
Rcpp use case: segmentation by dynamic programming
Pierre Neuvial

December 11, 2015

1 Motivation

Last week we have written a plain R implementation of segmentation by dynamic programming:

source("dpseg.R")
dpseg

function (y, K)
{

n <- length(y)
J <- getJ(y)
dp <- getVandBkp(J, K)
V <- dp$V
bkp <- dp$bkp
res.bkp <- backtrack(bkp)
res.rse <- V[, n]
list(bkpList = res.bkp, rse = res.rse, V = V)

}

This function makes use of three intermediate functions:

• getJ computes the n × n matrix J such that J[i,j] for i ≤ j is the Residual Squared Error (RSE) of
the segmentation with only one segment (no breakpoint) between i and j;

• getVandBkp computes from J the matrices V (K + 1 × n) and bkp (K × n), where V[i,j] is the best
RSE for segmenting intervals 1 to j with at most i-1 change points, and bkp[i, j] is the last bkp of
the best segmentation of [1:j] in i segments;

• backtrack retrieves the optimal segmentation of [1,n] in k segments for all k from bkp.

The dpseg runs quickly for signals of length 1000. For a signal of length 104, the segmentation in 10 segments
takes approximately 4 minutes on a standard laptop. As the time complexity is quadratic, we expect a signal
of length 105 to be segmented in approximately 400 minutes.

The goal of this section is to identify which part of the code takes the longest, and to use Rcpp (that is, C++
code interfaced with R) in order to speed up this part.

• Diagnostic: which part of the code takes time?
• Use Rcpp to obtain a faster implementation of this part of the code
• What is the relative gain in computing time?
• Incorporate this implementation into the whole dynamic programming function

1

	Motivation

