Repp use case: segmentation by dynamic programming
Pierre Neuvial

December 11, 2015

1 Motivation

Last week we have written a plain R implementation of segmentation by dynamic programming:

source ("dpseg.R")
dpseg

function (y, K)
{
n <- length(y)
J <- getJ(y)
dp <- getVandBkp(J, K)
V <- dp$Vv
bkp <- dp$bkp
res.bkp <- backtrack(bkp)
res.rse <- V[, n]
list(bkpList = res.bkp, rse = res.rse, V = V)

This function makes use of three intermediate functions:

o getJ computes the n X n matrix J such that J[i,j] for i < j is the Residual Squared Error (RSE) of
the segmentation with only one segment (no breakpoint) between i and j;

o getVandBkp computes from J the matrices V (K 4+ 1 x n) and bkp (K X n), where V[i,j] is the best
RSE for segmenting intervals 1 to j with at most i-1 change points, and bkp[i, j] is the last bkp of
the best segmentation of [1:j] in i segments;

o backtrack retrieves the optimal segmentation of [1,n] in k segments for all k from bkp.

The dpseg runs quickly for signals of length 1000. For a signal of length 10%, the segmentation in 10 segments
takes approximately 4 minutes on a standard laptop. As the time complexity is quadratic, we expect a signal
of length 10° to be segmented in approximately 400 minutes.

The goal of this section is to identify which part of the code takes the longest, and to use Rcpp (that is, C++
code interfaced with R) in order to speed up this part.

e Diagnostic: which part of the code takes time?

e Use Recpp to obtain a faster implementation of this part of the code

o What is the relative gain in computing time?

e Incorporate this implementation into the whole dynamic programming function

	Motivation

