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Differential expression analyses

Setting
Data: a thin (n × p, n� p) gene expression matrix
Outcome: two phenotypes with sample size n1, n2 such that
n1 + n2 = n
Goal: Find a subset of genes in {1 . . . p} whose mean expression differ
between phenotypes

Classical approach
one test per gene
multiple testing correction

Problem: interpretability of gene
lists
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Gene set enrichment analyses

Idea: incorporate biological information through gene sets

Two step approaches to gene set enrichment
1 Test differential expression of genes,
2 Test enrichment of gene sets in DE genes.
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Limitations
univariate: correlation structure between
genes lost at step 1
pathways are more than gene “sets”
unclear interpretation of the null hypothesis
tested
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Multivariate two sample tests
Generalization of Student’s t-test to p-dimensional vectors

Hotelling’s T 2 test
Let (n1, n2) such that p < n1 + n2− 1. Assume (x1j)1≤j≤n1 are iid
∼ Np(µ1,Σ) and (x2j)1≤j≤n2 are iid ∼ Np(µ2,Σ). Let

T 2 =
n1n2

n1 + n2
(x̄2 − x̄1)T Σ̂−1(x̄2 − x̄1)

where x̄1 = 1
n1

∑n1
j=1 x1j and x̄2 = 1

n2

∑n2
j=1 x2j . Then T 2 follows Fisher’s

distribution F (N∆2; p, n1 + n2− p − 1) with non-centrality parameter
N∆2, where N = n1n2

n1+n2 and ∆2 = (µ2 − µ1)T Σ−1(µ2 − µ1)

Limitations
only applies when p < n1 + n2− 1
even then loses power quickly in high dimension due to Σ̂−1
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Structured Two-Sample Test

Idea
Use prior information on distribution shift to reduce dimension and gain
power.

Gene networks

Possible prior : distribution shift is (partly) coherent with known network.
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Gene profiles as functions on graphs

Idea
A function on a graph associates a real value to each of its nodes
Any vector f ∈ R|V| may be interpreted as a function on G = (V, E)

E.g. :
I Gene expressions for the genes in the network (xi ),
I Average of gene expressions over patients within a phenotype (x̄1),
I Difference between the averages within the two phenotypes (x̄1 − x̄2).

Example
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Energy on a graph

Hilbert space
Gradient operator ∇.
Laplace operator L = −div∇.
Dirichlet energy of function f :

1
2

∫
|∇f (x)|2dx .

Eigenfunctions of L : sinusoids
with increasing energy :

· · · · · ·

Graph G = (V , E)
Gradient matrix ∇ ∈ R|E|,|V|.
Laplacian matrix L = ∇>∇.
Dirichlet energy of f ∈ R|V| :

1
2
f >Lf =

1
2
‖∇f ‖2.

Eigenvectors of L : vectors
with increasing energy :

. . .

Energy is defined by the graph topology (regardless of expression values)
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Harmonic analysis on graphs

“Graph-Fourier” decomposition

Graph-Fourier coefficients f̃i are projections of f on eigenvectors of
L :

f̃i
∆
= u>i f , i = 1, . . . , |V|.

Inverse transform :

f =

|V|∑
i=1

f̃iui .

f and f̃ are two dual ways of writting the same function :
I As node values fi (e.g. expression shifts),
I As graph-Fourier coefficients f̃i .
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Harmonic analysis on graphs

Example 1 (smooth shift)

︸ ︷︷ ︸
f

= 1.45︸︷︷︸
f̃1

︸ ︷︷ ︸
u1

− 0.04︸︷︷︸
f̃2

︸ ︷︷ ︸
u2

− 0.21︸︷︷︸
f̃3

︸ ︷︷ ︸
u3

+ 0.20︸︷︷︸
f̃4

︸ ︷︷ ︸
u4

.

Example 2 (non-smooth shift)

= 0.00 − 0.41 + 0.42 + 1.16 .

Remark
Smooth functions have large coefficients at the beginning of the
spectrum.
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Statistic in (graph-)frequency domain

Test statistic

T̃ 2
k =

n1n2

n1 + n2
(x̄1 − x̄2)>U[k]

(
U>[k]Σ̂U[k]

)−1
U>[k](x̄1 − x̄2)

where U[k] is the restriction of U to its first k columns

Remarks
Equivalent to test in frequency and graph domain (T 2 = T̃ 2).
More generally :

T 2 computed after filtering out frequencies above k
=

T̃ 2
k computed in frequency domain restricted to the first k coefficients.
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Gain in power

Lemma

For any level and any number of Fourier coefficients, maintaining the
power of the T 2 test in the Fourier space after adding a coefficient
requires a strictly positive increase of distribution shift.

Illustration
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Synthetic data, gain in power
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Left : ROC curves for the detection of a smooth shift for various test
statistics, with diagonal covariance structure.
Right : Power of the T 2-test in the graph-Fourier space with shift
evenly distributed among the first k = 5 coefficients.
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Synthetic data, gain in power

Diagonal covariance Block-diagonal covariance
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Breast cancer and KEGG data, known pathways

FAS

BID

CASP8

FAS

FADD

Difference in sample mean expression measures between tamoxifen-resistant
and non-resistant patients, for genes in two KEGG regulation networks.

Left : Regulation network (Leukocyte transendothelial migration) with
the lowest ratio of graph-Fourier to full space p-values.
Right : Regulation network (Alzheimer’s disease) with the highest
ratio of graph-Fourier to full space p-values.
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Non-homogeneous subgraph discovery

Motivation
Relevant pathways for the studied phenomenon may be subgraphs of
known networks.
Search for subgraphs with location shift.
Strategy : apply test to all subgraphs of size q.

Algorithm
Use a branch-and-bound like strategy :

1 Check, for each v ∈ V, whether T̃ 2
k of any subgraph of size q

containing v can be guaranteed to be below the critical value.
2 If this is the case, v is removed from G.
3 Repeat the procedure on the edges of the remaining graph and,

iteratively, on the subgraphs up to size q − 1.
4 Test all remaining subgraphs of size q.
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Upper bound on T̃ 2
k

Potential issue
“T̃ 2

k of any subgraph of size q containing v ” depends on the Laplacian of
the subgraph (not only on node values).

Lemma

For any subgraph g of G of size q ≤ p, any subgraph g ′ of g of size s ≤ q,
and any k ≤ q, then

T̃ 2
k (g) ≤ T 2(ν(g ′, q − s)) ,

where ν(g ′, r) is the r -neighborhood of g ′, that is, the union of the nodes
of g ′ and the nodes whose shortest path to a node of g ′ is less than or
equal to r .
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Euclidean approximation

Limit
If the large graph is very connected, the exact bound can be loose.
Use a bound on the Euclidean norm.

Eculidean bound

‖U>[k](x̄1(g)− x̄2(g))‖2 ≤ ‖x̄1(g ′)− x̄2(g ′)‖2

+ maxv=v1,...,vq−s∈ν(g ′,q−s) ‖x̄1(v)− x̄2(v)‖2.

Note on the type of false negatives
Subgraphs missed by the Euclidean approximation are those with a
small shift in a direction of small variance.
An upper bound on this variance can be written.
Those are classically filtered out.
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Synthetic data, discovery algorithm

Artificial graph of 100 nodes, 177 edges,
non-zero mean shift on one 5-node
subgraph in its first 3 Fourier
coefficients.
Full enumeration : 732± 9 seconds per
run .
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Exact algorithm : 627± 59 seconds (578± 100 on permuted data).
Approximation at θ = 0.5 (λmin ≤ 0.52) : 204± 86 seconds
(129± 91 on permuted data).
Approximation at θ = 1 (λmin ≤ 1.04) : 183± 106 seconds (40± 60
on permuted data). Missed the non-homogeneous subgraph in 5% of
the runs.
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Breast cancer and KEGG data, pathway discovery
Discovery procedure on cell cycle pathway (86 nodes, 442 edges)

Search for subgraphs of size 5, k = 3, θ = 0.1, α = 10−4 (λmin ≤ 0.23).
31 overlapping subgraphs detected :

SKP1

CDKN1A

CCNE1

TP53

E2F1

CCNE1

RB1

SMAD4

SFN

CCNA2

CDK4

CCND1

MDM2

SKP2

CDK2

E2F1

SMAD2

CDK4

CCND1 CCND1

CREBBP

E2F1

E2F1 : very recently discovered
to play a central role in
tamoxifen resistance,
CDKNA1-2 : low individual
t-scores, recently found to be
involved in ovarian cancer.
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Breast cancer and KEGG data, pathway discovery
Discovery procedure on cell cycle pathway (86 nodes, 442 edges)

Search for subgraphs of size 5, k = 3, θ = 0.1.
At α = 10−4 (λmin ≤ 0.23), two overlapping subgraphs detected :

E2F1

CCNA2

CDKN1A CDKN1B

TP53

E2F1

SKP2

I E2F1 : very recently discovered to play a central role in
tamoxifen resistance,

I CDKNA1-2 : low individual t-scores, recently found to be
involved in ovarian cancer.

I No positive detection on 50 permutations.
At α = 2.10−4 (λmin ≤ 0.24), 15 overlapping subgraphs detected.

CCNE1

CDKN1A

SKP2

E2F1

TP53

E2F1

CCNA2

CCNE1

SKP1

CDKN1B

CDK2 CCNA2

SKP1 SMAD2

CREBBP

Only two of 50 permuted runs selected 2 subgraphs each.
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Summary

Graph-structured two-sample test of means, for problems in which
the distribution shift is assumed to be smooth on a given graph.
Proved quantitative results on power gains for such smooth-shift
alternatives.
Devised branch-and-bound algorithms to systematically apply our test
to all the subgraphs of a large graph:

1 exact algorithm: reduces the number of explicitly tested subgraphs.
2 approximate algorithm: quantitative result on the type of missed

subgraphs.

Promising results on drug resistance microarray dataset.
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Gain in power

Lemma

For any level α and any 1 < l ≤ p− k, there exists d(α, k , l) > 0 such that

∆2
k+l (δ̃, Σ̃)−∆2

k(δ̃, Σ̃) < d(α, k , l)⇒ βα,k(∆2
k(δ̃, Σ̃)) > βα,k+l (∆2

k+l (δ̃, Σ̃)),

where βα,k(∆2) is the power of Hotelling’s T 2-test at level α in dimension
k for a distribution shift ∆2.

Illustration
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Note on the type of false negatives

Subgraphs missed by the Euclidean approximation are those with a small
shift in a direction of small variance :

Lemma (Characterization of missed subgraphs)

For any threshold θ > 0, k ≤ q ≤ p, and any subgraph g of size q such

that
∥∥∥ˆ̃δ[k](g)

∥∥∥2
< θ,

NT̃ 2
k (g) > fα,k ⇒ λmin

(
ˆ̃Σ[k](g)

)
<

n1n2

n1 + n2
· Nθ
fα,k

,

where fα,k is the level-α critical value for T̃ 2
k , N = n1+n2−k−1

(n1+n2−2)k , and

λmin( ˆ̃Σ[k](g)) denotes the smallest eigenvalue of ˆ̃Σ[k](g) = U[k]Σ̂(g)U>[k].

Those are classically filtered out because not interesting from a practical
point of view.

P. Neuvial (Statistique et Génome) Differential expression of pathways 2012-01-27 29 / 27


	Multivariate two-sample tests of gene expression
	Motivation

	Harmonic analysis on graphs
	Functions on graphs
	Intuition
	Examples

	Two-sample test on a graph
	Statistic in graph-frequency domain
	Gain in power
	Experiments : Synthetic data
	Experiments : Breast cancer and KEGG data

	Non-homogeneous subgraph discovery
	Motivation
	Upper bound
	Euclidean approximation
	Experiments : synthetic data
	Experiments : Breast cancer and KEGG data

	Conclusion
	Acknowledgements

	Backup

