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The goal of the session is to implement the algorithm for segmenting univariate signals by dynamic programming
proposed by Picard et al. (2005).

1 Statistical model

1.1 Notation

• j = 1 . . . n: genomic loci
• (γj)j=1...n: true DNA copy numbers
• (yj)j=1...n: observations

1.2 Assumptions

• breakpoints: (tk)0≤k≤K , with t0 = 1 et tK = n+ 1
• region-level copy numbers (Γk)1≤k≤K such that γj = Γk,∀j ∈ [tk−1, tk),∀k ∈ {1, . . . ,K}

We observe yj = γk(j) + εj , with k(j) = max{k, tk ≤ j}, where the noise (εj)j=1...n is iid and assumed to
follow N (0, σ2), where σ is unknown.

1.3 Homoscedastic vs heteroscedastic models

Here, we assume that the σ does not depend on the region (homoscedastic model). However, the variance of
copy number signals has been reported to be increasing with their mean. Therefore, an heteroscedastic model
where σ = σk may be more realistic. A common practice in applications is to to transform the raw copy
number signals using

√
·, log(·), or (·)1/3, in order to stabilize the variance of the signal. Then the above

homoscedastic model makes sense. We refer the interested reader to Picard et al. (2005) for a discussion on
the estimation of the homoscedastic vs the heteroscedasctic model.

1.4 Likelihood of the model

The log-likelihood of the model is given by:

`(K, 1 : n) = −n2 log(2πσ2)− 1
2σ2

J∑
j=1

(yj − γj)2

or, equivalently,
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`(K, 1 : n) = −n2 log(2πσ2)− 1
2σ2

K∑
k=1

tk∑
j=tk−1

(
yj − Γk(j)

)2
.

The maximum Likelihood (ML) estimator of Γ[k(j)] is

Γ̂[k(j)]
ML

= 1
tk − tk−1

tk∑
j=tk−1

yj

Proof:
∑n

1 (yj − γj)2 =
∑K
k=1

∑tk−1
j=tk−1

(yj − Γk)2 by the piece-wise constant assumption.

The number of possible breakpoint positions for a given K is CK−1
n−1 = O(nK) which is too large for genomic

applications where n ∼ 105 and K ∼ 100 (or more).

1.4.1 Formulation as a non-convex optimization problem

The problem of finding the change point locations can be treated independently of the estimation of the noise
level σ. This is only true in the homoscedastic model. With this remark, we can rewrite the change point
location problem as an optimization problem for the `2 loss:

min
(γj)1≤j≤n

J∑
j=1

(yj − γj)2 s.c.
n−1∑
j=1

1γj+1 6=γj
≤ K

With this formulation, the piecewise constant assumption is simply written in terms as a constraint on the `0
norm of the first order differences of γ. Because the `0 norm is non-convex, there is no computationally-efficient
way to solve this optimization problem, which is coherent with the above remark on the computational
complexity of an exhaustive search for the maximum likelihood of the model.

2 Dynamic programming

Let R(k, j1 : j2) be the RSE of the best model with k segments between j1 and j2:

R(k, j1 : j2) =
∑j2
j1

(yj − γ̂ML)2.

Note that γ̂ML depends on the breakpoint positions. The trick is to calculate V by induction on K:

2.1 Idea of the algorithm

• Compute R(1, j1 : j2) for all (j1, j2) such that 1 ≤ j1 < j2 ≤ n
• Compute R(K + 1, ·) from R(K, ·) by noting that for all (j1, j2) such that 1 ≤ j1 < j2 ≤ n,

R(K + 1, j1 : j2) = max
h∈[j1,j2]

R(K, j1 : h) +R(1, (h+ 1) : j2)

Using this induction formula, we can compute R(K, j1 : j2) for all K in O(n3). A simpler induction formula
is the following:

• Compute R(K + 1, 1 : j)1≤j≤n from (R(K, 1 : j))1≤j≤n by noting that for all j ∈ {1 . . . n},

R(K + 1, 1 : j) = max
h∈[1,j]

R(K, 1 : h) +R(1, (h+ 1) : J)
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This formula only requires the calculation (and storage) of O(n2) terms at each iteration. If the initialization
step is implemented efficiently, the total time complexity of this algorithm is O(Kn2), for a space complexity
of O(n2) (due to the storage of the R(1, ·) matrix calculated at initialization).

3 Implementation

= your work for this session!

Goal: write an R function dpseg that takes as input the signal y to be segmented and the maximum number
K of breakpoints to be retrieved, that returns for each k in {1, . . .K} the best segmentation of the input
signal in k breakpoints.

Intermediate steps:

1. Calculate the matrix J of size n× n defined by J [i, j] = R(1, i : j) for j ≥ i and J [i, j] = 0 for j < i.
2. The complexity of a naive implementation of this step is already cubic (O(n3)). How can we improve

on this?
3. Calculate by induction on k the matrix V of size K+1×n defined by V [k, j] = R(K, 1 : j) for 1 ≤ k ≤ K

and 1 ≤ j ≤ n. Also make sure to store for each (k, j) the index h(k, j) of the last breakpoint (i.e. the
k-th breakpoint) of the best segmentation of [1, j] in k segments in a matrix called bkp of size K + 1×n

4. (“backtracking”) Deduce from bkp the best segmentation of [1, n] in k segments for each k.

3.1 To go further

• Can this algorithm be extended to a multivariate signal segmentation?
• How can we speed up the code?
• How can this algorithm be adapted to handle missing values?
• How can this algorithm be extended to prune a set of candidate change points?
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