

Development of statistical methods for DNA copy number analysis in cancerology

Morgane Pierre-Jean Supervisors : Catherine Matias and Pierre Neuvial

Laboratoire de Mathématique et de Modélisation d'Evry, LaMME

December 2nd, 2016

Introduction 000000000000	Segmentation	Heterogeneity Model	Application 000000	Conclusion

Outline

- 2 Segmentation
- 3 Heterogeneity Model
- Simulations
- 5 Application to real data sets
 - **Conclusion**

Introduction	Segmentation	Heterogeneity Model 0000000	Application 000000	Conclusion

Outline

Introduction	Segmentation	Heterogeneity Model	Application	Conclusion
Alterations in tumor	cells			

Objectives

Alterations in tumor cells can be observed at several levels

- Gene expression
- DNA structure
- Mutations
- DNA copy number

Why study genetic alterations in cancers?

- Help to diagnosis
- Identify biomarkers linked to drug resistance
- Personalized treatments

Introduction	Segmentation	Heterogeneity Model	Application	Conclusion
Alterations in tumor	cells			

Objectives

Alterations in tumor cells can be observed at several levels

- Gene expression
- DNA structure
- Mutations
- DNA copy number

Why study genetic alterations in cancers?

- Help to diagnosis
- Identify biomarkers linked to drug resistance
- Personalized treatments

Introduction	Segmentation	Heterogeneity Model	Application	Conclusion
0000 0000000				
Alterations in tumor	cells			

Illustration of alterations at level of DNA copy number

Introduction	Segmentation	Heterogeneity Model	Application	Conclusion
00000000000				
Alterations in tumor	cells			

Human Karyotype

Introduction	Segmentation	Heterogeneity Model	Application	Conclusion
000000000000000000000000000000000000000				
Alterations in tumor	cells			

How to measure DNA copy number more precisely?

- CGH arrays (measuring total DNA copy number)
- SNP arrays (measuring quantity of alleles for predefined SNPs)
- Sequencing technologies (WGS or WES)

Introduction	Segmentation	Heterogeneity Model	Application	Conclusion
00000000000				
Alterations in tumor	cells			

What kind of signals from SNPs arrays?

Total copy number $c_j = N_j^A + N_j^B$

B allele fraction $b_j = \frac{N_j^B}{c_j}$

Introduction	Segmentation	Heterogeneity Model	Application	Conclusion
00000000000				
Alterations in tumor	cells			

What kind of signals from SNPs arrays?

Total copy number $c_j = N_j^A + N_j^B$

B allele fraction $b_j = \frac{N_j^B}{c_j}$

Introduction ○○○○●○○○○○○	Segmentation	Heterogeneity Model	Application 000000	Conclusion
Notion of Heterogene	ity			

Notion of heterogeneity in cancers

- Differences between tumors of the same disease in different patients (inter-tumor heterogeneity)
- Differences between cancer cells within a single tumor of one patient (intra-tumor heterogeneity).

Introduction	Segmentation	Heterogeneity Model 0000000	Application 000000	Conclusion
Notion of Heterogen	eity			

Heterogeneity illustration

Introduction ○○○○○○●○○○○	Segmentation	Heterogeneity Model	Application 000000	Conclusion
Notion of Heterogen	eity			

Heterogeneity illustration

Morgane Pierre-Jean

Development of statistical methods for DNA copy number data

Introduction	Segmentation	Heterogeneity Model 0000000	Application 000000	Conclusion
Notion of Heterogen	eity			

Mathematical modelization

• $y_{1\bullet} \in \mathbb{R}^J$ and $y_{2\bullet} \in \mathbb{R}^J$ the observed DNA copy number profiles

$$y_{1\bullet} = w_{11}z_{1\bullet} + w_{12}z_{2\bullet} + w_{13}z_{3\bullet}$$

• Find w and z for the two profiles

Introduction	Segmentation	Heterogeneity Model 0000000	Application 000000	Conclusion
Notion of Heterogen	eity			

Mathematical modelization

• $y_{1\bullet} \in \mathbb{R}^J$ and $y_{2\bullet} \in \mathbb{R}^J$ the observed DNA copy number profiles

$$y_{1\bullet} = w_{11}z_{1\bullet} + w_{12}z_{2\bullet} + w_{13}z_{3\bullet}$$

• Find w and z for the two profiles

Introduction	Segmentation	Heterogeneity Model	Application 000000	Conclusion
Notion of Heterogene	ity			

General mathematical modelization

• Let $y_{i\bullet} \in \mathbb{R}^J$ the observed DNA copy number profiles

$$\mathbf{y}_{i\bullet} = \sum_{k=1}^{p} w_{ik} \mathbf{z}_{k\bullet} + \epsilon$$

• Latent profiles assumed to be shared between the observed profiles

• Minimize
$$\sum_{i=1}^{n} \|y_{i\bullet} - \sum_{k=1}^{p} w_{ik} z_{k\bullet}\|^2$$
 under some constraints.

Introduction	Segmentation	Heterogeneity Model 0000000		Application 000000	Conclusion			
Notion of Heterogeneity								

Related works

Matrix Factorization problem

$$\min_{W,Z} \|\mathbf{Y} - \mathbf{WZ}\|_F^2$$

- Penalized latent models to infer heterogeneity
 - Fused Lasso latent model FLlat (Nowak et al., 2011)
 - CGH analysis with Dictionary Learning e-FLlat (Masecchia et al., 2013)
 - Evolutionary history by next-generation sequencing Canopy (Jiang et al., 2016)

Introduction	Segmentation	Heterogeneity Model	Application	Conclusion
00000000000				
Notion of Heterogene	ity			

InCaSCN- Inferring Cancer Subclone using Copy Number

Features of method

- joint segmentation of all *n* profiles $\Rightarrow S 1$ breakpoints (Pierre-Jean et al., Briefings in Bionformatics, 2015)
- Integration of B allele fraction information by using transformations
- Biological interpretation of constraints on latent profiles of TCN and BAF and weight matrix W

Segmentation	Heterogeneity Model	Application	Conclusion

Outline

Segmentation

- Models
- Recursive Binary Segmentation for multiple samples

3 Heterogeneity Model

④ Simulations

Introduction 000000000000	Segmentation	Heterogeneity Model 0000000	Application 000000	Conclusion

Introduction 000000000000	Segmentation ●0000000	Heterogeneity Model	Application 000000	Conclusion
Models				

Segmentation methods

- Multiple change-point
- Recursive
- Total variation
- Hidden Markov Models
- Kernel methods

Introduction 000000000000	Segmentation ●0000000	Heterogeneity Model	Application 000000	Conclusion
Models				

Segmentation methods

- Multiple change-point
- Recursive
- Total variation
- Hidden Markov Models
- Kernel methods

Introduction 000000000000	Segmentation ●○○○○○○	Heterogeneity Model	Application 000000	Conclusion
Models				

Segmentation methods

- Multiple change-point
- Recursive
 - Joint segmentation
- Total variation
- Hidden Markov Models
- Kernel methods
 - Change-point detection in whole distribution

Introduction 000000000000	Segmentation ○●○○○○○○	Heterogeneity Model	Application 000000	Conclusion
Models				

A change-point model

- Biological assumption : DNA copy number signal is piecewise constant in the mean
- Statistical model for S-1 change points at $(t_1,...t_{S-1})$:

$$orall j = 1, \dots, J$$
 $c_j = \gamma_j + \epsilon_j$
where $orall s \in \{1, \dots, S\}, orall j \in [t_{S-1}, t_S[$ $\gamma_j = \Gamma_s$

Introduction 000000000000	Segmentation ○●○○○○○○	Heterogeneity Model	Application 000000	Conclusion
Models				

A change-point model

- Biological assumption : DNA copy number signal is piecewise constant in the mean
- Statistical model for S-1 change points at $(t_1, ..., t_{S-1})$:

$$\forall j = 1, \ldots, J$$
 $c_j = \gamma_j + \epsilon_j$

where
$$\forall s \in \{1, \ldots, S\}, \forall j \in [t_{S-1}, t_S[\gamma_j = \Gamma_s]$$

Complexity

• Challenges : S and $(t_1, ..., t_{S-1})$ are unknown

• For a fixed *S*, the number of possible partitions : $C_{J-1}^{S-1} = \mathcal{O}(J^{S-2})$

Two-step approaches for joint segmentation

Gey and Lebarbier (2008) and Vert and Bleakley (2010) First step :

- Running a fast but approximate segmentation method (RBS) Second step
 - Pruning the final set of breakpoints using dynamic programming that is slower but exact

Versatility of RBS

- Possibility to have different scales
- TCN-DoH segmentation
- Several TCN signals
- Several TCN-DoH signals

Introduction Segmentation Heterogeneity Model Simulations Application Conclusion accosocococo cocococo cocococo cocococo Recursive Binary Segmentation for multiple samples

Two-step approaches for joint segmentation

Gey and Lebarbier (2008) and Vert and Bleakley (2010) First step :

- Running a fast but approximate segmentation method (RBS) Second step
 - Pruning the final set of breakpoints using dynamic programming that is slower but exact

Versatility of RBS

- Possibility to have different scales
- TCN-DoH segmentation
- Several TCN signals
- Several TCN-DoH signals

Binary Segmentation

- Take the simple case : dimension is equal to $1 \ (d = 1)$:
- \mathcal{H}_0 : No breakpoint vs \mathcal{H}_1 : Exactly one breakpoint
- The likelihood ratio statistic is given by $\max_{1 \le j \le J} |Z_j|$

$$Z_{j} = \frac{\left(\frac{S_{j}}{j} - \frac{S_{J} - S_{j}}{J - j}\right)}{\sqrt{\frac{1}{j} + \frac{1}{J - j}}},$$
(1)

And $S_j = \sum_{1 \le t \le j} c_j$

If (d > 1) : the likelihood ratio statistic becomes $\max_{1 \le j \le J} \|Z_j\|_2^2$

Introduction Segmentation Heterogeneity Model Simulations Application Conclusion 000000000 000000 000000 000000 000000 Recursive Binary Segmentation for multiple samples

First step : Recursive Binary Segmentation (RBS)

Complexity : O(dJlog(S))

- First breakpoint
- For each j : we compute Z_j : $t_1 =$ arg max $_{1 \le j \le J} ||Z_j||_2^2$

 Introduction
 Segmentation
 Heterogeneity Model
 Simulations
 Application
 Conclusion

 0000000000
 00000000
 00000000
 0000000
 0000000
 0000000

 Recursive Binary Segmentation for multiple samples
 Simulations
 Simulations</

First step : Recursive Binary Segmentation (RBS)

Complexity : O(dJlog(S))

- First breakpoint
- For each j : we compute Z_j : t₁ = arg max_{1≤j≤J} ||Z_j||²₂

 Introduction
 Segmentation
 Heterogeneity Model
 Simulations
 Application
 Conclusion

 0000000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000

 Recursive Binary Segmentation for multiple samples
 Samples
 0000000
 0000000
 0000000
 0000000

First step : Recursive Binary Segmentation (RBS)

- Second breakpoint :
 - $\max_{1 \le j \le t_1} \|Z_j\|_2^2$ • $\max_{t_1 < j < J} \|Z_j\|_2^2$
- Compute RSE for each segment.
- Keep the RSE that yield the maximum gain
- Add the breakpoint to the active set

 Introduction
 Segmentation
 Heterogeneity Model
 Simulations
 Application
 Conclusion

 0000000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000

 Recursive Binary Segmentation for multiple samples
 Samples
 0000000
 0000000
 0000000
 0000000

First step : Recursive Binary Segmentation (RBS)

- Second breakpoint :
 - $\max_{1 \le j \le t_1} \|Z_j\|_2^2$ • $\max_{t_1 < j \le J} \|Z_j\|_2^2$
- Compute RSE for each segment.
- Keep the RSE that yield the maximum gain
- Add the breakpoint to the active set

 Introduction
 Segmentation
 Heterogeneity Model
 Simulations
 Application
 Conclusion

 0000000000
 000000
 0000000
 0000000
 0000000
 0000000
 0000000

 Recursive Binary Segmentation for multiple samples
 samples
 0000000
 0000000
 0000000
 0000000

First step : Recursive Binary Segmentation (RBS)

- Third breakpoint :
 - $\max_{1 \le j \le t_1} \|Z_j\|_2^2$ • $\max_{t_1 < j \le t_2} \|Z_j\|_2^2$ • $\max_{t_2 < j \le J} \|Z_j\|_2^2$
- Compute RSE for each
 - segment.
- Keep the RSE that yield the maximum gain
- Add the breakpoint to the active set

Introduction
 Segmentation
 Heterogeneity Model
 Simulations
 Application
 Conclusion

 0000000000
 000000
 0000000
 0000000
 0000000
 0000000
 0000000

 Recursive Binary Segmentation for multiple samples
 samples
 0000000
 0000000
 0000000
 0000000

First step : Recursive Binary Segmentation (RBS)

- Third breakpoint :
 - $\max_{1 \le j \le t_1} \|Z_j\|_2^2$ • $\max_{t_1 < j \le t_2} \|Z_j\|_2^2$ • $\max_{t_2 < j < J} \|Z_j\|_2^2$
- Compute RSE for each
 - segment.
- Keep the RSE that yield the maximum gain
- Add the breakpoint to the active set

 Introduction
 Segmentation
 Heterogeneity Model
 Simulations
 Application
 Conclusion

 0000000000
 000000
 0000000
 0000000
 0000000
 0000000
 0000000

 Recursive Binary Segmentation for multiple samples
 Simulations
 0000000
 0000000
 0000000
 0000000

First step : Recursive Binary Segmentation (RBS)

- Third breakpoint :
 - $\max_{1 \le j \le t_1} \|Z_j\|_2^2$ • $\max_{t_1 < j \le t_2} \|Z_j\|_2^2$
 - $\max_{t_2 < j \le J} \|Z_j\|_2^2$
- Compute RSE for each segment.
- Keep the RSE that yield the maximum gain
- Add the breakpoint to the active set

 Introduction
 Segmentation
 Heterogeneity Model
 Simulations
 Application
 Conclusion

 0000000000
 000000
 0000000
 0000000
 0000000
 0000000
 0000000

 Recursive Binary Segmentation for multiple samples
 samples
 0000000
 0000000
 0000000
 0000000

First step : Recursive Binary Segmentation (RBS)

- Third breakpoint :
 - $\max_{1 \le j \le t_1} \|Z_j\|_2^2$ • $\max_{t_1 < j \le t_2} \|Z_j\|_2^2$
 - $\max_{t_2 < j \le J} \|Z_j\|_2^2$
- Compute RSE for each segment.
- Keep the RSE that yield the maximum gain
- Add the breakpoint to the active set

	Segmentation		Application	Conclusion
	0000000			
Recursive Binary Se	gmentation for mult	tiple samples		

Summary

Contributions to segmentation methods

- Implementation of a fast joint segmentation followed by a pruning. (jointseg package)
- Kernel methods (preprint submitted to CSDA)
- Evaluation of performance (Pierre-Jean et al., Briefings in Bionformatics, 2015)

Segmentation	Heterogeneity Model	Application	Conclusion

Outline

	Heterogeneity Model	Application	Conclusion
	000000		
BAF integration			

Integrating BAF through Parental copy numbers

What is parental copy number ? $d_j = 2|b_j - 1/2|$ for AB SNPs

Development of statistical methods for DNA copy number data

Introduction	Segmentation	Heterogeneity Model	Simulations	Application	Conclusion
Model					

Model on parental copy number

$$\min_{W,Z^{1},Z^{2}} \|Y^{1} - WZ^{1}\|_{F}^{2} + \lambda_{1} \sum_{k=1}^{p} \sum_{s=1}^{S-1} |z_{k,s+1}^{1} - z_{k,s}^{1}| \qquad (2)$$

$$\|Y^{2} - WZ^{2}\|_{F}^{2} + \lambda_{2} \sum_{k=1}^{p} \sum_{s=1}^{S-1} |z_{k,s+1}^{2} - z_{k,s}^{2}|$$

s. t $w_{i\bullet} \in \Delta_p$ where $\Delta_p = \left\{ w \in \mathbb{R}^p \quad s.t. \quad w \ge 0 \quad and \quad \sum_{k=1}^p w_k = 1 \right\}$

Introduction 000000000000	Segmentation	Heterogeneity Model ○○●0000	Application 000000	Conclusion
Algorithm				

Final algorithm

Algorithm 1 Find weights and latent profiles

- 1: **Parameters :** λ_1, λ_2 and p
- 2: INIT : Matrices $Y \in \mathbb{R}^{n \times S}$, $Y^1 \in \mathbb{R}^{n \times S}$ and $Y^2 \in \mathbb{R}^{n \times S}$ and matrix Z_0^1 and $Z_0^2 \in \mathbb{R}^{p \times S}$, and
- 3: for l = 0, 1, 2, ... do
- 4: Minimize in W with Z_l^1 and Z_l^2 fixed
- 5: Minimize in Z^1 with W_l fixed
- 6: Minimize in Z^2 with W_l fixed
- 7: W_l , Z_l^1 and Z_l^2 are updated
- 8: Check if $||W_{l-1} W_l||_2^2 < \epsilon$ or max_{it} is reached

9: end for

Introduction 000000000000	Segmentation	Heterogeneity Model ○○●○○○○	Application 000000	Conclusion
Algorithm				

Final algorithm

Algorithm 2 Find weights and latent profiles

- 1: **Parameters :** λ_1, λ_2 and p
- 2: INIT : Matrices $Y \in \mathbb{R}^{n \times S}$, $Y^1 \in \mathbb{R}^{n \times S}$ and $Y^2 \in \mathbb{R}^{n \times S}$ and matrix Z_0^1 and $Z_0^2 \in \mathbb{R}^{p \times S}$, and
- 3: for l = 0, 1, 2, ... do
- 4: Minimize in W with Z_l^1 and Z_l^2 fixed
- 5: Minimize in Z^1 with W_l fixed
- 6: Minimize in Z^2 with W_l fixed
- 7: W_l , Z_l^1 and Z_l^2 are updated
- 8: Check if $||W_{l-1} W_l||_2^2 < \epsilon$ or max_{it} is reached
- 9: end for

Introduction 000000000000	Segmentation	Heterogeneity Model ○○0●○○○	Application 000000	Conclusion
Algorithm				

Solving 4 : Inference of W

- Weights of each patient can be treated independently
- Solve *n* least-squares problems with equality constraint plus inequality constraints for the non-negativity of the coefficient
- linear inverse problem that can be solved in R with the package **limSolve**.

Introduction 000000000000	Segmentation	Heterogeneity Model ○○○○●○○	Application 000000	Conclusion
Algorithm				

Solving 5 and 6 : Inference of latent profiles

- for a fixed W cut into two independent LASSO problems in (Z_1, Z_2)
- Use matrix algebra and properties of the vectorization operator
- Obtain LASSO problem that can be solved in R with the package **glmnet**.

Introduction 000000000000	Segmentation	Heterogeneity Model ○○○○●○	Application 000000	Conclusion
Model selection				

Choice of λ_1 and λ_2 values when p is fixed

- Use a BIC criterion
- We search to minimize :

$$(nS) imes \log\left(\frac{\|Y - \hat{W}\hat{Z}\|_F^2}{nS}\right) + k(Z)\log(nS)$$

where $k(Z^{T})$ is the number of breakpoints.

• This criterion helps to strike a balance between over-fit and under-fit models.

Introduction 0000000000000	Segmentation	Heterogeneity Model ○○○○○●	Application 000000	Conclusion
Model selection				
Choice of	D			

• Use the percentage of variation explained (PVE) for each *p*, where the PVE is defined as :

$$PVE_{P} = 1 - \frac{\sum_{i=1}^{n} \sum_{j=1}^{S} (y_{ij} - \sum_{k=1}^{p} \hat{w}_{ik} \hat{z}_{kj})^{2}}{\sum_{i=1}^{n} \sum_{j=1}^{S} (y_{ij} - \bar{y}_{i})^{2}}$$

where $\bar{y}_i = \frac{\sum_{j=1}^{S} y_{ij}}{S}$.

Segmentation	Heterogeneity Model	Simulations	Application	Conclusion

Outline

Segmentation

3 Heterogeneity Model

Simulations

- Generating data with known truth
- Framework

Step 1- Annotate a real data set

Loss of one copy (Chr18)

Normal region (Chr21)

Development of statistical methods for DNA copy number data

Step 1- Annotate a real data set

Loss of one copy (Chr18)

Normal region (Chr21)

Morgane Pierre-Jean

Development of statistical methods for DNA copy number data

Introduction 000000000000	Segmentation	Heterogeneity Model	Simulations 00000000	Application 000000	Conclusion		
Generating data with known truth							

Step 2 - Synthetic data generation by resampling 100% tumor cells

Introduction 000000000000	Segmentation	Heterogeneity Model 0000000	Simulations 0●0000000	Application 000000	Conclusion			
Generating data with known truth								

Step 2 - Synthetic data generation by resampling 79% tumor cells

Step 2 - Synthetic data generation by resampling 50% tumor cells

Morgane Pierre-Jean

Development of statistical methods for DNA copy number data

Introduction 000000000000	Segmentation	Heterogeneity Model	Simulations	Application 000000	Conclusion
Generating data with	known truth				

Summary

Advantages

- More realistic noise Hocking et al. (2013)
- SNR is controlled with the proportion of tumor cells Staaf et al. (2008); Rasmussen et al. (2011)
- Solution of simulated profiles Willenbrock and Fridlyand (2005)
- True and false positive evaluation Hocking et al. (2013)

Application

- Performance of segmentation methods
- Evaluation of heterogeneity model

Introduction 000000000000	Segmentation	Heterogeneity Model 0000000	Simulations 000●00000	Application 000000	Conclusion
Framework					

Characteristics

- 100 data sets simulated
- 30 tumor samples and 5 latent profiles based on realistic simulation framework
- Each matrix W is different for the 100 data sets

Introduction 000000000000	Segmentation	Heterogeneity Model 0000000	Simulations	Application 000000	Conclusion
Framework					

Simulated latent profiles

Introduction 000000000000	Segmentation	Heterogeneity Model	Simulations ○○○○○●○○○	Application 000000	Conclusion
Framework					

Performance evaluation

We compared performance of three methods :

- InCaSCN on parental copy number profiles
- InCaSCN on total copy number profiles
- FLLAT on total copy number profiles (Nowak et al., 2011)

Introduction 000000000000	Segmentation	Heterogeneity Model	Simulations	Application 000000	Conclusion
Framework					

Better estimation and interpretation of weights by using InCaSCN

Introduction 000000000000	Segmentation	Heterogeneity Model	Simulations ○○○○○○●○	Application 000000	Conclusion
Framework					

Inferred latent profiles from InCaSCN recover the true alterations

Evaluation

- Characterize each region as normal or altered for latent profiles
- AUC close to 1 : altered regions have been recovered with a few number of mistakes

Introduction 000000000000	Segmentation	Heterogeneity Model	Simulations ○○○○○○○●	Application 000000	Conclusion
Framework					

Conclusion

- InCaSCN enables to recover both :
 - simulated latent profiles
 - weights with a small error
- Results on simulation are very promising for the application to real data sets.

Segmentation	Heterogeneity Model	Application	Conclusion

Outline

Segmentation

3 Heterogeneity Model

Simulations

Application to real data sets

- Inter-tumoral heterogeneity application
- Intra-tumoral heterogeneity application

Conclusion

- Fabien Reyal's team (RT² : Residual Tumor and Response to Treatment)
- Triple-negative breast cancer (TNBC)
 - 16 patients
 - Micro-biopsy of the Primary Tumor at diagnosis
 - Neo-adjuvant chemotherapy before surgery
 - Primary Tumor size reduced but incomplete -> Residual
 - 10 patients with Primary Tumor and Residual samples
 - 6 patients with an additional metastasis Lymph Node sample
- Whole exome sequencing data
- RNAseq data

- Fabien Reyal's team (RT² : Residual Tumor and Response to Treatment)
- Triple-negative breast cancer (TNBC)
 - 16 patients
 - Micro-biopsy of the Primary Tumor at diagnosis
 - Neo-adjuvant chemotherapy before surgery
 - Primary Tumor size reduced but incomplete -> Residual
 - 10 patients with Primary Tumor and Residual samples
 - 6 patients with an additional metastasis Lymph Node sample
- Whole exome sequencing data
- RNAseq data

- Fabien Reyal's team (RT² : Residual Tumor and Response to Treatment)
- Triple-negative breast cancer (TNBC)
 - 16 patients
 - Micro-biopsy of the Primary Tumor at diagnosis
 - Neo-adjuvant chemotherapy before surgery
 - Primary Tumor size reduced but incomplete -> Residual
 - 10 patients with Primary Tumor and Residual samples
 - 6 patients with an additional metastasis Lymph Node sample
- Whole exome sequencing data
- RNAseq data

- Fabien Reyal's team (RT² : Residual Tumor and Response to Treatment)
- Triple-negative breast cancer (TNBC)
 - 16 patients
 - Micro-biopsy of the Primary Tumor at diagnosis
 - Neo-adjuvant chemotherapy before surgery
 - Primary Tumor size reduced but incomplete -> Residual
 - 10 patients with Primary Tumor and Residual samples
 - 6 patients with an additional metastasis Lymph Node sample
- Whole exome sequencing data
- RNAseq data

Introduction 000000000000	Segmentation	Heterogeneity Model	Application	Conclusion
Inter-tumoral heterog	geneity application			

Results

Development of statistical methods for DNA copy number data

Introduction 000000000000	Segmentation	Heterogeneity Model 0000000	Application 00●000	Conclusion
Inter-tumoral hetero	geneity application			

Conclusion on the application

- Only one latent profile (subclone B) common across the patients
- Patients are mainly grouped together
- For two patients (40 and 50), it seems that the resistant clone is already present in PT and becomes largely predominant in RES
- Same results from RNAseq analysis (B. Sadacca)

Introduction 0000000000000	Segmentation	Heterogeneity Model 0000000	Application ○○○●○○	Conclusion
Intra-tumoral hetero	ogeneity application			

Collaboration with UCSF

- Henrik Bengtsson and Joe Costello
- Glioblastoma
 - 96 patients
 - Primary Tumor samples
 - Recurrence 1 with several samples
 - Sometimes Recurrence 2 with several samples
- Whole exome sequencing data
- Preprocessing with sequenza

Introduction 000000000000	Segmentation	Heterogeneity Model 0000000		Application ○○○○●○	Conclusion			
Intra-tumoral heterogeneity application								

Results

Introduction 000000000000	Segmentation	Heterogeneity Model		Application ○○○○●	Conclusion		
Intra-tumoral heterogeneity application							

Conclusions

Conclusions

- One resistant subclone already present in PT
- New cancer in Recurrence 2

Conclusions on the model

- Fast and efficient algorithm
- Application to other data sets
- Similar results than the model that uses mutations
| Introduction
000000000000 | Segmentation | Heterogeneity Model | Application
000000 | Conclusion |
|------------------------------|--------------|---------------------|-----------------------|------------|
| | | | | |

Outline

B Heterogeneity Model

Introduction 000000000000	Segmentation	Heterogeneity Model	Application	Conclusion

Contributions

- Segmentation Methods
- Realistic simulation framework
- Performance of segmentation methods
- Heterogeneity
- Bioinformatic pipelines under several R packages
 - jointseg
 - acnr
 - InCaSCN

Segmentation	Heterogeneity Model	Application	Conclusion

Contributions

- Segmentation Methods
- Realistic simulation framework
- Performance of segmentation methods
- Heterogeneity
- Bioinformatic pipelines under several R packages
 - jointseg
 - acnr
 - InCaSCN

Introduction 000000000000	Segmentation	Heterogeneity Model	Application 000000	Conclusion

Perspectives

- Exploring DNA copy number latent profiles
- Link to clinical outcomes
- Discover biomarkers
- Collaboration with UCSF

		Application	Conclusion

Thank you for your attention

Introduction 000000000000	Segmentation	Heterogeneity Model	Application 000000	Conclusion

- S. Gey and E. Lebarbier. Using CART to detect multiple change points in the mean for large sample. Technical report, Statistics for Systems Biology research group, 2008.
- T. Hocking, G. Schleiermacher, I. Janoueix-Lerosey, V. Boeva, J. Cappo, O. Delattre, F. Bach, and J.-P. Vert. Learning smoothing models of copy number profiles using breakpoint annotations. *BMC Bioinformatics*, 14(1):164, 2013.
- Y. Jiang, Y. Qiu, A. J. Minn, and N. R. Zhang. Assessing intratumor heterogeneity and tracking longitudinal and spatial clonal evolutionary history by next-generation sequencing. *Proceedings of* the National Academy of Sciences, 113(37):E5528-E5537, 2016. doi: 10.1073/pnas.1522203113. URL http://www.pnas.org/content/113/37/E5528.abstract.
- S. Masecchia, S. Salzo, A. Barla, and A. Verri. A dictionary learning based method for acgh segmentation. In Proceedings of the European Symposium on Artificial Neural Networks, 2013.
- G. Nowak, T. Hastie, J. R. Pollack, and R. Tibshirani. A fused lasso latent feature model for analyzing multi-sample acgh data. *Biostatistics*, page kxr012, 2011.
- M. Rasmussen, M. Sundström, H. Göransson Kultima, J. Botling, and et al. Allele-specific copy number analysis of tumor samples with aneuploidy and tumor heterogeneity. *Genome Biol*, 12(10) :R108, Oct. 2011.
- J. Staaf, D. Lindgren, J. Vallon-Christersson, A. Isaksson, and et al. Segmentation-based detection of allelic imbalance and loss-of-heterozygosity in cancer cells using whole genome SNP arrays. *Genome Biol*, 9(9): R136, Oct. 2008.
- J.-P. Vert and K. Bleakley. Fast detection of multiple change-points shared by many signals using group LARS. Advances in Neural Information Processing Systems, 23 :2343–2351, 2010.
- H. Willenbrock and J. Fridlyand. A comparison study : applying segmentation to array-CGH data for downstream analyses. *Bioinformatics*, 21(22) :4084–91, Nov 2005. doi : 10.1093/bioinformatics/bti677.

Selection of number of latent profiles

Development of statistical methods for DNA copy number data

Intra-tumoral heterogeneity

- Public data set
- High serious grade ovarian cancer (HSGOC)

- Quantify heterogeneity
- Reconstruct tumor evolution

Results

- ${\scriptstyle \bullet}$ We focused on one patient with 11 samples
 - Ovary (Biopsy)
 - Omentum
 - Ascites (relapse)
- We select a model with 4 latent profiles

Results : Weight matrix

Conclusions an Perspectives

- One clone seems to be not resistant to the drug (latent profile 3)
- There may exist only one resistant clone to the drugs that led to a relapse (latent profile 4)
- exploring if there are not known genes that can be responsible for the resistance

Spatial Intra-tumoral heterogeneity

- Public data set
- Kidney cancer
- Several patients with several samples at various location.

Kidney cancer application

Sequencing information

- Illumina Hi-Seq 2500 pair-end aligned on hg19
- Depth : WEG : 100x
- bwa for alignement (soft clapping remove head and tail and map on the middle)
- reads sizes reads : 100 bases

Random Features

For a signal of length J.MethodcomputationStorageKernel $\mathcal{O}(SJ^2)$ $\mathcal{O}(SJ)$ Approximation $\mathcal{O}(p^2J)$ $\mathcal{O}(SJ)$ Random Feature $\mathcal{O}(SMJ)$ $\mathcal{O}(MJ)$