

# Estimation of a non-parametric variable importance measure of a continuous exposure

with Antoine Chambaz and Mark J. van der Laan Electron. J. Stat. vol. 6 (2012) 1059–1099

#### Pierre Neuvial

Laboratoire Statistique et Génome Université d'Évry Val d'Essonne UMR CNRS 8071 – USC INRA

Clermont-Ferrand, Journées MAS 2012

## Outline

Association between DNA copy number and gene expression

- 2 Targeted minimal loss estimation of association
- Results

## Outline

1 Association between DNA copy number and gene expression

- Targeted minimal loss estimation of association
- 3 Results

# Cancers are characterized by changes at the molecular level

## Different levels of biological information

- DNA copy number
- gene expression
- DNA methylation

Quantitative measurements can be obtained from DNA microarrays



## Goal: find genes that drive tumorigenesis

- to better understand cancer cells
- to help find new treatments

# What gene-level data look like

187 GBM (brain cancer) samples from the Cancer Genome Atlas (TCGA)



# Note: genomic data are complex

In the preceding plot, "gene-level data" refers to :

- DNA methylation (W): proportion of "methylated" signal at a CpG locus in the gene's promoter region.
- DNA copy number (X): smoothed normalized total copy number relative to a set of reference samples.
- Expression (Y): "unified" gene expression level across 3 platforms

# Which genes are drivers?

"Driver genes" are expected to show some association between DNA copy number and gene expression

⇒ Test for association, and quantify it

## Methods for genome-wide scanning for gene-level associations

- linear correlations
- differential expression (T-tests) between copy number states
- canonical correlation analyses

### Issues with existing methods

- they essentially identify genes that were already known to be implied
- associations may be non linear
- DNA methylation may down-regulate gene expression

## Outline

1 Association between DNA copy number and gene expression

- 2 Targeted minimal loss estimation of association
- 3 Results

# Definition of a parameter of interest

Observation  $O = (W, X, Y) \sim P \in \mathcal{M}$  for a given gene :

- W : DNA methylation
- X: DNA copy number; X = 0: **copy neutral state** (2 copies)
- Y : gene expression
- ullet  $\mathcal M$  : non-parametric set of candidate data-gen. distributions of  $\mathcal O$

Parameter of interest (defined for all 
$$P \in \mathcal{M}$$
) 
$$\Psi(P) = \operatorname*{arg\,min}_{\beta \in \mathbb{R}} E_P\left[ (E_P(Y|X,W) - E_P(Y|X=0,W) - \beta X)^2 \right]$$

## A non-parametric variable importance measure

Parameter of interest (defined for all 
$$P \in \mathcal{M}$$
)
$$\Psi(P) = \underset{\beta \in \mathbb{R}}{\text{arg min }} E_P \left[ (E_P(Y|X,W) - E_P(Y|X = 0,W) - \beta X)^2 \right]$$

- Ψ(P) is a variable importance measure of the "effect" of X (continuous) on Y (continuous) accounting for W
- $\Psi(P)$  is non-parametric: in a semi-parametric model where  $E_P(Y|X,W) = E_P(Y|X=0,W) + \beta X$ , we have  $\Psi(P) = \beta$ . By contrast,  $\Psi: \mathcal{M} \to \mathbb{R}$  is defined universally

## Interpretation on the parameter of interest

Let 
$$\theta(P)(X, W) = E_P(Y|X, W)$$
, then

$$\Psi(P) = corr(X, r_P(X, W)) \sqrt{\frac{E_P[r_P(X, W)^2]}{E_P[X^2]}},$$

where 
$$r_P(X, W) = \theta(P)(X, W) - \theta(P)(0, W)$$

Case where X is binary

If  $X \in \{0,1\}$ , then

$$\Psi(P) = E_P[(\theta_P(1, W) - \theta_P(0, W))h(W)]$$

with weight h(W) = P(X = 1|W)/P(X = 1)

# Targeted minimal loss estimation (TMLE): motivation

Goal : estimate a parameter  $\Psi(P)$  from observations arising from a distribution P.  $\Psi$  is a known, smooth functional.

## Naive strategy

- Estimate P using  $\hat{P}$
- $\bullet$  Plug-in :  $\Psi(\hat{P})$

## Our target parameter is $\Psi(P)$ , not P!

- ullet  $\hat{P}$  aims at balancing bias and variance for the whole distribution
- $\Psi(\hat{P})$  does not balance bias and variance for  $\Psi(P)$

# Targeted minimal loss estimation: illustration



# Targeted minimal loss estimation : algorithm

## From an initial estimate $P_n^0$ :

- **①** Create a model  $P_n^0(\varepsilon)$  parametrized by  $\varepsilon \in \mathbb{R}$  whose score is the **efficient influence curve** of  $\Psi$  at  $P_n^0$
- **2** Estimate  $\varepsilon$  using maximum likelihood :  $\varepsilon_n^0$
- **3** Update accordingly :  $P_n^1 = P_n^0(\varepsilon_n^0)$

Repeat as many times as necessary :  $\forall k \geq 0, P_n^{k+1} = P_n^k(\varepsilon_n^k)$ 

... hence **final estimate**  $P_n^*$ 

# Statistical properties

 $P_0$ : true distribution of O

## Consistency (double robustness)

TMLE is consistent if one of the following conditions holds:

- $\theta(P_n^{\star})(0,\cdot)$  consistently estimates true  $\theta(P_0)(0,\cdot)$
- $E_{P_n^{\star}}(X|W)$  and  $P_n^{\star}(X=0|W)$  consistently estimate  $E_{P_0}(X|W)$  and  $P_0(X=0|W)$

#### Asymptotic normality

Under the same conditions with higher rates of convergence, TMLE is asymptotically Gaussian.

We can compute asymptotic p-values and thus rank genes

## Note: comparison with a non-parametric estimator

Letting 
$$\theta(P)(X,W)=E_P(Y|X,W)$$
, we have 
$$\Psi(P)=\mathop{\arg\min}_{\beta\in\mathbb{R}}E_P\left[\theta(P)(X,W)-\theta(P)(0,W)-\beta X)^2\right]$$

An obvious substitution estimator of  $\Psi(P_0)$  is

$$\hat{\psi}_n = \operatorname*{arg\,min}_{\beta \in \mathbb{R}} E_{P_n} \left\{ \left( \hat{\theta}_n(X,W) - \hat{\theta}_n(0,W) - \beta X \right)^2 \right\},$$

where  $\hat{\theta}_n(X, W)$  is the Nadaraya-Watson estimator of  $\theta(P_0)(X, W)$ .

Such an estimator has non-parametric convergence rates; it may not achieve  $\sqrt{n}$ -consistency.

## Outline

Association between DNA copy number and gene expression

- 2 Targeted minimal loss estimation of association
- Results

# Simulation strategy

#### Assumptions:

number gains and losses

• up to 3 copy number classes: normal regions, and regions of copy

- in normal regions, expression is negatively correlated with methylation
- in regions of copy number alteration, copy number and expression are positively correlated

#### GBM data used as a baseline for simulation :

| Sample name  | Methylation | Copy number | Expression |
|--------------|-------------|-------------|------------|
| TCGA-02-0001 | 0.05        | 2.72        | -0.46      |
| TCGA-02-0003 | 0.01        | 9.36        | 1.25       |

## Simulated data set mimics real data set

#### Real data (GBM, n=187)



#### Simulated data (n=200)



## Simulated data: TMLE corrects initial estimation



# Real data analysis: TCGA OV data set



## **Thanks**

- Antoine Chambaz
- Mark van der Laan
- Terry Speed

The Cancer Genome Atlas Research Network