fact that allelic ratios can be symmetrized (“folded”) and that SNPs that are

homozygous in the germline (these SNPs are plotted in gray in Figure 1.9) can be

discarded as they carry very little information about copy-number changes. Following

[Bengtsson et al., 2010], we define the Decrease of heterozygosity (DoH) as :

dj = 2

∣∣∣∣bj − 1

2

∣∣∣∣ (1.3)

only for SNPs that are heterozygous in the germline, which is essentially a rescaled

version of the “mirrored/folded BAF” defined by [Staaf et al., 2008]. After this trans-
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Figure 1.10 – Example SNP array data along 10,000 genomic loci, after transformation of allelic

ratios (b) into decrease in heterozygosity (d), following [Bengtsson et al., 2010, Staaf et al., 2008].

Red vertical lines represent change points, and red horizontal lines represent mean signal levels

between two change points. SNPs that are heterozygous in the germline are colored in black;

all of of the other loci are colored in gray.

formation, DNA copy numbers can be considered as a bivariate, piecewise-constant

signal, as illustrated by Figure 1.10.

It should be emphasized at this stage that because the proportion of heterozygous

markers among SNPs is generally of the order of 1/3 for a given sample, the number

of informative markers is several times larger for c than for d.

1.4.3 Parental copy number computation

[Neuvial et al., 2011] proposes to estimate the parental copy numbers (maternal and

paternal copies) from the DoH estimation described in the previous section. Consider-

ing a SNP j which is heterozygous in the germline, the minor and major copy numbers

at j are defined as the smallest and the largest of the two parental chromosomes. They

can be estimated as: {
c1j = cj (1− dj) /2
c2j = cj (1 + dj) /2

(1.4)

where cj is still the total copy number at j, dj = 2|bj − 1/2| is still DoH (see Eq.

12
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Figure 1.11 – TCN, BAF and minor and major copy number representations along the genome

1.3) . By definition, minor and major copy number have the following nice properties:

cj = c1j + c2j , dj = (c2j − c1j )/cj and c1j ≤ c2j . The interpretation in terms of Loss

of Heterozygosity (LOH) is also very simple : for instance a minor copy close to 0

corresponds to LOH alteration and c1j = c2j corresponds to allelic balance.

The list below describes the common different copy number states in terms of minor

and major copy number denoted by the vector (c1, c2), where c1 corresponds to the

minor copy number, and c2 corresponds to the major copy number [Neuvial et al.,

2011].

• (1,1): normal (one copy from each parent)

• (0,1): hemizygous deletion (loss of one parental copy)

• (0,2): copy-neutral LOH (loss of one parental copy and gain of the other)

• (1,2): single copy gain

A graphical representation without noise for this four common types of alterations

is shown on Figure 1.11.

1.4.4 Features DNA copy number data

It is clear by looking at Fig. 1.9 and 1.10 that DNA copy number profiles have particu-

lar features. The first one is that DNA copy number data sin tumor cells are piecewise

constant along the genome. Then, the second one shared generally by genomic data is

13
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the high dimension. As we said in the section 1.3, it is possible to quantify genomic

information at a large number of loci along the genome. Therefore, nowadays, microar-

rays contains around 106 observations and HTS can reach around the billion3 ∗ 109

observations (a whole human genome).

In addition, tumor samples are not composed of only one type of cells but several,

indeed it is usual that there is a contamination by a non-negligible proportion of normal

cells when the sample is taken off. This induces difficulties to identify the altered regions

1.10.

1.5 Statistical and bioinformatical issues

The two technologies (microarrays and sequencing) described in the section 1.3 require

bioinformatical and statistical methods at several levels. Indeed, several artifacts from

microarrays and HTS may disturb the estimations of the DNA copy numbers. These

experimental artifacts lead to systematic biases that it is necessary to correct. For

instance, for CGH-arrays, the most common is the spatial artifact. Indeed, boundary

effects but also regional shifts and systematic variations are often observed [Reimers

and Weinstein, 2005]. For HTS, the most common bias is due to the percentage of

GC-content that influences the read alignment on the reference sequence [Benjamini

and Speed, 2012]. These issues are often dealt with bioinformatic methods but also

statistical models.

Microarray and sequencing data can be used to explore several fields. For instance,

[Beerenwinkel et al., 2014] have recently reviewed mathematical models for cancer evo-

lution. Indeed, cancer can be seen as an evolutionary process with specific features.

The tumors display an abnormal copy number of chromosomes, an elevated muta-

tion rate, and several rearrangements of chromosomes for instance. Therefore, several

phylogenetic methods that take into account particular features of tumor have been

developed to study the clonal evolution of cancers [Chowdhury et al., 2013, Greenman

et al., 2012]. Recently, an evolutionary study of ovarian cancers has shown a corre-

lation between genetic heterogeneity, patient survival, and drug resistance [Schwarz

et al., 2014].

In this thesis, we focus on the detection of the copy number alterations that can

be observed in tumor cells. The improving of the detection of the alterations can

lead to better understand the tumor evolution by integrating the discoveries in the

phylogenetic models cited previously. Detecting alterations can also highlight genetic

biomarkers linked to the patient survival or the drug resistance as in [Schwarz et al.,

14
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2014, Jiang et al., 2016].

To discover genomic biomarkers, it is necessary to develop statistical methods able

to deal with features of microarrays and NGS described in 1.4.4. This thesis is struc-

tured in three parts: the first one is about segmentation models, the second one is about

the model on heterogeneity and the third one is about bioinformatic considerations to

deal with real data.

In the first part, we start by introducing the statistical models that are usually used

to segment this kind of data namely c, b and d, or even c1 and c2 signals (Chapter 2).

The aim of segmentation methods is to recover the genome location where the altered

regions are not the same before and after these points. Microarray and NGS produced

a large quantity of information at the scale of kilobase even at the scale of the unit base

on the genome. Therefore, these methods require to be statistically efficient to discover

relevant biomarkers correctly but also efficiently in terms of computation, both in terms

of time and space complexity. After extending the univariate segmentation methods to

apply them simultaneously to c and d signals, we present a new strategy to evaluate

the gain using both c and d signals to recover alterations in DNA copy number signals

in Chapter 3. The last chapter of this section aims to present a new method that does

not require to transform b signals to d signals (Chapter 4).

Then, in the second part, we focused on the discovery of the tumoral heterogeneity

by dealing with several samples simultaneously. After a chapter that briefly introduces

the models used to study tumoral heterogeneity (Chapter 5), we present a new model in

Chapter 6. This model has the particularity to be able to be applied to discover intra or

inter-tumoral heterogeneity on microarrays or HTS data. We present two applications

to two different kinds of data sets (Chapter 7). The first one is a public data set where

data is from microarrays. We attempt to infer intra-tumoral heterogeneity from several

samples of the same patient. The second one is a collaboration with Institut Curie. We

analyze heterogeneity from several patients suffering from a particular breast cancer.

We dealt with WES data for this study.

To finish, the last part summarizes some contributions at a bioinformatic level to

solve problems come across the dealing with real data analysis. Indeed, through the

applications of the developed heterogeneity model on real data, several issues have been

raised at normalization level. The two chapters of this part are therefore focused on

normalization of data. Chapter 8 deals with the estimation of the DoH signals in ab-

sence of a normal reference from microarrays data and is linked to the first application.

Chapter 9 is focused on the normalization of the WES data to get TCN, BAF and DoH

signals as from microarrays.
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Chapter 2

DNA copy number segmentation

This chapter introduces the segmentation models to detect alteration in DNA copy

number signals. After a brief review of the main methods to segment DNA copy number

signals, we present the univariate models in a second section. In a third section, we

described the approach that we have considered to segment jointly the TCN and the

DoH. Finally, we present the standard approach to select the best model in the case of

segmentation models.

2.1 Typology of copy number segmentation methods

This section is about the segmentation models previously described by [Neuvial et al.,

2011] and [Zhang, 2010]. In the last twenty years, many different methods have been

proposed for the analysis of DNA copy number profiles. Most of them may be classi-

fied into four categories: methods based on Hidden Markov Models (HMM), multiple

change-point methods, fused lasso-based methods and recursive segmentation methods.

1. HMM-based approaches rely on the idea that the recovered DNA copy number

should be discrete and that these different levels can be modeled using a small

number of HMM states. A typical example of such an HMM is the work of

[Fridlyand, 2004]. For the specific case of SNP array analysis in cancer samples,

several dedicated HMM have been proposed [Sun et al., 2009, Greenman et al.,

2010, Chen et al., 2011] (Section 2.2.1).

2. Multiple change-point methods assume that the observed signal is affected by

abrupt changes and that between these breaks the signal should be homogenous

[Picard et al., 2005] (2.2.3).
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3. Recursive segmentation approaches rely on the intuitive idea that a segmentation

can be recovered by recursively cutting the signal into two or more pieces. A

typical example of such an recursive approach is the work of [Olshen et al., 2004]

(2.2.4).

4. Methods based on a fused lasso penalty rely on the idea that, in most cases,

two successive measurements should have the same estimate. This is encoded

by a L1 penalty on successive differences. The recovered signal is guaranteed to

be piecewise constant. A typical example of such a fused model is the work of

[Tibshirani et al., 2005]. This class of methods can be viewed as solving a convex

relaxation of the multiple change point problem. (2.2.5)

The above classification is by no means exhaustive (see for example [Hupé et al.,

2004, Ben-Yaacov and Eldar, 2008]), but summarizes the most common approaches

linked to the work of this thesis. In the next section, we present the main classical

models.

2.2 Univariate models

2.2.1 Classical Hidden Markov Models

We present in this section the HMM of [Fridlyand, 2004]. The HMM assume that there

exist a certain number K of hidden states. Some examples of considered hidden states

are described in the following table 2.1:

k TCN States

1 0 Full deletion

2 1 Single deletion

3 2 Normal

4 3 Single copy gain

5 4 Double copy gain

Table 2.1 – Example of considered Hidden states in HMM for segmentation models

We denote these hidden states by (S1, . . . ,SK). Then, we denote by qj the actual

state at the position j on the genome and by πk = P(q1 = Sk), the probability that the

first locus is in state k, this is, in fact, the marginal distribution of the hidden states.

The transition matrix corresponds to the probability to move from one state l to
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another one m and is defined by:

alm = P(qj+1 = Sm|qj = Sl), (2.1)

for all 1 ≤ j ≤ J − 1 and 1 ≤ l,m ≤ K.

[Fridlyand, 2004] assume that it is the log 2 of the TCN in state K which follows a

gaussian distribution with unknown mean and variance:

∀j ∈ Sk, log2(cj) ∼ N (µk, σ
2
k), (2.2)

Note that µk here represents the true hidden copy number that is an integer (Table

2.1).

Therefore, the HMM is characterized by three parameters:

• Initial state probabilities denoted by π = (π1, . . . , πK)

• The transition matrix denoted by A

• The collection of the distribution in each state denoted by B

We denote the parameter vector by λ = (π,A,B)

The optimal values of λ is found by maximizing the likelihood L(λ|c) of the param-

eters given the vector of values c in several steps.

1. π is initialized by placing a majority of the weight on the normal state and

distributing the remaining probability uniformly among all other states.

2. Similarly, the initialization of A is done by assigning a high probability of re-

maining in the same state and low non-zero probabilities to transitioning between

states.

3. Identifying the optimal state sequence associated with a given vector, for each

observation cj . Choosing the state sl which is individually most likely.

4. Finally, they re-estimate model parameters λ to maximize L(λ|c) using an EM

algorithm.

The HMM take the advantage of determining both the position of breakpoints

(when the states change) but also the status of each region (gain, loss, normal). In this

thesis, we make the choice to split the two steps and to focus on the first one that is

to detect with a high accuracy the breakpoints and in a second step performing the

calling (attribute a status to segments).
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2.2.2 Multiple change-point model

We introduce the basic model for DNA copy number signals, which is widely used in the

literature by several methods [Hupé et al., 2004, Olshen et al., 2004, Hautaniemi et al.,

2003, Picard et al., 2005]. It assumes that total DNA copy number profiles are piecewise

constant in the mean. Statistical model for S change points at mS = (t1, . . . , tS) can

be written as follows:

∀j = 1, . . . , J cj = γj + εj (2.3)

where ∀s ∈ {1, . . . , S + 1} ,∀j ∈ [ts−1, ts[ γj = Γs with the following convention

t0 = 1 and tS+1 = J + 1

We consider the homoscedastic model: εj ∼ N (0, σ2), the variance does not depend

on the region. However, the variance of copy number signals is, in fact, increasing with

their mean. Therefore, an heteroscedastic model where σ = σs is more realistic. A

common practice in applications is to transform the raw copy number signals using
√
.

or log(.) transformations, in order to stabilize the variance of the signal. Then, the

homoscedastic model may make sense. We refer to [Picard et al., 2005] for a discussion

on the estimation of the homoscedastic vs the heteroscedastic model.

Assuming that the model is gaussian and homoscedastic, the parameters of the

model are the change-point locations denoted by the segmentation mS = t1, . . . , , tS ,

the true copy number Γ1, . . . , ΓS+1, and the variance of the model σ2. The likelihood

of the model is :

LS(c,mS , Γ, σ
2) =

S+1∏
s=1

ts−1∏
j=ts−1

f(cj ; γj , σ
2) (2.4)

=
S+1∏
s=1

ts−1∏
j=ts−1

1

σ
√

2π
exp

{
− 1

2σ2
(cj − γj)2

}
(2.5)

By log transformation, we obtain the following equation:

`S(mS) = −J log
(
σ
√

2π
)
− 1

2σ2

S+1∑
s=1

ts−1∑
j=ts−1

(cj − γj)2 (2.6)

Then, the best segmentation into S + 1 segments is defined by:

m̂S = arg max
m∈M(S)

`S(mS) (2.7)
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where M(S) is the set of all possible segmentations in S change-points in J-length

signals.

And, considering that σ2 is well estimated by the estimator proposed by [Hall et al.,

1990] in a previous step, maximizing the log-likelihood is finally equivalent to:

m̂S = arg min
mS∈M(S)

S+1∑
s=1

ts−1∑
j=ts−1

(cj − γj)2 (2.8)

Then, once S and mS are known, we deduce the estimations of Γs for each s =

1, . . . , S:

Γ̂ts−1,ts = Γ̂s =
1

t̂s − t̂s−1

ts−1∑
j=ts−1

cj (2.9)

Here, we can note that the classical model assumes that the signals are Gaussian.

However, Gaussian assumption for TCN and DoH can be wrong and could be lead to

poor performance of this model. Chapter 3 shows a way to evaluate performance based

on a realistic simulation framework. This simulation framework allows checking if the

Gaussian assumption is nevertheless acceptable.

The theoretical time complexity of an exhaustive search to partition J points into

S segments is in O(JS). In the genomic context, space and time complexity is an

actual challenge due to the large size J of vector c. Several strategies are used to solve

the problem: Dynamic Programming (DP) algorithm, binary strategies, and convex

relaxation that enable to reduce the complexity.

2.2.3 Dynamic programming algorithm

In this section, we describe the principle of univariate DP algorithm [Bellman, 1961,

Auger and Lawrence, 1989]. In our context, DP is used to solve the model described

previously in order to segment DNA copy number The main advantage of the DP

algorithm is the exact resolution of the problem based on the model described by

equation 2.3 with a reduction of the complexity.

If we denote the cost of a segment between positions u and v by C(u, v) such that:

∀ 1 ≤ u < v ≤ J, C(u, v) =

v−1∑
j=u

(cj − Γ̂uv)2 (2.10)
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where Γ̂uv =
1

v − u
v−1∑
j=u

cj is the mean of TCN in the segment between u and v (Eq.

2.9). We define the cost of the best segmentation of the TCN signal between positions

1 and J into S segments by:

CS(1, J) = min
mS∈M(S)

S+1∑
s=1

C(ts−1, ts). (2.11)

Estimates are the same as for the maximizer of likelihood.

The cost of the best segmentation into 2 parts of segment (u, v) is defined by:

C2(u, v) = min
j
{C(u, j) + C(j, v)} (2.12)

And, the cost of the best segmentation into 3 parts of segment (u, v) is defined by:

C3(u, v) = min
j
{C2(u, j) + C(j, v)} (2.13)

Recursively, the cost of the best segmentation into s parts of segment (u, v) is

defined by::

∀ 1 ≤ s ≤ S Cs(u, v) = min
u≤j≤v

{Cs−1(u, j) + C(j, v)} (2.14)

The argmin of 2.14 provides the last best position that enables to move from s− 1

to the s segments.

Complexity is reduced to O(SJ2) instead of O(JS) in time and we deduce the

following algorithm by applying the update rules:

Compute C1(u, v) for all u and v in {1, . . . , J}
for s = 2 to S − 1 do

for j = s to J do
Cs(1, j) = minj′≤j{ Cs−1(1, j′) + C1(j′, j + 1) }
j∗ = arg minj′≤j{ Cs−1(1, j′) + C1(j′, j + 1) } the last best position to

segment (1, j) in s segments.

Algorithm 1: Basic use of Dynamic Programming

In fact, the last j∗ is the best position to move from S − 1 segments to S segments

for the TCN signal 1 and J , therefore, we perform a back tracking to recover all the

best positions j∗ at each step.
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Nevertheless, even if this trick allows to exactly solve the problem, it has a cost in

space because without dynamic programming the cost is of the order of O(1) while for

dynamic programming the cost is of O(SJ2). However, [Rigaill, 2015, Cleynen et al.,

2014] has developed a DP algorithm that enables to reduce the average time-complexity

in O(J log(J)) and suffers from a worst-case complexity of O(J2). In the same line,

another version of regularized dynamic programming has been explored by [Killick

et al., 2012] who designed the PELT procedure. It provides the best segmentation over

all segmentations with a penalty of λ per change-point with an O(J) complexity in

time if the number of change-points is linear in n. On the one hand, with PELT it is

not straightforward to efficiently solve Eq. (2.11) for each 1 ≤ S ≤ S, which is precisely

the goal we pursue. On the other hand the complexity of the pruning inside PELT

depends on the true number of change-points and number of dimensions. In particular

for a small number of change-points it is quadratic.

2.2.4 Basic binary segmentation

Binary methods are also used to reduce complexity and solve this kind problem by

approximation [Olshen et al., 2004, Yang, 2012, Fryzlewicz, 2012]. The principle is to

cut the signal into two segments at the best location and do this recursively at each

step to finally reach S segments in the signal. Let us recall that the likelihood ratio

statistic for testing the null hypothesis of no change against the alternative that there

is exactly one change at an unknown location [Sen and Srivastava, 1975] is given by

max1≤j≤J |Zj | in the case of homoscedastic model , where

Zj =

c̃j
j −

c̃j−c̃J
J−j√

1
j + 1

J−j
, (2.15)

where c̃j denotes the partial sum c̃j =
∑
1≤l≤i

cl for 1 ≤ j ≤ J. By using the previous

notations 2.9, this statistic is equal to:

Zj =
Γ̂1j+1 − Γ̂j+1,J+1√

1
j + 1

J−j
, (2.16)

Connection to the likelihood We explain in detail the origin of Zj in the case of

we deal with one-dimensional signals. Let us test the null hypothesis H0 : there is no
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change-point in the signal versus H1: there is exactly one change-point at the location

t in the signal.

Consider the likelihood of the model M1:

L1(t, c1, . . . , cJ , Γ1, Γ2) =
1

√
2πσ2

J
exp

{
t∑

j=1

(cj − Γ1)2

2σ2
+

J∑
j=t+1

(cj − Γ2)2

2σ2

}
(2.17)

And the likelihood of the model M0

L0(c1, . . . , cJ , Γ) =
1

√
2πσ2

J
exp


J∑
j=1

(cj − Γ0)2
2σ2

 (2.18)

Remember that, the maximum-likelihood estimators of equation (2.17) are:

Γ̂1 = Γ̂1,t+1 =
1

t

t∑
j=1

cj

and

Γ̂2 = Γ̂t+1,J+1
1

J − t
J∑

j=t+1

cj

and the maximum-likelihood estimator of (2.18) is:

Γ̂0 = Γ̂1,J+1 =
1

J

J∑
j=1

cj

The likelihood ratio statistic is defined by :

RV =
L1
L0

And by log transformation:

log(RV ) = `1 − `0
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where `1 and `0 are the log-likelihood.

Then,

log(RV ) =
t∑

j=1

(cj − Γ̂1)2
2σ2

+
J∑

j=t+1

(cj − Γ̂2)2
2σ2

−
J∑
j=1

(cj − Γ̂0)2
2σ2

(2.19)

Therefore

2σ2 log(RV ) =

t∑
j=1

(cj − Γ̂1)2 +

J∑
j=t+1

(cj − Γ̂2)2

−
J∑
j=1

(cj − Γ̂0)2 (2.20)

After some simplifications by using the König-Huygens formula and using definitions

of Γ̂1, Γ̂2 and Γ̂0, we obtain :

2σ2 log(RV ) =
(
−tΓ̂21 − (J − t)Γ̂22 + JΓ̂

2

0

)
(2.21)

Lemma 1. 2σ2 log(RV ) =

(
− t(J−t)

J

(
Γ̂1 − Γ̂2

)2)
The proof is given in Appendix A.

Therefore, we have,

Zt =

√
−2σ2 log(RV ) =

√√√√√(Γ̂1 − Γ̂2)2
J

t(J−t)

=

∣∣∣∣∣∣
(
Γ̂1 − Γ̂2

)
√

1
t + 1

J−t

∣∣∣∣∣∣ (2.22)

We define the first change-point by

t1 = arg max
1≤t≤J

Z2
t .
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Lemma 2. The first change-point is in fact the maximizer of likelihood ratio.

Then we compute Zt for each 1 ≤ t < t1 and t1 < t ≤ J, and Zt1 is set to 0. At this

step, we get two possible change-points: t2 on the first segment and t′2 on the second

segment.

The second step is to compute for each segment the gain in the meaning of the RSE

(root square error) achieved by the two change-points at location t :

gain(t) = RSE(no change-point, t)−RSE(one change-point,t)

Where

RSE(no change-point, t2) =

√
1
t1

∑t1
j=1

(
cj − Γ̂1,t1+1

)2
=
√

1
t1
C(1, t1 + 1)

with Γ̂1,t1+1 =
1

t1

t1∑
j=1

cj

RSE(one change-point, t2) =√√√√√ 1

t1

 t2∑
j=1

(
cj − Γ̂1,t2+1

)2
+

t1∑
j=t2+1

(
cj − Γ̂t2+1,t1+1

)2
Bellow is the detailed explanation of the steps of recursive binary segmentation in

Algorithm 2.

for k ← 1, . . . S do

Compute Zj for each min(1, t) ≤ j < tk−1 and tk−1 < j ≤ max(J, t),;

where t is the set of selected change-points at each previous step;

and ∀j ∈ {1, . . . , J} Zj is equal to 0.;

At this step, there are k possible change-points : two change-points from this

step tk and t′k, and k − 2 change-points which were not selected at previous

steps;

Compute for the two new segments the gain brings by the change-points

gain(tk) and gain(t′k);
Compare with the k − 2 previous gains computed.;

The next change-point k is the one which is in the segment where the gain is

the greatest. In other terms t = arg max
t∈{t1,...,tk,t′k}

gain(t);

Algorithm 2: Basic recursive binary segmentation

30



CHAPTER 2. DNA COPY NUMBER SEGMENTATION

Efficiently implemented, recursive binary segmentation reaches a time complexity

of order O(Jlog(S)). In space, this algorithm requires to save only the partial sums

i.e. algorithm is in O(J).

2.2.5 Convex relaxation

To reduce the complexity to recover change-points in TCN profiles [Harchaoui and

Lévy-Leduc, 2008] demonstrates that the problem can be written as a convex opti-

mization problem.

As γ is a J piecewise constant vector, maximizing the likelihood define in equation

2.4 after estimation of σ2 is exactly equivalent to solve:

min
γ∈RJ

‖c− γ‖22 subject to
J−1∑
j=1

1γj+1 6=γj ≤ S, (2.23)

where 1 is the indicator function and ‖.‖2 indicates the euclidean norm for vectors.

Equation 2.23 minimizes the quadratic error to look for the best approximation of signal

c subject to the constraint that there are exactly S breakpoints in the signal.

The presence of singularities at the boundary induces the variable selection by

exactly zeroing some coefficients. But this problem is non-convex and hard to optimize.

The following equation is the convex-relaxation formulation of Eq. 2.23:

min
γ∈RJ

1

2
‖c− γ‖22 subject to

J−1∑
j=1

|γj+1 − γj | ≤ µ, (2.24)

min
γ∈RJ

1

2
‖c− γ‖22 + λ

J−1∑
j=1

|γj+1 − γj |, (2.25)

For a fixed λ, the γ ∈ RJ is still piecewise constant. Note that parameter λ controls

S, the number of change-points.

Formulation as a LASSO problem [Harchaoui and Lévy-Leduc, 2008] also

demonstrated that it is possible to reformulate this problem as a simple lasso regression.

Let : βj = γj+1 − γj ∀j = 1, ..., (J − 1).

Then : γj = γ1 +

j−1∑
i=1

βi, with the following convention γ0 = 1.
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and γ can be written as follows 1J,1γ1 + Xβ where X is a J × (J − 1) matrix and

Xj′j = 1 for j′ > j and 0 otherwise.

min
γ1∈R,β∈RJ−1

1

2
‖c−Xβ − 1J,1γ1‖22 + λ

J−1∑
j=1

|βj |, (2.26)

The solution of Eq. 2.26 in γ1 is given by:

−11,J(c−Xβ − 1J,1γ1) = 0 (2.27)

⇔ γ1 = 11,J(c−Xβ)/J (2.28)

Then, by optimizing the equation in β :

min
β∈RJ−1

1

2
‖c−Xβ − 1J,1γ1‖22 + λ

J−1∑
j=1

|βj |, (2.29)

The jump vector β can be obtained as a solution of 2.30 by injecting 2.28 in 2.29:

min
β∈RJ−1

1

2
‖c̄− X̄β‖22 + λ

J−1∑
j=1

|βj |, (2.30)

where c̄ and X̄ are obtained from c and X by centering each column.

Finally, we get a standard lasso regression model.

β̂ = arg min
β∈RJ−1

1

2
‖c̄− X̄β‖22 + λ‖β‖1, (2.31)

where ‖.‖1 is the `1 norm.

Illustration To illustrate the fact that problem 2.24 induces also sparsity as the

problem 2.23, we take J = 3, then β1 = γ2−γ1 and β2 = γ3−γ2. The problem becomes

a standard linear regression model where it is the coefficient β that is penalized (Eq.

2.31).

The Figure 2.1 shows the geometrical forms of the `0 (left) and `1 (right) penaliza-

tions. It is clear that the `1-norm induces sparsity in addition to be convex.

If the matrix X is orthonormal the solution of the lasso problem is easy to compute

[Tibshirani, 1996]. However, in our case, X is not orthonormal and there is no explicit

solution. A practical solution is to use the Least Angle Regression LAR algorithm

[Efron et al., 2004, Harchaoui and Lévy-Leduc, 2008]. Indeed, the principle of this

algorithm is to select step by step the most meaningful variable (active-set method).

In our case, this is equivalent to select the most relevant breakpoints and it is easy to

stop the algorithm at a predefined number of segments.
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β2

β1

β2

β1

Figure 2.1 – Contour of the feasible solutions by ‖β‖0 ≤ 1 (left) and ‖β‖1 ≤ 1 (right) when

β ∈ R2

2.2.6 The two-step strategies

[Gey and Lebarbier, 2008, Harchaoui and Lévy-Leduc, 2008] use a hybrid strategy to

catch change-points in TCN signals. This two-step approach consists in:

• quickly identifying a set of candidate change points by taking account the two

dimensions

• pruning this list using DP.

To quickly identify the candidate breakpoints, [Harchaoui and Lévy-Leduc, 2008]

use fused LASSO while [Gey and Lebarbier, 2008] uses binary segmentation. Both of

the two methods prune the list of candidates by using DP.

Therefore, the number of explored breakpoints is very small compared to the total

number of loci (S � J). The only difference with the classical dynamic programming

is that segments are defined by the breakpoints recovered by the lasso or by recursive

binary segmentation. This step of DP enables us to recover the best segmentations

in s ∈ {1, . . . , S} breakpoints, in terms of likelihood. Then, the time complexity of

the dynamic programming is of the order of O(S3) for S change-points. The overall

complexity is therefore O(S3 + J log(J)S) and O(S3 + JS) for RBS and Fused Lasso

respectively.
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2.3 Two dimensional methods

In this section, after a few words on complexity, we describe two methods to perform

jointly the segmentation of TCN and BAF signals. Indeed, we saw in the introduction

that change-points occur exactly at the same location and take into account these two

dimensions could increase the detection power.

2.3.1 Complexity

All presented methods are extensible to detect breakpoints in multiple dimension but at

a non-negligible cost. It is, for instance, possible to extend the DP algorithms. However,

the trick of [Rigaill, 2015] that permits to reduce the complexity is not applicable to

multidimensional signals. Therefore, when the dimension of the signal is larger than

one, the computation takes O(SJ2) in time and O(SdJ2) in space, where d is the

dimension of the signal. [Mosen-Ansorena and Aransay, 2013] develops a method to

use both TCN and DoH signals by using the trick of [Huber et al., 2006] that is to

constraint the length of segments. Therefore, the complexity is reduced to O(JL) where

L is the maximal length of individual segments. However, we notice that L requires to

be greater that J
S in algorithm to provide a segmentation. As consequence, the time

complexity remains quadratic in O(J2/S). [Chen et al., 2011] have also developed a

HMM to segment parental copy number signals.

Recursive binary segmentation and convex relaxation methods are easily extensi-

ble to multidimensional signals with a lesser cost in terms of time complexity. Both

algorithms have a low space complexity in O(J). It is, then, possible to extend the

two-steps strategies to reach a space complexity in O(J). Time computations takes for

RBS and convex relaxation O(J log(S)d) and O(JS × d), respectively.

Based on the work of [Gey and Lebarbier, 2008, Harchaoui and Lévy-Leduc, 2008,

Vert and Bleakley, 2010], we applied the hybrid strategy to catch change-points simul-

taneously in TCN and BAF (section 2.2.6).

We first present the group Fused Lasso uses by [Vert and Bleakley, 2010] to recover

quickly breakpoints in TCN and BAF based on convex relaxation method (section 2.3.2.

Then, we extend the binary segmentation described in [Gey and Lebarbier, 2008] in

order to include the BAF information (section 2.3.3).
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2.3.2 Group Fused Lasso Segmentation

This section presents the method developed by [Vert and Bleakley, 2010] but applying

on TCN and DoH signals. Indeed, in the original article, the aim was to detect change-

points from CGH arrays in a multisample data set from various patients. In our case of

the joint segmentation of the B allele fraction and the total DNA copy number signals,

change-points occur by definition exactly at the same location in the two signals. In

section 2.2.5, we show how Group Fused Lasso methods can be used to perform the

joint segmentation of c and d.

Group Fused Lasso method

Let Y = (c d) the matrix that contains the TCN and the DoH signals as described

in section 1.4. Therefore the matrix size is J × 2, each row j of the matrix is a couple

of TCN and DoH at locus j. Note that we assume that the SNPs are ordered along

the genome.

∀j = 1, . . . , J cj = γj + ε
(1)
j

∀j = 1, . . . , J dj = δj + ε
(2)
j ,

where ε(d) ∼ N (0, σ2d), for d = 1, 2.

We search Φ = (γ δ), the matrix containing the true values and such that c and

d satisfy the following equation:

min
Φ∈RJ×2

1

2
‖Y − Φ‖22 s.t.

J−1∑
j=1

1γj+1 6=γj ≤ S and
J−1∑
j=1

1δj+1 6=δj ≤ S (2.32)

The convex relaxation trick of the above equation is:

min
Φ∈RJ×2

1

2
‖Y − Φ‖22 + λ

J−1∑
j=1

(
(γj+1 − γj)2 + (δj+1 − δj)2

) 1
2 (2.33)

In other terms, the aim is to recover two piece-wise constant functions under the

constraint that the breakpoints occur exactly at the same location. In addition we

constrain functions to have a small number of jumps.

[Vert and Bleakley, 2010] added weights depending on the position along the genome

allows to reduce bound effects. For a hj =
√

J
j(J−j) , the first change-point recovered
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by the algorithm will be the same as in binary segmentation. It provides a guarantee

on the consistence of the first change-point induced by the Gaussian likelihood.

min
Φ∈RJ×2

1

2
‖Y − Φ‖22 + λ

J−1∑
j=1

(
(γj+1 − γj)2 + (δj+1 − δj

)2
)

1
2

hj
(2.34)

As we demonstrate on the univariate case in section 2.2.5, it is possible to reformu-

late the problem 2.34 as a Group Lasso regression model. Group lasso is able to force

the coefficients of the same group to be null or not simultaneously. In this case, this

allows to detect change-point with a high probability but as well to detect change-point

which are visible on only one of the two dimensions.

Algorithm

It exists a corresponding between the λ parameter in the Lasso regression model and

the number of jumps in the signal. Indeed, the smaller λ, the larger the number of

jumps. As the parametrization of λ is difficult even for classical regression problem and

not intuitive in our case, we use the trick described in [Vert and Bleakley, 2010] that is

using group LARS algorithm to solve group LASSO. This method consists in defining

a number of non-zero components which corresponds to the number of breakpoints in

the model (active set method). In this way, it is possible to segment the signal for a

fixed number of segment and not for a fixed value of λ.

The first step is to center the matrices Y and X defined above in the previous

section. In our case, remember that Y is a J × 2 matrix and X is a J × (J − 1) matrix.

The predefined number of breakpoints that we look for in the signal is denoted S.

The resolution of the problem is presented by Algorithm 7 in Appendix B.

Illustration of the algorithm

A toy illustration is shown in Figure 2.2. The graphic on the bottom left represents a 40

points TCN signal with three change-points at locations 10, 20 and 30. The blue curve

represents the likelihood ratio statistic for this univariate signal. Then, the graphic on

the bottom right represents the DoH signal for heterozygous SNP with the same three

change-points. The red curve represents the likelihood ratio statistic for this univariate

signal. We simulated here the same number of points in the two dimensions (TCN

and DoH) (see Fig. 2.2a and 2.2b), the start point (first breakpoint) is, in fact, the
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breakpoint recovered by the univariate likelihood ratio test (Fig. 2.2c and 2.2d). Then,

we represent the two solutions of Eq. B.2 that is quadratic, the breakpoint added in

the active set is the one for which the solution is the lower (Fig. 2.2e and 2.2f).

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

1.0

1.5

2.0

2.5

3.0

0 10 20 30 40
position

T
C

N

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●
●

●
● ●

●
0.0

2.5

5.0

7.5

10.0

(a) TCN and respective statistic Z see Eq. (2.15)

●
● ●

●
● ●

●

●

●
●

●
●

● ●

● ●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ● ●

●

●
● ● ●

●

0.0

0.2

0.4

0 10 20 30 40
position

D
oH

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
● ●

● ●
●

●

●
●

●
●

●
●

●
●

●

●

−4

0

4

(b) DoH and respective statistic Z see Eq. (2.15)

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ●

●
●

●

●

●

● ●
● ●

●

●
●

●
●

● ●
●

●
●

●0

50

100

0 10 20 30 40
position

Z

(c) Step 1: Two dimensional statistic Z

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ●

●
●

●

●

●

● ●
● ●

●

●
●

●
●

● ●
●

●
●

●0

50

100

0 10 20 30 40
position

Z

(d) Step 1:First breakpoint
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Figure 2.2 – Illustration of GFLARS algorithm. Top panel: TCN and DoH signals with their

respective Z statistic (2.15). Middle panel is multi-dimensional statistic Z. Bottom panel

contains.

Limitations

Due to Eq. B.2, the first limitation that we noted is the impossibility to deal with

SNPs arrays which contain probes that only measure TCN. In addition, DoH is defined
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only for the heterozygous SNPs and the method is applicable only for this signal. By

consequence, we lose a large quantity of information because on average there is only

one-third of heterozygous SNP in arrays. We noted that the first change-point is, in

fact, the first point of binary segmentation by maximum likelihood. For this reason,

we extended the original recursive binary segmentation to the two dimensions and used

tricks to deal with rows where there is no DoH information.

2.3.3 Two dimensional recursive binary segmentation

We have seen in section 2.2.4 the binary segmentation when the signal is univariate.

In this section, we show that it is easy to extend the binary segmentation to multidi-

mensional signals. Let assume that d is the dimension of the signal. For d > 1, as we

assumed that the errors of the d dimensions are independent of each other, the like-

lihood ratio statistic becomes max1≤t≤J ||Zt||22, however, now a Zt is a d-dimensional

vector.

Although the objective of this method is to take into account the two dimensions,

the TCN dimension has many more informative probes than the dimension of allelic

ratio and it is not so obvious. Indeed, in the DoH dimension, only heterozygous SNP

are informative. To compute the joint likelihood ratio statistic we need that J be the

same in the two dimensions. An easy approach is to say that when i is only in one of

the two dimensions (for example in the first), Z1
t is computed and Z2

t is equal to Z2
t′

(where t′ < t) the previous one where there exists a value for the second dimension.

On other terms Z2
t provides no information compared to Z2

t′ .

If the data are multivariate, the likelihood for the model M0 can be written as :

L0(y1, . . . ,yJ , γ) = ΠJ
j=1

1√
(2π)2Σ

exp

{
1

2
(yj − Φj)TΣ−1(yj − Φj)

}

=
1√

(2π)2Σ
J

exp

1

2

J∑
j=1

(yj − Φj)Σ−1(yj − Φj)

 (2.35)

With ∀i ∈ {1, . . . , J} yj = (cj dj) ∈ R2, Φj = (γj δj) ∈ R2, and Σ =(
σ2 0

0 σ2

)
= σ2I2

Considering that the matrix Y is standardized.
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The log-likelihood is defined by :

`0(Y, Φ) = −J
2

log
(
(2π)2σ2

)
+

1

2σ2


J∑
j=1

‖yj − Φj‖22

 (2.36)

We can do the same calculations as in the section 2.2.4 to recover the test statistic:

‖Zt‖22 = −2σ2 log(RV ) =

(
k(J − k)

J

(
γ̂(1) − γ̂(2)

)2)
+

(
k(J − k)

J

(
δ̂(1) − δ̂(2)

)2)
(2.37)

where

γ̂(1) =
1

t

t∑
j=1

cj

γ̂(2) =
1

J − t
J∑

j=t+1

cj

δ̂(1) =
1

t

t∑
j=1

dj

δ̂(2) =
1

J − t
J∑

j=t+1

dj

Then we deduce:

‖Zt‖22 =

(
γ̂(1) − γ̂(2)

)2
+
(
δ̂(1) − δ̂(2)

)2
1
t + 1

J−t

Illustration of algorithm

Another toy illustration is shown on figure 2.3 to illustrate the RBS algorithm. The

graphic on the bottom left represents a 40 points TCN signal with three true change-

points at location 10, 20 and 30 (Fig. 2.3a). The blue curve represents the likelihood

ratio statistic for this univariate signal. Then, the graphic on the bottom right rep-

resents the DoH signal for heterozygous SNP with the same three change-points (Fig.

2.3b). The red curve represents the likelihood ratio statistic for this univariate signal.

The graphic under the copy number signal is ‖Zt‖2, the aggregation of the blue and

red curves (Fig. 2.3c). So, at the first step, there is only one solution for the first

change-point, and the maximum of ‖Zt‖2 is between the 10th and the 11th, so we define

the next change-points at location 10. Then, ‖Z10‖2 is equal to 0 at step 2, compute

‖Zt‖2 separately between 1 and 9 and between 11 and 40 and there are two possible

change-points, the one which brings the greatest gain in terms of RSE is selected, gain
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on the left of the first change-point (at location 10) is equal to 0.02 and gain on the

right is equal to 2.25, so the next change-point is at location 20 (Fig. 2.3d and 2.3e).

At step 3, ‖Z20‖2 = 0. To finish, compute ‖Zt‖2 between locations 11 and 20 and

between location 21 and 40 (Fig. 2.3f). There are three solutions, the change-point at

location 9 still provides a gain of 0.02, the change-point at location 31 a gain of 3.99,

and the last change-point at location 13 provides a gain of 0.12 (Fig. 2.3g) . At step 4,

three change-points were selected at locations 10, 20 and 30, the original change-points

(Fig. 2.3h).

Features of the approach

As the convex relaxation method through the trick of LARS algorithm, we have only

a single tuning parameter. Indeed, the only parameter of the method is the original

number S of candidate change-points to retrieve by RBS and Group Fused LARS. By

the design of the method, we note that larger values of S can be expected to yield better

quality segmentation. In addition, by construction, the proposed hybrid approach is

fast. The time complexity of RBS is in order of O(dJ log(S)). For GFLars, time

complexity is in order of O(JdS) but can be reduced in O(dJS). Therefore for both

methods, choosing a value of S larger than the expected number of change-points is

not time-consuming and can provide a better segmentation.

To conclude, this approach brings a huge advantage compared to convex relaxation

method presented in the previous section, since it takes full advantage of uneven res-

olutions. Indeed, on the one hand, RBS takes into account of the full resolution of

TCN dimension, on the other hand, it takes into account all informative probes of DoH

dimension.
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(e) Step 2: Two dimensional statistic Z; Second
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Figure 2.3 – Illustration of RBS algorithm.
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2.4 Model selection

By construction, when S (the number of segments) increases the likelihood increases

too. Therefore,
∑S+1

s=1

∑ts−1
j=ts−1

(cj − γj)2 decreases because the more segments there

are, the better estimate adjusts to the signal. As for classical regression models with a

large number of covariates, it is required to add a function depending on S to penalize

models with a large number of segments. The two classical criteria used to penalize

the likelihood are the Akaike Information Criterion (AIC) and the Bayes Information

Criterion (BIC) defined respectively by the two following equations:

penAIC(S) = 2S (2.38)

penBIC(S) =
1

2
log(J)2K. (2.39)

However, [Picard et al., 2005] and [Zhang and Siegmund, 2007] have highlighted

that the two criteria do not take into account the complexity of the visited models and

lead to oversegmented models (with a too high number of segments).

[Birgé and Massart, 2001] and [Lebarbier, 2005] adapted the penalty for segmenta-

tion model, that is given by the following formula:

pen(S) =
CS

J

(
c1 log

(
J

S

)
+ c2

)
. (2.40)

Extensive simulation experiments of [Lebarbier, 2005] suggested the values c1 = 2

and c2 = 5. Thereafter in this thesis, we use this form of the penalization quoted

previously with theses values.

pen(S) =
CS

J

(
log

(
J

S

)
+
c2
c1

)
=
CS

J

(
log

(
J

S

)
+ 2.5

)
(2.41)

An efficient data-driven way of estimating C∗, the slope-heuristic method has been

also proposed in [Lebarbier, 2005]. This method consists in detecting a large jump in

the segment number selected between two very close constants . The best constant is

equal to twice the values of the largest jump (see Figure 2.4).
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2.5 Conclusion

After a review of existing univariate models to segment total DNA copy number sig-

nals, we proposed two bivariate methods that are versatile for each problem of joint

segmentation with an underlying piecewise constant structure in the mean. In addition,

these two methods can be used on a univariate signal as well. The recursive binary

segmentation, as well as group fused Lasso, are two methods that provide quickly a

predefined set of change-points. Group Fused Lasso method was initially implemented

in Matlab. We ported this implementation of Group Fused Lasso and RBS as an R

package jointseg that is freely available from github. Possible improvements and

extensions can be provided. The implementation is mostly in R (all except dynamic

programming) but could be in C++ in order to improve the time performance. The aim

will be to keep the R interface in order to stay user-friendly. Model selection could also

be improved. Indeed, it is well established that errors are not gaussian for TCN and

DoH signals and model selection is quite sensible to this hypothesis. This violated as-

sumption could lead to a wrong selection of the number of breakpoints. A way to make

TCN more gaussian is to use logarithm or even root-square transformation. This could

also improve the set of breakpoints m̂S because all models are based on the gaussian

hypothesis.

The performance evaluation of all the methods is presented in the next chapter. We

demonstrate on several frameworks the utility of using the two dimensions to segment

the DNA copy number data. We develop a simulation framework based on real data

(Chapter 3) to compare our new approaches to the existing ones. In Chapter 4, we
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explore a non-parametric method that uses kernel methods and does not require to

transform the B allele fraction signal into DoH.

In the context of cancerology and recovery of change-points in the DNA copy num-

ber signals, joint segmentation could be applied to segment DNA copy number signals

of the same patient but from different platforms as CGH, SNP arrays, sequencing.

Another natural application is the segmentation of different probe types (CNV, het-

erozygous SNP, homozygous SNP).
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Chapter 3

Performance evaluation of DNA

copy number segmentation

methods

3.1 Background

This chapter is extracted from the publication in Briefings in Bioinformatic. We take

on the position of biologists or bioinformatician who wanted to analyze changes in

DNA copy numbers from high-throughput technologies. Various methods have been

proposed in the past decade for analyzing such data. From a practitioner’s point of

view, it is quite difficult to find which method is best for a given scientific question.

In fact, it is likely that the overall difficulty of the problem depends on the context

(technology, type of cancer, percentage of tumor cells). It is also likely that certain

methods are more appropriate for certain contexts. Therefore, it is important to take

this context into account when evaluating a set of methods, in order to 1) get a sense

of the overall difficulty of the problem when interpreting the results and 2) choose

appropriate methods for this context. Typically, a practitioner chooses among available

data analysis methods or calibrates their parameters using a trial and error approach.

A limitation of such an approach is that it is subjective, hardly reproducible and non

quantitative.

The present work tackles this problem by proposing a reproducible framework for

evaluating the performance of existing segmentation methods for identifying change-

points from DNA copy number profiles from cancer patients. As any performance

evaluation strategy, addressing this question requires the definition of three objects:
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1. data with known “truth”;

2. methods to be compared;

3. criteria for performance assessment.

In this chapter, we propose such a definition and illustrate how it may be used to

compare segmentation methods. The main contributions of this work are

• a framework to generate realistic DNA copy-number profiles with known “truth”.

This framework is generic and may be applied to any copy number data set;

• a framework to address the question of which SNP array data segmentation

method performs best, depending on biologically relevant parameters.

These frameworks are implemented in the R packages jointseg and acnr.

The rest of this chapter is organized as follows. We start by describing our proposed

data generation framework (Section 3.2). Then, we describe the pipeline we use for

evaluating segmentation methods (Section 3.3). Finally, the result of our comparison

study on two data sets are reported in Section 3.4.

3.2 Generating data with known “truth”

3.2.1 Review of existing approaches

A number of data generation mechanisms have been proposed in the context of perfor-

mance evaluation of DNA copy number analysis in cancer samples, either in comparison

studies [Willenbrock and Fridlyand, 2005, Mosén-Ansorena et al., 2012, Lai et al., 2005,

Hocking et al., 2013], or in papers describing new analysis tools. The generation of data

with known “truth” can be done using either simulated or real data, both of which have

advantages and drawbacks.

At first glance, simulated data are more appealing than real data because (i) “truth”

is known with no ambiguity, (ii) the level of difficulty of the problem can be tuned as

desired, and (iii) a large number of simulated data sets can be generated. As most DNA

copy number segmentation methods rely on a Gaussian model (see Section 2.2), their

performance is usually assessed using Gaussian simulations (see, for example, [Picard

et al., 2005, Zhang and Siegmund, 2007]). While we do not question the usefulness of

model assumptions for building statistical methods and for testing implementations,

46



CHAPTER 3. PERFORMANCE EVALUATION OF DNA COPY NUMBER
SEGMENTATION METHODS

we believe that performance evaluation should as much as possible avoid relying on on

a particular model. A recent study which compared several approaches for segmenting

univariate DNA copy number profiles using the multiple change point approach showed

that the best performing methods on Gaussian simulations performed quite poorly on

real data [Rigaill et al., 2013, Table 3]. In the remainder of this section, we briefly

review some existing approaches that have tried to take the best of both the “simulated

data” and the “real data” worlds:

An automatically annotated data set [Willenbrock and Fridlyand, 2005].

The authors analyzed real data using one particular segmentation method to generate

“truth”. They then used resampling to generate realistic copy-number profiles, where

(Gaussian) noise was added in order to control the signal-to-noise ratio of the data

set. Two drawbacks of this approach are that the notion of “truth” depends on the

chosen segmentation method, and that the problem difficulty is not driven by biological

considerations.

A dilution series [Staaf et al., 2008]. In order to address the latter point, [Staaf

et al., 2008] have produced a dilution data set, where DNA from a lung cancer cell line

is mixed with matched blood DNA from the same patient with varying (and known)

mixture proportion (see description in section E.1). Therefore, the fraction of tumor

cells in the mixture controls the difficulty of the problem. The “truth” is a panel of

regions whose DNA copy number status in the cell line (normal, gain, hemizygous

deletion, copy-neutral LOH . . . ) is known. This evaluation method has been accepted

as a de facto standard and has been used in several subsequent papers, including [Chen

et al., 2011, Olshen et al., 2011, Rancoita et al., 2010].

An important drawback of this evaluation framework is that it focuses on a very

limited number of regions (ten), which results in very little discrimination between

most methods in realistic settings. For example, four of the six methods compared in

[Olshen et al., 2011] reach maximum sensitivity in all 10 regions for tumor cell fractions

greater than 25%. In practice, samples with less than 50% are rarely analyzed, in

particular because the performance of most methods typically decreases severely when

the fraction of tumor cells is less than 75%. We also note that sensitivity and specificity

are evaluated separately in [Staaf et al., 2008], and this weakness has been perpetuated

in all subsequent papers based on the same evaluation framework.

A manually annotated data set [Hocking et al., 2013]. The authors analyzed

hundreds of neuroblastoma array-CGH profiles in order to define regions containing
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breakpoints (true signals), and regions not containing breakpoints (false signals). This

data set is freely distributed on CRAN1. Based on this large data set with known truth,

the authors have performed a comprehensive comparison of segmentation methods for

array-CGH data based on ROC curves. A drawback of this evaluation framework is

that once a particular data set is chosen, it is not possible to tune the signal-to-noise

ratio of the problem. Moreover, annotating a new data set is a challenging task, because

it has to be large enough to contain a set of change-points that discriminate between

competing segmentation methods.

A simulation model [Mosén-Ansorena et al., 2012]. The authors designed a

complex simulation model to generate “realistic” copy-number profiles. This model is

implemented in the R package CnaGen, which is available from the authors’ web page2.

The simulation model depends on 24 parameters3. Some of them are directly driven

by biological considerations, such as the percentage of tumor cells in the sample or

intra-tumor heterogeneity. We empirically found it difficult to find a combination of

parameters that yield realistic copy-number profiles. This may be due to the fact that

the underlying data generation model is Gaussian. Table 3.1 summarizes the features

of approaches reviewed above.

Reference

Willenbrock

and

Fridlyand

Staaf et al.
Hocking

et al.

Mosén-

Ansorena

et al.

This chapter

Based on real biological data?
√ √ √

-
√

Noise level based on a biological parameter? -
√

-
√ √

Data generation possible?
√

- -
√ √

Available as an R package?
√

-
√ √ √

Table 3.1 – Features of existing frameworks for real copy number data with known “truth”.

3.2.2 Proposed data generation mechanism

Based on these considerations, we propose an original data generation framework which

aims at combining the advantages of all of the above-mentioned existing approaches.

Two necessary and sufficient ingredients for generating a copy-number profile of length

J are:

• truth, in the form of S breakpoint positions (out of J − 1 intervals between two

successive loci) and S + 1 copy-number state labels for all S + 1 regions between

two consecutive breakpoints;

1http://cran.r-project.org/web/packages/neuroblastoma/
2http://web.bioinformatics.cicbiogune.es/cnagen/
3CnaGen version 2.1.
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• signal, in the form of locus-level data. For SNP arrays, this is generally a J × 3

matrix of total copy numbers (c), allelic ratios (b), and germline genotypes.

Our proposed approach is described below.

Generation of “truth”

When breakpoints and region labels are not user-supplied, we propose the following

approach for generating them:

breakpoints: given a signal length J , draw S breakpoint positions uniformly out of

the J − 1 possible intervals between successive data points (vertical red lines in

Figure 3.1);

region labels: draw S + 1 region labels from a pre-defined set of copy-number state

labels, such as normal, gain of one copy, hemizygous deletion, homozygous dele-

tion, copy-neutral LOH (labels on top of each plot in Figure 3.1). By default, all

region labels are equiprobable, but the user may provide a vector of probabili-

ties for each desired region label. By default, successive regions are constrained

in such a way that only one of the two parental copy numbers changes at the

breakpoint. Not adding such a constraint would be equivalent to allowing two

distinct biological events to occur at the same genomic position, which is possible

in theory but rarely observed in practice.

Generation of locus-level data

Given breakpoint positions and region labels, we generate a copy-number profile as

follows: for each region of size nR between two breakpoints, we sample nR data points

from a real copy-number data corresponding to this type of region.

The data generation mechanism therefore relies on real data where the underlying

region label is (assumed to be) known. We have made available two such “real data sets

with known truth” in the package: each of them corresponds to a different SNP array

platform (Affymetrix or Illumina), and both of them are taken from dilution series,

consisting of mixtures of DNA from a tumor cell line and from blood cells originating

from the same patient, with varying mixture proportions. For both data sets, we

have selected several genomic regions which are representative of the diversity of copy-

number states that are typically observed in tumor samples. Contrary to [Willenbrock

and Fridlyand, 2005], these labels do not rely on any automatic segmentation or calling

method. Both data sets are described in Appendix E.1.1.
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Figure 3.1 – Illustration of the variety of copy-number profiles that can be generated from the

same “truth” as in Figure 1.9. Each block of two plots corresponds to total copy numbers (c)

and allelic ratios (b) for one particular combination of fraction of tumor cells (in rows) and data

set (in columns). Red vertical lines represent change points. SNPs that are heterozygous in

the germline are colored in black; all of of the other loci are colored in gray.

50



CHAPTER 3. PERFORMANCE EVALUATION OF DNA COPY NUMBER
SEGMENTATION METHODS

3.2.3 Features of the proposed data generation mechanism

Our proposed data generation mechanism enjoys the following features:

• simplicity: small number of required parameters, all of which have a clear biolog-

ical interpretation. In particular, for a given data set, the noise level is governed

by the fraction of tumor cells. This is illustrated by Figure 3.1;

• flexibility: the user may specify breakpoint positions and region labels directly, if

desired. Therefore, it is also possible to generate profiles with the same underlying

“truth”, but with different SNR, as illustrated by Figure 3.1;

• reliability: copy-number regions were identified using the profiles with 100% tu-

mor cells. In these profiles, the region labels may be defined manually unambigu-

ously. Because the same tumor cell line is used for the dilutions series from a

given platform, the regions identified on the profiles with 100% tumor cells can

also be considered as ground truth for the profiles with less tumor cells, where

direct manual identification would have been more problematic;

• versatility: the design choice of separating “truth” generation from locus-level

data generation implies that it is relatively easy to:

– annotate a new data set. Although dilution series are not publicly available

for all possible platforms, it is also possible to annotate representative profiles

from a given data set. Moreover, annotating a new data set is not time-

expensive, as one only needs to identify a few copy-number regions.

– extend the framework to other data types (for example array-CGH or high-

throughput exome capture or whole genome sequencing) is straightforward:

only a set of annotated data is required.

3.3 Evaluation pipeline

Now that we have a framework to generate data, we describe how to evaluate the

performance of segmentation methods.

3.3.1 Benchmark

Synthetic copy-number profiles were generated as described in Section 3.2:
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region-level “truth” : Each profile contains J = 200, 000 loci in copy number signal

and S = 20 breakpoints. We chose to impose the constraint that on average, 90%

of segments are either normal (1,1), copy-neutral LOH (0,2), single copy-gain (1,2)

or hemizygous deletion (0,1). The remaining 10% of regions are given less common

copy-number states, such as homozygous deletion, or balanced duplication. These

parameters were inspired by our experience with SNP array data from The Cancer

Genome Altas (TCGA), especially on ovarian cancers, where normal regions and

regions of copy-neutral LOH, single copy-gain, and hemizygous deletion are fairly

common, while other types of alterations are much more rare [Cancer Genome

Atlas Research Network and others, 2011].

locus-level data: for each of B = 50 such “truth” profiles, corresponding locus-level

data are then generated for 100%, 70% and 50% of tumor cells for data set 1, and

100%. 79% and 50% of tumor cells for data set 2. These percentages are among

those available from the dilution series from which real data was extracted, see

Appendix E.1.1. Pure tumor samples (100%) are typically observed in studies

about tumor cell lines, while percentages as low as 50% are typically observed in

primary tumors.

3.3.2 Preprocessing

We log-transformed total copy numbers to stabilize their variance and smoothed out-

liers using smooth.CNA [Olshen et al., 2004] as it improved segmentation results for all

methods. Allelic ratios were converted to (unimodal) decrease in heterozygosity (d) as

described in Section 1.4.

3.3.3 Compared segmentation methods

We evaluated different types of methods belonging to the different classes described in

Section 2.1: multiple change-point, recursive, fused, and HMM-based methods. These

methods are described in Table 3.2, where we mention which of them are able to process

both signal dimensions (c and d) or only one of them.
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Time (s)

Name R package function dims J=104 J=105 Ref

Multiple change-point

DP cghseg segmeanCO 1d 0.24 2.37 Rigaill

CST cnaStruct segment 2d 120 fail Mosen-Ansorena and Aransay

DP jointseg doDynamicProgramming 2d 140 fail

Recursive

CBS DNAcopy segment 1d 0.34 1.69 Venkatraman and Olshen

PSCBS PSCBS segmentByPairedPSCBS 2d 1.04 4.00 Olshen et al.

RBS jointseg doRBS 2d 0.15 1.15 Gey and Lebarbier

Fused

GFLars jointseg doGFLars 1d 0.29 3.70 Harchaoui and Lévy-Leduc

GFLars jointseg doGFLars 2d 0.08 0.60 Bleakley and Vert

HMM

PSCN PSCN segmentation 2d 7.25 73 Chen et al.

Table 3.2 – List of DNA copy number segmentation methods evaluated.
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Not all of these methods were implemented in R. We ported from Matlab GFLseg4 to

R the implementation of multi-dimensional dynamic programming and the group-fused

LARS [Bleakley and Vert, 2011], and we implemented recursive binary segmentation

[Gey and Lebarbier, 2008] in R. In practice, as recommended by [Gey and Lebarbier,

2008, Harchaoui and Lévy-Leduc, 2008, Bleakley and Vert, 2011], both group-fused

LARS and recursive binary segmentation are used to quickly identify a list of candidate

change points, which is then pruned using dynamic programming (Chapter 2).

All of the compared methods are reasonably fast and memory-efficient, except those

based on two-dimensional dynamic programming (DP): cnaStruct and our implementa-

tion of DP in R . Indeed, two-dimensional DP is quadratic in time and memory and thus

cannot handle profiles of size J = 105. It may be surprising that the two-dimensional

version of GFLars is faster than its one-dimensional counterpart. This is a consequence

of the fact that the number of informative markers is several times larger for (c) than

for (d) (as explained in Section 1.4). As the implementation of GFLars does not handle

missing values, the 2d version of GFLars was applied to non-missing entries in (c, d),

while the 1d version was applied to a much longer signal (all (c) entries). This phe-

nomenon does not happen for other two-dimensional segmentation methods as their

implementation does handle missing values.

3.3.4 Criteria for performance evaluation

Comparison studies typically assess the performance of DNA copy number analysis

methods either in terms of their ability to accurately identify breakpoint locations [Lai

et al., 2005, Hocking et al., 2013], copy-number states [Staaf et al., 2008, Mosén-

Ansorena et al., 2012], or both [Willenbrock and Fridlyand, 2005]. This chapter focuses

on the former only, because we are interested in comparing segmentation methods. The

problem of evaluating strategies for calling copy-number states is left for future work.

As our proposed data generation framework provides copy number profiles with

known “truth”, a natural way to evaluate the performance of a given method is to cast

the problem of breakpoint detection as a binary classification problem. Specifically, for

each generated copy number profile, we know where the true breakpoints are located.

The number of true positives TP is the number of true breakpoints for which at least

one breakpoint is detected closer than a given tolerance parameter. The number of

false positives FP is defined as FP=P-TP, where P is the number of “positives”, that

is, the total number of detected breakpoints. With this definition, whenever a method

identifies two or more breakpoints within the tolerance area of a true breakpoint, one

4Available at http://cbio.ensmp.fr/~jvert/svn/GFLseg/html.
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Figure 3.2 – Definition of false positive and true positive to build performance evaluation.

of these breakpoints counts as a true positive, while all others count as false positives.

This definition of true and false positives is illustrated by Figure 3.2, where gray areas

highlight tolerance areas around the true change-points, whose positions are identified

as t1 and t2 on the x axis. In this example, breakpoints were detected in both shaded

areas, therefore the number of true positives (solid blue lines) is two. There are four

false positives (dashed green lines): one in a gray area where there is already one true

positive, and three which are not within the tolerance area of any true breakpoint.

Alternative definitions of true and false positives may be considered. Some of these

alternatives are implemented in the jointseg package, including one in which a second

breakpoint found within a tolerance area is not counted as a false positive. We chose

to stick with the above-described evaluation (where such breakpoints are called false

positives) in order not to favor methods such as the (group) fused lasso that tend to

systematically find multiple breakpoints very close to each other, which is generally

inconsistent with the biology of cancers.

Related works. A similar definition of true and false positives is used in [Willenbrock

and Fridlyand, 2005], although the authors do not mention how the above case of

multiple breakpoints within the tolerance area is handled. Another related approach

has been proposed in [Hocking et al., 2013]. There, copy-number profiles are real,

array-CGH profiles for which regions containing a breakpoint and regions containing

no breakpoints have been delineated by experts. The main difference is that only

a subset of the “true” and “false” breakpoints are annotated, and that the tolerance

parameter cannot be tuned without the expert re-annotating the data set. Finally,

a similar type of evaluation has been used by [Lai et al., 2005], at the the locus level

instead of the breakpoint level. This locus-level based evaluation method tends to favor

segmentation methods that accurately identify large altered regions, even if they fail
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to detect breakpoints delineating smaller altered regions.

3.3.5 ROC-based evaluation

Usually, each method provides a segmentation and its associated set of breakpoints.

This can be translated into a measure of sensitivity and specificity using the above

definition of true and false positives. However, the methods have to be compared at

the same specificity or sensitivity level in order for this comparison to be fair. Ideally,

we would like to compute a Receiver Operator Characteristic (ROC) curve for each

method. In order to do this, one needs to explore a large set of possible segmenta-

tions with varying sensitivity and specificity, obtained by exploring the set of tuning

parameters of each method. Such an exhaustive exploration is tedious and time con-

suming as soon as the number of parameters is larger than 2 or 3, and may lead to

over-optimistic results. To overcome this problem, we adopted the following strategy:

for any given method m, we recovered a segmentation in km change points using de-

fault parameters, and we retrieved for each k ∈ {1 . . . km} the best k subset of these

km using dynamic programming. Another possible strategy would be to sort the km
change points according to a measure of confidence.

One could be worried that the range of explored sensitivity/specificity is highly

variable across methods. In practice, our experience is that the default parameters of

a method generally tend to over-segment the data and that typically, most of the true

change points are found, at the cost of a more or less large number of false positives.

This is in agreement with [Hocking et al., 2013].

3.4 Results

3.4.1 Quantifying problem difficulty for known change points

Segmentation methods rely on a statistic to quantify the biological difference between

any two regions. Based on this statistic, they aim at locating a good set of regions or

equivalently, of change points. This location problem is combinatorial in nature. In this

section, we try to quantify this biological difference independently of this combinatorial

problem. In order to do this, we assume that change point positions are given a priori

and we compare the power to call a change using total copy numbers (c) or allelic signals

(d) for different types of change points. In order to perform this power study, we need

to formally define the notion of power, or signal-to-noise ratio (SNR), between copy

number regions. We chose a definition of SNR which is consistent with our proposed
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data-generation mechanism, in which DNA copy number data from a given region are

sampled from a population which represents the corresponding copy-number state (see

Section 3.2.3). Let us consider two regions and label by “0” and “1” the copy number

state of two regions. For univariate signals (c or d), a natural definition of SNR is the

(squared) Z statistic of the comparison between the sample means of region “0” and

region “1”:

SNR(c) =
(c̄0 − c̄1)2

σ2c,0/n0 + σ2c,1/n1
(3.1)

SNR(d) =

(
d̄0 − d̄1

)2
σ2d,0/n

?
0 + σ2d,1/n

?
1

, (3.2)

where ni is the total number of loci in region i, c̄i and σc,i are the sample mean and

population standard deviation of total copy numbers in state i and d̄i, σd,i are the

sample mean and population standard deviation of the decrease in heterozygosity in

state i. Note that the decrease in heterozygosity is only defined for SNPs that are

heterozygous in the germline, whereas the total copy number is defined for all loci.

Therefore, d̄i is calculated based on n?i heterozygous SNPs, while c̄i is calculated based

on all ni loci. For a given DNA sample, the fraction of heterozygous SNPs among

those present on the microarray is typically close to 1/3; moreover, data set 1 contains

not only SNP probes but also non-polymorphic loci, with a 1:1 ratio. As a result, the

fraction n?i /ni is approximately 1/6 for data set 1 and 1/3 for data set 2. A natural

extension of this definition of SNR to the two-dimensional case of the statistic (c, d) is

SNR(c, d) =
(
c̄0 − c̄1, d̄0 − d̄1

)
(S0 + S1)

−1 (c̄0 − c̄1, d̄0 − d̄1)′ , (3.3)

where Si is the population covariance matrix of the bivariate vector (c, d), that is

Si =

(
σ2c,i/ni τcd,i/n

?
i

τcd,i/n
?
i σ2d,i/n

?
i

)
with τcd,i the covariance between c and d in state i. In

practice, the population parameters for copy-number state i (that is, σd,i, τcd,i, and

σd,i) are calculated from the annotated data. The sample parameters (c̄i and d̄i) are

calculated from samples of ni and n?i loci, respectively. Note that SNR(c) and SNR(d)

are comparable with each other since they follow (non-centered) χ2 distributions with

1 degree of freedom under the null hypothesis of no breakpoint between state 0 and

state 1.

By definition, SNR is an increasing function of the length of each flanking segment.

For i ∈ {0, 1}, we chose ni = 500. n?i depends on the proportion of heterozygous

SNPs in the sample; as explained above, it is very close to n0/6 for data set 1 and

n0/3 for data set 2. Therefore, the length of the flanking regions essentially acts as a
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Figure 3.3 – Average log(SNR) and corresponding standard errors across 100 samples as a

function of the percentage of tumor cells for total copy numbers (c, solid blue lines) and allelic

ratios (d, dashed red lines). Each column corresponds to a type of copy number transition.

Each row corresponds to a given data set.

constant scaling factor across all transitions and settings. Therefore, SNR only reflects

differences between the underlying copy number states. Figure 3.3 shows the average

(and standard error) of log(SNR) across 100 samplings for three levels of tumor purity

level, for three common types of copy number transitions for data set 1 (top panel) and

data set 2 (bottom panels). Several conclusions may be drawn:

• Difficulty generally increases with normal contamination: SNR generally

increases with the percentage of tumor cells. This is true for all types of transitions

for c. For d, the only situation in which SNR is not an increasing function of tumor

purity is the case of transitions between loss and copy-neutral LOH (Figure 3.3,

rightmost column). This is expected theoretically because both of these states

correspond to LOH in the tumor cells of the sample, implying that the true d in

these cells is 1. In presence of normal cells, d estimates in both states are shrunk

d toward 0, but in a state-specific way (see [Bengtsson et al., 2010, Figure 4] for

a detailed explanation of this phenomenon);

• SNR levels depend on the type of copy number transition for a given
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data set (that is, for a given row in Figure 3.3). This holds for both statistics

(c or d). Note that in the case of c, this is unexpected, as all plotted transitions

correspond to a one-copy gain.

• Possibly low power. Note that in some cases (e.g. data set 1, (a) and (c)), the

computed SNR is lower than 2. Under the null hypothesis of no difference in mean

levels, SNR follows a centered χ2(1) distribution, so that this range of observed

SNR correspond to p-values of the order of 1%, which is not low considering the

large number of data points (ni = 500).

• Neither c or d is always the best statistic. For a given type of transition

(that is, for a given column in Figure 3.3) and a given statistic, the trend in SNR

is comparable across data sets. However, the relative power of c with respect to

d is much higher for data set 1 than for data set 2. This is directly related to the

above-mentioned difference between ratios n?i /ni of the number of informative

loci for each statistic.

In this subsection, we assessed the intrinsic difficulty of calling a change point

if the positions to test are known a priori. This study suggests that c and d are

complementary sources of information, implying that change point detection methods

should ideally take both of them into account. This study also sheds light on the fact

that low percentages of tumor cells severely impacts SNR. In the remaining subsections,

we assess the ability of segmentation methods to recover the true location of change

points.

3.4.2 Robustness of the evaluation to the tolerance parameter

Our first goal was to check the influence of the tolerance parameter on the methods’

performance. Our simulations were run using data generation as described in section

3.3.1. We computed partial areas under the ROC curves (pAUC) with a number of

false positives between 0 and 10. Mean and 95% confidence intervals of pAUCs across

simulation runs were calculated for each method for 5 values of the tolerance parameter

(1, 2, 5, 10 and 20). For example, a tolerance of 5 means that a breakpoint is considered

correct if it lies within 5 data points of the true breakpoints (see section 3.3.4 for

more details). These results are reported in Figure 3.4 in the scenario without normal

contamination. Similar results were observed for other scenarios.

Increasing tolerance clearly increases pAUC for all methods. This is the case even

in the arguably “simple” scenario where no normal cells are present. However, in most

cases, the ranking of all methods is not affected by tolerance. Based on these results,
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Figure 3.4 – Method performance increase with the tolerance parameter for both data sets.

Partial AUC for FP ≤ 10 for data set 1 and 100% tumor cells.

we decided to report only pAUC for one particular value of tolerance: 5 loci on each

side of the breakpoints.

3.4.3 Joint segmentation generally increases performance

This section aims at comparing the quality of segmentations obtained using total copy

numbers only (c), allelic ratios only (d), and both of them (c, d) and how the quality of

the segmentation is affected by the purity of the sample. As explained in section 3.4.1, it

is typically expected that localization of the breakpoints is easier using both dimensions

of the signal. In order to do so, we compared 6 scenarios corresponding to two data sets

and three levels of purity (high, intermediate and low). Table 3.3 reports the pAUC of

the best (c), (d) and (c, d) methods for data set 1 and 2, respectively. Detailed results

for all methods are presented in Table 3.4.

For both data sets it is quite clear that performance in terms of pAUC severely

deteriorates when the level of contamination increases. (c) methods perform better

than (d) methods for high level of purity. For example in the case of data set 2 the

minimum difference in pAUC between (c) and (d) is 19% for high level (Table 3.4).

For an intermediate level of purity, for data set 1 (c) outperforms (d) with a minimum

pAUC difference of 41% and for data set 2 (c) is similar to (d). For a low level of purity,

the pAUCs are low or very low for both data sets; for data set 1, (c) outperforms (d)

with a minimum pAUC difference of 6%; for data set 2, (d) outperforms (c) with

a minimum pAUC difference of 15%. These observations are in agreement with the

results of Section 3.4.1. The difference between data sets 1 and 2 can be explained by
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the fact that the proportion of informative markers is different, namely around 1/6 and

1/3, respectively. This low proportion of informative markers also explains the poor

performance of GFLars (c, d) (which could also be seen in Figure 3.4), as the current

implementations of 2d GFLars do not handle missing values in one of the dimensions.

Not all (c, d) methods outperform (c)-only and (d)-only methods. For example, for

data set 1 and 100%, although PSCBS has good performance, it is outperformed by

2 to 5 % by all (c) methods. However, as can be seen in Table 3.3, there are always

several (c, d) approaches among top performers.

3.4.4 Choosing the appropriate method for a given context

In practice, when analyzing SNP array data, biostatisticians and bioinformaticians will

choose one particular method to perform data segmentation. This choice is often ad

hoc and based on personal experience. Our purpose here is not to make a comparison

of all existing segmentation methods, but to compare relevant candidates in different

classes of approaches. In the settings that we have considered it seems that RBS (c, d)

performs very well. However, the point of our framework is not to select once and

for all a best segmentation tool, but rather to justify the use of one method for one

particular type of scenario (cancer type, cellularity, data set). In particular, we make

no claim about the performance of RBS for other data sets.

Data set 1 Data set 2

Statistic 100% 70% 50% 100% 79% 50%

(c, d) 0.93 0.63 0.22 0.97 0.95 0.75

(c) 0.94 0.64 0.18 0.96 0.89 0.49

(d) 0.35 0.18 0.10 0.71 0.84 0.67

Table 3.3 – Best pAUC across methods for each combination of statistic, data set and percentage

of tumor cells.

3.4.5 Heterogeneity of breakpoint detection difficulty

An important question when using a biostatistical or bioinformatic tool is to assess its

ability to recover events and to know which events they are likely to find and which of

them are harder to detect. In Table 3.3 it can be seen that the pAUC is never at 100%.

This is not necessarily surprising as the signal is quite noisy. In fact considering noise

level the pAUC is quite high. Figure 3.5 demonstrates that (as could be expected)

missed change-points are those for which we have a low signal to noise ratio (the right
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Data set 1 Data set 2

Statistic Method 100% 70% 50% 100% 79% 50%

(c, d)

PSCBS 0.89 0.60 0.16 0.97 0.88 0.51

GFLars 0.60 0.42 0.14 0.97 0.91 0.60

RBS 0.93 0.63 0.22 0.97 0.95 0.75

(c)

CBS 0.92 0.59 0.16 0.91 0.84 0.45

GFLars 0.94 0.64 0.18 0.96 0.89 0.49

RBS 0.91 0.62 0.17 0.90 0.84 0.48

cghseg 0.93 0.61 0.18 0.95 0.88 0.49

(d)

CBS 0.35 0.17 0.10 0.71 0.83 0.64

GFLars 0.35 0.18 0.10 0.71 0.84 0.66

RBS 0.34 0.17 0.09 0.69 0.83 0.65

cghseg 0.35 0.18 0.10 0.70 0.84 0.67

Table 3.4 – pAUC by for each combination of method, statistic, data set and percentage of

tumor cells.

panel is darker than the left panel). However, the signal to noise ratio substantially

depends on the type of change-point. Typically, in Figure 3.5 the column corresponding

to the (0,2)-(1,2) transition is much darker than that of the (1,1)-(1,2) transition. This

is confirmed by Table 3.5, which indicates that for a high level of normal contamination

in data set 2, the proportion of missed (1,1)-(1,2) change-points is greater than 1/2.
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Figure 3.5 – log(SNR) for missed (left) and caught (right) breakpoints for four types of break-

points on data set 2 with 50% normal cell contamination.

Statistic Method (0,1)-(0,2) (1,1)-(1,2) (0,1)-(1,1) (0,2)-(1,2)

(c, d)

RBS 0.40 0.47 0.32 0.31

GFLars 0.51 0.66 0.44 0.34

PSCBS 0.55 0.63 0.51 0.47

(c)

RBS 0.57 0.69 0.52 0.63

GFLars 0.54 0.70 0.45 0.58

CBS 0.59 0.71 0.52 0.62

cghseg 0.66 0.79 0.55 0.69

(d)

RBS 0.49 0.54 0.39 0.24

GFLars 0.49 0.51 0.34 0.20

CBS 0.51 0.49 0.41 0.23

cghseg 0.51 0.51 0.38 0.23

Table 3.5 – Proportion of missed breakpoints by method, statistic and type of copy-number

transition (data set 2, 50% of tumor cells).
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3.5 Summary and discussion

We have developed a framework to assess the performance of various DNA copy number

segmentation methods. A critical aspect of this framework is that it generates realistic

copy-number profiles by resampling real SNP array data. This allows us to study a

large number of scenarios without relying on a particular statistical model. It is our

opinion that this framework is simple to use as it depends on few parameters, all of

which have a straightforward biological interpretation. An R package is available and

we believe that our proposed data generation scheme can be used readily as well as

applied to other data sets and technologies. It is also possible to extend the set of

segmentation methods compared, as explained in the package documentation. In this

chapter, we illustrated the usage of this framework on two SNP array data sets from

Affymetrix and Illumina.

We were able to identify which technological and biological parameters drive the

performance of segmentation methods. First, it appears that the percentage of tumor

cells in the sample plays a critical role: for a percentage lower than 70%, it is probably

hopeless to recover the whole set of breakpoints with a high accuracy. We emphasize the

relevance of the considered range of cellularity for applications: we expect that tumor

cell lines should be well represented by the 100% setting, while the 50% is not unusual

for clinical practice. Second, it seems that different microarray technologies might lead

to different performances. Specifically, the ratio between the number of informative

allelic probes (heterozygous SNPs) to the total number of probes is a crucial aspect,

particularly for a high level of normal contamination. Finally, not all methods achieve

similar performance across the scenarios that we have considered. Interestingly, we

show that methods that take advantage of both signal dimensions are generally but not

always better than those using only one of them. This variability between segmentation

methods may be attributed to some extent to the biological and technological contexts,

in the sense that some methods might be more adapted to certain scenarios.

Our framework provides a way to critically evaluate the performance of segmenta-

tion methods, and therefore to rationally select one or several of them for a particular

data set. Such a quantitative assessment is also useful for interpretation. For example,

we showed that even in favorable scenarios, performances are not perfect. Furthermore,

perhaps unexpectedly, we showed that copy number transitions involving the gain or

loss of a single DNA copy are not equally easy to recover, meaning that the proportion

of different types of copy number transitions recovered by a particular segmentation

method may not be directly interpretable.
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Chapter 4

Non-parametric segmentation

method using kernels

4.1 Introduction

This chapter is a collaborative work with Alain Célisse, Guillemette Marot, and Guillem

Rigaill. We recently submitted this work to the Computational Statistics and Data

Analysis (CSDA) journal. In this Chapter, we attempt to use kernel tricks in order

to develop a new non-parametric segmentation procedure. This method allows us to

free ourselves from the DoH transformation described in section 1.4.2. We bring several

contributions to the computational aspects and the statistical performance of the kernel

change-point procedure introduced by [Arlot et al., 2012] to segment separately then

jointly TCN and BAF.

The model presented in this chapter is similar to the model described in Chapter 2.

However, instead of considering change-points in the mean of the signal, we consider

change-points in the whole distribution of the signal. Indeed, this assumption is more

realistic for BAF signals for which it is clear changes don’t occur only in the mean.

Indeed, the distribution is multimodal for each segment. The number of the modes but

also their values, and the variance vary from a segment to another. For instance, on

Fig. 4.1, it is easy to observe three modes in the normal region (1,1) respectively for

the three statuses of SNPs (AA, BB, and AB). However, for the gain region (1,2) where

we have to observe four statuses respectively for (AAA, AAB, ABB, and BBB), modes

are more difficult to distinct but it seems that variance has increased. For the third

region (cn-LOH) denoted (0,2) in terms of parental copy number, both the number

and the location of the modes have changed compared to the gain region. All these
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Figure 4.1 – BAF signal

observations had motivated us to o propose a non-parametric method to detect these

different types of changes at the same time.

This chapter describes a new algorithm to simultaneously perform the dynamic pro-

gramming step of [Harchaoui and Cappé, 2007] and also compute the required elements

of the cost matrix on the fly. As a consequence, this algorithm has a complexity of

order O(SJ2) in time and O(SJ) in space (including both the dynamic programming

and the cost matrix computation). This improved space complexity comes without an

increased time complexity, which is a key point for genome analysis. However, to deal

with larger data sets the time complexity is still high and we develop a new algorithm

based on a low-rank approximation to the Gram matrix. This computational improve-

ment is possible at the price of an approximation, which leads to (almost) the best

segmentations from 1 to S segments with a complexity of order O(Sp2J) in time and

O((S + p)J) in space, where p is the rank of the approximation. Finally, we adapt the

model selection of [Lebarbier, 2005] described in section 2.4 to our case and illustrate

its good empirical statistical performance. Before describing the kernel segmentation

method, we need to introduce some essential notions on kernels [Shawe-Taylor and

Cristianini, 2004, Schölkopf et al., 2004].

Let (X1, . . . ,XJ) ∈ X a signal of length J within there are some changes in the

distribution. This signal can either represent the total DNA copy number or the B

allele fraction. Then, we consider a positive definite kernel k : X × X 7→ R. H
is its associated Reproducible kernel hilbert space (RKHS), and Φ : X 7→ H is the

canonical feature map defined by Φ(x) = k(x, •) (a function of H). There exists a

strong link between the canonical feature map and the kernel function since ∀x, y ∈ H
: 〈Φ(x), Φ(y)〉H = k(x, y).

Representation in RKHS H For every j ∈ {1, . . . , J} and Xj ∈ X , we define :
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8/24

Intro. Kernels Where? (D, k known) How many? (k known) Choice of kernel

Kernel and Reproducing Kernel Hilbert Space (RKHS)

X1, . . . , Xn 2 X : initial observations.

k(·, ·) : X ⇥ X ! R: reproducing kernel (H: RKHS).

�(·) : X ! H s.t. �(x) = k(x , ·): canonical feature map.

< ·, · >H: inner-product in H.

Asset:

Enables to work with high-dimensional heterogeneous data.

Kernel change-point detection Alain Celisse

Figure 4.2 – Mapping initial data to hilbert space H

Yj = Φ(Xj) ∈ H

and the mean element µ?j ∈ H of the distribution of Xj .

∀f ∈ H 〈µ?j , f〉H = EYj 〈Yj , f〉H = EXj 〈Φ(Xj), f〉H

There is a strong connection between the mean element µ?j and the distribution

of Xj denoted PXj . Indeed, for particular kernels (namely characteristic kernels), a

change in the distribution of Xj implies a change in the mean element µ?j .

PXj 6= PXj ⇒ µ?j 6= µ?j

Kernel examples: Several usual characteristic kernels are defined below if X = R.

• Gaussian kernel: k(x, y) = exp
{
−‖x−y‖2

δ

}
• Exponential kernel : k(x, y) = exp

{
−|x−y|

δ

}
• Polynomial kernel: k(x, y) = (δ0 + δ1〈x, y〉)δ2 with δ = (δ0, δ1, δ2)

We denote the associated Gram matrix associated by K = {Ki,j}1≤i,j≤J , where

Ki,j = k(Xi,Xj). The model and algorithms presented in the following can be applied

for each type of different type of kernels. However, to discover breakpoints in the DNA

copy number signals, we focused on characteristic kernels and more particularly on the

gaussian one. After describing the model and the algorithms (sections 4.2 and 4.3), a

short section described how to combine two kernels (4.4). Then, we present the model

selection used in this case (section 4.5). Finally, we present global performance of the

procedure at the end of the chapter 4.6.
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4.2 Model in RKHS

4.2.1 Definition

In this section, we define the statistical model in the RKHS H based on notations pre-

sented in the previous section. The statistical model for S change points at (t1, . . . , tS)

can be written as follows:

∀j ∈ {1, . . . , J} Yj = µ?j + εj (4.1)

where ∀s ∈ {1, . . . , S + 1} , ∀j ∈ [ts−1, ts[ µ?j = µ?s

With this model, a change-point in the mean of Yj is a change-point in the distri-

bution of the Xj . Methods to detect change-points in the mean are well known and

have been described previously in Chapter 2. We can proceed in the same way in R as

in the RKHS H and perform the change-point detection in the mean of Yj . We denote

Y = (Y1, . . . ,YJ) and HJ µ? = (µ?1 , . . . , µ
?
J ) elements of HJ with Euclidean structure

given by ‖f − g‖2HJ =
∑J

j=1 ‖f(j)− g(j)‖2H for every f, g ∈ HJ .

4.2.2 Estimation of the mean element

As we said previously, we assume that µ? = (µ?1 , . . . , µ
?
J ) ∈ HJ is piecewise constant as

is the distribution of the signal (X1, . . . ,XJ). We denote m a particular segmentation

of the signal, and s a segment from this segmentation m.

The estimation of the µ? on a segment denoted s is defined by equation 4.2:

µ̂m(s) =
1

Card(s)

∑
j∈s

Yj =
1

ns

∑
j∈s

Φ(Xj) (4.2)

µ̂m(s) is the mean in space H of all the element Yj that are in segment denoted s.

4.2.3 Best segmentation with S segments

Let MJ(S) all possible segmentations with S segments. We denote m̂S the best seg-

mentation with S segments as:

m̂S = arg min
mS∈MJ (S)

‖Y − µ̂mS‖2HJ (4.3)

‖Y − µ̂mS‖2HJ = ‖Y‖2HJ + ‖µ̂mS‖2HJ − 2〈Y, µ̂mS 〉HJ (4.4)
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We explain in detail the computation of each element of the equation 4.4 separately.

The first term is the norm of the vector Y in the space H.

‖Y‖2HJ =
J∑
j=1

‖Yj‖2H =
J∑
j=1

〈Yj ,Yj〉H =
J∑
j=1

〈Φ(Xj), Φ(Xj)〉H

=

J∑
j=1

k(Xj ,Xj) (4.5)

The second one is the norm of the estimation of the mean element for the segmen-

tation mS .

‖µ̂mS‖2HJ =
J∑
j=1

‖µ̂mS (j)‖2H =
J∑
j=1

〈µ̂mS (j), µ̂mS (j)〉H

=
J∑
j=1

〈 1

ns(j)

∑
j′∈s(j)

Y′j ,
1

ns(j)

∑
l∈s(j)

Yl〉H

=
J∑
j=1

1

n2s(j)

∑
j′∈s(j)

∑
l∈s(j)

〈Y′j ,Yl〉H =
∑
s∈mS

ns
n2s

∑
j,l∈s
〈Yj ,Yl〉H

=
∑
s∈mS

1

ns

∑
j,l∈s

k(Xj ,Xl) (4.6)

where s(j) is the unique segment which contains element j from segmentation mS .

To finish, we compute the scalar product between the estimation of the mean ele-

ment µ̂mS and the vector Y.

〈Y, µ̂mS 〉HJ =

J∑
j=1

〈Yj , µ̂mS (j)〉H =

J∑
j=1

〈Yj ,
1

ns(j)

∑
j′∈s(j)

Yj′〉H

=
J∑
j=1

1

ns(j)

∑
j′∈s(j)

〈Yj′ ,Yj〉H =
∑
s∈mS

1

ns

∑
j′,j∈s

〈Yj ,Yj′〉H

=
∑
s∈mS

1

ns

∑
j′,j∈s

k(Xj′ ,Xj) (4.7)
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We note that elements 4.6 and 4.7 are equal and hence,

‖Y − µ̂mS‖2HJ = ‖Y‖2HJ − ‖µ̂mS‖2HJ

=
J∑
j=1

k(Xj ,Xj)−
∑
s∈mS

1

ns

∑
j′,j∈s

k(Xj′ ,Xj)

To conclude:

m̂S = arg min
mS∈MJ (S)

J∑
j=1

k(Xj ,Xj)−
∑
s∈mS

1

ns

∑
j′,j∈s

k(Xj′ ,Xj) (4.8)

This computation will be done for several number of segments (S = 1, . . . , Smax) with

dynamic programming.

4.3 Algorithms

In this section, we present new algorithms mainly proposed by Guillem Rigaill to solve

(4.8). This description permits to better understand how kernel segmentation works.

The first step is to compute on the fly the elements of the cost matrix required

by DP algorithm to reduce complexity. Indeed, by reordering loops in algorithm 1,

we obtain a new exact algorithm which has a reduced complexity in space of order

O(SJ) instead of O(SJ2). This algorithm is described in details in 4.3.1. However, the

time complexity remains the same and when J is large, J > 106, the algorithm is very

consuming. Thus, we also provide an approximate algorithm but substantially faster.

This algorithm reaches a time complexity of order O(SJ). The trick is to use a low-

rank approximation to the Gram matrix and in a second step use binary segmentation

heuristic (4.3.2). This allows to deal with very large data sets (when J is larger that

106 for instance).

As explain in section 2.2.3, the main computational cost is due to (4.8) and consists

in recovering the best segmentation with S segments. That is solving (4.9) :

Ls(1, J + 1) = min
mS∈MJ (S)

‖Y − µ̂mS‖2HJ . (4.9)
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Standard dynamic programming algorithm applying to kernel segmentation

Let mS denote a segmentation in S segments (with the convention that t1 = 1 and

tS+1 = J + 1). For any 1 ≤ s ≤ S, the segment {ts, ..., ts+1 − 1} of the segmentation

mS has a cost that is equal to

C1(ts, ts+1) =

ts+1−1∑
j=ts

k(Xj ,Xj) −
1

ts+1 − ts

ts+1−1∑
j=ts

ts+1−1∑
j′=ts

k(Xj ,X
′
j). (4.10)

In terms of the cost defined above, the total cost of the segmentation mS is given by:

‖Y − µ̂mS‖2HJ =
∑
s

C1(ts, ts+1),

which is clearly segment additive [Harchaoui and Cappé, 2007, Arlot et al., 2012] and

a reformulation of Eq. 4.8.

Then it is easy to apply algorithm 1 described in the introduction. This algorithm,

which is the one used by [Harchaoui and Cappé, 2007], suffers from two main limitations.

First it assumes that the C1(j, j′) have already been computed, and does not take into

account the resulting computational cost. Second, it stores all C1(j, j′) in a O(J2)

matrix, which is memory expensive.

A quick inspection of the algorithm reveals that the main step at Line 3 requires

O(j) operations (assuming the C1(j, j′)s have been already computed). Therefore with

the two for loops we get a complexity of O(SJ2) in time. Note that without any partic-

ular assumption on the kernel k(·, ·), computing ‖Y − µ̂mS‖2HJ for a given segmentation

mS is already of order O(J2) in time since it involves summing over a quadratic number

of terms of the Gram matrix (see Eq. (4.10)). Therefore there is no hope to solve (4.9)

exactly in less than quadratic time without additional assumptions on the kernel.

From Eq. (4.10) let us also remark that computing each C1(j, j′) (1 ≤ j′ < j ≤ n)

naively requires itself a quadratic number of operations, hence a O(J4) time complexity

for computing the whole cost matrix. Then the dynamic programming step (Line 3 of

Algorithm 1) is not the limiting factor in that case and the overall time complexity of

Agorithm 1 is O(SJ4).

Finally let us also emphasize that this high computational burden is not specific

of detecting change-points with kernels. It is rather representative of most learning

procedures based on positive semi-definite kernels and the associated Gram matrix

[Bach, 2013].
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4.3.1 Improved use of dynamic programming for kernel methods

Reducing space complexity From Algorithm 1, let us first remark that each

C1(j, j′) is used several times along the algorithm.

A simple idea to avoid that is to swap the two for loops in Algorithm 1. This leads

to the following modified Algorithm 3, where each column C1(·, j′+1) of the cost matrix

is only used once unlike Algorithm 1.

for j′ = 2 to J do

for s = 2 to min(j′, S) do

Ls,j′+1 = minj≤j′{ Ls−1,j + C1(j, j′ + 1) };

Algorithm 3: Improved space complexity

Importantly, this swap does not change the output of the algorithm and does not

induce any additional calculations. In addition, at step j′ of the first for loop we do

not need the whole J × J cost matrix to be stored, but only the column C1(·, j′ + 1) of

the cost matrix. This column is of size at most O(J). Storing only this column leads

to a much improved O(SJ) space complexity.

Algorithm 3 finally requires to store coefficients {Ls,j}1≤s≤S, 2≤j≤J that are com-

puted along the algorithm as well as successive column vectors {C1(·, j)}2≤j≤J (of size

at most J) of the cost matrix. This leads to an overall complexity of O(SJ) in space.

The only remaining problem is to compute these successive column vectors efficiently.

Let us recall that a naive implementation is prohibitive: each coefficient of the column

vector can be computed in O(J2), which would lead to O(J3) to get the whole column.

Iterative computation of the columns of the cost matrix The last trick of our

final algorithm is the efficient computation of each column vector {C1(·, j)}2≤j≤J . We

explain how to iteratively compute each vector in linear time.

First at all, it can be easily observed that Eq. (4.10) can be written as follows

{C1(·, j)}2≤j≤J =

j′−1∑
i=j

(
k (Xi,Xi)−

Ai,j′

j′ − j

)
= Dj,j′ −

1

j′ − j

j′−1∑
i=j

Ai,j′ ,

where Dj,j′ =
∑j′−1

i=j k (Xi,Xi) and

Ai,j′ = −k(Xi,Xi) + 2

j′−1∑
j=i

k(Xi,Xj).
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Secondly, both Dj,j′ and
{
Ai,j′

}
i≤j′ can be iteratively computed from j′ to j′ + 1 by

use of the two following equations:

Dj,j′+1 = Dj,j′ + k(Xj′ ,Xj′), and Ai,j′+1 = Ai,j′ + 2k(Xj′ ,Xj′), ∀i ≤ j′,

with Aj′+1,j′+1 = −k(Xj′ + 1,Xj′ + 1). Therefore as long as computing k(xi, xj) is in

O(1), updating from j′ to j′+1 requires O (j′) operations. Note that for many classical

kernels, computing k(xi, xj) is indeed in O(1). For example if xi ∈ Rq with q a constant

larger or equal to 1 and k(·, ·) denotes the Gaussian kernel, each evaluation of k(xi, xj)

has a O(q) = O(1) time complexity. If q is not negligible, the last example illustrates

that the resulting time complexity is only increased by a multiplicative factor.

This update rule leads us to the following Algorithm 4, where each column

C1(·, j′ + 1)

in the first for loop is computed only once:

for j′ = 2 to S do

Compute the (j′ + 1)-th column C1(·, j′ + 1) from C1(·, j′);

for s = 2 to min(j′, S) do

Ls,j′+1 = minj≤j′{Ls−1,j + C1(j, j′ + 1)};

Algorithm 4: Improved space and time complexity

From a computational point of view, each step of the first for loop in Algorithm 4

requires O(j′) operations to compute C1(·, j′+ 1) and at most O(Sj′) additional opera-

tions to perform the dynamic programming step at Line 4. Then the overall complexity

is O(SJ2) in time and O(SJ) in space. This should be compared to the O(SJ4) time

complexity of the naive calculation of the cost matrix and to the O(J2) space complex-

ity of the standard Algorithm 1 from [Harchaoui and Cappé, 2007].

4.3.2 Heuristic

In the previous section 4.3.1, we described an improved algorithm based on carefully

combining dynamic programming and the computation of the cost matrix elements.

This new algorithm (Algorithm 4) provides the exact solution to the optimization

problem given by Eq. (4.9). However without any further assumption on the underlying

kernel, this algorithm only achieves the complexity O(J2) in time, which is a clear

limitation for signals larger than 106. Note also that this limitation results from the use
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of positive semi-definite kernels (and related Gram matrices) and cannot be improved

by existing algorithms to the best of our knowledge. However, we can remark that for

some kernels it is possible to reduce this time complexity. For instance, for the linear

one k(x, y) = 〈x, y〉Rs , x, y ∈ Rs, one can use the following trick

∑
1≤i 6=j≤J

k(Xi,Xj) =
∑

1≤i 6=j≤J
〈Xi,Xj〉RS =

∑
1≤i≤J

〈
Xi,

J∑
j=1

Xj −Xi

〉
(4.11)

=

∥∥∥∥∥
J∑
i=1

Xi

∥∥∥∥∥
2

−
J∑
i=1

‖Xi‖2 ,

where ‖·‖ denotes the Euclidean norm in Rs.

The aim of this section is to describe a general strategy (that is applying to any

kernel) relying on a low-rank approximation to the Gram matrix [Williams and Seeger,

2001, Smola and Schölkopf, 2000, Fine et al., 2001]. This approximation allows to

considerably reduce the computation time by exploiting (4.11). Note however that the

resulting procedure achieves this lower time complexity at the price of only providing

an approximation to the exact solution to (4.9) (unlike the algorithm described in the

previous section 4.3.1).

Low-rank approximation to the Gram matrix

The key idea is to follow the same strategy as the one described by [Drineas and Ma-

honey, 2005] to derive a low-rank approximation to the Gram matrix K = {Ki,j}1≤i,j≤J ,

where Ki,j = k(Xi,Xj).

Assuming K has rank rk(K)� J , we could be tempted to compute the best rank

approximation to K by computing the rk(K) largest eigenvalues (and corresponding

eigenvectors) of K. However such computations induce a O(J3) time complexity which

is prohibitive.

Instead, [Drineas and Mahoney, 2005] suggests applying this idea on a square sub-

matrix of K with size p � J . For any subsets I, I ′ ⊂ {1, . . . , J}, let KI,I′ denote

the sub-Gram matrix with respectively row and column indices in I and I ′. Let Ip ⊂
{1, . . . , J} denote such a subset with cardinality p, and consider the sub-Gram matrix

KIp,Ip which is of rank r ≤ p. Further assuming r = p, the best rank p approximation

to KIp,Ip is KIp,Ip itself. This leads to the final approximation to the Gram Matrix K

[Drineas and Mahoney, 2005, Bach, 2013] by

K̃ = KIJ ,Ip K+
Ip,Ip KIp,IJ ,
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where IJ = {1, . . . , J}, and K+
Ip,Ip denotes the pseudo-inverse of KIp,Ip . Further

considering the SVD decomposition of KJp,Jp = U′ΛU, for an orthonormal matrix U,

we can rewrite

K̃ = Z′Z, with Z = Λ−1/2U KJp,In ∈Mp,J(R).

Note that the resulting time complexity is O(p2J), which is smaller than the for-

mer O(J3) as long as p = o(
√
J). This way, columns {Zi}1≤i≤J of Z act as new

p-dimensional observations and each K̃i,j can be seen as the inner product between

two vectors of Rp, that is

K̃i,j = Z ′iZj . (4.12)

The main interest of this approximation is that, using Eq. (4.11), computing the cost

of a segment s of length ns has a complexity O(ns) in time unlike the usual O(n2s) that

holds with general kernels.

Note that choosing the set Ip of columns/rows leading to the approximation K̃ is

of great interest in itself for at least two reasons. First from a computational point

of view, the p columns have to be selected following a process that does not require

to compute the J possible columns beforehand (which would induce an O(J2) time

complexity otherwise). Second, the quality of K̃ to approximate K crucially depends

on the rank of K̃ that has to be as close as possible to that of K, which remains

unknown for computational reasons. However such questions are out of scope of the

present paper and we refer interested readers to [Williams and Seeger, 2001, Drineas

and Mahoney, 2005, Bach, 2013] where this point has been extensively discussed.

Binary segmentation heuristic

Since the low-rank approximation of the Gram matrix detailed in Section 4.3.2 leads

to deal with finite dimensional vectors in Rp (4.12), the change-point detection prob-

lem described in Section 4.2 amounts recovering abrupt changes of the mean of a

p-dimensional time-series. Therefore any existing algorithm usually used to solve this

problem in the p-dimensional framework can be applied. A review of such algorithms is

presented in Chapter 2. However we will mention only a few of them to highlight their

drawbacks and motivate our choice. Let us also recall that our purpose is to provide an

efficient algorithm allowing: (i) to (approximately) solve Eq. (4.9) for each 1 ≤ s ≤ S,

and (ii) to deal with large sample sizes (J > 106).

The first algorithm is the usual version of constrained dynamic programming [Auger

and Lawrence, 1989]. As presented in Chapter 2, a second possible algorithm is a
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standard heuristic (binary segmentation) for approximately solving Eq. (4.9) for each

1 ≤ s ≤ S. This iterative algorithm computes the new segmentation mS+1 with S + 1

segments from mS by splitting one segment of mS into two new ones without modifying

other segments. More precisely considering the set of change-points mS = {t1, . . . , tS},
binary segmentation provides

mS+1 = arg min
m∈M(S+1)|t∩mS=mS

{
‖Y − µ̂m‖2HJ

}
.

The overall time complexity of binary segmentation for recovering approximate solu-

tions to (4.9) for all 1 ≤ s ≤ S is only O (log(S)J) on average and O (SJ) at worse

(Section 2.2.4).

An important remark is that binary segmentation only achieves this reduced time

complexity provided computing the cost of one segment has a complexity linear in its

length. This is precisely what has been allowed by the low-rank matrix approximation

summarized by Eq. (4.12). Otherwise with a quadratic complexity for computing the

cost of one segment, binary segmentation would suffer an overall time complexity of

order O(SJ2).

4.4 Combination of kernels

As we said in the previous chapter, the performance of segmentation method is better

if we use simultaneously the TCN and the DoH. In the case of kernel segmentations,

we would like to segment jointly the TCN and the BAF signals. Then, a first nice

property of kernels is that linear combinations of kernels are kernels. By consequences,

it is easy to build a convex combination of the best kernel to segment TCN and the

best one of the BAF. Indeed, ∀x = (x1, x2) ∈ X1 ×X2 and y = (y1, y2) ∈ X1 ×X2

k(x, y) = αk1(x1, y1) + (1− α)k2(x2, y2)

However, an important issue will be to calibrate α and the respective parameters of

kernels k1 and k2 for the each dimension. All algorithms presented in the previous

section can be applied on this two-dimensional kernel.

4.5 Model selection

This section recalls notions presented in 2.4 expanded to the kernel framework. To find

the best number of segments we can use ideal criteria if we work on simulated profiles
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(i.e. the true segments and the distribution of the signal are known) or otherwise a

penalized criteria defined in [Birgé and Massart, 2001]. Ideal criteria is the minimization

of the quadratic risk defined as follow :

Ŝ = arg min
s=1,...,S

1

n
‖µ? − µ̂m̂s‖2HJ

And the penalized criteria is the minimization of the empiral risk with a penalty which

depends of number of segments d.

Ŝ = arg min
s=1,...,S

1

n
‖Y − µ̂m̂s‖2HJ + pen(s)

4.5.1 Ideal criterion

We define the quadratic risk as :

L(µ̂m̂S ) = ‖µ? − µ̂m̂S‖2HJ
= ‖µ?‖2HJ + ‖µ̂m̂S‖2HJ − 2〈µ?, µ̂m̂S 〉HJ

We start by computation of the norm in HJ of the mean element µ?. Then, we

have to pay attention that Yj is an element of H. Therefore, there is no reason that

the expectation is on Yj and we need to take a copy of Yj denote Y′j and which follow

the same distribution that Yj . To estimate the double expectation, we need to have

several random variables Xb
j which have the same distribution Xj . Then, we estimate

the expectation by mean on the B = 100 random variables Xb
j .

‖µ?‖2HJ =
J∑
j=1

‖µ?j ‖2H =

J∑
j=1

〈µ?j , µ?j 〉H =
J∑
j=1

EYj 〈Yj , µ
?
j 〉H

=

J∑
j=1

EYj ,Y′j
〈Yj ,Y

′
j〉H =

J∑
j=1

EXj ,X′jk(Xj , X
′
j)

≈ 1

B(B − 1)

∑
b6=b′

J∑
j=1

k(Xb
j , X

b′
j )

Then, we compute the norm in HJ of the estimation of µ? denote µ̂m̂S .
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‖µ̂m̂S‖2HJ =
J∑
j=1

‖µ̂m̂S (j)‖2H =
J∑
j=1

〈µ̂m̂S (j), µ̂m̂S (j)〉H

=

J∑
j=1

〈 1

ns(j)

∑
j∈s(j)

Yj ,
1

ns(j)

∑
l∈s(j)

Yl〉H

=

J∑
j=1

1

n2s(j)

∑
j∈s(j)

∑
l∈s(j)

〈Yj ,Yl〉H =
∑
s∈m̂S

ns
n2s

∑
j,l∈s
〈Yj ,Yl〉H

=
∑
s∈m̂S

1

ns

∑
j,l∈s

k(Xj ,Xl)

To finish, the scalar product between µ? and µ̂m̂S . We need one copy of the distribution

of Xj for the same reasons than previously since in the sum on l and j, l = j. We

estimate expectation by mean on the B = 100 random variables Xb
j which have the

same distribution than Xj .

〈
µ?, µ̂m̂S

〉
HJ =

J∑
j=1

〈
µ?j , µ̂m̂S (j)

〉
H =

J∑
l=1

1

ns(l)

∑
j∈s(l)

〈
µ?l ,Yj

〉
H

=
J∑
l=1

1

ns(l)

∑
j∈s(l)

EY′l

〈
Y′l,Yj

〉
H

=
∑
s∈m̂S

1

ns

∑
l,j∈s

EY′l

〈
Y′l,Yj

〉
H

≈ 1

B

∑
b∈B

∑
s∈m̂S

1

ns

∑
l,j∈s

k(Xb
l ,Xj)

Then, we get three terms to compute the quadratic risk :

‖µ?‖2HJ ≈ 1

B(B − 1)

∑
b6=b′

J∑
j=1

k(Xb
j ,X

b′
j ) (4.13)

‖µ̂m̂S‖2HJ =
∑
s∈m̂S

1

ns

∑
j,l∈s

k(Xj ,Xl) (4.14)

〈µ, µ̂m̂S 〉HJ ≈ 1

B

∑
b∈B

∑
s∈m̂S

1

ns

∑
l,j∈s

k(Xb
l ,Xj) (4.15)
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4.5.2 A penalized criterion

However, for real data, it is impossible to compute the ideal criterion (quadratic risk)

in order to select the right number of segment. As for RBS and Group Fused Lasso

method, we use the penalized empirical risk (see section 2.4 and equation 4.17).

pen(s) =
Cs

J

(
c1 log

(
J

s

)
+ c2

)
. (4.16)

For the moment, we use the values c1 = 2 and c2 = 5 as in the initial paper of

[Lebarbier, 2005].

To summarize:

S∗ = arg min
s∈1:S

‖Y − µ̂m̂s‖2HJ + 2 ∗ pen(s). (4.17)

where m̂s is the best segmentation in s segments.

4.5.3 Criterion to compare segmentation

In a first intention, we wanted to know which is the parameter value δ that provides

the best segmentations. The first idea was to compare directly the quadratic risk in

the RKHS provided by the algorithms as it was done for the model selection. However,

a brief review of literature leads us to conclude that norms from different RKHS are

in fact not comparable. This is the subject of the following section. From [Zhang and

Zhao, 2011] and lemmas in Appendix C, we can deduce inclusions between two RKHS

from two different Gaussian kernels. Therefore, the norms from two different Gaussian

kernels are not equivalent and therefore the respective quadratic and empirical risks are

not comparable. This section informs us that it is impossible to remain in the RKHS

space to select the best parameter. In order to compare segmentations provided by

two kernels when the number of segments is fixed, we have to go back to the initial

space of observation. We define another performance criterion to measure the quality

of segmentations for each value of the parameter.

The quality of segmentations is measured by the gap between the segmentation m̂

and the true segmentation m∗ by using the Frobenius distance as follows. First, for any

segmentation m = (t1, t2, . . . , tS , tS+1), let us introduce a matrix M = {Mi,j}1≤i,j≤J
such that

Mi,j =
D+1∑
k=1

1(tk−1≤i,j<tk)
tk − tk−1

,
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where 1(tk−1≤i,j<tk) = 1, if i, j ∈ [tk−1, tk[∩N, and 0 otherwise. Let us now consider

the matrix M∗ defined from the true segmentation m∗ in the same way. Then, the

Frobenius distance between segmentations m̂ and m∗ is given, through the distance

between matrices M and M∗, by

d2F (m,m∗) = ‖M −M∗‖2F =
J∑

i,j=1

(
Mi,j −M∗i,j

)2
.

4.6 Results on the realistic simulated framework

This section is divided into three parts. The first one presents the results to calibrate

δ of the gaussian kernel in order to get the best segmentation. Then, we present

performance of the model selection directly in the RKHS space. To finish, the results

of the global performance of the procedure are presented in a simulation framework.

Note that all simulations are performed with jointseg and acnr packages on the

realistic framework.

4.6.1 Selection of parameter

In this section, we present the results of the influence of δ on the segmentation. For

this part, we perform segmentation for several short profiles and we compare the per-

formance of the segmentation with the true number of segments (section 4.5.3).

In an easy framework (100% of tumor cells), it is obvious that the value of the δ

parameter to segment TCN is not crucial. Contrary to the more difficult frameworks

(with more contamination by normal cells) when δ increases the quality of segmenta-

tions is deteriorated. For both frameworks (79% and 50%), the value which provides

the best segmentation quality is around 1. For this reason, we fixed δ = 1 for the

extensive experiments that we performed in the following.

The grid of values for the BAF segmentation is completely different, this probably

due to the fact that BAF is always between 0 and 1. However, we observe the same

shapes of curves, i.e when the value of parameter increases the quality of segmentations

decreases. The same phenomenon is observed when the parameter is too small. In

this case, it appears that the best parameter is around 0.005 for the three settings

of simulations. This value corresponds in fact to the optimal bandwidth selected by

cross-validation in order to estimate density with a gaussian kernel.
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Figure 4.3 – Influence of δ on three levels of difficulty (TCN on the left, BAF on the right)

4.6.2 Selection of parameter p to approximate kernel

In this section, we present the results of the influence of the parameter p on the seg-

mentation in terms of partial AUCs. We use the same method as in section 3.3.3 to

determine true positive and false positive. Results are presented for the TCN segmen-

tation (Illumina technology) and for a tolerance parameter equal to 10. Initial points

to approximate the Gram matrix are taken uniformly between the minimum and the

maximum point of the TCN signal. The grid of p is between 1 to 100 initial points.

We simulated TCN 50 profiles with 20000 points and we evaluate the performance for

each p through the pAUC. On Fig. 4.4, we have the mean of pAUC on the 50 profiles

for three dilution series (100%, 79% and 50% of tumor cells). It appears that taking

p = 10 seems to be a good compromise between the performance of segmentation and

the performance in terms of times for the three levels of difficulty.

4.6.3 Model selection

It is not obvious that usual model selection criteria perform correctly for model selection

in a RHKS. For this reason, we implemented the cost function in the RKHS as described

in the section 4.5.1 and the penalized cost function 4.5.2 and we compare their ability

to select the best number of segments on simulations. Indeed, on simulations, we know

the truth i.e the position of breakpoints required to compute the quadratic risk. We

simulate profiles that contain 3 breakpoints i.e 4 segments and we segmented them
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Figure 4.4 – Experiments to choose the level of approximation (p) (Illumina example)

and selected the correct number of segments with the penalized criterion. For each

annotated data described in the previous chapter, we apply the segmentation algorithm

on several profiles with various levels of contamination by normal cells. The results are

presented in Fig. 4.5. It is clear that the method of penalized criteria directly applied

in the RKHS perform as well as for the three different levels of difficulty (100, 70 and

50% of tumor cells in the samples) to select the right number of segments either for

Affymetrix or Illumina.
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Figure 4.5 – Model selection illustration on three levels of difficulty (Illumina on the top and

Affymetrix on the bottom)
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4.6.4 Performance of segmentations

We expand the simulation framework by simulating 50 DNA copy number profiles of

length 20000 containing 10 breakpoints following the method proposed in section 3.2.2

were simulated to measure the performance of the kernel procedure. The breakpoints

are random as well as the status of altered regions. Profiles are simulated with 100%,

79% and 50% of tumor cells (Illumina data set).

As we said in the previous chapter, the best results are provided by RBS method,

therefore we only compare the kernel method to this method . We plot the results in

terms of partial AUCs of exact kernel segmentation, the heuristic of kernel segmentation

and recursive binary segmentation. For each type of methods, we apply it on BAF/

(respectively for kernel and RBS method), TCN and jointly on DoH/BAF and TCN. In

order to compute partial AUC, we use the same method as in section 3.3.3 to determine

true positive and false positive.

The results of performance across the three values of purity are presented in Fig.

4.6. Each curve is the pAUC curve along the tolerance parameter as described in

section 3.3.3. The figure shows that using kernel segmentation allows detecting some

changes that probably not occur in the mean but in higher order in the distribution.

Indeed, pAUC is notably higher if we use the kernel segmentation procedure. For all

settings (100%, 79% and 50% of tumor cells), exact kernel segmentation using both of

TCN and BAF outperforms all methods. It is clear that for easy the framework, using

kernel improves performance by recovering more precisely the change points. For the

two others, RBS using simultaneously TCN and DoH does as well as kernel method.

In addition, RBS is really faster than Kernel segmentation due to a lower complexity

of computation.

After exploring results, we realized that the symmetrization of BAF signal provided

best results when we used the approximation of the algorithm. For this reason, the

results of the performance of heuristic kernel algorithm on BAF is, in fact, the results of

the performance on the DoH which includes all SNPs (homozygous and heterozygous).

Nevertheless, even with this transformation, all other methods outperform the heuristic

kernel algorithm on BAF. This is likely the reason why kernel approximation algorithm

on the two dimensions is not as good as the exact one.

However, an essential point is that it is not necessary to know the germinal status

of SNPs to perform the segmentation in the case of kernels and to transform BAF

into DoH in the case of exact algorithm unlike to RBS that uses DoH on heterozygous

SNPs. To summarize, kernel segmentation procedure can provide good results in term

of segmentations with no data transformation (TCN to log(TCN) and BAF to DoH)
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but is clearly slower than RBS.
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Figure 4.6 – Partial AUC for Kernel segmentation

4.7 Conclusion

To conclude, in this chapter, we presented a new non-parametric segmentation method

in order to be free from the transformation of the BAF signal to DoH. This method has

the particularity to be independent of the type of breakpoints of the signals. Indeed,

we are able to detect change-points either in the mean or in the higher orders of the

distribution if the kernel is well chosen. By using the kernel trick, it has been possible to

combine TCN and BAF signals to perform a joint segmentation method. Performance

is at least as good as one of the joint RBS method and in addition, we produce efficient

algorithms in terms of complexity and quality of segmentations. We show that heuristic

algorithm performs as well as the exact one in some frameworks. But some other

experiments are required to tune the δ parameters and the approximation level.

The joint kernel segmentation takes the advantage that it is not necessary to know

the germinal status of SNPs before doing the segmentation. This issue of to not know-

ing the germinal status is quite common and raises some new problems to perform

segmentation and estimations of parental copy numbers for example. This topic is

tackled in Chapter 8.

To conclude the proposed method provides a usable procedure to segment the DNA

copy number signals from microarrays or even NGS. In addition, after a good selection

of δ, we show that classical the model selection directly applied in the RKHS space

provided good results. An R package is currently in development and will be soon

available.
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Chapter 5

Discovering heterogeneity in

cancers

This Chapter aims to present some existing models to discover heterogeneity in cancers.

5.1 Introduction

Even if recovering of breakpoints in TCN and BAF signals with accuracy is still a

challenge, determining the status of each segment/region is another essential point.

We have seen that HMM methods (section 2.2.1) perform jointly the segmentation and

the region status inference. Here, we do not develop this kind of methods but we make

the choice to perform the calling separately from the segmentation.

The first reason of the difficulty to attribute an alteration type (Table 2.1) to each

segment is the proportion of normal cells in the samples that shrinks the total copy

number toward 2, but also the cellularity. Intra-tumoral heterogeneity of samples can

also disturb the inference of the calling of region status. Single cell methods enable to

assess tumor heterogeneity without the effects of mixed cell population [Navin et al.,

2011] but in reality, the single-cell sequencing data is noisier than the sequencing di-

rectly performed on solid tumors. This method is expensive and most laboratories still

sequence the DNA at the level of bulk tumors. Therefore, instead of observing only

one type of cell, we observe a mixture of normal/stromal cells, and one or several types

of cancer cells. The problem of inferring tumor subclones from microarray or sequenc-

ing genomic data has received a lot of attraction in the past few years [Beerenwinkel

et al., 2014]. The global aim of these methods is to reconstruct the observed profiles by
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inferring subclones and weights. We present in the following how to model the linear

combination to explain total DNA copy number profiles.

5.2 Matrix factorization problem

In this section, we work with a n×J matrix Y that is composed of n DNA copy number

profiles of length J . Therefore, let yij denote the total copy number signal at locus

j ∈ {1, . . . , J} for sample i ∈ {1, . . . , n}. This model states that for each sample i, the

corresponding copy-number profile Yi = (yi1, . . . , yiJ) can be expressed as a weighted

linear combination of p latent profiles Zk plus some noise, that is,

Yi =

p∑
k=1

wikZk + Ei , for i = 1, . . . , n (5.1)

where Zk = (zk1, . . . , zkJ) is the copy-number profile of the k-th latent profile for

k = 1, . . . , p, wik is the weight of latent profile k in sample i, and Ei = (εi1, . . . , εiJ) is

the vector of reconstruction errors for sample i. Both matrices W and Z are unknown

and estimated by minimizing the total squared errors 5.2:

n∑
i=1

‖Yi −
p∑

k=1

wikZk‖22 (5.2)

The matrix form of the Eq. 5.2 is:

‖Y −WZ‖2F (5.3)

where

• Y is the n× J matrix of copy-number signals for each sample,

• W is the n× p matrix of weights,

• Z is the p× J matrix of latent profiles,

and ‖.‖F the Frobenius Norm.

This is a standard method to reduce the dimensionality of a matrix and discover

subgroups within patients with the same disease. This method permits to select only

the most relevant information in meaningful components by adding some constraints.
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Y = W × Z

= ×

Figure 5.1 – Modelisation of heterogeneity

The figure 5.1 shows a toy illustration of the heterogeneity model. Here, the matrix

Y which is observed is, in fact, the factorization of the two matrices W and Z. Patterns

are identifiable in matrix Z. These patterns could be for instance loss (blue tiles) and

gain (red tiles) in a DNA copy number latent profile. The matrix W represents, in

fact, the composition of each sample that we observed in Y.

Generally, to solve a matrix factorization problem, it is necessary to add constraints

on the dictionary defined by Z. For example in our context, for interpretability reasons,

we would like that copy number latent profiles present only a few alterations, in other

terms Z is required to be sparse (few components are non-zero). This kind of problem

has been already solved and is named sparse dictionary learning [Olshausen and Field,

1997], we present the model in section 5.3.

Then, in the context of cancerology and tumoral heterogeneity discovery, the Non-

negative matrix factorization (NMF) model is the most common model [Brunet et al.,

2004]. Indeed, the first studies on cancer heterogeneity focused on gene expression and

methylation data [Qi et al., 2009, Taslaman and Nilsson, 2012, Schwalbe et al., 2013],

which are non-negative. Its aim is to factorize the matrix Y into two non-negative

matrices W and Z, NMF model is presented in 5.4.

Finally, in the context of DNA copy number, the observed mixture of several latent

profiles can be seen as if W represents the proportion of each copy number latent profile.

[Cutler and Breiman, 1994] have proposed to constrain each row of W to have sum one

and W to be non-negative. This method is called archetypal analysis in the literature.

This type of constraints enables to give a biological signification to W (composition of

the sample). We present this method in 5.5.

5.3 Sparse dictionary learning

The sparse dictionary learning is a matrix factorization method that aims at finding

a sparse representation of the input data Y in the form of a linear combination of
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basis elements as well as those basis elements themselves. The input data set in our

context is Y = [y1, ...,yn]T ,yi ∈ RJ . We wish to find a dictionary Z ∈ Rp×J and a

representation W = [w1, ...,wn]T ,wi ∈ Rp such that both ‖Y −WZ‖2 is minimized

and the representations wi are sparse enough. This can be formulated as the following

optimization problem:

minW∈Rnp,Z∈I
n∑
i=1

‖yi −wiZ‖2 + λ‖wi‖0 , (5.4)

where I ≡ Z ∈ Rp×J : ‖zj‖2 ≤ 1 ∀j = 1, ..., J

The constraint Z ∈ I is required to prevent the atoms of Z to reach arbitrarily high

values allowing for arbitrarily low (but non-zero) values of wi.

The minimization problem above is not convex because of the `0− pseudo-norm

and solving it is NP-hard [Tillmann, 2015]. `1-norm is known to ensure sparsity and

therefore the above problem 5.4 can be relaxed into a convex optimization problem

with respect to each of the variables Z and W in case the other one of them is fixed.

The dictionary Z defined is “undercomplete“ if p < n or ”overcomplete” in case

p > n.

5.4 Non-negative matrix factorization

NMF uses the model defined by 5.3 but with some positivity constraints on the two

matrices W and Z. In other terms, zk = (zk1, . . . , zkJ) � 0 for k = 1, . . . , p and wik ≥ 0

for k = 1, . . . , p and for i = 1, . . . , n.

The equivalent matrix form is written below:(
Ŵ, Ẑ

)
= arg min

W∈Rnp,Z∈RpJ
‖Y −WZ‖2 s.t. W � 0 and Z � 0 (5.5)

Several optimized algorithms have been developed this last twenty years [Lee and

Seung, 2001, Brunet et al., 2004, Kim and Park, 2007, Badea, 2008] to solve NMF on

gene expression data from microarrays, and a R package implements several algorithms

to solve NMF problems [Gaujoux and Seoighe, 2010]. The most common types of

methods to solve NMF are: multiplicative update rules, alternating least square and

alternating nonnegative least squares. We briefly present the update rules to solve

NMF.
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All algorithms begin by initializing the matrix Z by taking p rows from the matrix

Y, then the multiplicative updating rules are defined by the following equations:

wik → wik
(YZT )ik

(WZZT )ik
(5.6)

and

zkj → wik
(WTY)kj

(WTWZ)kj
(5.7)

Even if, this method was not used directly, we choose to present the NMF because

it was the first method used in cancerology to infer heterogeneity jointly from several

samples.

5.5 Archetypal analysis

The archetypal analysis uses the same constraint than NMF on matrix W i.e. to be

positive, but in addition, the sum of each row of matrix W is forced to be equal to 1.

This constraint is useful if we see the observed samples of the matrix Y as a convex

combination of subclones. Then, the matrix W can be seen as a proportion matrix.

The last constraint imposed by the archetypal analysis is that the components of matrix

Z is also a convex combination of the elements of Y.

More precisely, for fixed z1, . . . , zp we have:

zk =
n∑
i=1

βkiyi, k = 1, . . . p

with βki ≥ 0 and
∑n

i=1 βki = 1.

Then, {wik}, k = 1, . . . , p are defined as the minimizers of

‖yi• −
p∑

k=1

wikzk•‖2

under the constraints wik ≥ 0 and
∑

k wik = 1.

The archetypal patterns are defined by the minimization of the Residual sum of

squares (RSS) computed on the whole set of samples:

RSS =

n∑
i=1

‖yi −
p∑

k=1

wikzk‖2 (5.8)
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The RSS can also be written:

RSS =
n∑
i=1

‖yi −
p∑

k=1

wik

n∑
i′=1

βki′yi′‖2 (5.9)

The problem of archetypal analysis is to find W and β by minimizing the equation

(5.9). The algorithm of archetypal analysis alternates between finding wik and β. It

begins by initializing the matrix of latent profiles Z and coefficient wik and β. Then,

solve the n convex least squares problems:

min
wi
‖yi −wiZ‖22 subject to wik ≥ 0 and

p∑
k=1

wik = 1 (5.10)

Then, update latent profiles Z̃. And, solve the p convex least squares problems:

min
βk
‖zk −wkY‖22 subject to βk ≥ 0 and

n∑
i=1

βki = 1 (5.11)

Then, update latent profiles Z̃ = βY.

The main drawback of this model is that latent profiles are a convex combination

of the observed profiles and biologically it is a strong hypothesis. This means that

subclones are directly observed, which is unlikely. In Chapter 6 were inspired by sparse

dictionary learning for sparse constraints on the latent profiles and by the archetypal

analysis for the constraints on the weight matrix.

5.6 A few words on identifiability

A major issue for this type of reconstruction is that even ignoring the noise in the

input profile, there may be multiple ways to define the weights and the subclones that

correspond to the same reconstructed profile when neither the weights nor the subclones

are observed. From a statistical viewpoint, this can be phrased as an identifiability

problem [Behr and Munk, 2015].

This issue of identifiability can be overcome by adding constraints to the model

parameters and two major directions have been considered in the literature. One

possibility is to constrain the latent profiles to belong to a pre-determined alphabet

(e.g. {0, 1, 2, . . . 10}). Necessary and sufficient conditions have recently been given for

the problem to be identifiable under this constraint [Behr and Munk, 2015], and the

same authors are working on an application to DNA copy number profiles [Behr et al.,

2016]. Although true DNA copy numbers indeed are integers, restricting the latent
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profile values to a finite alphabet may not always be realistic in practice. Indeed, copy

number signals measured from microarray or sequencing technologies are not directly

proportional to true copy numbers due to non-linearities induced by the biological

assays including saturation effects [Skvortsov et al., 2007].

New methods attempted to infer intra-tumor heterogeneity using copy number from

HTS or SNP data by integrating mutation information [Ha et al., 2014, Oesper et al.,

2013, Roth et al., 2014, Li and Li, 2014]. [Jiang et al., 2016] pointed out the fact

that these methods do not take into account several samples at the same time except

PyClone. However, PyClone does not enable copy number alterations to be subclonal.

Deal with several profiles is a possibility to overcome the above-mentioned identifiability

issue. Models assume that several profiles are observed and share the same set of latent

profiles. From our perspective, this assumption is both justified by the underlying

biology, and weak enough to be coherent with the observed copy number signals. This

is the reason why we work under this assumption. We assume that several DNA copy

number profiles are observed and that each of these profiles is a mixture of the same

subclones (possibly with weight 0 for some of the subclones). This model is able to

tackle either the intra or inter-tumoral heterogeneity by dealing with several samples.

5.7 Conclusion

This chapter aims to introduce the classical models of the matrix factorization that

is the direction that we have chosen to analyze heterogeneity. We have seen that is

possible to add several constraints on these models. This makes it possible to add

biological priors in the form of various constraints. For example, a sample can be seen

as a mixture of several cells and weights represent the proportion of each type of cell

(archetypal analysis constraint). Then, we would like that latent profiles present a

few alterations, in particular it could be interesting to add a fused LASSO constraint

(sparse dictionary learning constraint).

Therefore, our contribution in this part deals with discovering heterogeneity from

DNA copy number data by extending the existent models. We add constraints that

provide a more realistic biological sense and integrate the BAF signal (Chapter 6).

The goal is to discover characteristics of the resistant subclones in DNA copy number

data. All information from SNP array data i.e. B allele fraction and total copy number

at each SNPs is integrated by the intermediate of the PSCN (parent specific copy

number) information (section 1.4.3). We are currently implementing the method as an

R package named InCaSCN (Inferring cancer subclones using DNA copy number) to

discover heterogeneity. We have this method to two real data sets that contain several
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samples at various time points and locations for the same patient (Chapter 7). A paper

with J. Chiquet and P. Neuvial is currently in preparation.
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Chapter 6

Inferring cancer subclones using

parental DNA copy numbers

6.1 Introduction

The objective of this Chapter is to present our proposed approach to study cancer

heterogeneity by using copy number alterations (CNA). That way, the model will be

applicable either on the array-based Comparative Genomic Hybridization (aCGH),

Single Nucleotide polymorphism (SNP) microarrays, whole exome sequencing (WES)

or whole genome sequencing (WGS). We attempt to respond to the question of recon-

structing the underlying subclones and the corresponding weights from a series of DNA

copy number profiles measured by the technologies cited above.

This model presented here is applicable to samples from a same patient that have

been taken at various time or spatial points [Schwarz et al., 2015], but also to samples

from an homogeneous group of several patients. This assumption has already been

made in the literature [Nowak et al., 2011, Masecchia et al., 2013]. Our model may be

seen as an extension of these approaches, with the following original contributions:

1. leveraging the allelic signals available from SNP array or sequencing data in order

to explicitly integrate parent-specific copy numbers [Olshen et al., 2011] in the

model;

2. making the mixing weights interpretable as such by modeling each profile as a

convex combination of latent profiles;

3. modeling tumor clonality at the level of copy number segments (not individual
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probes), which is the level of information at which such events occur.

Our model has similarities with the model recently proposed in [Jiang et al., 2016]

except that it enables us to analyze several samples to explore both intra-heterogeneity

and inter-heterogeneity contrary to the model of [Jiang et al., 2016]. Indeed, this

model is restricted to the first type of heterogeneity because its first aim is to build

phylogenetic trees in order to understand the tumor history for a single patient.

The model that we propose in this Chapter is inspired by dictionary learning meth-

ods (see section 5.2) as models of [Nowak et al., 2011, Masecchia et al., 2013] and the

convex combination in our model of the latent profiles to explain samples is inspired of

archetypal analysis introduced in section 5.5.

We formulate the problem of estimating the parameters of the model as an opti-

mization problem and propose an iterative algorithm to estimate these parameters. We

assess the performance of this approach using realistic simulations based on real DNA

copy number data [Pierre-Jean et al., 2015]. We also applied the model to two different

kinds of real data sets (Chapter 7).

6.2 Model

6.2.1 Basic model

Our starting point is a latent feature model described by 5.1. This models has been

used to model multi-sample aCGH data [Masecchia et al., 2013, Nowak et al., 2011].

Importantly, the latent profiles are the same for all samples, that is, Zk does not

depend on the sample index i. This assumption is crucial to make the model identifiable

(see Section 5.6 for a brief discussion on identifiability).

Figure 6.1 represents the phenomenon of intra-tumoral heterogeneity. Figure 6.1(a)

shows two tumor samples (green and yellow circles) composed of a mixture of “sub-

clones” according to (5.1). In this example, for the top sample, the fraction of normal

cells is w10 = 20%, and the sample is a mixture of two tumor subclones with propor-

tions w11 = 60%, w12 = 20%. For the bottom sample, the fraction of normal cells

is w20 = 40%, and the sample is a mixture of two tumor subclones with proportions

w21 = 30%, w22 = 30%. For both samples, the corresponding (noiseless) copy-number

profiles are displayed in Figure 6.1(b). The copy-number profiles Yi of samples i = 1, 2

are given by the linear convex combination: Yi = wi1Z1 + wi2Z2 + wi0Z0, for i = 1, 2

and where Z1 and Z2 are the profiles of the two tumor latent profiles (top two lines),
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and the normal latent profile Z0.

(a) Tumor sample (b) Copy-number profile

= 0.6× ( )

+ 0.2× ( )

+ 0.2× ( )

= 0.6× ( )

+ 0 × ( )

+ 0.4× ( )

Figure 6.1 – (a) Heterogeneous tumor samples with a collection of normal cells (gray discs) and

two cancer subclones (red triangles and blue squares). (b) A corresponding (noiseless) copy

number profiles, written according to model (5.1) as a linear combination of latent profiles.

This Figure is adapted from [Nowak et al., 2011].

6.2.2 State of the art

Total DNA copy number models In this section we describe the methods pro-

posed by [Masecchia et al., 2013] and [Nowak et al., 2011]. In both papers, the parame-

ters (wik) and (zkj) are estimated by minimizing the total squared error of model (5.1)

under additional constraints. Minimizing this loss function is equivalent to maximizing

the likelihood of model (5.1) when the errors are independent and Gaussian. In [Nowak
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et al., 2011], a fused lasso constraint on the rows of Z encourages the latent profiles to

be piecewise constant. Moreover, an `2 constraint on the weights is added in order to

make the weights identifiable. The optimization problem considered in [Nowak et al.,

2011] is then:

min
wik,zkj

n∑
i=1

J∑
j=1

(
yij −

p∑
k=1

wikzkj

)2

+

p∑
k=1

µ J∑
j=1

|zkj |+ λ
J−1∑
j=1

|zk(j+1) − zkj |


s.t.

n∑
i=1

w2
ik ≤ 1 ∀k = 1, . . . , p (6.1)

The following equivalent matrix form is more compact:

min
W∈Rnp,Z∈RJp

{
‖Y −WZ‖2 + µ ‖Z‖1 + λ

∥∥∥DZ>
∥∥∥
1

}
s.t. WiW

>
i ≤ 1 ∀i = 1, . . . n, (6.2)

where

• Y is the n× J matrix of copy-number signals for each sample,

• W is the n× p matrix of weights for each latent profile, and Wi its i-th row,

• Z is the p× J matrix of copy-number signals for each archetype,

• D is a (J − 1)× J matrix for the first order differences:

D =


−1 1

−1 1
. . .

. . .

−1 1


Two practical limitations of the above optimization problem are pointed out in

[Masecchia et al., 2013]. First, the absence of positivity constraint on the weights makes

it difficult to interpret the weights and the latent profiles themselves. Indeed, a copy

number gain and a copy number loss can be explained by the same latent profile with

weights of opposite signs, whereas they correspond to two markedly different biological

events. Second, because the method is applied for each chromosome independently,

it does not take advantage of the information of co-occurrence of alterations on two
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different chromosomes. In order to address these limitations, [Masecchia et al., 2013]

have proposed to add a positivity constraint on the weights, and to incorporate location-

dependent weights (θj) into the fused penalty in order to encourage breakpoints between

chromosomes to be detected. The optimization problem considered in [Masecchia et al.,

2013] is then:

min
W∈Rnp,Z∈RJp

{
‖Y −WZ‖2 + µ ‖Z‖1 + λ

∥∥∥θDZ>
∥∥∥
1

}
s.t. WiW

>
i ≤ 1, Wi � 0 ∀i = 1, . . . n, (6.3)

where θ ∈ RL−1 encode fixed weights which make it possible to consider several chromo-

somes simultaneously. In practice, these weights are set to 1 for most loci, except near

chromosome boundaries where they are“close to zero” [Masecchia et al., 2013]. Another

difference with [Nowak et al., 2011] is the use of a structured penalty on the weights wik
in order to induce sparsity along the set of weights associated to each sample separately.

From our perspective, an important practical limitation of this method is that as the

weights wik may not be interpreted as the proportion of latent profile k in sample i,

because
∑

k wik is not constrained to be 1. This issue cannot be addressed by a simple

renormalization of the weights after estimation of W: the constraint
∑

k wik = 1 must

be incorporated into the estimation procedure.

The above models [Masecchia et al., 2013, Nowak et al., 2011] have been used to

analyze total copy numbers, as measured by aCGH. However, SNP array and sequenc-

ing (WES or WGS) techniques not only measure total copy numbers but also carry

information about the LOH status of a SNP or a region. From a biological perspective,

it is, for instance, crucial to be able to differentiate a normal region with two copies

from a copy-neutral LOH (cn-LOH) regions. Cn-LOH events are for instance implied

in the inactivation of tumor suppressor genes as well as the activation of oncogenes in

microsatellite stable and microsatellite instable tumors [Melcher et al., 2011, Andersen

et al., 2006, Melcher et al., 2007].

For this reason, it is important to use the LOH information that is generally encoded

at the level of Single Nucleotide Polymorphisms (SNPs) by allelic ratios, also known as

BAF for “B allele fraction” [Staaf et al., 2008]. Recently, [Jiang et al., 2016] proposed

a model that explores the intra-tumoral heterogeneity using sequencing data and infer

phylogenetic tree of the tumor evolution and at the parent-specific copy-number (PSCN)

level. PSCNs, also known as minor and major copy numbers, correspond to the number

of DNA copies of each of the two inherited chromosomes [Olshen et al., 2011, Chen

et al., 2011, Neuvial et al., 2011, Greenman et al., 2010]. For details on the computation

of parental copy number signals, we refer to the section 1.4.3.

101



CHAPTER 6. INFERRING CANCER SUBCLONES USING PARENTAL DNA
COPY NUMBERS

Parental copy number model To address the problem of intra-tumor heterogene-

ity, [Jiang et al., 2016] have developed a new model that integrates both copy number

and mutation information from multi-sample HTS data. The data set is composed of

several samples at various time-point or at multiple locations for a single patient. The

model aims to identify the subpopulations within a tumor, determine the mutation

profiles of the subpopulations and infer the tumor’s phylogenetic tree. Authors provide

an available implementation as an R package named Canopy (copy number and single

nucleotide alteration analysis of tumor phylogeny). A Bayesian framework is used and

enables to assess the quality of inference.

The model assumes that both minor and major copy numbers follow the basic model

(5.1). That is, minor and major DNA copy number profiles for sample i ∈ {1, . . . , n}
are modeled as:

yijm =

p∑
k=1

wikzkjm + εim for m = 1, 2 , and j = 1, . . . J , (6.4)

where zkj1 is the minor copy number for the k-th latent profile at location l, zkj2 is the

major copy number for the k-th latent profile at location j. The weights are assumed

to be the same for minor and major copy numbers, as these weights correspond to the

proportion of each latent profile. Therefore, summing (6.4) for m ∈ {1, 2}, the original

latent model (5.1) is recovered.

This model aims to discover heterogeneity from HTS data, consequently, J can be

large (WGS data). To reduce the dimension and to improve the signal to noise ratio,

The analysis is performed at a segment level. Let us denote the minor and the major

copy number matrices by Y1 ∈ RS×n and Y2 ∈ RS×n respectively after segmentation.

Matrices are composed of n samples and S segments. The equation 6.5 is the equivalent

matrix form of 6.4 after segmentation of the parental copy number signals.

Ym = ZmW, for m = 1, 2 (6.5)

where Z1 ∈ NS×p and Z2 ∈ NS×p are respectively integer-valued minor and major

copy numbers matrices by assuming that there exists p subclones among the samples.

W ∈ Rp×n is the sample proportion matrix. Because, Ym are estimated on the seg-

ments (mean of the observations by segment), the model assumes that minor and major

copy are normally distributed:

Ym ∼ N (Zm, εm) for m = 1, 2 (6.6)
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For the modelisation of the mutations, the matrix containing the observed number

of mutant sequences is denoted by B ∈ Nn×L where n is still the number of samples and

L the total number of observed mutations. The number of mutations follows a binomial

distribution. For the i-th sample and the l Single-nucleotide alteration (SNA),

ril ∼ Binomial (Til,VAFil) (6.7)

where Til is the total count for sample i at position l and VAFil the probability of

the position to be a Variant allele frequency (VAF).

6.2.3 Proposed model

Considering the advantages and the drawbacks of each method, we used a similar

model that [Jiang et al., 2016]: namely, we assume that both minor and major copy

numbers follow the basic model (5.1). We wish to constrain each latent profile to be

piecewise constant, with a relatively small number of breakpoints (few alterations per

latent profiles). We also constrain the weights for each sample to sum up to 1, so

that the weight wik may be interpreted as the proportion of latent profile k in sample

i. For instance, some breakpoints will be observed only for a subset of features. In

this case where deconvolution is applied to minor and major copy number, this also

makes sense because it’s common that only one of the two parental copies changes at

each breakpoints [Neuvial et al., 2011]. As a result, we propose to solve the following

optimization problem:

min
W∈Rnp,Zm∈RJp

{
2∑

m=1

‖Ym −WZm‖2 + λm

∥∥∥DZ>m
∥∥∥
1

}
s.t. 1>p Wi = 1, Wi � 0 ∀i = 1, . . . n, (6.8)

where W and D are defined as above and

• Ym = (yijm)i=1...n,j=1...J is the n×J matrix of minor (for m = 1) and major (for

m = 2) copy number signals for each sample i = 1 . . . n,

• Zm = (zkjm)k=1...p,j=1...J is the p×J matrix of minor (for m = 1) and major (for

m = 2) copy numbers for each archetype k = 1 . . . p.

Note that as breakpoints may occur more often in one of the minor or the major

copy number signal than in the other one, we do not constrain the optimal penalty

coefficients λm to be equal for m = 1 and m = 2.

103



CHAPTER 6. INFERRING CANCER SUBCLONES USING PARENTAL DNA
COPY NUMBERS

Segmentation step As the model [Jiang et al., 2016], we perform the analysis at a

segment level in order to reduce dimension and improve the signal to noise ratio. By

using the package jointseg [Pierre-Jean et al., 2015], it is possible to jointly segment

TCN and DoH on the whole dataset, that is, simultaneously on all samples. We use

the fast and efficient Recursive Binary Segmentation (RBS) method to find candidate

breakpoints [Gey and Lebarbier, 2008], and prune these candidates using dynamic

programming [Harchaoui and Lévy-Leduc, 2008, Bleakley and Vert, 2011] and section.

2.2.6). We compute the average TCN and DoH within each segment s for s = 1, . . . S,

where S − 1 is the number of breakpoints, as:

cis =
1

|s|
∑
j∈s

cij for ,

dis =
1

|s|
∑
j∈s

dij for ,

where i = 1, . . . , n denotes the i-th sample and |s| the number of data points in segment

s. Then minor and major copy number estimations by segments are defined by,

yis1 = cis(1− dis)/2

and

yis2 = cis(1 + dis)/2,

respectively.

We point out here that contrary to the model in [Jiang et al., 2016], our proposed

model can be applied on data from microarray but also to discover inter-tumoral het-

erogeneity.

The table 6.1 summarizes the features of methods reviewed above.

Reference Nowak et al. Masecchia et al. Jiang et al. Our method

Intra-heterogeneity?
√ √ √ √

Inter-heterogeneity?
√ √

-
√

Microarray application?
√

- -
√

HTS application?
√

-
√ √

Mutation information? - -
√

-

Using BAF information? - -
√ √

Whole genome application? -
√ √ √

Available as an R package?
√

-
√ √

Table 6.1 – Features of existing models.
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6.3 Estimation procedure

6.3.1 Algorithm

Several types of inference methods could be considered to tackle the problem of inferring

latent profiles and weights in our model. We used the alternative optimization of the

different parameters when the others are fixed. This is a common method used for

NMF models but also for archetypal analysis (see section 5.4).

Even though the optimization problem (6.8) is not jointly convex in (W, Z1, Z2),

it is convex with respect to each variable W or Z1 or Z2 when the other two are held

fixed. A natural way of optimizing the cost function 6.8 is, therefore, to alternate the

minimization between W and Z1 and Z2, fixing one of the parameters and optimizing

with respect to the others. This is what we describe in Algorithm 5.

Data: Minor copy number profile Y1, major copy number profile Y2, penalty

coefficients λ1 and λ2;

Parameters : Number of latent profiles p, maximal number of iterations T ;

Result: Minor and major latent profiles denoted by Ẑ1 and Ẑ2; weight matrix

Ŵ;

Initialization: Clustering on total copy numbers Y = Y1 + Y2 by considering

loci as variables ;

Selection of p clusters ;

Z
(0)
1 : mean of minor copy number profiles by each cluster ;

Z
(0)
2 : mean of major copy number profiles by each cluster ;

for t← 1, . . . T do

W(t) ← arg min
W∈Rnp

2∑
m=1

∥∥∥Ym −WZ(t−1)
m

∥∥∥2 s.t. 1pWi = 1, Wi � 0,;

Z
(t)
1 ← arg min

Z1∈RSp
‖Y1 −W(t)Z1‖2 + λ1‖DZ>1 ‖1;

Z
(t)
2 ← arg min

Z2∈RSp
‖Y2 −W(t)Z2‖2 + λ2‖DZ>2 ‖1;

Algorithm 5: Estimation of minor and major copy number latent profiles and

weight matrix.

We show in section 6.3.3 that the update of W(t) involves solving a linear inverse

problem, and that the updates of Z
(t)
1 and Z

(t)
2 can be reduced to a Lasso problem.

Therefore, Algorithm 5 may be implemented using standard optimization tools. Our

implementation relies on the R packages limSolve and glmnet [den Meersche et al.,
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2009, Friedman et al., 2010].

6.3.2 Initialization

As noted above, as problem (6.8) is not jointly convex in (W, Z1, Z2), we have no

formal guarantee that Algorithm 5 will reach a global minimum. We emphasize that

this was also the case for the optimization problems (6.2) and (6.3) studied in [Nowak

et al., 2011, Masecchia et al., 2013]. One possible way to overcome this issue is to run

the algorithm with a range of different initial values (such as p randomly selected rows

of Y), and choose the final estimate that minimizes the loss. Instead, [Nowak et al.,

2011] proposed to initialize with the p first principal components of Y. Here, we choose

to initialize our algorithm by performing a clustering with p classes on the matrix Y

by considering loci as variables. We use a hierarchical clustering using Ward’s method

[Ward Jr, 1963] computed on Y. Letting Ck be the k-th cluster, the initial values for

Z1 and Z2 are:

z
(0)
ksm =

1

Card(Ck)
∑
i∈Ck

yism for m = 1, 2

We have compared the performance of this initialization with the above-mentioned

approach with multiple randomly selected starting points. We now show that our

proposed initialization algorithm provided fairly good results in term of minimization

of loss while remaining substantially faster than the other option.

We perform experiments on a toy example (30 simulated profiles with 5000 loci and

6 breakpoints in latent profiles). For a model with 4 latent profiles and one couple of

(λ1, λ2), performing the random initialization over 100 replications takes approximately

70s on a standard laptop contrary to clustering initialization that takes 0.84s. Assuming

that we would like to explore 10 values for each λ1 and λ2, the random initialization

takes around 2 hours just for 4 latent profiles while clustering initialization takes around

2 minutes.

Results in terms of loss provided by the clustering initialization are close to the av-

erage of the loss provided by random initialization. Consequently, using this clustering

to initialize Z is a good compromise between time and performance (Fig. 6.2). It is

obvious that using clustering to initialize the algorithm will be less time consuming if

we deal with larger data set for instance several chromosomes (namely potentially more

breakpoints).

A solution to be the closest to the optimum of (6.8) could be to perform first clus-

tering initialization, choose the best couple (λ1, λ2) and run another time the algorithm

by taking random initialization.

106



CHAPTER 6. INFERRING CANCER SUBCLONES USING PARENTAL DNA
COPY NUMBERS

●

●

●
●

●

●

●

0

5

10

15

random

Lo
ss

Figure 6.2 – A comparison between 100 random initializations (boxplot) and the clustering

initialization (red line) in terms of loss (Toy example).

6.3.3 Solving the optmization problem (6.8)

Solving in W Assume that Zm are given. We need to solve (6.8) in W, which is

equivalent to solving

min
W∈Rnp

M∑
m=1

‖Ym −WZm‖2 s.t. 1>p Wi = 1, Wi � 0, (6.9)

The weights of each patient can be treated independently. We thus consider patient

i with weights ω , Wi and drop the corresponding index for clarity purpose. The

corresponding optimization problem is

min
ω∈Rp

M∑
m=1

∥∥∥ym − Z>mω
∥∥∥2 s.t. 1>p ω = 1, ω � 0, (6.10)

where ym ∈ RS are the CNV at each locus in signal m for patient i. The above problem

is equivalent to

arg min
ω∈Rp

∥∥∥ỹ − Z̃ω
∥∥∥2 s.t. 1>p ω = 1, ω � 0, (6.11)

where ỹ = (y1, . . . ,yM ) ∈ RSM and Z̃ = (Z1, . . . ,ZM ) ∈ RSM×p are obtained by

stacking the M components of y and Z.
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Problem (6.11) is a least-squares problem with equality constraint plus inequality

constraints for the non-negativity of the coefficient. This is a linear inverse problem

that can be solved in R with the package limSolve.

Solving in Z

Lemma 3. The problem of solving (6.8) for a fixed W can be cut into two independent

LASSO problems in (Z1,Z2).

The proof of lemma 3 is given in Appendix D.

6.3.4 Parameter selection

The optimal values of λ1, λ2 and p are unknown. This section is inspired of the

approaches used in [Nowak et al., 2011, Masecchia et al., 2013]. We propose to (i)

select the appropriate values of λ1 and λ2 for a fixed p and (ii) choose p. For each p,

we explore a grid of values for λs.

In order to select the best model for a fixed number of latent profiles p, we use the

Bayesian Information Criterion (BIC) [Schwarz et al., 1978] adapted to our context.

We search to minimize :

(nS)× log

(
‖Y − ŴẐ‖2

nS

)
+ k(Ẑ) log(nS) (6.12)

where Ẑ = Ẑ1 + Ẑ2 corresponds to the estimated total copy number latent profiles, and

k(Ẑ) =
∑2

m=1

∑p
k=1

∑S−1
s=1 1{ẑk(s+1)m 6=ẑksm} is the total number of breakpoints across

all latent profiles. This criterion enables us to strike a balance between over-fit and

under-fit models. Once the optimal values of the tuning parameters are selected for

each value of p, the next step is to choose the best number of latent profiles. We use

the percentage of variation explained (PVE) for each p. The PVE is defined by the

following:

PVE(p) = 1− ‖Y − ŴẐ‖2
‖Y −Y‖2

, (6.13)

where Y is a n × S matrix whose i-th row is identically equal to
∑S

s=1 yis/S, that is,

the mean total copy number signal of sample i. Following [Nowak et al., 2011], we

assume that PVE(p) reaches a plateau when p is larger than the optimal number of

latent profiles in the model. Therefore, we propose to select the value of p at which the

PVE reaches a plateau.
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6.3.5 Implementation

The method proposed in this Chapter is implemented in an R package named InCaSCN

(Inferring Cancer Subclone using copy number signals). The package includes scripts

to reproduce the experiments described in this chapter but is not yet publicly available.

The vignette of the R package is presented in the last part of the thesis in Appendix

E.3.

6.4 Simulation study

6.4.1 Setting

We simulated 100 data sets composed of 30 tumor samples and 5 latent profiles with

alterations with the following characteristics:

• Each matrix W is different for the 100 data sets but the latent profiles are the

same across the data sets.

• The simulated samples before segmentation contain J = 24, 000 loci, including

one-third of heterozygous SNPs.

• Each tumor sample is composed of a mixture of at least two different latent

profiles including normal.

To simulate latent profiles, we have annotated a new dataset with a very low con-

tamination by normal cells. Then, we proceeded by resampling as explained in Chapter

3 to create the latent profiles.

We simulate, the latent profiles with the following characteristics:

• Each latent profile is represented at a proportion between 20 and 60%.

• For two different latent profiles, the change-points do not occur at the same

locations except for two simulated latent profiles.

We present the simulated latent profiles in Figure 6.3. The breakpoints of latent pro-

files 3 and 6 occur at the same locations, however, the middle region is cn-LOH in

latent profile 3, and normal in latent profile 6. These two types of regions cannot be

distinguished by looking at the TCN signal but identifiable from parental copy numbers

(see section 1.4.3).

109



CHAPTER 6. INFERRING CANCER SUBCLONES USING PARENTAL DNA
COPY NUMBERS

Figure 6.3 – Simulated latent profiles

Two examples of simulated total copy number profiles are presented in Fig. 6.4.

These examples are the noisy versions of the profiles shown in Fig. 6.1 (b). Vertical red

lines represent the true segmentation, while green and yellow segments represent the

mean after a joint segmentation of the two samples. Even if the segmentation is the

same for the two samples, and therefore the yellow sample has to be oversegmented,

the yellow sample appears to get the correct number of segments. Indeed, the means

of the yellow sample before and after the breakpoints that are not true breakpoints in

this signal are very close and seem to be same.

6.4.2 Parameters of the model

For InCaSCN, for λ1 and λ2 parameters, we choose a grid of 10 values between 10−6

and 10−5. This range of values is small because we are not in a high dimensional case,

since n > p and S is small. The number of candidate latent profiles p varies between 2

and 14.
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Figure 6.4 – Example of a simulated profile.

6.4.3 Comparison with other methods

Our algorithm has been applied to the matrices (Y1,Y2) (minor and major copy num-

ber signals), but also on the corresponding total copy number estimates Y = Y1 + Y2

for direct comparison with existing methods. We compare the results of InCaSCN with

those of FLLAT1. Our initial objective was to compare with e-FLLAT as well, but the

available implementation was not applicable to profiles of length J = 24, 0002.

Therefore, we compared performance of three methods namely:

• InCaSCN on parental copy number profiles

• FLLAT on total copy number profiles

1FLLAT is implemented as an R package available from CRAN: https://cran.r-project.org/

web/packages/FLLat/index.html.
2No implementation of e-FLLAT is currently available from the authors’ website or public reposi-

tories. Upon our request the authors gave us access to a repository containing 64 Python scripts and

C code implementing their approach. Despite our efforts in obtaining results with this implementa-

tion, we found that it was too time and memory-consuming to process profiles of length J = 24, 000.

Our attempts with profiles of length 2, 400 were not successful either, even after pre-segmentation of

these profiles. For comparison, it took more than 24 hours to obtain the results of the method for

only 3 candidate values of p on the example data set provided with this implementation (J = 500

loci, n = 30 input copy-number profiles). The very high memory footprint of this implementation

(dozens of gigabytes of RAM) also prevented us from running this method in parallel on several data

sets. The maintainer confirmed that the current implementation was indeed unexpectedly time and

memory-consuming.
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• InCaSCN on total copy number profiles

In this section, we present a setting of simulations to show the ability of InCaSCN

method of inferring accurately the latent parental copy number profiles and the weight

matrix. Performance evaluation was done at three levels. The first one is the ability

to recover the correct number of latent profiles that composed the data set (p̂), The

second one is the ability to reconstruct samples (Ŷ). However, even if it is crucial to well

recover the observed profiles, recover them entirely depends on the inference of weights

and latent profiles. Thus, it is important to also evaluate how these two components

are similar to the true ones. Therefore the last one is the ability to properly recover

the weights and the latent profiles (Ŵ and Ẑ).

Evaluation at the level of reconstructed profiles

For each value of p, for InCaSCN, we keep only the best combination (λp1, λ
p
2) to com-

pute the PVE defined by equation (6.13) as explained in section 6.3.4. On the other

hand, FLLAT proposes to compute the PVE for each p for only one particular set of

coefficients of penalties. Then, after the choice of p, the algorithm is run one more

time in order to tune the penalty coefficients. The PVE measures the percentage of

variation explained by the model.

Evaluation at the level of inferred weights

One possible way to evaluate the quality of the inference of weights is to compare W

and Ŵ by directly comparing their values. However, it is not guaranteed that latent

profiles are in the same order in W and Ŵ. For this reason, we compute a correlation

measure described by equation 6.14:

corr(ŵ•k′ , w•k) =
1

n
Card({i ∈ {1, . . . n} such that |ŵik′ − wik| < ε}) (6.14)

where k′ = 1, . . . , p̂ and k = 1, . . . , p and we consider ε = 0.1 (variation of 10% between

the truth and the estimation). Then, for each w•k there exists a ŵk̂ such that hatk =

arg maxk′ corr(ŵ•k′ , w•k). We define a loss as:

C(W,Ŵ) =

p∑
k=1

‖w•k − ŵ•k̂‖22 (6.15)

We consider another one metric based on the fact that one of the purposes of this

model is to detect heterogeneity in tumor samples. A way to achieve this goal is to
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look at the weight matrix that reflects the composition of each sample. We compute a

rand index [Rand, 1971] between clustering on W (that contains the true composition

of profiles) and clustering on Ŵ for each method: rand(W,Ŵ). We use the euclidean

distance computed on matrices W and Ŵ associated to the Ward’s method [Ward Jr,

1963]. The number of clusters is the number of latent profiles namely p̂ and p for Ŵ

and W respectively. This evaluation method does not require to perform the matching

between the inferred and true latent profiles. It also take it possible to compare the

two matrices Ŵ and W even if p̂ 6= p.

Evaluation at the level of inferred latent profiles

Recover the actual composition of the observed profiles is important but another im-

portant point is to recover the good features of each latent profiles. Indeed, the final

aim is to detect genetic biomarkers that may be linked to the resistance to the drugs for

example. Therefore, detecting the relevant losses and gains is crucial to help biologists

to develop original targeted treatments.

We perform a ROC curve based evaluation on latent profiles. FLLAT does not

segment initial data so that the signal length of Ẑ is the same than the signal length

of Y i.e J . In our case, because of the segmentation step, it requires to “expand” each

latent profile that composes the matrix Ẑ. In other terms, instead of dealing with a

p× S matrix, we perform the evaluation of the expanded p× J matrix.

We collect each region simulated as altered (gain, loss or cnLOH), and check whether

these regions can be considered as altered in estimated latent profiles, with a tolerance

parameter that varies between 0 and 1. In each region simulated as altered, for FLLat

and InCaSCN on TCN, we check if TCN is larger or smaller than the basal level of a

normal region with a certain tolerance.

A toy example is shown in Fig. 6.5 to illustrate how observations are partitioned

(considering the basal level of a normal region equal to 2) in true positives (TP), false

positives (FP), true negatives (TN) and false negatives (FN). We define the negatives as

loci considered as conversely by the considered method (filled and empty blue circles)

i.e. all loci that are in the tolerance area (gray band). All loci out of the area are

considered as altered (filled and empty red circles). Then, all loci that are in a region

that is considered as normal in annotated data set and that are in the gray area are

TN (blue filled circles). The loci that are in a region considered as not normal in the

annotated data set and that are not in the gray area are considered as TP (red filled

circles).

Note that in this evaluation, we do not distinguish losses from gains but only altered
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regions from normal regions. This is in favor of FLLAT because the model can consider

a gain as a loss in a tumor sample by using a negative weight.
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Figure 6.5 – Definition of True Positive (TP), False Positive (FP) and False Negative (FN).

Grey area defined the tolerance area for which the loci within are considered as negative.

6.4.4 Results

Good performance for the model selection

The plateau of PVE curves begins at p̂ = 5 for the both FLLat and InCaSCN. This

means that after p̂ = 5 latent profiles adding another one does not improve the recon-

struction of the matrix Y. We recover all latent profiles in most cases for the three

methods. For the three methods, the normal latent profile is not recovered. This is

probably due to the weak proportion of the normal component in samples (around 20%)

or by the fact that the other inferred latent profiles are shrink toward the basal levels.

This component is not essential to recover genetic biomarkers associated with the drug
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Figure 6.6 – Percentage of variation explained (PVE) as a function of the number of latent

profiles p

resistance. Improvement about this drawback will be discussed in the conclusion of

this Chapter.

Reconstruction of profiles is better with InCaSCN

We can also conclude from Fig. 6.6 that InCaSCN perfectly explains the variance of

the observations, unlike FLLAT. After further analysis, we conclude that it is probably

due to the tuning of the penalty coefficients that makes latent profiles too flat. For

these experiments, we have used the default tuning of the package. However, the results

of PVE from FLLat in our simulations are coherent with the results presented in the

initial article [Nowak et al., 2011].

Better estimation and interpretation of weights by using InCaSCN

In this section, we present the ability of the InCaSCN method to recover the simulated

weights. Even if in our simulations the weights are all positive, and positive weights

are admissible in the FLLat model, this method is not able to estimate them properly
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Figure 6.7 – Distribution of loss of matrix weight: C(W,Ŵ)

(Fig. 6.7). In fact, the weight matrix of FLLAT appears to be far from the truth,

unlike weights inferred by InCaSCN. The weights from InCaSCN are pretty close to

the true ones even when only the TCN is used (Fig. 6.7). We present the results of

the rand index between the clustering on inferred weights and on the true ones. The

performance of InCaSCN and FLLat are presented in Fig. 6.8. Globally, the methods

applied on TCN provide similar results and using parental copy numbers in our model

clearly improves the clustering. To conclude, by comparing InCaSCN on parental

copy number profiles and InCaSCN on TCN profiles, it is clear that it is very useful

to include the BAF information in our model. This huge difference in performance

between the two models is probably due to the simulated latent profiles 3 and 6 that

are not identifiable when only TCN is used.

Inferred latent profiles from InCaSCN recover the true alterations.

Finally, the last point of this evaluation is to confirm that inferred latent profiles are

well reconstructed. We summarize the ROC curves introduced in section 6.4.3 of each

simulation data set by their respective AUC (area under the curve). The closer AUC

is to 1, the better is the detection of alterations. The performance of InCaSCN and
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Figure 6.8 – Rand index distributions across 100 simulations between clustering on W and Ŵ

for each method.

FLLat are presented in Fig. 6.9 for their respective inferred latent profiles. First,

InCaSCN is better than FLLAT even when only the TCN is used. This can be due to

the poor calibration of penalties that force latent profiles to be equal to 0 at a large

number of loci. Then, it is clear that using parental copy numbers helps to recover more

alterations. This gain between InCaSCN applied on TCN and applied on parental copy

numbers is probably due to all cn-LOH regions detected with parental copy numbers

but not with total copy number.

6.4.5 Summary of the results

InCaSCN enables to recover both simulated latent profiles when the weight is high

enough and weights with a small error. The results on realistic simulation framework

are very promising for the application to real data sets. In addition, it was no obvious

that our proposed model would be able to recover the true latent profiles. Indeed,

because of saturation phenomenon on microarrays, ploidy and cellularity of samples,

for instance, the TCN of a normal region or copy neutral LOH is not perfectly centered

at 2 like TCN of a region gain is not centered at 3 (see Fig. 8.6 in Chap. 8). This
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Figure 6.9 – AUC distribution across 100 simulations (detection of alterations in latent profiles).

could disturb inference of latent profiles and then the inference of weights. In the next

chapter, we present the results of InCaSCN on two real data sets and we show that

inference of heterogeneity is useful to improve discovering of the composition of the

sample (weight inference) and of molecular targets (latent profiles inference).

6.5 Conclusion

In this Chapter, we proposed a method that we called InCaSCN (Inferring Cancer

Subclone by using Copy Number) that is an extension of previous latent models. Our

model integrates the BAF information and new more interpretable constraints. Our

simulations show that our model outperforms the existing method at several levels

but also that it is crucial to take into account the BAF information to discover the

cn-LOH regions. In addition, the model gives a sparse representation of the observed

signal within the meaning that the starting signal is of length J is explained at the

end by a vector of weights of length p � J . By means of the segmentation step and

fused constraints in the model, the latent profiles contain only a few breakpoints that

is an advantage for the biological interpretation. The segmentation step gives also the
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advantage to get a fast algorithm that enables to apply it on the whole genome and

therefore discover co-occurring alterations in several chromosomes. We conclude that

this statistical model may help to more accurately discover frequent alterations and

also characteristic subgroups of patients.

An important point that could be improved is that the level of sparsity is the same

for all latent profiles. This implies the same number of breakpoints between two latent

profiles but there is no reason to have this constraint. A solution to deal with this issue

will be to penalize differently each latent profile even if it could be time-consuming.

Indeed, this induces the tuning of a larger number of penalty coefficients. Another

improvement could be the inclusion of a new parameter in the model in order to take

into account the different values of the ploidy and the cellularity for each sample.

In the R package Canopy, toy data sets are available and it could be interesting to

compare the results of the two methods. As the package is very recent, this comparison

has not been done yet.

To summarize, InCaSCN is relatively efficient and fast due to the segmentation step

and can be applied to real data sets either with a large number of patient or a large

number of biomarkers. We applied the model on two real data experiments in the next

chapter.
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Chapter 7

Application to real data

In this chapter, we present two applications to real data of InCaSCN method presented

in the previous chapter. The first application is from a public data set on ovarian

cancer. The second one is from collaboration with Institut Curie on breast cancer.

These two applications aim to demonstrate that is possible to use the model in real

cases and to illustrate what kind of conclusions can be drawn from these analyses.

7.1 Application to high grade serous ovarian cancer

7.1.1 A brief introduction to ovarian cancer

High grade serous ovarian cancer (HGSOC) is the most common one among all ovar-

ian cancer cases (70%) but unfortunately also the most malignant. Recent researches

highlighted that finally the majority of the HGSOC starts in the fallopian tube and not

in the ovary. Because of this location, tumor cells spread quickly through the entire

abdomen and by the time symptoms often appear when cancer reached a high stage.

Therefore, the survival for patients is often weak. The overall survival of women with

HGSOC has not changed in over 50 years [Kurman, 2013], and some screening studies

carried out over the past two decades have failed to provide a survival benefit. At a

genetic level, HGSOC is generally characterized by a high frequency of somatic DNA

copy number variations. A recent study of the intra-tumor genetic heterogeneity in the

HGSOC demonstrated that specific copy number alterations can occur in subclonal

populations and lead to resistant metastases [Schwarz et al., 2015].
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7.1.2 Study design and data

The public data set studied in [Schwarz et al., 2015] is composed of 177 samples at

various time points and anatomic locations for 18 patients. Therefore, there are several

samples for each patient. The DNA copy number profiles were obtained from Affymetrix

Genome-Wide SNP6.0 arrays. The raw data are available under the GEO accession

number GSE40546.

In this application, we focus on patient 8 of this study for which 11 samples are

available. The patient was treated with neo-adjuvant and responded partially to the

drug. Physicians observed a reduction of 24% of the primary tumor.

In this data set, no matched normal samples were publicly available. For this reason,

we normalized the total DNA copy number signals by dividing the tumor samples

of patient 8 by a weighted mean of the TCN signals from the other samples. The

weights were chosen such that each patient has the same weight regardless of its number

samples. Then DoH signals were estimated within each segment after a segmentation

done on total copy number signals by the method described in Chapter 8.

7.1.3 Tumoral heterogeneity results

After performing the joint segmentation of the 11 tumor samples chromosome by chro-

mosome, we have recovered 221 segments across the 22 autosomal chromosomes. We

applied InCaSCN and we selected 4 latent profiles according to Fig. 7.1. With 4 latent

profiles, the model explains the matrix of TCN signals at 98% .
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Figure 7.1 – PVE of InCaSCN model on a public the data set GSE40546
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The results show that the InCaSCN model helps to highlight clones that can char-

acterize clonal expansion. Indeed, we see in Fig. 7.2 that ascites and ovarian tissues

have typical alterations and not systematically present in omemtum tissues.

The alterations in ascites may come from a resistant clone to the drug and which was

initially in the primary tumor located in omemtum and ovarian tissues. The ovarian

sample is mostly composed of two latent profiles, whose one is only present is exclusive

to the ovarian tissue (latent profile 3). The latent profile 3 may be very specific to

ovarian tissue and non-resistant to the drugs. Indeed, this latent profile is not present

in relapses, same conclusions may be drawn for latent profiles 1 and 2 (Fig. 7.2), they

are not present in the relapses either.

In conclusion, for this patient, there may exist only one resistant “clone “to the

drugs that led to a relapse. The “clone” (latent profile 4) is characterized by large and

high frequent amplifications across the whole genome. We can also note that there is

a large part at beginning (before 15Mb) of chromosome 9 that is amplified following

by a small cn-LOH region that is not present in the other latent profiles (Fig. 7.3).

Therefore it may be interesting to explore if there are not known genes that can be

responsible for the resistance.
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Figure 7.2 – Inferred weight matrix for patient 8 from dataset GSE40546
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7.1.4 Short conclusion

The resulting latent profiles are difficult to interpret in terms of major and minor copy

number in this example. This is probably due to the fact that jumps occur at the same

location in the two dimensions (minor and major copy signals) that is biologically

unlikely.

Another possible reason is the poor quality of the DoH estimations. As we do not

dispose of the true genotypes, it was difficult to normalize BAF signal to obtain clean

signals in terms of minor and major copy numbers. Therefore, the minor and major

copy number signals could be not well estimated in some regions and jumps can occur

in the original signals.

However, to conclude, the model provides a weight matrix that seems to be easy to

interpret.
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Figure 7.3 – Inferred latent profiles of chromosome 9 for patient 8 from dataset GSE40546 (top

left:minor copy number, top right:major copy number and bottom:total copy number)
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7.2 Collaboration with Institut Curie

This section summarizes a collaboration with the Fabien Reyal’s team of Institut Curie

started in 2014. The aim of this project is to better understand the different mechanisms

of resistance of Triple negative breast cancer (TNBC) to classical therapies.

As TNBC is a very heterogeneous cancer, one important question to achieve this

goal is highlight subgroups from DNA and RNA sequencing data. A similar work has

recently performed in [Burstein et al., 2015]. After a brief introduction on the TNBC,

we describe the study design and the WES data used. Then, we apply the InCaSCN

model in order to characterize DNA copy number profiles of TNBC. First, we apply

the model to TCN signals, and then to parental copy number signals.

7.2.1 Introduction to breast cancer

Nowadays, patients with a breast cancer can have a good chance to be cured. However,

it is well known that there exist several breast cancers subtypes that require adapted

treatments. The most common subtype is the Estrogen receptor (ER)-positive (80%).

The drugs help to stop tumor cell growth by blocking estrogen hormone receptors. The

most second frequent one is the Progesterone receptor (PR)-positive breast cancer,

tumor cells grow in response to the progesterone hormone and the treatments help by

blocking the associated receptors. The third most frequent one concerns patients with

an amplification of the HER2 gene. This proto-oncogene helps to control how a healthy

breast cell grows, divides and repairs. Patients who suffer from these three types of

breast cancer have generally a good prognosis with the adapted hormonal therapies.

The rest of the breast cancers but the most aggressive cancer is the TNBC for

which all receptors (ER, PR, and HER2 gene) are negative. It doesn’t exist any spe-

cific and appropriate drugs to cure patients with this kind of cancer. Therefore, the

survival prognosis of the patients suffering from TNBC is very poor. Previously, it was

assumed that TNBC had specific features compared to the other breast cancers and

that there existed a homogeneity within the patients suffering from TNBC. However,

several studies have been conducted to analyze genomic profiles and it has been sug-

gested that TNBC is, in fact, a heterogeneous disease and that it existed subgroups or

subtypes. [Burstein et al., 2015] investigated 198 mRNA expression and DNA profiles

of uncharacterized TNBC and concluded that TNBC may be divided into four stable

subtypes by their expression profiles:

• luminal androgen receptor (AR; LAR),
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• mesenchymal (MES),

• basal-like immunosuppressed (BLIS)

• basal- like immune-activated (BLIA)

In contrary, DNA profiles only produced two major groups (LAR and MES/BLIS/BLIA).

These four subtypes may lead to various prognoses.

7.2.2 Study design and data

Design

Institut Curie selected 16 patients who have been affected by a TNBC. First, a micro-

biopsy of the Primary tumor (PT) has been done at diagnosis, then all patients received

8 cycles of a combination of Anthracycline and Taxanes as neoadjuvant chemotherapy

before surgery, where the Residuals (RES) of the tumor has been removed. In addition,

for some patients, some tumor cells have migrated to the Lymph node (LN). Samples to

study characteristics of TNBC have been collected at level of PT, RES and LN when it

was possible. The residual samples are available for all patients, the PT sample of the

patient 34 (due to a mistake in the labeling) is finally not available and 6 patients had

metastases in the lymph node. Paired normal samples are available for only 12 patients

(indeed, at the starting of the study, the paired normal samples were not available but

they were one year after the tumor ones (2015), all reference samples are not available

for a reason of non-consent or of the death of patients).

Available data

Institut Curie produced sequencing data from DNA and RNA samples in order to

analyze features of the TNBC. Indeed, this enables to study simultaneously mutations,

DNA copy number or gene expression profiles. In this study, both RNAseq data and

WES data for each PT, RES and LN sample are available. We refer to section 1.3.2 for

more details on this sequencing technology. We only deal with the WES data in the

following.

The samples have been sequenced with Illumina Hi-Seq 2500 pair-end technology

aligned on the reference genome hg19 with the BWA algorithm [Li and Durbin, 2009].

The sequencing depth was 100x for all the tumor samples and 30x for the paired normal

ones with 100bp-length reads (short DNA sequences of length 100 bp). This means that

on average, there are 100 reads that are aligned to each targeted position.

127



CHAPTER 7. APPLICATION TO REAL DATA

Institut Curie supplied us with 38 bam files for the tumor samples and 12 bam files

for the normal samples. The bam files are the binary format of sam files. sam are

TAB-delimited text formats which are the outputs from aligners that read FASTQ files

and assign the sequences to a position with respect to a known reference genome (here

hg19).

Our goal in this study was to take into account tumor heterogeneity in order to

discover common DNA copy alterations that may explain drug resistance. Estimat-

ing DNA copy number from WES data without paired normal was an issue that few

bioinformatic tools address. We explain in detail this part in Chapter 9. However, we

succeeded to estimate DNA copy number signals for each sample (even for those for

which the paired references were not available) but also DoH signals. This enabled us

to compute parental copy number signal estimates.

7.2.3 Heterogeneity exploration on total copy number

We attempted to discover common alterations between patients of this study. In this

section, we applied our model proposed in Chapter 6 on the TCN since CNVkit algo-

rithm has provided quite good estimations of total DNA copy number profiles (Chapter

9).

We segment all 38 available samples jointly using RBS+DP algorithm described in

Chapter 2. Then, we applied the InCaSCN model proposed model in Chapter 6 to

infer heterogeneity for 3 values of λ (the penalty coefficient for the latent copy number

profiles) and for a number of latent profiles varying between 5 and 19. For each value

of p, the model provides a PVE (Percentage of variation explained, see section 6.3.4

for details) larger than 90%. If the poor result of PVE14 is omitted, it seems that the

plateau of the PVE curve starts at p = 13 and in addition, the PVE is larger that 95%,

therefore we select the model with p = 13 latent profiles (Fig. 7.4).

The results at a level of weight matrix are presented in Fig. 7.5. We can note

that the samples are grouped by patients. Patients 36 and 56 are clearly grouped

by their triplet contrary to patient 40 where the residual sample is far from LN and

PT. This may be due to a new mutation that occurred after the initial treatment. It

is well known that neo-adjuvant treatments have more difficulty to reach the lymph

nodes, and as a result metastases in lymph nodes is likely closer to PT sample than

to RES sample. For patient 7, PT sample which is not grouped with LN and RES.

However, all 3 samples are in the same branch of the tree and there are no significantly

supplementary latent profiles in the LN and RES. Then, it seems that no major event

occurred between before and after the drug intake for the copy number perspective.
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Figure 7.4 – PVE results of InCaSCN method on WES data from Institut Curie

However, latent profiles 2, 7 and 13 are common to several patients. Hence, it could

be interesting to further study these latent profiles. Note that the PT sample of the

patient 34 is completely isolated. As explained in the table, in fact, PT34 does not

belong to the patient 34. If we look at the correlation between latent profiles 2 and 7

it appears that, in fact, they are very similar. Alterations in these latent profiles are

probably common to the whole dataset. This was also the conclusion of authors in

article [Burstein et al., 2015] for instance for CDKN2A gene, a tumor suppressor gene,

which is deleted. This gene is between 21,97 and 22 Mb on the chromosome 9, and

latent profile 13 is well characterized by a large region that has been lost (Fig.7.6) .

To summarize, two groups appear clearly after the clustering on the weight matrix,

where the first group is characterized by the latent profile 13. Then, it appears that the

groups are done at the patient level. Some latent profiles reach high values. However,

these extreme values are probably compensated by low weights. Estimations of TCN

from WES data likely contain high extreme values despite filtering.

This was the first analysis that has been conducted on this data set. Then, it has

been possible to compute parental copy numbers thanks to the method described in

Chapter 9. We are going to present the results of InCaS-CN model on the parental
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Figure 7.5 – Heatmap of weight matrix from InCaSCN method on WES data from Institut

Curie

copy number signals in the next section.

7.2.4 Heterogeneity exploration on parental copy numbers

By means of the sequenza tool, it has been possible to compute the DoH and therefore

the parental copy number signals (see Chapter 9). The DoH signals have been computed

for the 12 patients with paired normal samples. The resolution scale of DoH was lower

than the TCN. We perform the joint segmentation step on the TCN signals and we

compute the DoH and the parental copy number signals at a segment level. We applied

the heterogeneity model proposed in the previous Chapter to the parental copy number

signals of a sub-data set. As for the TCN model, we selected 13 latent profiles according

to the Fig. 7.7. The selected model reaches a PVE of 88% in this case.

At a first look of the inferred weight matrix, it appears that there is only one latent

profile common across the patients (Fig.7.8). In addition, as for the model on the

TCN, the patients are grouped together. In other terms, PT, RES, and LN (when it is

available) samples of same patients are grouped in the same cluster. This is the case for
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Figure 7.6 – Latent profiles extract from InCaSCN method on WES data from Institut Curie.

●

●

●

●

●

●

●

●
● ●

● ●

0.6

0.7

0.8

0.9

1.0

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Number of latent profiles

P
V

E

Figure 7.7 – PVE results of InCaSCN method on WES data from Institut Curie

the patients 56 and 36 for instance. PT and RES are grouped in patients 32, 43, 35, 29,

1 and 27 . As expected, PT of patient 34 does not share latent profiles with the others.

In the same way, as the conclusion from the model on TCN, PT and LN samples of

patient 40 are not grouped with its respective RES sample. Therefore, RES40 is may

be composed of one clone from PT that was resistant to the drugs. In addition, it is

clear that the proportion of the resistant latent profile increases in RES.

PT and RES of the patient 50 are not grouped but share a common latent profile. A

similar conclusion than for the patient 40 can be drawn. For these two patients, it seems

that the resistant clone is already present in PT and becomes largely predominant in

RES.

To summarize these conclusions, we highlight the fact that DNA copy number

profiles of TNBC data set are really heterogeneous and there are a few alterations

common between patients.

By looking at some latent profiles (Fig.7.9), it appears that each has its own char-

acteristics in terms of copy number variations.
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Figure 7.8 – Heatmap of weight matrix from InCaSCN method on WES data from Institut

Curie run on parental copy numbers
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Figure 7.9 – Latent profiles extracted from InCaSCN method on WES data from Institut Curie

(TCN on top, C1 on the middle and C2 on the bottom)
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7.3 Conclusion and perspectives

For the first application, in addition to a similar phylogenetic tree to those shown in

[Schwarz et al., 2015], our model is able to detect a resistant latent profile that was

already present in the primary tumor. The exploration of these latent profiles could

provide new genetic biomarker targets and help to develop original adapted drugs.

This chapter also summarizes a work done in collaboration with Institut Curie.

This collaboration enabled to apply our developed model on a completely new raw

data set. However, it is difficult to draw relevant biological conclusions at this stage.

Although some patients were grouped after clustering, it appears that TNBC remains a

heterogeneous disease for which it is difficult to highlight relevant biomarkers. Similar

conclusions have been drawn from the analysis of the RNAseq data performed by

Benjamin Sadacca.

Therefore, a key point of this Chapter is that we were able to apply the InCaSCN

model on two different kinds of data sets. First, data from two technologies have

been used (microarray and sequencing). Then, the model has been used to attempt

to explain both intra and inter-tumoral heterogeneity. It could be interesting for the

second one type of heterogeneity to apply the model to a study with a similar design

than those of Institut Curie but on a less heterogeneous cancer type.

For both real data sets, we discovered that the inferred parental copy numbers

present breakpoints simultaneously in minor and major copy number signals. However,

such phenomenon is unlikely because it means that two major alterations occur at the

same time. As a result, as mentioned in the Chapter 6, some modifications like the

penalties that control the level of sparsity of the latent profiles could be added. We

could also force jumps of latent profiles to occur only on the minor of major copy

number. This phenomenon was not observed in the simulation study and may be that

these results are due to the approximation on the estimations of the DoH in both of

cases or to a poor segmentation.

We are currently writing an article that presents InCaSCN model and an application

to a real data set.
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Chapter 8

Estimation of DoH in absence of

normal reference

In absence of the knowledge of germline genotype of each locus, it is not possible to

compute the DoH. Indeed, DoH is only computed on the heterozygous SNPs. Therefore,

without DoH estimations, it is impossible to estimate the parental copy number signals

and to use InCaSCN model described in Chapter 6 to infer tumoral heterogeneity.

It is not uncommon, in cancer research, that the normal blood samples are not

available because of non-consent of patients to sequence or genotype their genomes or

because normal tissue samples were not taken at the time of the study. For instance in

the case of retrospective or tumor cell lines studies.

It was the case of [Schwarz et al., 2015] data set used in Chapter 7, where the data

set was only composed of tumor samples. In order to compensate the absence of normal

samples and therefore to not lost information from SNP arrays, we developed a method

to estimate the DoH by regions and then the parental copy number signals. Indeed,

the InCaSCN model only requires segment-level PSCN (parent specific copy number)

estimates and not necessarily at each locus.

This chapter is divided into four sections. The first one describes how to estimate

the DoH at a segment-level and the assumptions that are required. The second one deals

with the detection of the normal region that is one of the main issues in the estimation

of DoH in absence of a normal reference. Then, we attempt to check whether the

assumptions of the model are realistic and whether the estimations are close to the

reality. Some bias issues have been raised at the end of the section and we attempt to

correct them in a next section. The last section is about experiments on another data
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set from another technology.

The work done in of this Chapter is in progress and several issues have not been

yet fixed.

8.1 Estimation of DoH

We would like to estimate the DoH at a segment-level. Then, in the following, a segment

is denoted by s and we denote by ns = Card(s) the number of SNPs in segment s,

nAAs , nABs and nBBs are the number of SNPs AA, AB and BB in segment s respectively.

Note that, ns = nAAs + nBBs + nABs .

Then, we define the quantity δj for either heterozygous and homozygous SNPs j

by:

δj = 2× |bj − 1/2| (8.1)

where bj is the BAF for loci j = 1, . . . , J .

δs = πAAs δ
AA
s + πBBs δ

BB
s + πABs δ

AB
s =

1

ns

∑
j∈s

δj (8.2)

δ
AB
s =

δs − πAAs δ
AA
s − πBBs δ

BB
s

πABs
(8.3)

where :

• πAAs = nAAs
ns

,

• πBBs = nBBs
ns

• and πABs = nABs
ns

are respectively the proportion of SNPs AA, BB and AB in the segment s for s =

1, . . . S, and

• δ
AA
s = 1

nAAs

∑
j∈s δ

AA
j ,

• δ
BB
s = 1

nBBs

∑
j∈s δ

BB
j
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• and δ
AB
s = 1

nABs

∑
j∈s δ

AB
j

are respectively the mean of δ for SNPs AA, BB and AB in the segment s. Note

that δAB is in fact the DoH.

We assume that the proportion of the homozygous (πAA and πBB), and heterozy-

gous SNPs (πABs ) are the same regardless of the type of region (gain, loss, normal,..).

Then, we can estimate the proportion of homozygous SNPs by detecting a normal re-

gion and selecting SNPs with a BAF larger or lower than given threshold values. These

two thresholds are dependent on the technology or even of the sample itself. The nor-

mal regions have the particularity that BAF signals have only three modes that are

centered at 1 (BB SNPs), 0 (AA SNPs) and 1/2 (AB SNPs). The Fig. 8.1 shows the

raw BAF signal of the annotated data set from acnr package (Affymetrix technology).

The first region is a normal one where it appears that the number of modes is three with

the values quoted previously. The main difficulty is to detect these kinds of regions, we

present a way to detect these regions in section 8.2.

Figure 8.1 – BAF signal

Then, once we know a normal region, we are able to estimate the mean of δ
AA
N and

δ
BB
N for a normal region. Assuming that the distribution of δ for homozygous SNPs

is constant along the genome, we replace δ
AA
s and δ

BB
s in (8.3) respectively by their

estimations in the normal region (δ
AA
N and δ

BB
N ).

δ̂ABs =
δs − πAAN δ

AA
N − πBBs δ

BB
N

1− (πAAN + πBBN )
(8.4)
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Finally, the parental copy number estimations are equal to:
ys1 = c̄s ×

(
1− δ̂ABs

)
/2

ys2 = c̄s ×
(

1 + δ̂ABs

)
/2

(8.5)

where c̄s is the average of the TCN in the segment s.

To summarize, we have made three assumptions to estimate DoH that are:

A1 No breakpoints in the segments

A2 Proportion of the heterozygous and homozygous SNPs is the same along the

genome (independent of the region).

A3 The distribution of the homozygous SNPs is the same regardless of the region.

8.2 Detection of a normal region after the segmentation

The estimation of DoH that is δ̂ABs by segment can be done with the formula 8.4

provided that we are able to identify a normal region. The two essential points are

recovered the right segmentation in the signal but also a normal region in order to

compute the DoH densities of the homozygous SNPs. To find the normal region after

segmentation, two choices are possible:

• the first one is the annotation by the user

• the second one is an automated detection of the normal region in the data set.

We present in this section the second proposed option.

After performing the segmentation on CN for example, it is possible to estimate

in each segment the distribution of the BAF. Distribution in each segment may be

considered as a mixture model parameterized by the mean, the variance of each normal

distribution and their respective proportion (Fig. 8.1).

However, the germline SNPs AA, BA, AB, and BB produce different kind of mixture

model within an altered region. For instance, within a loss region, only two modes are

observed: for distribution for SNPs A and B because of the loss of one parental copy.

A huge feature of the BAF signal in a normal region is that the mixture model has only

three components: modes for the SNPs AA, BB and only one mode for the SNPs AB
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and BA. Therefore, a trick to find a normal region is to look at which segments have

a number of modes equal to three and especially where the proportions are balanced

between the three modes i.e close to 1/3 for each component. However, in the case of

a balanced gain (2,2) regions the BAF, the distribution is the same than in the normal

regions. Therefore, a second step consists of selecting the segment with the smallest

mean of CN. The pipeline of this selection is presented on algorithm 6. After the

segmentation step, for each segment, we perform a kmeans algorithm with euclidean

distance for a number of clusters between 2 and 4. Then, we select the best number

of cluster for this segment. We repeat these steps for each segment of the BAF signal.

Finally, only the segment with three modes are selected and the normal region is finally

those with the smallest mean of CN.

Data: Segmented BAF data;

Parameters: Number of segment S;

Result: Distribution for each segment s: number of modes, partition for each

loci in segment and mean of CN;

for s← 1, . . . S do

Use Kmeans method for segment s with euclidean distance ;

Choose the best number of clusters;

Partition between clusters for each loci in s;

Compute the proportion for each component of the distribution;

Compute the mean of the CN within segment s;

Algorithm 6: Estimation of the distribution within each segment.

In this way, we illustrate the result of the algorithm on raw Affymetrix data on

Fig. 8.2. For the instance, here, only three segments can be labeled as a normal region

(1,1), (2,2) and (2,3) but by checking the CN values within segments, the regions (2,2)

and (2,3) are naturally excluded.

The topic of the next section is to check if these assumptions can be considered as

true.
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Figure 8.2 – BAF signal (coloured by clustering)

8.3 Checking the assumptions

In order to explore and validate the assumptions done in the section 8.1, we used the

annotated data set described in Chapter 3 where homozygous SNPs and the various

type of altered regions are known. The illustrations of this section are specific to

the Affymetrix technology and could be completely different for Illumina and Agilent

technologies. The results of this section have been done on the Affymetrix data set

from GSE29172. This work is currently in development and we plan to explore the

assumptions on other data sets of acnr package.

8.3.1 Assumption A1

The first assumption is that the distributions of the BAF and TCN are constant within

the segments. To be sure that it is the case, a solution is to oversegment the signals. We

have seen in the previous part of this thesis that there exist a lot of various methods

to segments these data. Even if we do not know the true number of breakpoints, a

solution is to oversegment the signal by reasonably assuming that the true ones will be

in the list.

8.3.2 Assumption A2

We first plot the proportion of SNPs AA, BB and AB for each type of regions (Fig.

8.3). By looking at Fig. 8.3, assuming that the proportions are the same along the

genome seems to make sense.
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Figure 8.3 – Proportion of genotypes in each type of region

To confirm this first observation that the proportions of the homozygous are the

same between the region, we perform a chi-square test between the genotype variable

for homozygous status and the altered region. We conclude that the two variables are

independent with a p-value equal to 0.30.

(0,1) (0,2) (0,3) (1,1) (1,2) (1,3) (2,2) (2,3)

AA 2305 2472 2399 2267 2418 2521 2177 2468

BB 2302 2331 2493 2178 2421 2506 2154 2357

Table 8.1 – Number of loci per genotype in each altered region

To summarize, we can estimate the proportions πAA and πBB by the proportions

estimated in the normal region. The third assumption that we have made is that the

distributions of δAA and δBB are the same along the genome. This is the subject of

the next section.

8.3.3 Assumption A3

In the section 8.1, we have assumed that the density, but especially the means of δ for

the homozygous SNPs are the same across the different types of altered regions. If it

is not the case, the estimation of DoH and then of the parental copy numbers may be
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biased.

In the annotated data set presented in Chapter 3, it is easy to extract for each

region the BAF profiles and only keep the homozygous SNPs. Then, it is possible to

plot the density of the BAF for each type of region. We also plot the density of DoH

in order to check if the mirroring usually used by [Staaf et al., 2008] doesn’t bias the

estimations. Although the distributions of the BAF and δ are similar overall, it is clear

that the density of homozygous SNPs is not identical across the different regions and

it is more obvious for the loss (0,1) where SNPs AA and BB have a BAF further of 0

and 1 respectively (Fig. 8.4 and 8.5).
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Figure 8.4 – Density of BAF for homozygous SNPs by annotated regions

In addition, it seems that the DoH and TCN values increase at the same time. To

explore this new assumption, we plot the observed values of DoH of the homozygous

SNPs against the observed values of TCN within each region (Fig. 8.6). The DoH

ranges between 0.65 for the loss region (0,1) and 0.80 for the gain region (2,3) i.e. one

gain of one parental copy and two gains of the other one. In this way by replacing

δAA and δBB of all regions by δAAN and δBBN respectively, in formula (8.3) is likely to

produce a bias in estimations.

We proposed a mean to correct the produced bias in the section 8.4.
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8.4 Tentative to correct the bias

We see in the section 8.3.3, that replacing δAA and δBB by their estimations in the

normal region can produce a bias. However, it could be possible to perform a calibration

that is completely technology dependent in order to reduce bias in estimations of the

DoH.

We have seen that δHom is dependent to the values of TCN (Fig. 8.6). We denote

by θAj and θBj the quantities of allele A and B at locus j respectively. Then bj the B

allele fraction can be written:

bj =
θBj

θBj + θAj
,

The B allele fraction signal for SNPs AA in a region s is close to 0 and therefore

θBs ∼ ε with ε to be estimated. Therefore θAs ∼ cs and then,

δAAs = 2×
∣∣∣∣ ε

ε+ cs
− 1

2

∣∣∣∣
= 2×

∣∣∣∣2ε− ε− cs2(ε+ cs)

∣∣∣∣
=

∣∣∣∣2ε− ε− csε+ cs

∣∣∣∣
=

∣∣∣∣ε− csε+ cs

∣∣∣∣
=

cs − ε
cs + ε

The same equations can be written for the SNPs BB, the B allele fraction signal for

SNPs BB in a region s is close to 1 and therefore βs ∼ ε with ε to be estimated.

Generally we can write δHoms for homozygous SNPs by:

δHoms =
cs − ε
cs + ε

(8.6)

where cs is the average of the TCN in the region s.

The last step is to calibrate the value of ε. In our case, we try to tune ε to get the

best fit to the curve presented in Fig. 8.6 and the curve defined by Eq. 8.6. For this

data set, the best ε is around 0.3. To estimate δ̂AB we used δHoms (Eq. 8.6).

Given that, we knew the labels of regions it is easy to know the breakpoints in the

signal. Then, we plot the DoH estimations computed within each region and compare it

with the truth when genotypes are known. As the breakpoints are known, it is obvious
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that the TCN is not at all biased. The red circles are δ̂ABs for each region by replacing

the δAA and δBB by their estimations in the normal region (Eq. 8.4) . Compare to the

truth (blue squares), it is clear that these estimations are really biased. Then, we plot

the second version of the estimation of δ̂AB (green triangles). Estimations produced

by the second version is better than the first one. Indeed, estimations are closer to the

truth but in addition, the LOH regions are aligned at the same value on the y-axis.

To conclude, we have been able to produce an estimation of the DoH relatively few

biased and takes the advantage to avoid the detection of a normal region in the sample.

However, these results may be entirely dependent on the technology (Affymetrix) and

of the data set. Therefore the transformation used to drop the bias may not work in

other cases.
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Figure 8.7 – DoH along TCN (red disks are the estimation after segmentation and blue triangle

are the observed values).

8.5 Experiments on Illumina data set

In acnr package, we annotated in total three data sets. Among these data sets, one

is from the technology Illumina. Illumina pre-processing pipeline enables to produce

very clean BAF signals (Fig. 8.8). Therefore, the detection of a normal region is easy

compared to data from Affymetrix technology that is noisier. Here, the clustering step
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on BAF to detect the normal region performs well and we recover the region annotated

as normal.

Figure 8.8 – Example SNP array data (Illumina technology)

As previously, we ask if the same link exists between δHom and the TCN for this

data set than those observed for Affymetrix technology. Except for the homozygous

deletion (loss of both parental copies) region, the variation of δHom in function of the

c is minor compared to those observed previously for Affymetrix (Fig. 8.9). We fit the

model described in 8.6 with ε = 0.04.

Estimations of DoH are presented in Fig. 8.10 where v1 is done by using 8.4 and v2

is done by using 8.6. Except for the homozygous deletion, there is no notable variation

between the estimation v1 and the estimation v2.

In conclusion, the estimation of the DoH on Illumina technology is useful to esti-

mate DoH in LOH regions. Indeed, for the LOH regions, because it is hard to split

the homozygous SNPs from the heterozygous with a threshold, the pipeline that we

proposed can help.
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Figure 8.9 – Link between δHom SNP and CN (Illumina technology)
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Figure 8.10 – DoH along TCN (red disks are the estimation after segmentation and blue triangle

are the observed values).
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8.6 Conclusion

In this chapter, we presented a way to estimate DoH and therefore parental copy

number signals when no paired normal is available at a segment level. We have seen

that some biases exist in the estimations and we attempted to drop them. However,

as we said, the trick used for this data set is likely to fail on other ones. To solve this

problem, further experiments will be conducted on several annotated data sets from

other technologies. The key point is the tuning of the parameter ε that can be very

different between the data sets and the technology.

The clustering step uses to detect the normal region and especially the choice of the

number of clusters is also ad-hoc to the data. The threshold to define the homozygous

SNPs in the normal region is also dependent on technology and one sample. A solution

to this problem could be to include an annotation step done by the user. In fact, the

user could define the normal region by himself by defining positions on the genome.

This step requires a visualization step by a fast and user-friendly interface. This kind

of interface is currently in development in the lab.

In this way, it is clear that enhancements need to be added to this pipeline in order

to estimate properly the DoH signals at a segment level. Then, we may propose this

pipeline to the bioinformatic community as an R package form for instance.
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Chapter 9

Pipeline to estimate DNA copy

number from sequencing data

9.1 Introduction

The aim of this chapter is to present tools to estimate TCN and DoH from WES data.

It was an issue raised when we had to deal with the data from Institut Curie. A brief

review of the literature to compare tools implemented to estimate copy number from

WES data was performed by an intern Jimmy Carrillo. At the end of the two-month

internship, he provided a pipeline in python in order to estimate both the TCN and

the DoH from WES data. This pipeline allows us to quickly get data under the same

form than microarrays. With this tool, it has been possible to apply the heterogeneity

model on WES data from Institut Curie. In this chapter, we present some results on

the estimation of TCN and DoH.

9.2 Estimation of Copy number and B allele fraction

Many tools have been developed to estimate copy number data from WGS or WES

technologies. Codex [Jiang et al., 2015], ExomeCNV [Sathirapongsasuti et al., 2011],

CoNIFER [Krumm et al., 2012], VarScan 2 [Koboldt et al., 2012], EXCAVATOR [Magi

et al., 2013], VEGAWES [Anjum et al., 2015], CONVEX [Amarasinghe et al., 2013],

Control-FREEC [Boeva et al., 2012] and CNVkit [Talevich et al., 2016]. Recently

[Kadalayil et al., 2014] has performed a review of existing method to analysis copy

number data from WES. However, most of these tools require a normal-paired sample
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in order to normalize properly copy number data. Contrary to the analyze of the total

DNA copy number, only a few tools have been developed to estimate BAF from WES

data [Favero et al., 2015].

9.2.1 Copy number

We performed the copy number estimation with the CNVkit algorithm. This algorithm

takes into account all reads that are aligned out of the targets (here exons) but also

enables to build a pooled of normal samples in order to get a unique copy number

reference sample. Pooled normal samples can be very useful in our case because only

12 normal paired samples have been available for a total of 16 patients. In consequences,

for each patient, we can normalize their tumor sample and get an estimation of the

total copy number. Another advantage of the pooling is the decreasing of the noise that

is probably due to the depth of sequencing (30x) for the normal sample. In addition,

if we analyze all the tumor samples simultaneously it is important to have the same

normal reference for all samples.

Figure 9.1 shows copy number estimations for PT, RES and Normal samples for

the first patient and the chromosome 1. This figure highlights that for patient 1 (top

of the figure) the residual and primary tumor are similar in term of alterations even if

alterations are more obvious in the residual, it could mean that it was only one resistant

clone to the drug in the primary tumor and that PT contained more normal cells in

the sample. The same phenomenon is observed for the samples of patient 36 (bottom

of the figure), that are globally similar to PT, RES, and LN.

The results that have obtained suggest that patients have potentially copy number

profiles completely different and there are no common alterations between profiles. By

looking at the normal profiles, the figure suggests that the normalization is enough

properly done because copy number is centered on 2 and there is no wave effect due to

the GC-content. Indeed, GC-content inside or outside exons affect the read alignments

[Benjamini and Speed, 2012].

9.2.2 B allele fraction

Two main strategies are possible to determine the B allele fraction. The first one is

from the package sequenza that attempts to discover new SNPs (where there is a

variation of nucleotides at a locus) by the intermediate of the usual tools samtools

to deal with sequencing data. The main drawback of using all positions is the time

consuming because it requires to read the file at each position and count the number

154



CHAPTER 9. PIPELINE TO ESTIMATE DNA COPY NUMBER FROM
SEQUENCING DATA

Figure 9.1 – Copy number profiles of two patients of NACRE project (chromosome 1 and 11)

of aligned reads.

Then, we started a collaboration with Henrik Bengtsson during a three-week stay

at UCSF, we attempted to compute DoH from whole exome sequencing data by using

known SNPs. Indeed, SNPs uses by microarray are nucleotide variations well known

in the population. This approach is included in the package aroma.seq in the function

countNucleotides. In this way, it is possible to exclude all other positions and compute

DoH only for loci where there are known SNPs. To get more information, we attempted

to use the database of Ensembl [Yates et al., 2016] or dbSNP [Sherry et al., 2001].

However, these two databases contain a huge number of indexed SNPs and it requires

a computing server with a large RAM. It is possible to get around this issues by selecting
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only SNPs that are in exons, but this step hasn’t been done yet.

However, we present in this section some results from sequenza and the results of

the first experiences with countnucleotides.

Figure 9.2 – DoH profiles for two patients of NACRE project (chromosome 1 and 11), count-

nucleotides method

Even after filtering (remove all loci where the number of aligned reads are less than

10), the estimation of the DoH is not evident because of the variable depth sequencing

due to GC-content for instance. Therefore the DoH signal remains noisy for count-

nucleotides method (Fig. 9.2). Indeed, it is difficult to get an optimal estimation

of the B allele fraction when the number of aligned reads at a locus is poor. Another

one drawback is the difficulty in differentiating the mutations from sequencing errors

or from the true SNPs. It is also the reason for which we have preferred to work on the

predefined SNPs over a first phase. Results from sequenza sequenza (Fig. 9.3) seems

to be less noisy and the alterations seem to be more visible after the removal of the
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Figure 9.3 – DoH profiles for two patients of NACRE project (chromosome 1 and 11), sequenza

method

homozygous SNPs.

As the estimations of the BAF or DoH are not really satisfying and the data inte-

gration not evident between CNVkit and sequenza.

9.3 ExCoBAF pipeline

This pipeline was developed by an intern that we have supervised during two months.

He combined both CNVkit and sequenza tools in order to get both TCN and DoH

signal from WES data. This pipeline was written in python and included several R

scripts. As the pipeline included several steps that take a non-negligible time, we

chose to save the intermediate files in order to save precious time. For example, for
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the CNVkit tool that computes a pooled reference, if the reference is already done it

is not necessary to compute it for each tumor sample. In addition, the pipeline allows

saving files in a predefined structure in order to be more user-friendly. First, the user

has to create two directories that contain respectively the bam files and the required

annotation files i.e (fasta file of the reference organism, bed file that contains the

position of targets in our case exons).

bamData/
NACRE/
HomoSapiens/
S1.tumor.bam
S2.tumor.bam
S1.normal.bam
S2.normal.bam

annotationData/
organisms/
HomoSapiens/
hg19.fa
AgilentSureSelect,hg19.bed

From the initial bed file, CNVkit create two new files named target.bed and

antitarget.bed. This step permits to cut off the reads aligned on targeted areas and

the ones out of targets. Indeed, normalization is not performed in the same way for

the two kinds of reads (on and off targets).

annotationData/
organisms/
HomoSapiens/
AgilentSureSelect,hg19,target.bed
AgilentSureSelect,hg19,antitarget.bed

After the CNVkit step, two directories are created to save two different types of files

(cnn and cnr). The cnn files contain the count of reads within bins of 200 kb-length

and cnr contain log2(TCN) within bins of 200 kb i.e after normalization.

cnvkitData/
NACRE,cnn/
HomoSapiens/
S1.tumor,target.cnn
S1.tumor,antitarget.cnn
...
S1.normal,target.cnn
S1.normal,antitarget.cnn
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...
reference.cnn

cnvkitData/
NACRE,cnr/
HomoSapiens/
S1.tumor.cnr
S2.tumor.cnr
S1.normal.cnr
S2.normal.cnr

Sequenza part creates on pileup file by tumor sample. A pileup format describes

the base-pair information at each chromosomal position, it facilitates SNP/indel calling

to compute the BAF from sequencing data. Then sequenza summarizes the pileup files

into seqz files that are readable in R. The intern includes a part that transforms seqz

files to rds files that are compressions of the seqz files after binning the BAF. The

window of the binning is adjustable by the user.

pileupData/
NACRE/
HomoSapiens/
S1.tumor.pileup.gz
...

sequenzaData/
NACRE,seqz/
HomoSapiens/
S1.tumor.seqz
...

NACRE,baf/
HomoSapiens/
S1.tumor.rds
...

An overview of the help of the pipeline is shown in Fig. 9.4.
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Figure 9.4 – ExCoBAF help

9.4 Parental copy number estimations

In order to apply the heterogeneity model, we have to estimate the parental copy

number signals for each sample. As the total copy number signals from CNVkit tool

contain more observations than BAF signals, we first segment jointly all TCN signals

in order to get more accurate change-points.

However, as we saw in the introduction chapter, we have to know the germinal

status (heterozygous or homozygous) of each SNPs. The sequenza tool is able to

estimate the germinal status and therefore it is possible to compute the DoH. Actually,

we compute the DoH by segment and then we deduce the parental copy number signals

by segments. Estimates by segment are sufficient to apply the heterogeneity model.

However, in some segments, there are no heterozygous SNPs and therefore no parental

copy number estimations. For the moment, our model doesn’t deal with missing values

and to get around this issue, we remove the segments with no estimation of parental
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copy number signals. We have noted that it was often very small segment. An example

of the smoothed parental copy number signals for the patient 1 is shown in Fig. 9.5.

In this example, it appears that some change-points are not well detected and may be

model selection is too stringent. Some further exploration will perform to explain and

fix this issue.

Figure 9.5 – Joint segmentation chromosome 1 of Patient 1 sample

9.5 Integration to a visualization tool

This section presents a visualization interface currently developed in the lab by an en-

gineer (Franck Samson). The developed interface aims to enable a quick visualization

of TCN and BAF firstly from microarray and then from WES across several samples.

A quick visualization could be used to annotate a new data set to perform simulations

as explained in chapter 3 but also annotated particular regions as “normal”which is

necessary to estimate DoH without normal reference sample (Chapter 8).Trough the

development pipeline ExCoBAF and R scripts, it has been possible to visualize simul-

taneously TCN and DoH from WES data with the interface.

An overview of the interface is presented in Fig. 9.6. It is possible thanks to

the interface to switch from a sample to another for the same patient (for instance

PT to RES to LN). But also annotate some regions (see Fig.9.7). We plan to add

new functionalities to the interface in the next months as described previously. For

instance, be able to annotate normal region in order to estimate DoH in absence of a

reference sample. The functionality of annotating and is currently in development is
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independent of the visualization of sequencing data.
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Figure 9.6 – Example of interface to visualize the DNA copy number data
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9.6 Conclusion

In conclusion, in this chapter we presented the pipeline developed by an intern in the

lab in order to deal easier with the data provided by Institut Curie. From this pipeline,

it is possible to apply the joint segmentation method developed in the first part of this

thesis and then to provide an estimation of segmented parental copy number signals.

Once, these estimations have been done, it has been possible to apply the heterogeneity

model described in the second part of the thesis.

However, it is clear that the model selection is too stringent and requires to be more

flexible in order to enable more change-points and to not miss evident ones. A possible

amelioration could be to annotate the data set from Institut Curie with the interface

developed in the lab. Indeed, it is easy to browse from a sample to another.
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Conclusion and perspectives

Genomic data analysis is emergent in cancer research since several years in order to

attempt developing of personalized treatments. Study the genomic features of the

tumors can improve diagnosis as well as prognosis of patients suffering from cancer.

Cancer is a heterogeneous disease that is difficult to characterize, in particular at a

genetic level. Genomic data analysis requires the development of efficient statistical

methods able to deal with the large volume of data that is produced.

This Ph.D. thesis is focused on the analysis of DNA copy number in cancerology.

The aim was to provide statistical methods but also efficient software in term of time

and memory in order to deal with data from microarrays and HTS. The final aim

is to characterize the tumors and give some indications and guidelines to the drug

resistance. This last chapter summarizes the main points developed in this thesis and

provides some general conclusions and as well as perspectives on this work.

General conclusion

The work performed here deals with several fields: statistics, bioinformatic, genomics

and cancerology. All along the manuscript, we have attempted to pay attention to

introducing the basic concepts of each domain. For this reason, the introduction aims

to present general genomic concepts and cancer. Indeed, cancer is a well-known disease

by all the population but only by the name and the poor prognosis that it recalls. Few

people know that huge genetic alterations can be present in tumor cells are decisive

for the prognosis. The thesis is particularly focused on one level of genetic alterations,

namely DNA copy number alterations. We briefly present at the end of the chapter

the statistical and bioinformatical issues of this kind of data.

The introduction of the first part begins by an introduction to the univariate sta-

tistical models to segment DNA copy number signals and our contributions to segment

jointly TCN and BAF. Then, we showed that taking into account all information from
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these technologies is essential because it improves the efficiency of the methods. We

implemented R packages in order to easily reproduce the performance evaluation study.

The vignettes of the packages are presented in Appendix.

In a second part, we studied the intra and inter-tumoral heterogeneity by using

multi-sample data sets. Several strategies are possible to infer tumoral heterogeneity

and we have chosen to assume that tumor samples from the same patient or the same

disease could share common alterations. We extended an existing model by adding

constraints with more biological sense and that includes the BAF information through

the parental copy number signals. We provided an R package named InCaSCN for

this model, that also enables to reproduce the results of simulations. Despite the good

results produced by the simulations, we wanted to know if the method could be used in

practice and we applied it on two different data sets. The first one is a public data set

and the second one arises from a collaboration with Institut Curie in order to investigate

heterogeneity in triple-negative breast cancers. We dealt with microarray data for the

first data set and HTS data for the second one. The study designs were different for the

two applications. The first application deals with intra-tumoral heterogeneity: several

tumor samples from the same patient. And the second one deals with inter-tumoral

heterogeneity: several samples from different patients suffering from TNBC. We have

been able to draw a few conclusions with a biological sense. For instance, it seems quite

clear that some clones are resistant to treatments and other ones are not. Indeed, it

appears that clones are present in primary tumor and not in relapses samples.

During this Ph.D. thesis, we encountered issues to deal with real data. For instance,

when we wanted to analyze the public data set, no reference sample was available. As

we wanted to apply the InCaSCN method on parental copy number signals, we had to

develop a strategy to compensate the lack of reference and get parental copy number

estimations by segments. Currently, because some improvements are required, there is

no package available to apply this strategy but we are working on making it available

on a free platform as soon as possible. Then, Institut Curie provided us sequencing

data and we had to deal with this new type of data. For WES data, through the work

of an intern, we combined several tools in order to estimate both DNA copy number

and BAF (quantities that we were used to dealing with). By means of this implemented

pipeline, we have been able to apply InCaSCN method to the WES data from Institut

Curie.

All along this thesis we have attempted to propose efficient statistical methods to

deal with the particularities of new genomic technologies but also with the features of

cancers. Every time, we proposed a model with as most biological sense as possible

coupled with available and efficient implementations.
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Perspectives

Even if the manuscript resulted in several conclusions, we also highlighted some draw-

backs that could lead to interesting research perspectives.

Improvement of the heterogeneity model

The first improvement can be done on InCaSCN model that it has been developed to

investigate heterogeneity. After applying the model on real data, some of the conclu-

sions produced were difficult to interpret. For instance, it is unlikely that breakpoints

occur both in minor and major copy number. Therefore, it could be interesting to add

this constraint in the model and to check if the performance is still as good as before.

Another important point is that we do not provide proofs that our model converge

to a global minimum. Some mathematical proofs and experiments will be required to

be sure that the model provides an acceptable solution. For instance, we show that the

way to initialize the algorithm is not perfect and requires improvements.

The other parameters that we did not take into account explicitly in the model are

the ploidy and the cellularity. These parameters vary from a sample to another one

and adding a constant to estimate them directly in the model could also improve the

performance and provide conclusions with a better biological meaning.

Improvement of the pipeline to estimate DoH

As we said in the previous section, we encountered some issues when we had to deal

with the real data. To deal with public data of [Schwarz et al., 2015], we developed

a short pipeline to estimate DoH in absence of a reference sample. It is clear that we

have to improve this pipeline in order to distribute it to the bioinformatic community.

We proposed a solution to remove the bias induced by assumptions that are not really

respected, but this solution depends on the sample and technology. Extensive experi-

ments on various data sets can be led in order to help us to provide a general estimation

of DoH by segments which will better.

TCGA application

During the internship of the M1 student that we supervised, we asked to The cancer

genome atlas (TCGA) several data sets in order to test the pipeline that enables to

compute both TCN and BAF from WES data. TCGA enables us to use WES data from
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head and neck cancer, pleuropulmonary blastoma and breast cancer. These data sets

not only contain WES data but also SNPs arrays. It could be interesting to compare

estimations from WES and estimations from arrays. This is a new recent project that

we did not have time to develop. The data set on breast cancer aims to discover

subtypes, therefore we could also apply the InCaSCN model on it and confirm their

subtypes.

Data integration

Finally, Institut Curie has two different types of sequencing data (RNAseq and DNAseq).

It could be very interesting to perform a joint analysis of this two kind of data in or-

der to may discover common points between patients or some relations between the

RNAseq samples and those of the DNAseq for the same patient. A first conclusion

from boths kind of data (RNAseq and DNAseq) is that tumoral genetic alterations are

very specific to the patients. In conclusion, TNBC is a very heterogeneous disease.

All this work aims to help biologists and physicians to develop adapted treatments

for each type of cancer by the intermediate of statistical and bioinformatic tools.
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Proof of Lemma 1

Proof.

2σ2 log(RV ) =
(
−tΓ̂21 − (J − t)Γ̂22 + JΓ̂

2

0

)
(A.1)

We can write Γ̂0 as a function of Γ̂1 and Γ̂2

Γ̂0 =
1

J

(
tΓ̂1 + (J − t)Γ̂2

)
(A.2)

So, by replacing Γ̂0 in A.1 by the expression defined by A.2

2σ2 log(RV ) =

(
−Jt
J
Γ̂
2

1 −
J(J − t)

J
Γ̂
2

2 +
1

J

(
tΓ̂1 + (J − t)Γ̂2

)2)
(A.3)

By developing the last term of A.4 :

2σ2 log(RV ) =

(
−Jt
J
Γ̂
2

1 −
J(J − t)

n
Γ̂
2

2 +
t2

J
Γ̂
2

1

+
(J − t)2

J
Γ̂
2

2 + 2
t(J − t)

n
Γ̂1Γ̂2

)
(A.4)

So,

2σ2 log(RV ) =

(
− t(J − t)

J
Γ̂
2

1 −
(J − t)(J − (J − t))

J
Γ̂
2

2

+2
t(J − t)

J
Γ̂1Γ̂2

)
(A.5)
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To finish:

2σ2 log(RV ) =

(
− t(J − t)

J

(
Γ̂1 − Γ̂2

)2)
(A.6)
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LARS algorithm for the Group

Fused Lasso of (Vert and

Bleakley)
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LARS algorithm for the Group Fused Lasso of (Vert and Bleakley)

Initialization: k = 1 ;

A0 = ∅ no change-point in the signal, in the following Ak will be the active set

at step k (i.e the k breakpoints).;

Remember that β is the matrix of successive differences and which is an

(J − 1)× 2 matrix. First column is the difference on the TCN and the second

one is the difference on the DoH. ;

c[0] = XTY, that is easy to compute by using structure of matrix X;

First change-point A1 is the position which maximizes the gain by cutting

exactly at this position (the larger difference between the mean at the left and

mean at the right of this change-point).;

for k ← 1, . . . S do

Ak active set at step k;

Compute the direction v which is an (J − 1)× 2 matrix such that wAck = 0

and

wAk = (X ′AkXAk)−1c[k−1]Ak (B.1)

where XAk is a sub-matrix of X composed of columns with indexes in Ak
and c

[k−1]
Ak is sub-matrix of c[k−1] composed of rows with indexes in Ak.;

w is in fact a βOLS where some variables are not active.;

a = X′Xw for all active indexes, by construction aAk = c
[k−1]
Ak ;

Then, for each index j that is not in Ak, we look for the most correlated

variable Xj in the direction w. This variable will be included in Ak+1. The

correlation is determine by the variable νj ∈ [0, 1] such that:

‖c[k−1]j − νjaj‖22 = ‖c[k−1]j′ − νjaj′‖22 (B.2)

where j′ is chosen arbitrarily in the active set, but in the implementation we

define j′ = arg maxj∈Ak ‖c
[k−1]
j ‖22;

Then, νj∗ = minj 6∈Ak et νj>0 νj ;

Finally, Ak+1 = Ak ∪ {j∗} and c[k] = c[k−1] − νj∗a are updated.

Algorithm 7: LARS algorithm.
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Inclusion of RKHS

C.1 Generalities

In this section we recover the results of Corollary 3.14 in [Steinwart et al., 2006].

Following lemmas and propositions are from [Zhang and Zhao, 2011].

Lemme 1. Let K,G two kernels on X , HK ⊆ HG if and only if there exists a positive

constant λ ≤ 0 such as K � λG (λG−K is still a kernel on X ).

Lemme 2. For two kernels K,L on X

• K � L if and only if HK ⊆ HL and ‖f‖HL ≤ ‖f‖HK .

• K � λL if and only if HK ⊆ HL and ‖f‖HL ≤
√
λ‖f‖HK .

Then, with lemme 2

Proposition 1. Let K,G two kernels on X with HK ⊆ HG then K � λ(K,G)G with

β(K,G) =
√
λ(K,G) (‖f‖HG ≤ β(K,G)‖f‖HK with f ∈ HK).

Theorem 1. u,v two positive functions of L1(Rd)

Let K,G define by :

• K(x, y) =
∫
Rd e

i〈x−y,ξ〉u(ξ)dξ

• G(x, y) =
∫
Rd e

i〈x−y,ξ〉v(ξ)dξ

then HK ⊆ HG if and only if
{
t ∈ Rd : u(t) > 0, v(t) = 0

}
= ∅ and u

v is bounded on{
t ∈ Rd : v(t) > 0

}
λ(K,G) = supremum of u

v on
{
t ∈ Rd : v(t) > 0

}
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C.2 Application to the Gaussian kernel

Let

Gδ(x, y) = exp

(
−‖x− y‖

2

δ

)
=

∫
Rd
ei〈x−y,ξ〉gδ(ξ)dξ, x, y ∈ Rd, δ > 0

with

gδ(ξ) :=

( √
δ

2
√
π

)d
exp

(
−δ‖ξ‖

2

4

)
, ξ ∈ Rd

Take 0 < δ1 < δ2 and Gδ1 , Gδ2 the associated kernels.

Then

HGδ2 ⊆ HGδ1 ⇔
{
t ∈ Rd, gδ2(t) > 0, gδ1(t) = 0

}
We have

gδ1(ξ) = 0 ⇔ exp

(
−δ1‖ξ‖

2

4

)
= 0 avec δ1 < 0

Hence {
t ∈ Rd, gδ1(ξ) = 0, gδ2(ξ) > 0

}
= ∅

Hence

HGδ2 ⊆ HGδ1

Now, checking that u
v is bounded:

Computing λ:

gδ2
gδ1

(ξ) =

(√
δ2
δ1

)d
exp

(
−(δ2 − δ1)

4
‖ξ‖2

)
As 0 < δ1 < δ2, on a −(δ2 − δ1) < 0

Hence,
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exp

(
−(δ2 − δ1)

4
‖ξ‖2

)
< 1, ∀ξ ∈ Rd(√

δ2
δ1

)d
exp

(
−(δ2 − δ1)

4
‖ξ‖2

)
<

(√
δ2
δ1

)d
∀ξ ∈ Rd

gδ2
gδ1

(ξ) <

(√
δ2
δ1

)d
∀ξ ∈ Rd

Hence λ =
(
δ2
δ1

) d
2
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Appendix D

Proof of Lemma 3

Proof. Suppose that W is fixed. We wish to solve (6.8) in Zm. By dropping the index

m for clarity, we can consider solving the problem

min
Z∈RpS

‖Y −WZ‖2 + λ
∥∥∥DZ>

∥∥∥
1
, (D.1)

Now, by simple matrix algebra and properties of the vectorization operator, let us show

that this can be written as an equivalent Lasso problem.

First, use the equivalence between the trace and the Frobenius norm, and operate

the change of variable Z̃ = DZ> (that is, D−1Z̃ = Z>)

‖Y −WZ‖2 + λ
∥∥∥DZ>

∥∥∥
1

= Tr

{(
Y −WZ̃>D−>

)(
Y −WZ̃>D−>

)>}
+ λ

∥∥∥Z̃∥∥∥
1

Now, use the rules Tr(AB>) = vec(A)> vec(B) to show that

Tr

{(
Y −WZ̃>D−>

)(
Y −WZ̃>D−>

)>}
+ λ

∥∥∥Z̃∥∥∥
1

=

vec
(
Y −WZ̃>D−>

)>
vec
(
Y −WZ̃>D−>

)
+ λ

∥∥∥vec(Z̃)
∥∥∥
1

=
(
y − vec(WZ̃>D−>)

)> (
y − vec(WZ̃>D−>)

)
+ λ ‖z̃‖1 ,

where we denoted by y = vec(Y) and z̃ = vec(Z̃).

Using that vec(AXB) = (B> ⊗A) vec(X), one has
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(
y − vec(WZ̃>D−>)

)> (
y − vec(WZ̃>D−>)

)
+ λ ‖z̃‖1

=
(
y −

(
D−1 ⊗W

)
z̃>
)> (

y −
(
D−1 ⊗W

)
z̃>
)

+ λ
∥∥∥z̃>∥∥∥

1

‖y −Xβ‖22 + ‖β‖1

with β = z̃> and X = D−1 ⊗W. We recognize a Lasso problem. Note that

D−1 is an upper triangular matrix filled with −1. We get back the original Z by first

reconstituting Z̃ by stacking β row-wise, then multiply Z̃ by D−1. This latter operation

can be done efficiently with cumulative sums.
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Appendix E

R packages

This chapter aims to present packages developed to analyze DNA copy number data.

In a first section, we present the strategy used to compare the segmentation methods

introduced in chapter 3. In order to measure performance of DNA copy number seg-

mentation methods, we developed a pipeline to build synthetic copy number profiles

from real data set. The first step is to annotate a real data set, then by resampling

build synthetic profiles by using only few parameters as the number of breakpoints and

the length of signal. This implementation is included in the R package jointseg. In a

second section, we show how to used the R package jointseg that groups several seg-

mentation methods through a unified interface. To finish, we present the last package

incas-cn developed in order to analyze heterogeneity from a multi-sample data set.

This package is under development and will be soon publicly available.

E.1 Generating realistic copy number profiles

E.1.1 Annotated data set

We annotated altered regions of two data sets from a public database to form that we

call annotated data set. This annotated data set is included in an R package named

acnr for “annotated copy number regions”. This package is only used to save the data.

We describe the characteristics of the two data sets below.

Data set 1 We have worked with a lung cancer data [Rasmussen et al., 2011], for

which raw data is accessible at NCBI GEO database [Edgar et al., 2002], accession

GSE29172. DNA from patient-matched lung cancer and blood cell lines NCI-H1395 and
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NCI-BL1395 were mixed to simulate tumor tissue with 30, 50, 70, 100% cancer cells.

DNA was analyzed on Affymetrix SNP6.0 microarray. Data were normalized using

ASCRMAv2 [Bengtsson et al., 2009] followed by TumorBoost [Bengtsson et al., 2010].

For the sake of reproducibility, the R scripts that were written to normalize this data

set are distributed in the jointseg package, together with the normalized data itself.

Data set 2 We have also worked with a breast cancer data [Staaf et al., 2008], for

which raw data is accessible at NCBI GEO database [Edgar et al., 2002], accession

GSE11976. DNA from patient-match breast cancer cell line (HCC1395) and its match

normal HCC1395BL were mixed to simulate tumor tissue with 14, 34, 50, 79, 100% cancer

cells. DNA was analyzed on Illumina HumanCNV370-Duov1 microarrays. We obtained

the BAF-normalized and summarized data as calculated by the Illumina BeadStudio

software [Illumina, inc, 2006, Illumina, inc, Peiffer et al., 2006]

Description of annotated copy-number regions The list below describes the

different copy number states available for data generation. They are labeled as a

pair (c1, c2), where c1 corresponds to the minor copy number (the smallest of the two

parental copy numbers), and c2 corresponds to the major copy number (the largest of

the two) [Neuvial et al., 2011].

(1,1): normal (one copy from each parent)

(0,1): hemizygous deletion (loss of one parental copy)

(0,0): homozygous deletion (loss of both parental copies)

(0,2): copy-neutral LOH (loss of one parental copy and gain of the other)

(0,3): loss of one parental copy and gain of two copies from the other parent)

(1,2): single copy gain

(1,3): unbalanced two-copy gain (gain of two copies from the same parent)

(2,2): balanced two-copy gain (gain of one copy from each parent)

(2,3): three-copy gain (gain of one copy from each parent, and two copies from the

other parent)
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CN state (0,1) (0,2) (0,3) (1,1) (1,2) (1,3) (2,2) (2,3) (0,0)

Data set 1 22615 24135 25405 21539 19048 20903 27924 31098 0

Data set 2 2492 5484 6545 3196 2746 0 3044 0 838

Table E.1 – Size of annotated copy-number regions for each of the 2 data sets.

E.1.2 Resampling

As we said in the introduction of the chapter, we first proceed by annotating a data

set. The Fig. E.1 (left) shows two annotated regions for a same sample but on two

different chromosomes. The red area correspond to a copy-neutral LOH region and the

yellow one to a normal region.

Figure E.1 – Example of annotated regions

Then, in a second step, we isolate these annotated regions to build the database in

package acnr (Fig. E.1 right). This permits to get a light database that contains only

the interesting altered regions.

To finish, the red and yellow areas presented in Fig. E.2 are built from a resampling

of the red and yellow areas of Fig. E.2. In this simulation, we force the status of the

regions as well as the position of breakpoints,. However, the user can let the package

attribute a label to each region and place the breakpoints randomly. Therefore, the

required parameters are the number of breakpoints and the length of the simulated

signal.
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Figure E.2 – Example of a simulated profile

E.1.3 Vignette

In this subsection, we present the vignette of the jointseg package that illustrates

how to generate a variety of copy-number profiles from the same biological “truth”.

Such profiles have been used to compare the performance of segmentation methods

[Pierre-Jean et al., 2015].

library(jointseg)

The parameters are defined as follows:

n <- 1e4 ## signal length

bkp <- c(2334, 6121) ## breakpoint positions

regions <- c("(1,1)", "(1,2)", "(0,2)") ## copy number regions

ylims <- cbind(c(0, 5), c(-0.1, 1.1))

colG <- rep("#88888855", n)

hetCol <- "#00000088"

For convenience we define a custom plot function for this vignette:

plotFUN <- function(dataSet, tumorFraction) {

regDat <- loadCnRegionData(dataSet=dataSet, tumorFraction=tumorFraction)

sim <- getCopyNumberDataByResampling(n, bkp=bkp, regions=regions, regData=regDat)

dat <- sim$profile

wHet <- which(dat$genotype==1/2)
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colGG <- colG

colGG[wHet] <- hetCol

plotSeg(dat, sim$bkp, ylims=ylims, col=colGG)

}

Affymetrix data

ds <- "GSE29172"

tf <- 1

plotFUN(ds, tf)

Figure E.3 – Data set GSE29172, 100% tumor cells

Another resampling

tf <- 1

plotFUN(ds, tf)

For 70% of tumor cells

tf <- .7

plotFUN(ds, tf)
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Figure E.4 – Data set GSE29172, 100% tumor cells (another resampling)

Figure E.5 – Data set GSE29172, 70% tumor cells
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For 50% of tumor cells

tf <- .5

plotFUN(ds, tf)

Figure E.6 – Data set GSE29172, 50% tumor cells

Illumina data

ds <- "GSE11976"

tf <- 1

plotFUN(ds, tf)

tf <- 1

plotFUN(ds, tf)

tf <- .79

plotFUN(ds, tf)
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Figure E.7 – Data set GSE11976, 100% tumor cells

Figure E.8 – Data set GSE11976, 100% tumor cells (another reasampling
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Figure E.9 – Data set GSE11976, 79% tumor cells

tf <- .5

plotFUN(ds, tf)

Figure E.10 – Data set GSE11976, 50% tumor cells

E.2 Joint segmentation vignette

In this section we describe how to use the jointseg package to partition bivariate DNA

copy number signals from SNP array data into segments of constant parent-specific copy
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number.

We demonstrate the use of the PSSeg function of this package for applying two

different strategies. Both strategies consist in first identifying a list of candidate change

points through a fast (greedy) segmentation method, and then to prune this list is

using dynamic programming [Bellman, 1961]. The segmentation method presented

here is Recursive Binary Segmentation (RBS, [Gey and Lebarbier, 2008]). We refer to

chapter 3 for a more comprehensive performance assessment of this method and other

segmentation methods.

The package is presented in the form of vignette.

E.2.1 Preparing data to be segmented

PSSeg requires normalized copy number signals, in the form of total copy number

estimates and allele B fractions for tumor, the (germline) genotype of SNP. Loci are

assumed to come from a single chromosome and to be ordered by genomic position.

For illustration, we show of such a data set may be created from real data. We use

data from a public SNP array data set, which is distributed in the acnr package (on

which the jointseg package depends).

library(jointseg)

data <- loadCnRegionData(dataSet="GSE29172", tumorFraction=1)

str(data)

## ’data.frame’: 104720 obs. of 4 variables:
## $ c : num 1.137 1.304 0.959 0.832 1.09 ...
## $ b : num 1.034 0.44 0.954 NaN NaN ...
## $ genotype: num 0.5 0.5 1 NA NA 1 NA NA NA 1 ...
## $ region : chr "(0,1)" "(0,1)" "(0,1)" "(0,1)" ...

This data set consists of copy number signals from length(unique(data[["region"]]))

types of genomic regions:

table(data[["region"]])

##
## (0,1) (0,2) (0,3) (1,1) (1,2) (1,3) (2,2) (2,3)
## 13090 13090 13090 13090 13090 13090 13090 13090
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These regions are coded as (C1, C2), where C1 denotes the minor copy number

and C2 denotes the major copy number, i.e. the smallest and the largest of the two

parental copy numbers (see e.g. [Neuvial et al., 2011] for more detailed definitions).

For example, (1, 1) corresponds to a normal state, (0, 1) to an hemizygous deletion,

(1, 2) to a single copy gain and (0, 2) to a copy-neutral LOH (loss of heterowygosity).

idxs <- sort(sample(1:nrow(data), 2e4))

plotSeg(data[idxs, ])

Figure E.11 – Annotated data set

These real data can then be used to create a realistic DNA copy number profile of

user-defined length, and harboring a user-defined number of breakpoints. This is done

using the getCopyNumberDataByResampling function. Breakpoint positions are drawn

uniformly) among all possible loci. Between two breakpoints, the copy number state

corresponds to one of the types of regions in data, and each data point is drawn with

replacement from the corresponding true copy number signal from the region. More

options are available from the documentation of getCopyNumberDataByResampling.

K <- 10

bkp <- c(408,1632,3905, 5890,6709, 10481, 12647,14089,17345,18657)

len <- 2e4

sim <- getCopyNumberDataByResampling(len, bkp=bkp, minLength=500, regData=data)

datS <- sim$profile

str(datS)

## ’data.frame’: 20000 obs. of 4 variables:
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## $ c : num 2.36 2.46 2.19 2.61 2.1 ...
## $ b : num 0.015 NaN NaN 0.683 NaN NaN NaN NaN 0.04 NaN ...
## $ genotype: num 0 NA NA 0.5 NA NA NA NA 0 NA ...
## $ region : chr "(1,2)" "(1,2)" "(1,2)" "(1,2)" ...

The resulting copy-number profile is plotted below.

plotSeg(datS, sim$bkp)

Figure E.12 – Copy number profile

E.2.2 Preprocessing

We advise the following (typical) preprocessing before segmentation:

1. log-transform total copy numbers in order to stabilize their variance; this step

improve segmentation results for all methods.

datS$c <- log2(datS$c)-1

2. smooth single point outliers as suggested by [Olshen et al., 2004]. This step is

controlled by the dropOutliers option in the PSSeg function, which internally

calls the smooth.CNA function of the DNAcopy package. The default value for

this option is TRUE.

3. convert allelic ratios to (unimodal) decrease in heterozygosity (d), as initially

suggested by [Staaf et al., 2008]. This step is performed internally in the PSSeg

function.

194



APPENDIX E. R PACKAGES

E.2.3 PSSeg segmentation using RBS

We can now use the PSSeg function to segment signals. The method consists in three

steps:

1. run a fast (yet approximate) segmentation on these signals in order to obtain a set

of (at most hundreds of) candidate change points. This is done using Recursive

Binary Segmentation (RBS) [Gey and Lebarbier, 2008];

2. prune the obtained set of change points using dynamic programming [Bellman,

1961]

3. select the best number of change points using a model selection criterion proposed

by [Lebarbier, 2005]

E.2.4 Initial segmentation and pruning

resRBS <- PSSeg(data=datS, K=2*K, method="RBS", stat=c("c", "d"), profile=TRUE)

Note that this is fast:

resRBS$prof[, "time"]

## segmentation dpseg
## 0.22 0.00

E.2.5 Plot segmented profile

To plot the PSSeg segmentation results together with the true breakpoints, do :

plotSeg(datS, list(true=sim$bkp, est=resRBS$bestBkp))

E.2.6 Results evaluation

The PSSeg function returns the original segmentation (by RBS), the result of the pruning

step, and the best model (among those selected by dynamic programming) according

to the criterion proposed by [Lebarbier, 2005].
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Figure E.13 – Copy number profile with RBS segmentation

The quality of the best segmentation can be assessed as follows. The number of true

positives (TP) is the number of true change points for which there exists a candidate

change point closer than a given tolerance tol. The number of false positives is defined

as the number of true negatives (all those which are not change points) for which the

candidate change points are out of tolerance area and those in tolerance area where

there already exists a candidate change point. %The true negative rate (TNR) is

defined as 1-FPR. % True negative are defined as the midpoints of intervals between

true change points (augmented by points 0 and n + 1, where n is the number of loci.

The true negative rate (TNR) is the proportion of true negatives for which there is no

candidate change point closer than tol. By construction, TP ∈ {0, 1, · · · , S} where S

is the number of true change points.

print(getTpFp(resRBS$bestBkp, sim$bkp, tol=5))

## TP FP
## 7 3

Obviously, this performance measure depends on the chosen tolerance:

perf <- sapply(0:10, FUN=function(tol) {

getTpFp(resRBS$bestBkp, sim$bkp, tol=tol,relax = -1)

})

print(perf)
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## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
## TP 2 4 4 6 7 7 8 8 8 8 8
## FP 8 6 6 4 3 3 2 2 2 2 2

E.3 InCaSCN vignette

E.3.1 Introduction

This section provides a brief tutorial on using the InCaSCN package. The package

implements a constraint dictionary learning problem to recover subclones across several

patients or samples from SNP data. The InCaSCN model is designed to identify regions

of copy number variation (CNV) in multi-sample SNPs data. More details on this model

are given in Chapter 6.

E.3.2 Create Simulations

In order to permit the users to reproduce results of the Chapter 6, the package included

the functions that permit to simulate heterogeneous samples. Therefore, the package

permits to create an artificial dataset from real data. The first step is to load an

annotated dataset saved in acnr package.

Then, after defining characteristics, we can create artificial latent profiles.

dataAnnotTP <- loadCnRegionData(dataSet="GSE11976", tumorFrac=1)

dataAnnotN <- loadCnRegionData(dataSet="GSE11976", tumorFrac=0)

len <- 500*10

nbClones <- 3

bkps <- list(c(100,250)*10, c(150,400)*10,c(150,400)*10)

regions <-list(c("(0,1)", "(0,2)","(1,2)"), c("(1,1)", "(0,1)","(1,1)"), c("(0,2)", "(0,1)","(1,1)"))

datSubClone <- buildSubclones(len, dataAnnotTP, dataAnnotN, nbClones, bkps, regions)

Example with a second dataset.

dataAnnotTP <- loadCnRegionData(dataSet="GSE13372", tumorFraction=1)

dataAnnotN <- loadCnRegionData(dataSet="GSE13372", tumorFraction=0)

datSubClone2 <- buildSubclones(len, dataAnnotTP, dataAnnotN, nbClones, bkps, regions)

Once subclones are created, it is also easy to generate a matrix W in order to build

mixtures.
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Figure E.14 – Subclone examples with two different annotated data sets

W = getWeightMatrix(70,30, nb.arch = 3, nb.samp = 20)

dat <- apply(W, 1, mixSubclones, subClones=datSubClone, fracN=NULL)

str(dat[[1]])

## ’data.frame’: 5000 obs. of 7 variables:
## $ c1 : num NA NA 0.473 0.472 NA ...
## $ c2 : num NA NA 1.48 1.4 NA ...
## $ tcn : num 1.33 1.85 1.95 1.87 1.93 ...
## $ dh : num NA NA 0.515 0.495 NA ...
## $ genotype: num 0 1 0.5 0.5 1 1 0 0.5 1 0 ...
## $ chr : num 1 1 1 1 1 1 1 1 1 1 ...
## $ pos : int 1 2 3 4 5 6 7 8 9 10 ...

Note that dat is a list of data frame with the following required columns : c1,c2,tcn,dh,genotype

E.3.3 Run InCaSCN model

Then it is easy to run InCaSCN model on the data. We choose the same grid for λ1 and

λ2 and a grid from 2 to 6 for the number of subclones. Intermediate results for each

model are automatically saved in a directory named by default resultsInCaSCN. It is

possible to change the name of directory by set the output.dir parameter. For each p

InCaSCN, we only saved the results of the model provided by the combination (λ1, λ2)

which minimize the BIC. Because the PVE becomes too poor, we automatically stop

the algorithm at p = 4 and we do not consider the following models.
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lambda1.grid <- lambda2.grid <- c(0.005,0.001)

casRes <- InCaSCN(dat,lambda1.grid, lambda2.grid, nb.arch.grid = 2:6)

## [1] 2
## [1] 3
## [1] 4

casResTCN <- InCaSCN(dat,lambda1.grid, lambda2.grid, nb.arch.grid = 2:6, stat="TCN")

## [1] 2
## [1] 3
## [1] 4

The next step is to choose the best p (number of subclones). In this example, it

seems that the best is p̂ = 4 (which is the true number of subclones).
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Figure E.15 – PVE (TCN and C1,C2)

We can compare the true and the estimated matrices of the weights. Even if the

computation is not perfect, we can easily recover a classification close to the truth with

the inferred weight matrix.

## List of 5
## $ BIC : num -211
## $ PVE : num 0.983
## $ res :List of 5
## ..$ Z : num [1:7, 1:3] 1.95 1.95 1.54 1.55 1.55 ...
## ..$ Z1 : num [1:7, 1:3] 0.884 0.884 0.409 0.42 0.421 ...
## ..$ Z2 : num [1:7, 1:3] 1.07 1.07 1.13 1.13 1.13 ...
## ..$ W : num [1:20, 1:3] 0.266 0.718 0.375 0.438 0.342 ...
## ..$ Y.hat:List of 2
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## .. ..$ Y1: num [1:20, 1:7] 0.434 0.758 0.487 0.527 0.5 ...
## .. ..$ Y2: num [1:20, 1:7] 1.4 1.1 1.38 1.35 1.33 ...
## $ param:List of 3
## ..$ nb.arch: int 3
## ..$ lambda1: num 0.001
## ..$ lamda2 : num 0.001
## $ bkp :List of 1
## ..$ : num [1:6] 990 1500 1508 1508 2502 ...

By looking at the estimations of the latent profiles, we recover the simulated latent

profiles with their respective specific alterations (Table E.2 and Fig.E.17).

Latent Profile Region 1 Region 2 Region 3 True latent Profile

1 (0,1) (0,2) (1,2) 1

2 (1,1) (0,1) (1,1) 2

3 (0,2) (0,1) (1,1) 3

Table E.2 – Summarize of alterations for estimations of latent profiles
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Figure E.16 – Weight matrix (C1-C2, TCN and Truth)
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Figure E.17 – Estimated Latent profiles
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E.4 Conclusion

We present in this chapter the R packages implemented during this thesis. All these

packages aim to analyze the DNA copy number data from SNPs and CGH arrays. With

adaptive R scripts, it is also possible to run segmentation method but also InCaSCN

method on sequencing data as it has been presented in section 7.2. In addition, all pack-

ages presented here are or will be soon available at https://github.com/mpierrejean.

For all packages, we make sure to produce user-friendly packages for the bionformatic

and biostatistic community with reproducible simulations.
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Glossary

Anthracycline Anticancer drug developed to treat several types of cancer. 127

FASTQ A text-based format for storing both a biological sequence (usually nucleotide

sequence) and its corresponding quality scores. 128

neoadjuvant Chemotherapy treatment performed before surgical extraction of a tu-

mor. 127

read A raw sequence that comes off a sequencing machine. A read may consist of

multiple segments. For sequencing data, reads are indexed by the order in which

they are sequenced.. 7, 127

Taxanes First drugs to treat non-hormone responsive breast cancer. 127

transcript A sequence of RNA produced by transcription.. 7
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Acronyms

AIC Akaike Information Criterion. 42

BAF B allele fraction. 7, 10, 13

BIC Bayes Information Criterion. 42

CGH Comparative Genomic Hybridization. 5

cn-LOH Copy neutral loss of heterozygosity. 10

DNA Deoxyribonucleic acid. 1, 5, 7

DoH Decrease of heterozygosity. 11, 12, 139

DP Dynamic Programming. 25, 33, 70

ER Estrogen receptor. 126

HGSOC High grade serous ovarian cancer. 121

HTS High-throughput sequencing. 7, 14

LN Lymph node. 127

LOH Loss of Heterozygosity. 13, 100

NMF Non-negative matrix factorization. 91

PR Progesterone receptor. 126

PT Primary tumor. 127
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Acronyms

RES Residuals. 127

RKHS Reproducible kernel hilbert space. 66

RNA Ribonucleic acid. 7

RSS Residual sum of squares. 93, 94

SNA Single-nucleotide alteration. 102

SNP Single nucleotide polymorphism. 5–7, 95

TCGA The cancer genome atlas. 171

TCN Total copy number. 10, 13

TNBC Triple negative breast cancer. 126, 170

VAF Variant allele frequency. 102

WES Whole exome sequencing. 4, 126, 153

WGS Whole genome sequencing. 4, 153
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ment multivariate signals into piecewise constant profiles and a framework

to generate realistic copy-number profiles. A typical application is the

joint segmentation of total DNA copy numbers and allelic ratios obtained

from Single Nucleotide Polymorphism (SNP) microarrays in cancer studies.

https://github.com/mpierrejean/jointSeg
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Titre : Développement de méthodes statistiques pour l’analyse du nombre de
copies d’ADN en cancérologie

Mots clefs : Nombre de copies d’ADN, segmentation, cancérologie, dictionary learning, hétérogénéité,
grande dimension.

Résumé : Les données génomiques issues d’expé-
riences de puces à ADN ou de séquençage ont deux
caractétistiques principales: leur grande dimension
(le nombre de marqueurs dépassant de plusieurs
ordres de grandeurs le nombre d’observations), et
leur forte structuration (notamment via les dépen-
dances entre marqueurs). La prise en compte de
cette structuration est un enjeu clé pour le déve-
loppement de méthodes performantes en grande di-
mension.
Cette thèse est axée sur les données présentant une

forte structure le long du génome. C’est le cas des
données de nombres de copies d’ADN, mais aussi
des données de génotypes. La thèse couvre à la fois
le developpement de méthodes statistiques, l’implé-
mentation logicielle, et l’application des méthodes
développées à des jeux de données réelles. Nous
avons, en particulier, étudié des méthodes de seg-
mentation, et de dictionary learning. Toutes les im-
plémentations logiciel de ces méthodes sont libre-
ment disponibles sous forme de packages R.

Title : Development of statistical methods for DNA copy number analysis in
cancerology

Keywords : DNA copy number, segmentation, cancerology, dictionary learning, heterogeneity, high
dimension.

Abstract : Genomic data from DNA microar-
ray or sequencing technologies have two major
characteristics: their high dimension (number of
markers larger than the number of observations),
and their strong structuration (dependence bet-
ween markers). Taking into account this structu-
ration, it is a challenging issue for the development
of efficient methods.

This work is focused on the data with a strong spa-
tial structuration, namely DNA copy number data
in tumor samples. We developed statistical models,
software implementations and we applied these de-
velopments to real data. We explored in particular
segmentation models and dictionary learning me-
thods. All the software Implementations of these
methods are freely available as R packages.
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