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nel administratif de l’ENSIIE, en particulier Menad Sidhamed et Nicolas Brunel.

J’exprime également ma reconnaissance envers Valérie Picot pour toutes ses aides ad-

ministratives pendant ces années passées au laboratoire.
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Résumé

Dans ce rapport, je présente l’ensemble de mes travaux effectués entre 2007 et 2015. De-

puis ma soutenance de thèse, mes travaux portent essentiellement sur deux problématiques

séparées :

- Problèmes d’optimisation et de modélisation en risques de liquidité

- Problèmes de contrôle stochastique appliqué à la finance d’entreprise

Ces problématiques présentent deux principaux challenges, le premier dans leur modéli-

sation et formulation mathématique et le deuxième dans leur résolution mathématique et

numérique. Ces problèmes sont souvent formulés comme des problèmes de contrôle sto-

chastique sous contraintes non-standard. Cela nécessite des analyses assez fines au niveau

mathématique, aussi bien dans la partie théorique qui consiste à caractériser les fonctions

valeurs via des approches de viscosité en prouvant l’existence et l’unicité que dans la des-

cription des différentes regions caractérisant les politiques optimales des problèmes. De

plus, pour entièrement résoudre ces problèmes, il est souvent nécessaire d’avoir recours aux

méthodes de résolutions numériques (probabilistes ou EDP).

Partie 1 : Problèmes d’optimisation et de modélisation de risques de liquidité

Dans cette partie, j’ai principalement travaillé sur des problèmes liés aux risques de

liquidité, de modélisation de bid-ask spread, de carnet d’ordres et de market making. La

modélisation et la compréhension de ces aspects nous permettraient de répondre à de nom-

breux problèmes importants dans la gestion des risques financiers et la gestion d’actifs.

Cette partie contient trois chapitres. Le premier chapitre correspond aux travaux menés

depuis ma thèse sur un problème de gestion de portefeuille sous contrainte de liquidité [A3].

La partie numérique correspond à l’article [A10], à parâıtre dans AMO et co-écrit avec

des collègues de l’ENIT et Mhamed Gaigi, notre doctorant en co-tutelle ENIT-Evry. Le

deuxième chapitre de cette partie est une collaboration avec Etienne Chevalier, Alexandre

Roch (UQAM, Montréal) et Simone Scotti et contient l’article [A9] traitant un problème de

liquidation optimale dans un marché LOB (Limit Order Book). Enfin, le troisième chapitre

est un travail sur un problème de market making sous contrainte d’inventaire [S12], co-écrit

avec Etienne Chevalier, Mhamed Gaigi, et Mohamed Mnif.

Partie 2 : Problèmes de contrôle stochastique appliqué à la finance d’entreprise

Dans cette partie, nous nous intéressons aux problèmes d’optimisation stochastique,

assimilables aux options réelles. Par analogie avec l’option du financier, on parle d’option

réelle pour caractériser la position d’un industriel qui bénéficie d’une certaine flexibilité dans
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la gestion de l’entreprise, par exemple, un projet d’investissement. Il est, en effet, possible

de limiter ou d’accrôıtre le niveau d’investissement compte tenu de l’évolution des perspec-

tives économiques et de rentabilité, tout comme un financier peut exercer ou non son option

sur un sous-jacent. Cette flexibilité détient une valeur qui est tout simplement la valeur de

l’option réelle. Dans cette partie, nous nous intéressons aux problèmes de décisions d’inves-

tissement et de politiques optimales de distribution de dividende. Mathématiquement, ces

problèmes sont formulés comme des problèmes de contrôles stochastiques, principalement

des problèmes de contrôle singulier et de changement de régime avec des contraintes dans

un cadre multidimensionnel.

Cette partie contient un chapitre sur des problèmes d’“optimal multiple-switching” [A5],

co-écrit avec Huyên Pham et Xunyu Zhou, et d’“optimal exit strategies” [A8], co-écrit avec

Etienne Chevalier, Alexandre Roch et Simone Scotti. Enfin, le dernier Chapitre contient

un ensemble de problèmes sur les politiques optimales de dividende et d’investissement.

Le premier problème traite un problème couplé de contrôle singulier et de changement de

régime pour une politique de dividende avec investissement réversible [A4]. Le deuxième

problème [A7], co-écrit avec Etienne Chevalier et Simone Scotti, publié dans Siam Jour-

nal in Financial Mathematics, traite un problème de dividende et d’investissement sous

contrainte de dette. Enfin, le dernier traite le cas où l’on prend en compte le problème lié

aux contraintes de liquidité [S11]. Cet [S11] est co-écrit avec E. Chevalier et M. Gaigi.

Articles publiés ou acceptés pour publication

[A1] Competitive market equilibrium under asymmetric information, Decisions in Eco-

nomics and Finance, 2007, 30, pp. 79-94.

[A2] Explicit solution to an optimal switching problem in the two regime case, avec H.

Pham, Siam Journal on Control and Optim., 2007, 46, pp. 395-426.

[A3] A Model of Optimal Portfolio Selection under Liquidity Risk and Price Impact,avec

M. Mnif and H. Pham, Finance and Stochastics, 2007, 11, pp. 51-90.
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technology investment, avec H. Pham et S. Villeneuve, Annals of Applied Probability,

2008, 18, pp. 1164-1200.
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[A6] Bid-Ask Spread modelling, a perturbation approach, avec T. Lim, JM. Sahut, and S.

Scotti, 2011, Seminar on Stochastic Analysis, Random Fields and Applications VII (Ascona

2011).

[A7] An Optimal Dividend and Investment Control Problem under Debt Constraints, avec
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Classical financial models in mathematical finance assume perfect elasticity of traded

assets: traders act as price takers, so that they buy and sell with arbitrary size without

changing the price. Relaxing this assumption is very important in the study of many

financial problems such as option hedging, optimal allocation and liquidation problems. It

is particularly important when dealing in markets where the transactions frequency or the

number of operators is low. The market liquidity crunch we have witnessed during the

financial crisis in 2008 is a case in point.

The study of market liquidity mainly consists in quantifying the costs incurred by

investors trading in markets in which supply and demand is finite, trading counterparties

are not continuously available, or trading causes prices impacts. Liquidity is a risk when

the extent to which these properties are satisfied varies randomly through time. Liquidity

and liquidity risk models varies considerably from one study to the next according to the

problem at hand or the paradigm considered. One way to have a better understanding of the

liquidity risk is to examine it through the types of financial markets, market participants,

and transaction orders, which are relevant in the study of liquidity risk.

It is clear from the very structure of the financial markets that, in addition to the

presence of price-takers, there must necessarily exist a second type of market participants

who are price-setters or liquidity providers. These different types of market participants are

related to the types of transaction orders they post. Price-takers or liquidity takers are mar-

ket participants who post market orders, whereas price-setters or liquidity providers post

limit orders. As far as trading transactions are concerned, we may clearly distinguish two

different and important types of markets: order-driven markets and quote-driven markets.

In order-driven markets, also called “Limit Order Book” markets, traders can post both

market orders or limit orders. The aggregated limit orders constitute the so-called limit

order book with the best bid and best ask prices forming the bid-ask prices and spread.

These limit orders contain the prices and quantities at which traders are willing to buy or

sell while waiting for a counterparty to engage in that trade. In quote-driven markets or

dealers’ markets, registered market makers quote bids and offers and serve as intermediary

between public traders. More precisely, registered market makers act as counterparties

when an investor wishes to buy or sell securities.

Most studies on liquidity risk have the same objectives: modelling the market structure

in order to better quantify the cost and impact of the lack of liquidity in many important

financial problems such as portfolio selection and assets liquidation. In the mathematical

finance literature, there are several approaches in modelling liquidity risk. We may refer,

for instance, to the literature on insider trading, transactions costs, market manipulations.

However, a quite natural approach is to classify studies on liquidity risk in terms of different

types of market participants, i.e. price-takers or price-setters, being investigated. The below

way of classifying liquidity risk problems is by no way exhaustive as we have no pretention

to be able describe all the liquidity problems studied whether they are from financial and

economic or mathematical finance literature.
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The first approach which corresponds mostly to the first wave of research and interest in

liquidity risk is to relax the infinite liquidity assumption by introducing for instance some

forms of cost or/and price impact for trading transactions submitted by investor. In [77]

and [8], the impact of trading strategies on prices is explained by the presence of an insider.

In the market manipulation literature, prices are assumed to depend directly on the trading

strategies. For instance, the paper [39] considers a diffusion model for the price dynamics

with coefficients depending on the large investor’s strategy, while [53], [94], [93], [9] or [32]

develop a continuous-time model where prices depend on strategies via a reaction function.

Transaction costs, which corresponds to a way to model bid-ask spread are also considered

in some studies, see for instance [74]. It is clear that in the above studies, investors are

assumed to be price-takers as they uniquely submit market orders. In other words, in these

above papers, the set of admissible strategies contains uniquely market buy and sell orders.

This approach may be considered as the first real mathematical attempt to incorporate

liquidity risk and costs in financial problems. Within this context, in [A3], liquidity risk

is expressed by the presence of transaction costs and market manipulation. Our model is

inspired from [103] and [64], and may be described roughly as follows. Trading on illiquid

assets is not allowed continuously due to some fixed costs but only at any discrete times.

These liquidity constraints on strategies are in accordance with practitioner literature and

consistent with the academic literature on fixed transaction costs, see e.g. [86]. We study an

optimal portfolio choice problem over a finite horizon : the investor maximizes his expected

utility from terminal liquidation wealth and under a natural economic solvency constraint.

The main goal in this paper is to obtain a rigorous characterization result on the value

function through the associated HJB quasi-variational inequality. In order to completely

deal with this impulse control problem, we study in [A10] its numerical resolution.

A second and more recent approach is therefore to consider financial models with an

enlarged set of admissible trading strategies by including the possibility of making both limit

and market orders. This second approach is related to a recent emphasis on liquidation and

market making problems in a limit order book markets. Many authors have investigated

these problems with limit orders only, in particular [7], [14], [56], [57], [58] and [87]. In these

models, the arrival intensity of outside market orders that match the limit orders that are

posted is typically a function of the spread between the posted price and a reference price.

In a more complex model, Cartea et al. [31] develop a high-frequency limit order trading

strategy in a limit order market characterized by feedback effects in market orders and

the shape of the order book, and by adverse selection risk due to the presence of informed

traders who make influential trades. Kühn and Muhle-Karbe [75] provide an asymptotics

analysis for a small investor who sets bid and ask prices and seeks to maximize expected

utility when the spread is small. On the other hand, some authors consider a limit order

market in which both limit and market orders are possible, see for instance Guilbaud and

Pham [59] and Cartea and Jaimungal [29]. As part of my research, I was also interested

in this approach. In particular, in [A9], we consider a limit order market in which both



limit and market orders are allowed, and study the problem of optimally liquidating a large

portfolio position. Our contribution to the above literature is to consider spread dynamics

which are impacted by both limit and market order strategies. Market orders that the

investor places directly increase the observed bid-ask spread.

To complete our study, a third approach is to study liquidity risk at the microstructure

level. Market microstructure modelling have attracted many interests, in particular from a

statistical point of view. The main focus of this growing literature is to provide good high

frequency volatility measures. We may refer for instance to Bouchaud et al. [21], Cont

[36], Hansen and Lunde [63] and Rosenbaum [99] for some studies on the existence of tick

value and order book. The main focus of this growing literature is to provide good high

frequency volatility measures, see for instance Almgren and Chriss [5] and Barndorff-Nielsen

et al. [12] for some other studies in high frequency setting. In the the study of liquidity

risk at the microstructure level, another approach is to emphasize on trading strategies

by directly describing the dynamics of the prices without referring to an efficient price or

to model the order book, see Avellaneda and Stoikov [7], Bouchaud et al. [20], Cont et

al. [37]. Within this context, in [S12], we investigate the problem of dealers or market

makers operating in dealers markets or quote-driven markets. As opposed to “Limit Order

Book” markets, which was considered in previous approaches, in quote-driven markets, only

registered market makers are to place bid and ask prices. The role of market makers is very

important in the trading of illiquid assets as she acts a facilitator of trades between different

investors. We may refer to many studies on market making problems, but most of them

are more related to the finance and economic literature, see for instance [66] and [85]. More

recent works from the mathematical finance community may equally be worth mentioning,

for instance [7] and [57]. Under this approach, in [S12], we consider a market dealer acting

as a liquidity provider by continuously setting bid and ask prices for an illiquid asset in

a quote-driven market. In this optimal market dealing problem, important features and

constraints characterizing market making problems are no longer ignored. A related work

on the subject is [A6] where we attempt to explain and model the financial and economic

rationale behind the existence of the bid-ask spread.



Chapter 1

A Model of Optimal Portfolio
Selection under Liquidity Risk and
Price Impact: Theoretical and
Numerical Aspects

This chapter is based on two papers with the first paper written with M. MNIF and H.

Pham and the second one written with M. Gaigi, M. Mnif and S. Toumi.

[A3]. A Model of Optimal Portfolio Selection under Liquidity Risk and Price Impact,avec

M. Mnif and H. Pham, Finance and Stochastics, 2007, 11, pp. 51-90.

[A10]. Numerical approximation for a portfolio optimization problem under liquidity risk

and costs, avec M. Gaigi, M. Mnif, et S. Toumi, 2014, to appear in Applied Mathematics

and Optimization.

1.1 Introduction

In this paper, we propose a model of liquidity risk and price impact that adopts both

market manipulation and transaction costs. Our model is inspired from the recent papers

[103] and [64], and may be described roughly as follows. Trading on illiquid assets is not

allowed continuously due to some fixed costs but only at any discrete times. These liquidity

constraints on strategies are in accordance with practitioner literature and consistent with

the academic literature on fixed transaction costs, see e.g. [86]. There is an investor, who is

large in the sense that his strategies affect asset prices. In this context, we study an optimal

portfolio choice problem over a finite horizon : the investor maximizes his expected utility

from terminal liquidation wealth and under a natural economic solvency constraint. In

some sense, our problem may be viewed as a continuous-time version of the recent discrete-

time one proposed in [33]. We mention also the paper [5], which studies an optimal trade

execution problem in a discrete time setting with permanent and temporary market impact.
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Our optimization problem is formulated as a parabolic impulse control problem with

three variables (besides time variable) related to the cash holdings, number of stock shares

and price. This problem is known to be associated by the dynamic programming principle

to a Hamilton-Jacobi-Bellman (HJB) quasi-variational inequality, see [15]. We refer to [71],

[74], [25] or [92] for some papers involving applications of impulse controls in finance, mostly

over an infinite horizon and in dimension 1, except [74] and [92] in dimension 2. There is

in addition, in our context, an important aspect related to the economic solvency condition

requiring that liquidation wealth is nonnegative, which is translated into a state constraint

involving a non-smooth boundary domain.

The features of our stochastic control problem make appear several technical difficulties

related to the nonlinearity of the impulse transaction function and the solvency constraint.

In particular, the liquidation net wealth may grow after transaction, which makes nontrivial

the finiteness of the value function. Hence, the Merton bound does not provide as e.g. in

transaction cost models, a natural upper bound on the value function. Instead, we provide

a suitable “linearization” of the liquidation value that provides a sharp upper bound of the

value function. The solvency region (or state domain) is not convex and its boundary even

not smooth, in contrast with transaction cost model (see [41]), so that continuity of the

value function is not direct. Moreover, the boundary of the solvency region is not absorbing

as in transaction cost models and singular control problems, and the value function may be

discontinuous on some parts of the boundary. Singularity of our impulse control problem

appears also at the liquidation date, which translates into discontinuity of the value function

at the terminal date.

In our general set-up, it is then natural to consider the HJB equation with the concept

of (discontinuous) viscosity solutions, which provides by now a well established method for

dealing with stochastic control problems, see e.g. the book [52]. More precisely, we need

to consider constrained viscosity solutions to handle the state constraints. Our first main

result is to prove that the value function is a constrained viscosity solution to its associated

HJB quasi-variational inequality. Our second main result is a new comparison principle for

the state constraint HJB quasi-variational inequality, which ensures a PDE characterization

for the value function of our problem. Finally, we provide a numerical method based on

quantization calculus and give some numerical results for the optimal transaction strategy.

1.2 The Model

This section presents briefly the model studied in [A3]. Let (Ω,F ,P) be a probability

space equipped with a filtration (Ft)0≤t≤T supporting an one-dimensional Brownian mo-

tion W on a finite horizon [0, T ], T < ∞. We consider a continuous time financial market

model consisting of a money market account yielding a constant interest rate r ≥ 0 and a

risky asset (or stock) of price process P = (Pt) modelled by a geometric Browninan motion.

We denote by Xt the amount of money (or cash holdings) and by Yt the number of shares
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in the stock held by the investor at time t. The associated state process is denoted by

Zt := (Xt, Yt, Pt). We assume that the investor can only trade discretely on [0, T ) which is

modelled through an impulse control strategy α = (τn, ζn)n≥1 , where the non-decreasing

stopping times τ1 ≤ . . . τn ≤ . . . < T represent the intervention times of the investor and

ζn, n ≥ 1, are Fτn-measurable random variables valued in R and represent the number of

stock purchased if ζn ≥ 0 or sold if ζn < 0 at these times. The sequence (τn, ζn) may be a

priori finite or infinite. Each intervention occurs with a transaction cost k and a exponential

price impact. More precisely, when the investor makes an investment of ζ shares, her cash

outflow is ζpe−λζ − k, where λ is a positive constant. In this model, the price impact is

considered to be permanent.

Investment problem. The optimal investment problem is about maximizing the expected

utility from terminal liquidation wealth over a finite horizon. The value function is defined

as follows :

v(t, z) = sup
α∈A(t,z)

E
[
e−r(T−t)UL(ZT )

]
, (t, z) ∈ [0, T ]× S̄, (1.2.1)

where UL is defined on S̄ by UL(z) := U(L(z)), with U being the utility function, L

the liquidation value L(x, y, p) = x + (ype−λy − k)+1y≥0 + (ype−λy − k)1y<0, and S the

solvency region defined as S :=
{
z = (x, y, p) ∈ R× R× R∗+ : L(z) > 0

}
with ∂S and S̄,

being respectively its boundary and its closure. The set A(t, z) is the set of admissible

strategies which keeps the state processes inside the solvency region.

The HJB equations. The HJB quasi-variational inequality satisfied by the value function

(1.2.1) is as follows:

min

[
−∂v
∂t
− Lv , v −Hv

]
= 0, on [0, T )× S (1.2.2)

where Lϕ = rx
∂ϕ

∂x
+ bp

∂ϕ

∂p
+

1

2
σ2p2∂

2ϕ

∂p2
− rϕ is the infinitesimal generator associated to

the non-controlled state process when there is no trading.

The operator H is the impulse operator defined by

Hϕ(t, z) = sup
ζ∈C(z)

ϕ(t,Γ(z, ζ)), (t, z) ∈ [0, T ]× S̄

and the function Γ is the impulse transaction function defined from S̄ ×R into R×R×R∗+
as Γ(z, ζ) = (x − ζpeλζ − k, y + ζ, peλζ), z = (x, y, p) ∈ S̄, ζ ∈ R. The set C(z) is the set

of admissible transactions C(z) =
{
ζ ∈ R : Γ(z, ζ) ∈ S̄

}
= {ζ ∈ R : L(Γ(z, ζ)) ≥ 0}.

1.3 Viscosity characterization

The value function (1.2.1) and the associated HJB quasi-variational inequality (1.2.2)

are related by means of constrained viscosity solutions. We may obtain the main results in

[A3] as follows:
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Theorem 1.3.1. The value function v is continuous on [0, T ) × S and is the unique (in

[0, T ) × S) constrained viscosity solution to (1.2.2) satisfying the boundary and terminal

condition :

lim
(t′, z′)→ (t, z)

z′ ∈ S

v(t′, z′) = 0, ∀(t, z) ∈ [0, T )×D0 (1.3.3)

lim
(t, z′)→ (T, z)
t < T, z′ ∈ S

v(t, z′) = max[UL(z),HUL(z)], ∀z ∈ S̄ (1.3.4)

and the growth condition :

|v(t, z)| ≤ K
(

1 +
(
x+

p

λ

))γ
, ∀(t, z) ∈ [0, T )× S (1.3.5)

for some positive constant K < ∞.

Remark 1.3.1. In [A10], the authors have also shown that the value function lies in the

set of functions satisfying the growth condition :

Gγ([0, T ]× S̄) =

{
v : [0, T ]× S̄ → R; sup

[0,T ]×S̄

| v(t, z) |
1 + (x+ p

λ)γ
<∞

}
(1.3.6)

For simplifying notation and when there is no ambiguity, this set will be noted Gγ.

1.4 Numerical scheme and convergence results

1.4.1 Approximation scheme

For a time step h > 0 on the interval [0, T ], let us consider the following approximation

scheme:

Sh(t, z, vh(t, z), vh) = 0 (t, z) ∈ [0, T ]× S (1.4.7)

where Sh : [0, T ]× S̄ × R× Gγ → R is defined by

Sh(t, z, g, ϕ) :=


min

[
g − E[ϕ(t+ h, Z0,t,z

t+h )], g −Hϕ(t, z)
]
, t ∈ [0, T − h]

min
[
g − E[ϕ(T,Z0,t,z

T )], g −Hϕ(t, z)
]
, t ∈ (T − h, T )

min
[
g − UL(z), g −HUL(z)

]
, t = T

(1.4.8)

We consider a time step h = T/m, m ∈ N\{0} and denote by Tm = {ti = ih, i =

0, ...,m} the regular grid over the interval [0, T ]. Thus, the time discretization of step h for

the QVI (1.2.2) leads to the explicit backward scheme:

vh,n+1(tm, z) = max
[
UL(z), sup

ζ∈C(z)
UL(Γ(z, ζ))

]
(1.4.9)

vh,n+1(ti, z) = max
[
E[vh,n+1(ti+1, Z

0,ti,z
ti+1

)], sup
ζ∈C(z)

vh,n(ti,Γ(z, ζ))
]

(1.4.10)
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for i = 0, ...,m − 1, z = (x, y, p) ∈ S̄ and starting from vh,0(t) = E[UL(Z0,t,z
tm )], where

Zl = {z = (x, y, p) ∈ Xl ×Yl × Pl; z ∈ S̄loc} is the grid which discretizes S and bounded by

the quantity R, and CM,R(z) = {ζi = ζmin + i
M (ζmax − ζmin); 0 ≤ i ≤M/Γ(z, ζi) ∈ S̄loc} la

grille à M is the grid which discretizes the set of admissible controls, and

EN,R[vh,n(t, Z0,s,z
t )] :=

N1∑
i1=1

..

Nd(N)∑
id(N)=1

Pi1..id(N)
vh,n(t, Z0,s,z

N,R (t)) ∀ s ≤ t

où

Z0,s,z
N,R (t) :=

(
x, y,Π[0,pmax](p exp

{
(b− σ2

2
)(t− s) + σWN

i1..id(N)
(t− s)

}
)
)
.

1.4.2 Convergence results

We first show that the value function could be obtained as the limit of an iterative

procedure where each step is an optimal stopping problem and the reward function is

related to the impulse operator.

Theorem 1.4.2. We define ϕn(t, z) iteratively as a sequence of optimal stopping problems:

ϕn+1(t, z) = sup
τ∈St,T

E
[
e−r(τ−t)Hϕn(τ, Z0,t,z

τ )
]

ϕ0(t, z) = v0(t, z)

where St,T is the set of stopping times in [t, T ]. Then

ϕn(t, z) = vn(t, z)

, where the value functions vn is obtained when the investor is allowed to trade at most n

times.

Following Barles and Souganidis (1991), we may obtain the convergence results of our

scheme, once we prove that it satisfies monotonicity, stability and consistency properties.

Theorem 1.4.3. For all (t, z) ∈ [0, T )× S we have the following uniform convergence

lim
(t
′
,z
′
)→(t,z)

(h,M,N,R)→(0,+∞)

vh,M,N,R(t′, z′) = v(t, z),

where vh,R,N,M is the solution of the discrete HJB inequality without considering an iterative

scheme and v is the solution of (1.2.2).
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Figure 1.1: The optimal policy in (x, y)

1.5 Numerical results

In this section, we present numerical results, such as the value function and the optimal

transaction strategy.

Figure 1.1: The shape of the optimal transaction strategy (different regions).

Tables 1.1, 1.2, and 1.3: Convergence analysis in function of N , M and R

In Table 1.1 and 1.2, we show some values of the value function for different values

of N and M at a time t = 0.05, and for fixed nodes of the grid z1 = (x1, y1, p1) =

(42.10, 7.36, 23.68) and z2 = (x2, y2, p2) = (121.052, 13.68, 36.84).

N 96 200

v(t, z1) 15.8841 15.8807

v(t, z2) 26.3895 26.3867

Table 1.1 : Values of the value function for different values of N and z.

M 200 250

v(t, z1) 15.8825 15.8849

v(t, z2) 26.3990 26.4011

Table 1.2 : Values of the value function for different values of M and z.



Chapter 2

Optimal execution cost for
liquidation through a limit order
market

This Chapter is based on

[A9]. Optimal execution cost for liquidation through a limit order market, with E. Chevalier,

A. Roch and S. Scotti, 2014, to appear in International Journal of Theoretical and Applied

Finance.

2.1 Liquidity Risk in Limit Order Books

In limit order book markets, any public trader can play the role of liquidity provider

by posting prices and quantities at which he is willing to buy or sell while waiting for a

counterparty to engage in that trade. Limit orders can be entered at more favorable prices

than market orders but are not guaranteed to be filled. On the other hand, a market

order is filled automatically against existing limit orders, albeit at a less favorable price

as it depletes the order book, making additional trades more expensive. It is therefore

desirable to consider financial models with an enlarged set of admissible trading strategies

by including the possibility of making both limit orders and market orders. In this paper,

we consider the liquidation problem of a large portfolio position from this perspective.

Many authors have investigated the liquidation and market making problems with limit

orders only, in particular [7], [14], [56], [57], [58] and [87]. In these models, the arrival

intensity of outside market orders that match the limit orders that are posted is typically

a function of the spread between the posted price and a reference price. In a more complex

model, Cartea et al. [31] develop a high-frequency limit order trading strategy in a limit

order market characterized by feedback effects in market orders and the shape of the order

book, and by adverse selection risk due to the presence of informed traders who make

influential trades. Kühn and Muhle-Karbe [75] provide an asymptotics analysis for a small

24
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investor who sets bid and ask prices and seeks to maximize expected utility when the spread

is small.

On the other hand, some authors consider a limit order market in which both limit

and market orders are possible. Guilbaud and Pham [59] determine the optimal trading

strategy of a market maker who makes both types of trades and seeks to maximize the

expected utility over a short term horizon. Cartea and Jaimungal [29] determine the optimal

liquidation schedule in a limit order market in which the liquidity cost of a market order

is fixed, and the probability of passing a limit order depends on the spread between the

posted price and a reference price, modeled as a Brownian motion plus drift. The investor’s

value function includes a quadratic penalty defined in terms of a target inventory schedule.

In this work, we also consider a limit order market in which both limit and market orders

are allowed, and study the problem of optimally liquidating a large portfolio position.

Our contribution to the above literature is to consider spread dynamics which are im-

pacted by both limit and market order strategies. Market orders that the investor places

directly increase the observed bid-ask spread. As a result, past market orders have a di-

rect impact on future liquidity costs. Furthermore, limit orders posted inside the bid-ask

spread effectively decrease the observed spread and have an impact on the future probability

distributions of its jumps.

We model the bid-ask spread with resilience (mean reversion) and a jump process,

and the market order arrival process as a controlled Poisson process. The objective is to

liquidate a fixed number of shares of a risky asset by minimizing the expected liquidity

premium paid. We formulate the problem as a mixed stochastic continuous control and

impulse problem for which the value function is shown to be the unique viscosity solution

of the associated system of variational inequalities. Finally, we numerically implement the

model and calibrate it to market data corresponding to four different firms traded on the

NYSE exchange through the ArcaBook.

2.2 The Limit Order Book Market Model

Let T < ∞ be a finite time horizon and (Ω,F ,F,P) a filtered probability space sup-

porting a random Poisson measure M on [0, T ]×R with mean measure γt dt m(dz) where

γ : [0, T ] → (0, γ̄] and m is a probability measure on R, with m(R) < ∞. We consider

a market with a risky asset that can be traded through a limit order book. We consider

a large investor whose goal is to liquidate a number N > 0 of shares of this risky asset.

The investor sets a date T before which the position must be liquidated and attempts to

minimize the price impact of the liquidation strategy.

Market orders. The investor can make market orders by controlling the time and the

size of his trades. This is modeled by an impulse control strategy β = (τi, ξi)i≤n where

the τi’s are stopping times representing the intervention times of the investor and the ξi’s
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are Fτi-measurable random variables valued in N and giving the number of shares sold by

a market order at time τi.

Limit Orders. The investor can also make limit orders. We denote by A0 a compact

subset of [0,∞). The investor can choose to place his limit price anywhere inside the bid-

ask spread or at the current best ask price. Since the effect of this new limit order is that

the best ask price can now be lower, we call the best ask price excluding the investor’s

limit order the otherwise best ask price. The spread below the current best ask price is an

A0-valued stochastic control denoted by α = (αt)t≤T .

Definition 2.2.1. (Investor’s control strategy) We define the investor’s control strat-

egy as being the full control available to the investor, thus given by a pair of controls

δ = (α, β).

Bid-Ask Spread. We denote by Xt the spread between the best bid and the best ask

price excluding the investor’s limit price at time t. Between the investor’s market orders,

we assume the spread X is impacted by α and follows

dXα
t = µ(t,Xα

t− , αt)dt+

∫
R
G(Xα

t−, αt, z)M̃(dt, dz). (2.2.1)

Under this construction, the limit order α sends a signal and modifies the distribution of

the jumps of X, represented by G. Here M̃ is the compensated random measure of M , and

µ is a deterministic and Lipschitz continuous function in the second argument.

Liquidity cost

We summarize the information contained in the order book by a function S(t, x, n) which

gives the proceeds obtained for a sale of n shares at time t done through market orders

when the spread equals x. In the order book density case, this corresponds to Equation

12 in [3]. Let At be a stochastic process representing the best ask price. We may then

define the liquidity cost due to a market sell order of size n, denoted by L(t, x, n), in

terms of the best ask price as L(t, x, n) := nAt − S(t, x, n). The slippage of a market order

of size n is then defined as a fixed transaction cost, k > 0, plus the liquidity cost, i.e.

K(t, x, n) = k + L(t, x, n).

The simplest example is a quadratic model with proportional transaction costs:

S(t, x, n) = (At − x)n− ζtn2,

with At and ζt two stochastic processes representing the best ask price and a measure of

illiquidity. This model arises from a limit order book with constant density as shown in

[98]. In the quadratic model, L(t, x, n) = xn+ ζtn
2.

Impact on the best bid

During a transaction, the investor’s market orders are matched with the existing limit
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orders in the order book so that the result is a shift in the best bid price to the left by an

amount denoted by I(t, x, n). In [3], this quantity is called the extra spread and denoted

by DB
t .

Dynamics of the controlled bid-ask spread. The resulting dynamic for Xδ (with

δ = (α, β)) taking into account both α and β is{
dXδ

t = µ(t,Xδ
t , αt)dt+

∫
RG(Xδ

t−, αt−, z)M̃(dt, dz) if τn < t < τn+1

Xδ
τn = X̌δ

τ−n
+ I(τn, X̌

δ
τ−n
, ξn),

(2.2.2)

where X̌δ
t− = Xδ

t− + ∆Xδ
t , ∆Xδ

t is the jump of the measure M at time t. The superscripts

in controlled processes will often be omitted to alleviate the notation.

Market orders arrival. We start with a time inhomogeneous Poisson processN , indepen-

dent of W and M , with intensity λ(t, 0) ≥ λ > 0, t ≥ 0. The jumps of this Poisson process

are denoted θi, i ≥ 1. For all x > 0, we define intensity functions λ(·, x) : [0, T ] → [0,∞),

and assume (λ(·, x))x>0 is an equicontinuous family of functions, bounded below and above

by constants λ, λ > 0. If the investor chooses to place a limit order at a spread αt below

the otherwise best ask price at time t, the likelihood of the execution of this order depends

on the observed spread Xt − αt and arrives with an intensity λ(t,Xt − αt). At the time θi,

the investor’s limit order will go through for a random quantity equal to Yi, less or equal

to n′ (the fixed size of the limit order), and independent of Fθi−. The fact that the jump

intensity is time-dependent is particularly relevant in markets where there is well-known

u-shaped trading volume pattern during the day.

Let dPα
dP

∣∣∣
Ft

= Zαt with Zα0 = 1 and

dZαt = Zαt−

(
λ(t,Xt − αt)

λ(t, 0)
− 1

)
(dNt − λ(t, 0)dt) .

Then a control α changes the distribution of N under P to the distribution of N under Pα,

by changing the intensity of N from λ(t, 0) to λ(t,Xt − αt).
The slippage of a limit order that is matched at time θi is then given by αθiYi.

N δ,n,t: dynamics of the remaining number of shares to liquidate.

Admissible control strategies

Now, we define the set of admissible strategies. The limit orders control strategy α =

(αs)0≤s≤T is assumed to be a stochastic Markov control such that αt < Xδ
t− for all t ≤ T .

We denote the set of Markov control by A. Let Tt,T be the set of stopping times with values

in [t, T ]. The set of admissible strategies started at time t ∈ [0, T ] when the investor has n

shares remaining in the portfolio and that the spread is equal to x is defined as

AB(t, n, x) = {δ = (α, β) : α ∈ A, β = (τi, ξi)i≤n, τi ∈ Tt,T ; ξi ≤ n is an N-valued random variable

Fτ−i −measurable s.t. τ δ,n,t ≤ T},
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where τ δ,n,t = inf{s ≥ t : N δ,n,t
s = 0}.

The Control Problem

The investor’s goal is to minimize expected slippage by balancing his actions between

market orders, which are more expensive due to immediacy, and limit orders, for which the

execution time is unknown and random but are executed at more favorable prices. For a

strategy δ = (α, β) ∈ AB(t, n, x) started at time t, slippage is defined as

SδT =

n∑
i=1

K(τi, X̌
δ
τ−i
, ξi)1lτi≤τδ +

∑
i≥1

αθiYi1lθi≤τδ .

For (t, x, n) ∈ [0, T ]× [0,+∞)×N, we define the optimal expected slippage function in the

following way:

Cn(t, x) = inf
δ∈AB(t,x,n)

Et,x,n,αSδT , (2.2.3)

with the following boundary condition: Cn(T, x) = K(T, x, n) for all n ∈ N∗, which follows

readily from the fact that τ δ,n,T = T , so that the investor must necessarily liquidate the

remaining part of his portfolio with a market order at time T .

2.2.1 Penalty Function

The maturity T is an urgency parameter. The shorter it is, the more aggressive the

strategy and the higher the liquidation cost. However, in order to impose more urgency in

the liquidation, it is possible to include a penalty function or a risk aversion parameter in

the minimization problem. We may add a penalty function π in terms of the number of

remaining shares at time t:

Cn(t, x) = inf
δ∈AB(t,x,n)

Et,x,n,α
[
SδT +

∫ T

t
π(N δ

s , s)ds

]
. (2.2.4)

This penalty function can be used to target a specific liquidation schedule as in Cartea and

Jaimungal [29], it can be a proxy for the variance of the value of the remaining shares in

the portfolio when π is of the quadratic form (see Cartea and Jaimungal [30]).

2.3 Characterization of the slippage function

In this section, we prove that the function Cn is the viscosity solution of an associated

quasi-variational inequality. We first introduce the infinitesimal generator of the process

(t,Xt)t≥0 between two market orders:

Lau(t, x) =
∂u

∂t
+ µ(t, x, a)

∂u

∂x
+ γt

∫
R

(u(t, x+G(x, a, z))− u(t, x))m(dz),
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and the limit orders operator:

∆a
nu(t, x) = λ(t, x− a)

[
f(a) +

∞∑
i=1

piCn−i(t, x)− u(t, x)

]
,

in which pi = P(Y1 = i) (i ≥ 1) and f(a) = a
∑∞

i=1 ipi, a ∈ A0. Finally, define the impulse

function for market orders:

Mn(t, x) = min
i∈{1,...,n}

[Cn−i(t, x+ I(t, x, i)) +K(t, i, x)] .

Notice that, for all (t, x, n) ∈ [0, T ]× R+ × N∗, we deduce from (2.2.3) that

0 ≤ Cn(t, x) ≤ K(t, x, n) = κ+ L(t, x, n).

Therefore, recalling that P is the set of functions from [0, T ]×R+ to R with at most poly-

nomial growth of degree p in the second argument, we have Cn ∈ P for all n ∈ N.

Our main result of this section is the following theorem.

Theorem 2.3.1. For all n ≥ 1, Cn is the unique continuous viscosity solution in P of the

following variational inequality:{
min (mina∈A0 Lau+ ∆a

nu; Mn − u) = 0 on [0, T )× [0,∞),
u(T, x) = K(T, n, x) for x ≥ 0.

(2.3.5)

2.4 Numerical Results

We calibrated the model to market data corresponding to four different firms traded

on the NYSE exchange through the ArcaBook from February 28th to March 4th, 2011.

The data files obtained from NYXdata.com contains all time-stamped limit orders entered,

removed, modified, filled or partially filled on the NYSE ArcaBook platform. The firms

considered are Google (GOOG), Air Products & Chemicals Inc. (APD), International

Business Machines Corp. (IBM), and J.P. Morgan Chase & Co. (JPM). All four stocks

are very liquid and were part of the S&P500 index in 2011. Yet a major difference is

that the empirical distribution of their bid-ask spreads differ considerably. This is due to

the fact that their stock prices are of a different order of magnitude with GOOG at an

average price of 606.97, APD at 91.15, IBM at 161.76 and JPM at 45.92 over the five days.

In percentage, JPM and IBM have smaller spreads (0.03% of stock price) than GOOG

(0.073% of stock price) and APD (0.075%). Since prices are quoted in cents, this offers

a large array of values of spreads for GOOG, for which the spread varied from $0.01 to

$2.67 during the five trading days considered. The resulting liquidation strategies are very

different quantitatively and qualitatively.



Chapter 3

Optimal market dealing under
constraints

This Chapter is based on

[A12]. Optimal market dealing under constraints, with E. Chevalier, M. Gaigi, et M. Mnif,

soumis.

3.1 Introduction

In this paper, we consider an equity quote-driven market with a single risky equity

assets. In the trading of most equity assets in either Nasdaq or LSE, there are several

registered market makers in competition. In order to focus on the modelling of the market

making strategies, we consider there is only one “representative” registered market maker.

We assume that the market maker has a contractual obligation to permanently quote bid

and ask prices and therefore has to satisfy any sell and buy market order from investors.

The market maker may benefit from the bid-ask spread but faces a number of constraints,

in particular the liquidity and inventory constraints. The structural constraints imposed

upon market makers in dealer markets are proved to be a major challenge. In the study of

market making problems, we may refer to Avellaneda and Stoikov [7], Ho and Stoll [66],

and Mildenstein and Schleef [85]. In [7] and [66], the authors consider a market making

problem as described above but within a financial market in which the risky assets has a

reference price or a fair price St which is assumed to follow an arithmetic brownian process.

The market maker quotes her ask and bid prices as respectively St + δat and St− δbt , where

(δat , δ
b
t ) represent the strategy control of the market maker. The price processes are therefore

mainly driven by the reference price process.

In our study, we do not assume the existence of a reference price. The prices are

therefore uniquely driven by the equilibrium between buy and sell market orders. In terms

of mathematical modelling and resolution, a difficult challenge to overcome is to take into

account the inventory constraints that the market maker faces. First, we consider, as [85],

30
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that the market maker has the obligation to respect the risk constraint imposed upon her

by her company’s risk department. We may refer to [58] which investigates the impact of

the inventory constraints on the market making problem studied in [7]. The stock inventory

of the market maker is assumed to have upper and lower bounds. However, unlike in [58],

once the inventory reaches the lower (upper) bound, we do not allow the market maker to

stop submitting limit ask (bid) order since allowing such move violates the agreement that

the market maker’s firm has agreed with the financial stock exchange to continuously quote

bid and ask prices.

A second important difference with the problems studied in [7], [66] and [85], comes

from the assumption that the market maker may liquidate her stock inventory on terminal

date at the reference price or a constant price independent of the inventory. In our paper,

we assume that when the market maker has to liquidate her stock inventory, she incurs a

liquidity cost and the price per share received (paid) are lower (higher) than the mid-price

in the case of a long (short) position. Our assumption on the form of liquidation function

is mainly inspired by [64] and [103].

Furthermore, to take into account the microstructure of the financial markets, we no

longer consider continuous price processes. Bid and ask prices quoted by the market maker

are assumed to be discrete prices, i.e. in multiple of a tick value.

The contributions of our study, as compared to previous studies [7], [66], [85], concern

both the modelling aspects and the dynamic structure of the control strategies. Important

features and constraints characterizing market making problems are no longer ignored.

We provide rigorous mathematical characterization and analysis to our control problem

by proving that our value functions are the unique viscosity solutions to the associated

HJB system. It is always a technical challenge when applying viscosity techniques to non-

standard control problems under constraints. In the proof of our comparison theorem, a

major problem is to circumvent the difficulty arising from the discontinuity of our HJB

operator on some parts of the solvency region boundary.

3.2 Problem formulation

Let (Ω,F , P ) be a probability space equipped with a right continuous filtration F =

(Ft)0≤t≤T where T is a finite horizon. We consider a single dealer market, in which there is

a risky assets. In this market, the market maker has the obligation to permanently quote

bid and ask prices and to act as a counterparty to investors’ market orders. We equally

assume that investors, considered as price-takers, may only submit either buy or sell market

orders.

3.2.1 Model settings

Trading orders. We denote by (θai )i≥1 (resp. (θbi )i≥1) the sequence of non-decreasing F-

stopping times corresponding to the arrivals of buy (resp. sell) market orders. We denote
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by (ξi)i≥1 the sequence of these trading times. When a buy (resp. sell) market order arrives

at time θai (resp. θbj), the market maker has to sell (resp. buy) an asset at the ask (resp.

bid) price denoted by P a (resp. P b).

Market making strategies. We define a strategy control as being a F-predictable pro-

cess α = (αt)(0≤t≤T ) = (εat , ε
b
t , η

a
t , η

b
t )0≤t≤T where the processes εa, εb, ηa, ηb take values in

{χmin, .., χmax}, with −χmin ∈ N and χmax ∈ N∗.
We assume that when a sell market order arrives at time θbj , the market maker may either

keep the bid and ask prices constant or decrease one or both of them by at most χmax

ticks or increase one or both of them by at most χmin ticks. Notice the market maker may

decide to change the bid/ask prices but transaction prices are assumed to be based on the

one quoted before the prices changes. In here, a tick value is denoted by a strictly positive

constant δ. On the opposite side, when a buy market order arrives at time θak, the market

maker may either keep the bid and ask prices constant or increase one or both of them by

at most χmax ticks or decrease one or both of them by at most χmin ticks.

Bid-Ask spread modelling.

We denote by P a = (P at )0≤t≤T (resp. P b = (P bt )0≤t≤T ) the price quoted by the market

maker to buyers (resp. sellers). Notice that P a ≥ P b.
The dynamics of P a,b evolves according to the following equations

dP a,bt = 0, ξi < t < ξi+1

P a,b
θbj+1

= P a,b
θb−j+1

− δεa,b
θbj+1

P a,bθak+1
= P a,b

θa−k+1

+ δηa,bθak+1
.

where i is the number of transactions before time t, j the number of buy transactions

before time t for the market maker, k the number of sell transactions before time t, and δ

represents one tick.

We denote by P the mid-price and S the bid-ask spread of the stocks. The dynamics of

the process (P, S) is given by

dPt = 0, ξi < t < ξi+1 (3.2.1)

Pθbj+1
= Pθb−j+1

− δ

2
(εa
θbj+1

+ εb
θbj+1

) (3.2.2)

Pθak+1
= Pθa−k+1

+
δ

2
(ηaθak+1

+ ηbθak+1
), (3.2.3)

dSt = 0, ξi < t < ξi+1 (3.2.4)

Sθbj+1
= Sθb−j+1

− δ(εa
θbj+1
− εb

θbj+1
) (3.2.5)

Sθak+1
= Sθa−k+1

+ δ(ηaθak+1
− ηbθak+1

). (3.2.6)
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Regime switching. We first consider the tick time clock associated to a Poisson process

(Rt)0≤t≤T with deterministic intensity λ defined on [0, T ], and representing the random

times where the intensity of the orders arrival jumps.

We define a discrete-time stationary Markov chain (Îk)k∈N, valued in the finite state space

{1, ...,m}, with probability transition matrix (pij)1≤i,j≤m, i.e. P[Îk+1 = j|Îk = i] = pij s.t.

pii = 0, independent of R. We define the process

It = ÎRt , t ≥ 0 (3.2.7)

(It)t is a continuous time Markov chain with intensity matrix Γ = (γij)1≤i,j≤m, where

γij = λpij for i 6= j, and γii = −
∑
j 6=i

γij .

We model the arrivals of buy and sell market orders by two Cox processes Na and N b. The

intensity rate of Na
t and N b

t is given respectively by λa(t, It, Pt, St) and λb(t, It, Pt, St) where

λa and λb are continuous functions valued in R and defined on [0, T ]×{1, ...,m}× δ
2N×δN.

We assume that:

λ̄ := sup
[0,T ]×{1,...,m}× δ

2
N×δN

(
max(λa, λb, λ)

)
< +∞.

We now define θak (resp. θbk) as the kth jump time of Na (resp. N b), which corresponds to

the kth buy (sell) market order.

We introduce the following stopping times ρj(t) = inf{u ≥ t, Iu = j} and ρ(t) = inf{u ≥
t, Ru > Rt} for 0 ≤ t ≤ T and the notation Zt,i,z,α is the state process associated to the

control α such that (It, Z
t,i,z,α
t ) = (i, z).

3.2.2 The control problem

Stock holdings. The number of shares held by the market maker at time t ∈ [0, T ] is

denoted by Yt, and Y satisfies the following equations

dYt = 0, ξi < t < ξi+1 (3.2.8)

Yθbj+1
= Yθb−j+1

+ 1 (3.2.9)

Yθak+1
= Yθa−k+1

− 1, (3.2.10)

As in [58] and [85], we consider that the market maker has the obligation to respect

the risk constraint imposed upon her by her company. We impose the following inventory

constraint

ymin ≤ Yt ≤ ymax a.s. 0 ≤ t ≤ T. (3.2.11)

Cash holdings. We denote by r > 0 the instantaneous interest rate. The bank account

follows the below equation between two trading times

dXt = rXtdt, ξi < t < ξi+1. (3.2.12)
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When a discrete trading occurs at time θbj+1 (resp. θak+1), the cash amount becomes

Xθbj+1
= Xθb−j+1

− P b
θb−j+1

(3.2.13)

Xθak+1
= Xθa−k+1

+ P a
θa−k+1

, (3.2.14)

State process. We define the state process as follows:

Z = (X, Y, P :=
P a + P b

2
, S := P a − P b). (3.2.15)

Cost of liquidation of the portfolio. If the current mid-price at time t < T is p and

the market maker decides to liquidate her portfolio, then we assume that the price she

actually gets is

Q(t, y, p, s) = (p− sign(y)
s

2
)f(t, y), (3.2.16)

where f is an impact function defined from [0, T ]× R into R+.

Liquidation value and Solvency constraints. A key issue for the market maker is to

maximize the value of the net wealth at time T. In our framework, we impose a constraint

on the spread i.e.

0 < St ≤ Kδ, 0 ≤ t ≤ T.

We also impose that the bid price remains positive, therefore the market maker has to use

controls such that

Pt − St/2 > 0.

When the market maker has to liquidate her portfolio at time t, her wealth will be

L(t,Xt, Yt, Pt, St) where L is the liquidation function defined as follows

L(t, x, y, p, s) = x+ yQ(t, y, p, s),

with Q as defined in 3.2.16.

We may now introduce the following state space

S = (xmin,+∞)× {ymin, ..., ymax} ×
δ

2
N× δ{1, ...,K}.

and then the solvency region

S = {(t, x, y, p, s) ∈ [0, T ]× S : p− s

2
≥ δ}.

We denote its boundary and its closure by

∂xS =
{

(t, x, y, p, s) ∈ [0, T ]× S̄ : x = xmin

}
and S̄ = S ∪ ∂xS.
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Admissible trading strategies. Given (t, z) := (t, x, y, p, s) ∈ S, we say that the strat-

egy α = (εau, ε
b
u, η

a
u, η

b
u)t≤u≤T is admissible, if the processes εa, εb, ηa, ηb are valued in {χmin, ..., χmax}

and for all u ∈ [t, T ], (u, Zt,i,z,αu ) ∈ S. We denote by A(t, z) the set of all these admissible

policies.

Value functions. We set g a non-negative penalty function defined on {ymin, ..., ymax}.
This penalty may be compared to the holding costs function introduced in [85]. For nu-

merical purposes, we will consider as in [85] a quadratic penalty cost function.

We also consider an exponential utility function U i.e. there exists γ > 0 such that

U(x) = 1− e−γx for x ∈ R. We set UL = UoL.

As such, we consider the following value functions (vi)i∈{1,...,m} which are defined on S by

vi(t, z) := sup
α∈A(t,z)

Jαi (t, z) (3.2.17)

where we have set

Jαi (t, z) := Et,i,z
[
UL(T ∧ τ t,i,z,α, Zt,i,z,α

(T∧τ t,i,z,α)−
)−

∫ T∧τ t,i,z,α

t
g(Y t,i,y,α

s )ds

]
,

τ t,i,z,α := inf{u ≥ t : Xt,i,x,α
u ≤ xmin or Y t,i,y,α

u ∈ {ymin − 1, ymax + 1}}.

3.3 Analytical properties and viscosity characterization

We use a dynamic programming approach to derive the system of partial differential

equations satisfied by the value functions. Once we obtain, we obtain the upper and lower

bounds of the value function and its uniform continuity, we may state the following

Theorem 3.3.2. Dynamic programming principle (DPP)

Let (i, t, z) := (i, t, x, y, p, s) ∈ {1, ...,m} × S. Let ν be a stopping time in Tt,T , we have

vi(t, z) = sup
α∈A(t,z)

Ĵα,νi (t, z), (3.3.18)

where, for α ∈ A(t, z), we have set

Ĵα,νi (t, z) = E
[
− g(y)

(
ν ∧ θ̂ ∧ τ̂α − t

)
+ vIν∧θ̂

(
ν ∧ θ̂, Zt,i,z,α

ν∧θ̂

)
1l{ν∧θ̂<τ̂α}

+UL

(
τ̂α, xer(τ̂

α−t), y, p, s
)

1l{τ̂α≤ν∧θ̂}

]
, (3.3.19)

with τ̂α = τ t,i,z,α ∧ T , ρ = inf{u ≥ t : Ru > Ru−}, θw = inf{u ≥ t : Nw,i,t,z
u >

Nw,i,t,z
u− }, for w ∈ {a, b} and θ̂ = ρ ∧ θa ∧ θb.

We now turn to the characterization of the value functions. We first define the following

set:

A(t, z) :=
{
α = (εa, εb, ηa, ηb) ∈ {−χmin, ..., χmax}4 s.t. p− s

2
− δεb ≥ δ,

δ ≤ s− δ(εa − εb) ≤ Kδ, and δ ≤ s+ δ(ηa − ηb) ≤ Kδ
}
.
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For all (i, t, x, y, p, s) := (i, t, z) ∈ {1, ...,m} × S and α := {εa, εb, ηa, ηb) ∈ A(t, z), we

introduce the two following operators:

Avi(t, z, α) =

{
UL(t, x, ymin, p, s) if y = ymin

vi(t, x+ p+ s
2 , y − 1, p+ δ

2(ηa + ηb), s+ δ(ηa − ηb)) otherwise .

Bvi(t, z, α) =


UL(t, x, ymax, p, s) if y = ymax

UL(t, z) if x < xmin + p− s
2

UL(t, z) if x = xmin + p− s
2 < 0

vi(t, x− p+ s
2 , y + 1, p− δ

2(εa + εb), s− δ(εa − εb)) otherwise .

On the open set {1, ...,m} × S, we have:

− ∂vi
∂t
−Hi(t, z, vi,

∂vi
∂x

) = 0, (t, z) ∈ S, (3.3.20)

where Hi is the Hamiltonian associated with state i:

Hi(t, z, vi,
∂vi
∂x

) = rx
∂vi
∂x

+
∑
j 6=i

γij (vj(t, x, y, p, s)− vi(t, x, y, p, s))− g(y)

+ sup
α∈A(t,z)

[λai (t, p, s) (Avi(t, x, y, p, s, α)− vi(t, x, y, p, s))

+ λbi(t, p, s) (Bvi(t, x, y, p, s, α)− vi(t, x, y, p, s))
]

= 0.

The boundary and terminal conditions are given by :

vi(t, xmin, y, p, s) = UL(t, xmin, y, p, s) (3.3.21)

vi(T, x, y, p, s) = UL(T, x, y, p, s). (3.3.22)

We now provide a rigorous characterization for the value function by means of viscosity

solutions to the HJB equation (3.3.20) together with the appropriate boundary terminal

conditions. The uniqueness property is particularly crucial to numerically solve the asso-

ciated HJB. Since the value functions vi is continuous, we shall work with the notion of

continuous viscosity solutions.

The following theorem relates the value function vi to the HJB (3.3.20) for all 1 ≤ i ≤ m.

Theorem 3.3.3. The family of value functions (vi)1≤i≤m is the unique family of functions

such that

i) Continuity condition: For all (i, y, p, s) ∈ {1, ..,m}×{ymin, .., ymax}× δ
2N×δ{1, ..,K},

(t, x) → vi(t, x, y, p, s) is continuous on {(t, x) ∈ [0, T ) × [xmin,+∞) : (t, x, y, p, s) ∈
S}.

ii) Growth condition: There exist C1, C2 and C3 positive constants such that

1− C1 − C2e
C3p ≤ vi(t, x, y, p, s) ≤ 1, on {1, ..,m} × S. (3.3.23)
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iii) Boundary and terminal conditions:

vi(t, xmin, y, p, s) = UL(t, xmin, y, p, s) and vi(T, x, y, p, s) = UL(T, x, y, p, s).(3.3.24)

iv) Viscosity solution: (vi)1≤i≤m is a viscosity solution of the system of variational

inequalities (3.3.20) on {1, ...,m} × S.

3.4 Numerical Results

In this paragraph, we present the results of the numerical method we used to approxi-

mate the solution of the system of equations (3.3.20).

3.4.1 Numerical scheme

To solve the HJB equation (3.3.20) arising from the stochastic control problem (3.3.18),

one can use either probabilistic or deterministic numerical method. We choose to use a

deterministic method based on a finite difference scheme, which is well known to have the

monotonicity, consistency and stability properties. These properties ensure the convergence

of this scheme, see [11].

Shape of the value function

We represent in Figure 3.1 the shape of the value function associated to the regime 1 for

fixed (t, x, y) such that y is positive.

Figure 3.1: Value function for y ≥ 0

Optimal market making strategies

Figure 3.2 describes the optimal control strategies for the market marker when a sell

market order arrives and when the market maker’s inventory is around zero. We may make

the following observations:
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– when the spread is very low, the market maker has to decrease the bid price more

than the ask price, see region where the spread value is below 0.07.

– when the spread is high and close to the maximum spread allowed, the market maker

should decrease the ask price. She should decrease the spread in order to encourage

trades.

Notice that the market maker may make a profit of 3 ticks in the favorable case, i.e., the

next market order is a buy order.

Figure 3.2: Optimal strategy when a sell market order arrives

Some simulated paths

Figure 3.3: Bid and Ask Price Paths
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The theory of optimal stochastic control problem, developed in the seventies, has over

the recent years once again drawn a significance of interest, especially from the applied

mathematics community with the main focus on its applications in a variety of fields in-

cluding economics and finance. For instance, the use of powerful tools developed in stochas-

tic control theory has provided new approaches and sometime the first mathematical ap-

proaches in solving problems arising from corporate finance. It is mainly about finding the

best optimal decision strategy for managers whose firms operate under uncertain environ-

ment whether it is financial or operational. A number of corporate finance problems have

been studied, or at least revisited, with this optimal stochastic control approach. There is

a vast literature on firm’s investment decisions in stochastic environments, see for instance

[23] and [47], [22], [45], [81], [84], [89] and [108].

In this thesis, we mainly focus on firm managerial decisions on dividend distribution

policy and investment decisions. These studied problems are mathematically formulated as

singular control problems, switching control problems, optimal stopping time or a combined

of these control problems. We focus on the modelling side as well as the subsequent rigor-

ous mathematical resolution. Indeed, on the modelling parts, we look at corporate finance

problems by no longer assuming unrealistic financial assumptions such as the absence of

corporate debt or of any other frictions. By doing so, we transform simple control prob-

lems in corporate finance into optimal stochastic control problems under different types of

constraints, making therefore their resolution much more challenging tasks. This second

Part of the thesis contains Chapters 4 and 5.

In Chapter 4, we are interested in two distinct problems, an optimal switching over

multiple regimes problem and an optimal exit strategies for investment projects.

In the study of optimal switching control problems, a variety of problems are investi-

gated, including problems on management of power station [27], [62], resource extraction

[22], firm investment [49], marketing strategy [82], and optimal trading strategies [40],

[111]. Other related works on optimal control switching problems include [13]. As part of

my Ph.D. Thesis, in [A2], using viscosity techniques, we explicitly solve an optimal two-

regime switching problem on infinite horizon for one-dimensional diffusions. In the above

studies, only problems involving the two-regime case are investigated. There are still few

studies on the multi-regime switching problems. The main additional feature in the mul-

tiple regime problems consists not only in determining the switching region as opposed to

the continuation region, but also in identifying the optimal regime to where to switch. This

additional feature sharply increases the complexity of the multi-regime switching problems,

see [A5].

The second study in Chapter 4 deals with the problem of optimal exit strategies for

an investment projet which is unprofitable. The objective is to find the optimal decision

to whether wait for a buyer or liquidate the assets at immediate liquidity and termination

costs. In relation to our studies, Dixit and Pindyck [47] consider various firm’s decisions

problems with entry, exit, suspension and/or abandonment scenarios in the case of an asset
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given by a geometric Brownian motion. The firm’s strategy can then be described in terms

of stopping times given by the time when the value of the assets hit certain threshold levels

characterized as free boundaries of a variational problem. Duckworth and Zervos [49], and

Lumley and Zervos [83] solve an optimal investment decision problem with switching costs

in which the firm controls the production rate and must decide at which time it exits and

re-enters production. In [A8], the firm, we consider, must decide between liquidating the

assets of an underperforming project and waiting for the project to become once again

profitable, in a setting where the liquidation costs and the value of the assets are given by

general diffusion processes. We formulate this two-dimensional stochastic control problem

as an optimal stopping time problem with random maturity and regime shifting.

In Chapter 5, we investigate a number of problems related to optimal dividend distri-

bution policy and investment decisions, which will lead us to a variety of combined singular

and switching control problems. One of the first corporate finance problems using singular

stochastic control theory was the study of the optimal dividend strategy, see for instance

[35], [6] and [71]. These papers focus on the study of a singular stochastic control problem

arising from the research on optimal dividend policy for a firm whose cash reserve follows

a stochastic process. The cash reserve may either grow when the firm makes profits or de-

crease when it is loss-making. The firm goes into bankruptcy when its cash reserve reaches

zero. In these studies, some strong assumptions are made. The firm holds no debt and it is

not possible to make any investment for future growth. Furthermore, it is clearly assumed

that the firm does have the possibility to dispose of parts of its assets for some cash to avoid

bankruptcy when the cash reserve approaches zero. Tackling this new issues is precisely

the subject of our studies in this chapter.

In [A4], we consider a combined stochastic control problem which studies the interac-

tions between dividend policy and investment under uncertainty. This paper consider the

problem studied by Decamps and Villeneuve who investigated the problem where invest-

ment is irreversible. By relaxing the irreversible feature of the growth opportunity, the

mathematical formulation of our problem becomes a combined singular/switching control

problem.

In [A7], in a different setting, we consider the problem of determining an optimal con-

trol on the dividend and investment policy of a firm under debt constraints. We allowed

the company to make investment by increasing its outstanding indebtedness, impacting

therefore its capital structure and risk profile. The presence of a high-level of debt is a

challenging constraint to any firm as it is no other than the threshold below which the firm

value should never go to avoid bankruptcy. The formulation of this financial problem has

led to a combined singular and multi-switching control problem under constraints. Study-

ing such a combined control problem turns out to be a real challenge to us, especially when

our objective is to provide quasi-explicit solutions to our problems.

In [S11], we no longer simplify the optimal dividend and investment problem by as-

suming that firm’s assets are infinitely liquid. For the same reason as highlighted in finan-
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cial market problems, it is necessary to take into account the liquidity constraints. More

precisely, investment (for instance acquiring producing assets) and disinvestment (selling

assets) should be possible but not necessarily at their fair value. The firm may have to

face some liquidity costs when buying or selling assets. While taking into account liquidity

constraints and costs has become the norm in recent financial markets problems, it is still

not the case in the corporate finance, to the best of our knowledge, in particular in the

studies of optimal dividend and investment strategies. By incorporating uncertainty into

illiquid assets value, we no longer have to deal with a uni-dimensional control problem as

in [A4] and [A7] but a bi-dimensional singular and multi-regime switching control prob-

lem. In such a setting, it is clear that it will be no longer possible to easily get explicit or

quasi-explicit optimal strategies.



Chapter 4

Optimal switching control problem
and exit strategies

This Chapter is based on

[A5]. “Optimal switching over multiple regimes”, with H. Pham and X.Y. Zhou, Siam

Journal on Control and Optim., 2009, 48, pp. 2217-2253.

[A8]. “Exit Optimal exit strategies for investment projects”, with E. Chevalier, A. Roch and

S. Scotti, 2015, Journal of Mathematical Analysis and Applications, Vol.425(2), pp.666-694.

Summary. In this chapter, we look at two different problems arising in corporate fi-

nance. This first problem deals with optimal switching problem for a general one-dimensional

diffusion with multiple (more than two) regimes. This is motivated in the real options liter-

ature by the investment problem of a firm managing several production modes while facing

uncertainties. A viscosity solutions approach is employed to carry out a fine analysis on the

associated system of variational inequalities, leading to sharp qualitative characterizations

of the switching regions. These characterizations, in turn, reduce the switching problem

into one of finding a finite number of threshold values in state that would trigger switchings.

In the second paper, we study the problem of an optimal exit strategy for an investment

project which is unprofitable and for which the liquidation costs evolve stochastically. The

firm has the option to keep the project going while waiting for a buyer, or liquidating the

assets at immediate liquidity and termination costs. The liquidity and termination costs

are governed by a mean-reverting stochastic process whereas the rate of arrival of buyers is

governed by a regime-shifting Markov process. We formulate this problem as a multidimen-

sional optimal stopping time problem with random maturity. We characterize the objective

function and derive explicit solutions and numerical examples in the case of power and log-

arithmic utility functions when the liquidity premium factor follows a mean-reverting CIR

process.

43



44CHAPTER 4. OPTIMAL SWITCHING CONTROL PROBLEM AND EXIT STRATEGIES

4.1 Optimal switching over multiple regimes

4.1.1 Introduction

Optimal multiple switching is the problem of determining an optimal sequence of stop-

ping times for a stochastic process with several regimes (or modes).This is a classical and

important problem, extensively studied. Actually, optimal switching provides a suitable

model to capture the value of managerial flexibility in making decisions under uncertainty,

and has been used in the pioneering works by Brennan and Schwarz [23] for resource ex-

traction, and Dixit [46] for production facility problems.

The optimal two-regime switching problem has been the most largely studied in the

literature, and is often referred to as the starting-and-stopping problem, see Brekke and

Øksendal [22], Duckworth and Zervos [49], Zervos [110], and Hamadène and Jeanblanc [62],

Bayraktar and Egami [13], and Guo and Tomecek [60] and Ly Vath and Pham [A2].

The applications of the starting-and-stopping problem to real options, for example the

management of a power plant, are limited to the case of two modes, e.g. operating and

closed. In practice, however, the efficient management of a power plant requires more than

two production modes to include intermediate operating modes corresponding to different

subsets of turbine running. There is little work addressing a complete treatment and

mathematical resolution of the optimal multiple switching problem, especially in terms

of determining the switching regions. The difficulty with a multi-regime problem in the

determination of the switching regions is evident: In sharp contrast with the two-regime

problem, a multiple switching problem needs to decide not only when to switch, but also

where to switch. Djehiche, Hamadène and Popier [48], and Hu and Tang [67] have studied

optimal multiple switching problems for general adapted processes by means of reflected

BSDEs, and they are mainly concerned with the existence and uniqueness of solution to

these reflected BSDEs. However, the important issue as to which regime to optimally switch

has been left completely open.

In this paper, we consider the optimal multiple switching problem on infinite horizon for

a general one-dimensional diffusion. The multiple regimes are differentiated via their profit

functions, which are of very general form. The numbering of the regimes is ordered by

increasing level of profitability. The transition from one regime to another one is realized

sequentially at random times (which are part of the decisions), and incurs a fixed cost.

Our objective is to provide an explicit characterization of the switching regions showing

when and where it is optimal to change the regime. We adopt a direct solution method

via the viscosity solutions technique. By carrying out a detailed analysis of the system of

variational inequalities associated with the optimal switching problem, we give a precise

and sharp qualitative description of the switching regions. Specifically, we give conditions

under which one should switch to a regime with higher profit, and to a regime with lower

profit, and we identify these destination regimes. This extends the results of [A2] for the

two-regime case, to the multiple regime case. The switching regions take various structures,
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depending on model parameters via explicit conditions, which have meaningful economic

interpretations. It appears that in some situations, it is optimal to switch to a regime for

a range of state values, and to switch to another regime for a different set of state values.

Such a feature is new with respect to the two-regime case, where the choice of a destination

regime is not an issue. We showcase our general results by the three-regime case, where we

present a complete picture of the situations as to when and where it is optimal to switch,

and we reduce the problem into one of finding a finite number of threshold values of the

switching regions. We also design an algorithm to compute these critical values based on

the computations of expectation functionals of hitting times for one-dimensional diffusions.

4.1.2 Model and problem formulation

We present our general model and emphasize the key assumptions. The state process

X is a one-dimensional diffusion on (0,∞) whose dynamics are given by :

dXt = b(Xt)dt+ σ(Xt)dWt, (4.1.1)

whereW is a standard Brownian motion on a filtered probability space (Ω,F ,F = (Ft)t≥0, P )

satisfying the usual conditions, and b, σ are measurable functions on (0,∞). We assume

that the SDE (4.1.1) has a unique strong solution, denoted by Xx, given an initial condition

X0 = x ∈ (0,∞).

Throughout the paper, we denote by L the infinitesimal generator of the diffusion X,

i.e.

Lϕ(x) = b(x)ϕ′(x) +
1

2
σ2(x)ϕ′′(x).

The operational regimes are characterized by their running reward functions fi : R+

→ R, i ∈ Id = {1, . . . , d}. We assume that for each i ∈ Id, the function fi is nonnegative,

without loss of generality (w.l.o.g.) fi(0) = 0, continuous, and satisfies the linear growth

condition:

fi(x) ≤ C(1 + |x|), ∀x ∈ R+, (4.1.2)

for some positive constant C. The numbering i = 1, . . . , d, on the regimes is ordered by

increasing level of profitability, which roughly means that the sequence of functions fi is

increasing in i.

Switching from regime i to j incurs an instantaneous cost, denoted by gij , with the

convention gii = 0 and the following triangular condition:

gik < gij + gjk, j 6= i, k, (4.1.3)
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4.1.3 The optimal switching problem

A decision (strategy) for the operator is an impulse control α consisting of a double

sequence τ1, . . . , τn, . . . , ι1, . . . , ιn, . . ., n ∈ N∗ = N \ {0}, where τn ∈ N∗, are F-stopping

times in [0,∞], denoted by τn ∈ T , τn < τn+1 and τn → ∞ a.s., representing the decision

on “when to switch”, and ιn are Fτn-measurable valued in Id, representing the new value of

the regime at time τn until time τn+1 or the decision on “where to switch”. We denote by

A the set of all such impulse controls. Given an initial regime value i ∈ Id, and a control

α = (τn, ιn)n≥1 ∈ A, we denote

Iit =
∑
n≥0

ιn1[τn,τn+1)(t), t ≥ 0, Ii0− = i.

The objective is to maximize this expected total profit over A. Accordingly, we define

the value functions

vi(x) = sup
α∈A

E

[∫ ∞
0

e−rtfIit (X
x
t )dt−

∞∑
n=1

e−rτngιn−1,ιn

]
, x > 0, i ∈ Id. (4.1.4)

4.1.4 Dynamic programming PDE characterization

We obtain PDE characterizations of the value functions by using the dynamic program-

ming approach. To do so, we first obtain the linear growth property and the boundary

condition on the value functions.

Theorem 4.1.1. The value functions vi, i ∈ Id, are the unique viscosity solutions to the

system of variational inequalities :

min

{
rvi − Livi − fi , vi −max

j 6=i
(vj − gij)

}
= 0, x ∈ (0,∞), i ∈ Id, (4.1.5)

in the following sense:

(1) Viscosity property . For each i ∈ Id, vi is a viscosity solution to

min

{
rvi − Livi − fi , vi −max

j 6=i
(vj − gij)

}
= 0, x ∈ (0,∞). (4.1.6)

(2) Uniqueness property . If wi, i ∈ Id, are viscosity solutions with linear growth conditions

on (0,∞) and boundary conditions wi(0
+) = maxj∈Id [−gij ] to the system of variational

inequalities (4.1.5) , then vi = wi on (0,∞).

We also quote the useful smooth fit property on the value functions, proved in [95].

Theorem 4.1.2. For all i ∈ Id, the value function vi is continuously differentiable on

(0,∞).
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For any regime i ∈ Id, we introduce the switching region :

Si =

{
x ∈ (0,∞) : vi(x) = max

j 6=i
(vj − gij)(x)

}
. (4.1.7)

Si is a closed subset of (0,∞) and corresponds to the region where it is optimal for the con-

troller to change regime. The complement set Ci of Si in (0,∞) is the so-called continuation

region :

Ci =

{
x ∈ (0,∞) : vi(x) > max

j 6=i
(vj − gij)(x)

}
,

where it is optimal to stay in regime i. In this open domain, the value function vi is smooth

(C2 on Ci) and satisfies in a classical sense :

rvi(x)− Livi(x)− fi(x) = 0, x ∈ Ci.

4.1.5 Qualitative properties of the switching regions

In this section, we focus on the qualitative aspects of deriving the solution to the

switching problem. Basically, we raise the following questions : When and where does one

switch?

From the definition (4.1.7) of the switching regions, we have the elementary decompo-

sition property :

Si = ∪j 6=iSij , i ∈ Id,

where

Sij = {x ∈ (0,∞) : vi(x) = (vj − gij)(x)}

is the switching region from regime i to regime j.

We now formalize the difference between the operational regimes. We consider the following

ordering conditions on the regimes through their reward functions :

(Hf) f1 ≺ f2 ≺ . . . ≺ fd

⇐⇒

for all i < j ∈ Id, fj − fi is strictly decreasing on (0, x̂ij) and

strictly increasing on (x̂ij ,∞) for some x̂ij ∈ R+.

Economically speaking, the ordering condition fi ≺ fj means that the profit in regime j >

i is “better” than profit in regime i from a certain level.

Analysis of upward switching region

The main results of this section provide a qualitative description of the upward switching

regions.
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Proposition 4.1.1. Let i ∈ Id.
1) The switching region S+

i is nonempty if and only if :

∪j>iQij 6= ∅ ⇐⇒ ∃j > i, (fj − fi)(∞) > rgij . (4.1.8)

2) Suppose S+
i 6= ∅. Then there exists a unique j = j+(i) > i such that supS+

i = supSij
= ∞, and we have supSik < ∞ for all k > i, k 6= j+(i). Moreover, Sij+(i) contains an

interval in the form [xij+(i),∞) for some xij+(i) ∈ (0,∞), and j+(i) = minJ(i) where

J(i) =
{
j ∈ Id, j > i : (fk − fj)(∞) ≤ r(gik − gij), ∀k ∈ Id, k > i

}
. (4.1.9)

Economic interpretation. The first assertion gives explicit necessary and sufficient con-

ditions under which, in a given regime, it is optimal to switch up. The second assertion

says that in a given regime, say i, where one has interest to switch up (under the conditions

of assertion 1), there is a unique regime where one should switch up to when the state is

sufficiently large. Moreover, this uniquely chosen regime is explicitly determined as the

minimum of the explicitly given set J(i). In the two-regime case, i.e. d = 2, we obviously

have j+(1) = 2. In the multi-regime case, it can be practically calculated.

Proposition 4.1.2. Let i ∈ {1, . . . , d− 1} with S+
i 6= ∅.

1) Suppose that

sup
[
Sik \ Sij+(i)

]
≤ inf Sij+(i), ∀k 6= i, j+(i). (4.1.10)

Then, we have

Sij+(i) = [x̄ij+(i),∞),

with x̄ij+(i) ∈ (0,∞).

2) Suppose that there exists k > i, k 6= j+(i) such that Sik is nonempty and

supSik ≤ inf Sij , ∀j 6= i, k. (4.1.11)

Then, Sik is in the form

Sik = [x̄ik, ȳik],

with 0 < x̄ik ≤ ȳik < ∞.

Analysis of downward switching region

The main results of this paragraph provide a qualitative description of the downward

switching regions.

Proposition 4.1.3. For all i = 2, . . . , d, the switching region S−i is nonempty. Moreover,

inf Si1 = 0, Si1 contains some interval in the form (0, yi1], yi1 > 0, and inf Sij > 0 for all

1 < j < i.
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Economic interpretation. The first assertion means that one always has interest to

switch down due to the negative switching costs. Moreover, for small values of the state,

one should switch down to the lowest regime i = 1. This is intuitively justified by the fact

that for small values of the state, the running profits are close to zero, and so one chooses

the regime with the largest compensation fee, i.e. regime 1.

4.1.6 The three-regime case

In the following results, we summarize our findings on the qualitative structure of the

switching regions in the three-regime model.

Theorem 4.1.1. (Switching regions in the three-regime model)

We have the following four cases :

A) If (f2 − f1)(∞) ≤ rg12, (f3 − f1)(∞) ≤ rg13, and (f3 − f2)(∞) ≤ rg23, then

S1 = S+
1 = ∅,

S−2 = (0, y
21

], S+
2 = ∅,

S31 = (0, y
31

], S32 is either empty or S32 = [x32, y32
]

for some 0 < y
31
≤ x32 ≤ y

32
< ∞, 0 < y

21
< x32.

B) If (f2 − f1)(∞) > rg12 or (f3 − f1)(∞) > rg13, and (f3 − f2)(∞) ≤ r(g13 − g12), then

S12 = [x̄12,∞), S13 = ∅,

S−2 = (0, y
21

], S+
2 = ∅,

S31 = (0, y
31

], S32 is either empty or S32 = [x32, y32
]

for some 0 < y
21
≤ x̄12, 0 < y

31
≤ x32 ≤ y

32
< ∞, y

31
< x̄12 < ∞, 0 < y

21
< x32.

C) If (f3 − f1)(∞) > rg13, and r(g13 − g12) < (f3 − f2)(∞) ≤ rg23, then

S13 = [x̄13,∞), S12 is either empty or S12 = [x̄12, ȳ12]

S−2 = (0, y
21

], S+
2 = ∅,

S31 = (0, y
31

], S32 is either empty or S32 = [x32, y32
],

for some 0 < x̄12 ≤ ȳ12 ≤ x̄13 < ∞, 0 < y
31
≤ x32 ≤ y

32
< ∞, 0 < y

21
< x̄12, y

31
< x13.

D) If (f3 − f1)(∞) > rg13, and (f3 − f2)(∞) > rg23, then

S13 = [x̄13,∞), S12 is either empty or S12 = [x̄12, ȳ12]

S−2 = (0, y
21

], S+
2 = [x̄23,∞),

S31 = (0, y
31

], S32 is either empty or S32 = [x32, y32
],

for some 0 < x̄12 ≤ ȳ12 ≤ x̄13 < ∞, 0 < y
31
≤ x32 ≤ y

32
< x̄23 < ∞, 0 < y

21
< x̄12, ȳ12

< x̄23, y
31
< x13.
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Figure 4.1: Switching regions in the three-regime model

4.1.7 Numerical procedure

The qualitative structure of optimal switching controls derived in the previous section

states that the optimal sequence of stopping times is given by the hitting times of the

diffusion process X at a finite number of threshold levels. This is of vital importance in

eventually solving (either analytically or numerically) our problem, because it reduces the

originally very complex problem into one finding a small number of critical values in state

which is a finite-dimensional optimization problem. In this paper, we demonstrate how to

design algorithms to find these critical values in state.

4.2 Optimal exit strategies for an investment project

4.2.1 Introduction

There is often a time when a firm is engaged in a project that does not produce to

its full potential and faces the difficult dilemma of shutting it down or keeping it alive in

the hope that it will become profitable once again. When an investment in not totally

irreversible, assets can be sold at their scrap value minus some liquidation and project

termination costs, which may include for example termination pay to workers, legal fees

and a liquidity premium in the case of fire sale of the assets. Since these closing costs may

be substantial, it may be worthwhile to wait for the project to be profitable again or to wait
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for an interested buyer that will pay the fair value of the assets and put them to better use.

In this study, we give an analytical solution to this problem when the liquidation costs and

the value of the assets are diffusion processes and the arrival time of a buyer is modeled by

means of an intensity function depending on the current state of a Markov chain.

The firm, we consider, in this paper, must decide between liquidating the assets of an

underperforming project and waiting for the project to become once again profitable, in a

setting where the liquidation costs and the value of the assets are given by general diffusion

processes. We formulate this two-dimensional stochastic control problem as an optimal

stopping time problem with random maturity and regime shifting.

Amongst the large literature on optimal stopping problems, we may refer to some related

works including Bouchard, El Karoui and Touzi [18], Carr [28], Dayanik and Egami [43],

Dayanik and Karatzas [44], Guo and Zhang [61], Lamberton and Zervos [78]. In [44] and

[78], the authors study optimal stopping problems with general 1-dimensional processes.

Random maturity in optimal stopping problem was introduced in [28] and [18]. It allowed

to reduce the dimension of their problems as well as addressing the numerical issues. We

may refer to Dayanik and Egami [43] for a recent paper on optimal stopping time and

random maturity. For optimal stopping problem with regime shifting, we may refer to

Guo and Zhang [61], where an explicit optimal stopping rule and the corresponding value

function in a closed form are obtained.

In this paper, our optimal stopping problem combines all the above features, i.e., random

maturity and regime shifting, in the bi-dimensional framework. We are able to characterize

the value function of our problem and provide explicit solution in some particular cases

where we manage to reduce the dimension of our control problem.

In the general bi-dimensional framework, the main difficulty is related to the proof of

the continuity property and the PDE characterization of the value function. Since it is not

possible to get the smooth-fit property, the PDE characterization may be obtained only

via the viscosity approach. To prove the comparison principle, one has to overcome the

non-linearity of the lower and upper bounds of the value function when building a strict

supersolution to our HJB equation.

In the particular cases where it is possible to reduce our problem to a one-dimensional

problem, we are able to provide explicit solution. Our reduced one-dimensional problem

is highly related to previous studies in the literature, see for instance Zervos, Johnson and

Alezemi [111] and Leung, Li and Wang [79].

4.2.2 The Investment Project

Let (Ω,F,P) be a probability space equipped with a filtration F = (Ft)t≥0, satisfy-

ing the usual conditions. It is assumed that all random variables and stochastic pro-

cesses are defined on the stochastic basis (Ω,F,P). We denote by T the collection of all

F−stopping times. Let W and B be two correlated F–Brownian motions, with correlation
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ρ, i.e. d[W,B]t = ρdt for all t.

We consider a firm which owns assets that are currently locked up in an investment

project which currently produces no output per unit of time. Because the firm is currently

not using the assets at its full potential, it considers two possibilities. The first is to liquidate

the assets in a fire sale and recover any remaining value. The cash flow obtained in the

latter case is the fair value of the assets minus liquidation and project termination costs.

We denote by θ the moment at which the firm decides to take this option. The second

option is to wait for the project to become profitable once again, or equivalently, to wait

for an investor or another firm who will purchase the assets as a whole at their fair value

Sτ where τ is the moment when this happens.

The fair value of the assets are given by S = exp(X), in which

dXt = µ(Xt)dt+ σ(Xt)dBt, t ≥ 0 (4.2.1)

X0 = x.

Assume that µ and σ are Lipschitz functions on R satisfying some growth conditions.

Liquidation and Termination Costs. We model the liquidation cost of the assets and

terminal costs of the project as a given process (f(Yt))t≥0, where f is strictly decreasing

C2 function defined on R+ → [0, 1], and satisfies some conditions.

Unlike the value of financial assets, it is natural to model liquidation costs with mean-

reverting properties. As such, the costs, given by f(Yt) at time t, is defined in terms of the

mean-reverting non-negative process Y which is governed by the following SDE:

dYt = α(Yt)dt+ γ(Yt)dWt, (4.2.2)

Y0 = y,

where α is a Lipschitz function on R+ and, for any ε > 0, γ is a Lipschitz function on

[ε,∞). We assume that α and γ satisfy linear growth conditions.

The recovery time. We model the arrival time of a buyer, denoted by τ , or equivalently

the time when the project becomes profitable again, by means of an intensity function

λi depending on the current state i of a continuous-time, time-homogenous, irreducible

Markov chain L, independent of W and B, with m + 1 states. The generator of the

chain L under P is denoted by A = (ϑi,j)i,j=0,...m. Without loss of generality we assume

λ0 > λ1 > . . . > λm > 0.

Utility function. We let U denote the utility function of the firm. We assume that U

satisfies the following assumptions.

Assumption 4.2.1. U : R+ → R is non-decreasing, concave and twice continuously dif-

ferentiable, and satisfies

lim
x→0

x U ′(x) < +∞. (4.2.3)
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Assumption 4.2.2. U is supermeanvalued w.r.t. S, i.e.

U(St) ≥ E[U(Sθ)|Ft] (4.2.4)

for any stopping time θ ∈ T .

Objective function. The objective of the firm is to maximize the expected profit obtained

from the sale of the illiquid asset, either through liquidation or at its fair value at the

exogenously given stopping time τ . As such, we consider the following value function:

v(i, x, y) := sup
θ∈T

Ei,x,y
[
h(Xθ, Yθ) 1θ≤τ + U(eXτ ) 1θ>τ

]
, x ∈ R, y ∈ R+, i ∈ {0, . . . ,m}

(4.2.5)

where Ei,x,y stands for the expectation with initial conditions X0 = x, Y0 = y and L0 = i,

and h(x, y) = U(exf(y)). Recall that τ is defined through the Markov chain L.

4.2.3 Characterization of the value function

Before characterizing the value funcion, We first prove the continuity of the value func-

tion, which has two main difficulties that need a no-standard treatment. The first one

comes from the SDE satisfied by Y (4.2.2) since we do not assume the standard hypothesis

of Lipschitz coefficients. We overcome this drawback by showing that the local Lipschitz

property is satisfied until the smallest optimal exit time from the investment. The second

difficulty is related to the bi-dimensional setting where the classical arguments used to

show the regularity of value function are not longer available. We then need to show the

continuity in term of limits of sequences and to distinguish different sub-sequences with

ad-hoc proofs.

The complexity of the proof of the continuity suggests that a direct proof of differentia-

bility, i.e. smooth-fit property, of the value function is probably out of reach in our setting.

We will then turn to the viscosity characterization approach to overcome the impossibility

to use a verification approach.

Theorem 4.2.2. The value functions vi, i ∈ {0, . . . ,m}, are continuous on R × R+, and

constitute the unique viscosity solution on R× R+ with growth condition

|vi(x, y)| ≤ |U(ex)|+ |U(ex)f(y)|,

and boundary condition

lim
y↓0

vi(x, y) = U(ex),

to the system of variational inequalities :

min
[
− Lvi(x, y)− Giv.(x, y)− Jivi(x, y) , vi(x, y)− U(exf(y))

]
= 0,

∀ (x, y) ∈ ×R× R+
∗ , and i ∈ {0, . . . , n},

(4.2.6)
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in which L is the second order differential operator associated to the state processes (X,Y )

and Gi and Ji are defined as

Giϕ(., x, y) =
∑
j 6=i

ϑi,j (ϕ(j, x, y)− ϕ(i, x, y))

Jiϕ(i, x, y) = λi (ex − ϕ(i, x, y)) .

Remark 4.2.1. To prove the comparison principle, one has to overcome the non-linearity

of the lower and upper bounds of the value function when building a strict supersolution to

our HJB equation.

4.2.4 Liquidation and continuation regions

We now prove useful qualitative properties of the liquidation regions of the optimal

stopping problem. We introduce the following liquidation and continuation regions:

LR =
{

(i, x, y) ∈ {0, ...,m} × R× R+ | v(i, x, y) = h(x, y)
}

CR = {0, ...,m} × R× R+ \ LR.

Clearly, outside the liquidation region LR, it is never optimal to liquidate the assets at the

available discounted value. Moreover, the smallest optimal stopping time θ∗ixy verifies

θ∗ixy = inf
{
u ≥ 0 |

(
Liu, X

x
u , Y

y
u

)
∈ LR

}
.

We define the (i, x)−sections for every (i, x) ∈ {0, ...,m} × R by

LR(i,x) = {y ≥ 0 | v(i, x, y) = h(x, y)} and CR(i,x) = R+ \ LR(i,x).

Proposition 4.2.1 (Properties of liquidation region).

i) E is closed in {0, ...,m} × R× (0,+∞),

ii) Let (i, x) ∈ {0, ...,m} × R.

- If Ei,x[U(eXτ )] = U(ex), then, for all y ∈ R+, v(i, x, y) = U(ex) and E(i,x) = {0}.

- If Ei,x[U(eXτ )] < U(ex), then there exists x0 ∈ R such that E(i,x0) \ {0} 6= ∅ and

ȳ∗(i, x) := sup E(i,x) < +∞.

4.2.5 Logarithmic utility

Throughout this section, we assume that the diffusion processes X and Y are governed

by the following SDE, which are particular cases of (4.2.1) and (4.2.2)

dXt = µdt+ σ(Xt)dBt; X0 = x (4.2.7)

dYt = κ (β − Yt) dt+ γ
√
YtdWt; Y0 = y. (4.2.8)
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The following theorem shows that in the logarithmic case, we can reduce the dimension

of the problem by factoring out the x-variable. For this purpose, we define TL,W the set

of stopping times with respect to the filtration generated by (L,W ), and the differential

operator Lφ(y) := 1
2γ

2y ∂
2φ
∂y2

+ κ(β − y)∂φ∂y + µ, for φ ∈ C2(R+).

Theorem 4.2.3. For (i, y) ∈ {1, ...,m} × R+ we define the function:

w(i, y) = sup
θ∈TL,W

Ei,y[µ(θ ∧ τ) + ln (f(Yθ)) 1l{θ≤τ}].

Then,

v(i, x, y) = x+ w(i, y) on {0, ...,m} × R× R+,

with w the unique viscosity solution to the system of equations:

min
[
− Lw(i, y) + λiw(i, y)−

∑
j 6=i

ϑi,j (w(j, y)− w(i, y)) , w(i, y)− g(y)
]

= 0, (4.2.9)

where g(y) := ln(f(y)) Moreover, the functions w(i, .) are of class C1 on R+ and C2 on the

open set C(i,x) ∪ Int(E(i,x)).

4.2.6 Liquidation region

In the logarithmic case, the liquidation region can be characterized in more details.

Proposition 4.2.2. Let i ∈ {0, ...,m} and set

ŷi = inf{y ≥ 0 : Hig(y) ≥ 0} with Hig(y) = Lg(y)− λig(y) +
∑
j 6=i

ϑi,j (w(j, y)− g(y)) .

There exists y∗i ≥ 0 such that [0, y∗i ] = LR(i,.) ∩ [0, ŷi]. Moreover, w(i, ·) − g(·) is non-

decreasing on [y∗i , ŷi].

Proposition 4.2.3. Assume that the function y 7→ Lg(y) is non-decreasing on R+, then

for all i ∈ {0, ...,m}, w(i, ·) − g(·) is non-decreasing on R+ and we have LR(i,·) = [0, y∗i ],

with y∗i > 0.

4.2.7 Explicit solutions in Logarithmic utility in the two regime case

From the above results, we may get completely explicit solution in the two-regime case.

In particular, the value function may be written in terms of the confluent hypergeometric

functions.
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Proposition 4.2.4. The function w is given by

w(0, y) =



g(y) y ∈ [0, y∗0]

ĉΦ

(
λ0 + ϑ0,1

κ
,
2κβ

γ2
,
2κ

γ2
y

)
+ d̂Ψ

(
λ0 + ϑ0,1

κ
,
2κβ

γ2
,
2κ

γ2
y

)
y ∈ (y∗0, y

∗
1]

+I
(

2κ

γ2
, β,−2

λ0 + ϑ0,1

γ2
, 2
ϑ0,1g(·) + µ

γ2

)
(y)

p0
0

[
êΨ

(
λ̃0

κ
,
2κβ

γ2
,
2κ

γ2
x

)
+

µ

λ̃0

]
y ∈ (y∗1,∞)

+p0
1

[
f̂Ψ

(
λ̃1

κ
,
2κβ

γ2
,
2κ

γ2
x

)
+

µ

λ̃1

]
(4.2.10)

w(1, y) =



g(y) y ∈ [0, y∗1]

p1
0

[
êΨ

(
λ̃0

κ
,
2κβ

γ2
,
2κ

γ2
y

)
+

µ

λ̃0

]
y ∈ (y∗1,∞)

+p1
1

[
f̂Ψ

(
λ̃1

κ
,
2κβ

γ2
,
2κ

γ2
y

)
+

µ

λ̃1

]
,

where Φ and Ψ denote respectively the confluent hypergeometric function of first and second

kind, and I is a particular solution to the non-homogeneous confluent differential equation.

Moreover, (y∗0, y
∗
1, ĉ, d̂, ê, f̂) are such that w(0, y) and w(1, y) belong to C1(R+).

Numerical Simulation

In Figure 4.2, we represent the value functions in the two-regime case, for the cases

µ = −.05 and µ = −0.3. Other numerical results, in particular sensitivity analysis for the

parameters µ, λ, β, and ϑ0,1 are equally obtained.
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Figure 4.2: Value functions in the two-regime case, for the cases µ = −0.05 (solid line) and
µ = −0.3 (dashed line). Regime 0 is presented in blue and regime 1 in red. The parameters
used are λ0 = 2, λ1 = 0.5, ϑ0,1 = ϑ1,0 = 1, κ = 1, β = 0.25, γ = 0.5. The liquidation region
are indicated by dashed lines. In the case µ = −0.5, y∗0 = 0.0172 and y∗1 = 0.0288. In the
case µ = −0.3, y∗0 = 0.0983 and y∗1 = 0.1742.



Chapter 5

Optimal Dividend and investment
strategies under constraints

This Chapter is based on

[A4]. “A mixed singular/switching control problem for a dividend policy with reversible

technology investment”, with H. Pham et S. Villeneuve, Annals of Applied Probability,

2008, 18, pp. 1164-1200.

[A7]. “An optimal dividend and investment control problem under debt constraints”, with

E. Chevalier and S. Scotti, 2013, SIAM J. Finan. Math., 4(1), 297 - 326.

[A11]. “Liquidity risk and optimal dividend/investment strategies”, with E. Chevalier and

M. Gaigi, submitted.

Summary. we investigate a number of problems related to optimal dividend distribu-

tion policy and investment decisions, which will lead us to a variety of combined singular

and switching control problems. In [A4], we consider a combined stochastic control problem

which studies the interactions between dividend policy and investment under uncertainty.

In [A7], we introduce debt constraints in our optimal strategies while in [A11], we no

longer simplify the optimal dividend and investment problem by assuming that firm’s as-

sets are infinitely liquid. The formulation of these financial problem under constraints has

led to combined singular and multi-switching control problem under constraints both uni-

dimensional and bi-dimensional settings. Studying such a combined control problem turns

out to be a real challenge to us, especially when our objective is to provide quasi-explicit

solutions to our problems.

5.1 Introduction

The first and natural dividend control problem was studied by [71]. They consider a

firm whose cash reserve follows a drift brownian motion as follows:

58



5.1. INTRODUCTION 59

dXt = µdt+ σdWt − dZt, X0− = x.

The objective is to find the best dividend policy which maximizes shareholder’s value:

V̂0(x) = sup
Z∈Z

E

[∫ T−0

0
e−ρtdZt

]
, (5.1.1)

where T0 = inf{t ≥ 0 : Xt ≤ 0} is the time bankruptcy of the cash reserve in regime 0.

It is known that V̂0, as the value function of a pure singular control problem, is charac-

terized as the unique continuous viscosity solution on (0,∞), with linear growth condition

to the variational inequality :

min
[
ρV̂0 − L0V̂0 , V̂

′
0 − 1

]
= 0, x > 0, (5.1.2)

and boundary data

V̂0(0) = 0.

Actually, V̂0 is C2 on (0,∞) and explicit computations of this standard singular control

problem are developed in Shreve, Lehoczky and Gaver [100], Jeanblanc and Shiryaev [71],

or Radner and Shepp [96] :

V̂0(x) =

{
f0(x)
f ′0(x̂0)

, 0 ≤ x ≤ x̂0

x− x̂0 + µ0
ρ , x ≥ x̂0,

where

f0(x) = em
+
0 x − em

−
0 x, x̂0 =

1

m+
0 −m

−
0

ln

(
(m+

0 )2

(m−0 )2

)
,

and m−0 < 0 < m+
0 are roots of the characteristic equation :

ρ− µ0m−
1

2
σ2m2 = 0.

In other words, this means that the optimal cash reserve process is given by the reflected

diffusion process at the threshold x̂0 with an optimal dividend process given by the local

time at this boundary. When the firm starts with a cash reserve x ≥ x̂0, the optimal

dividend policy is to distribute immediately the amount x−x̂0 and then follows the dividend

policy characterized by the local time.

In this section, the objective is to address related problems when we incorporate the

following aspects:

- investment problems: the interaction between dividend policy and investment

policy. By investment, we mean the ability of the firm to allow the company to capture

growth opportunity which it self-finances on its cash reserve.



60 CHAPTER 5. DIVIDEND/INVESTMENT STRATEGIES UNDER CONSTRAINTS

- investment under debt constraints: the firm is allowed to make investment and

finance it through debt issuance/raising, which in turn would impact its capital structure

and risk profile.

- dividend and investment policy under liquidity risk: the firm is allowed to

make investment decisions by acquiring or selling productive assets. But we no longer

assume that firm assets are either infinitely illiquid or liquid.

The formulation of these financial problems has led to different combined singular and

multi-switching control problems under constraints, which turn out to be real challenges to

us, especially when our objective is to provide quasi-explicit solutions to our problems.

5.2 A mixed singular/switching control problem for a divi-
dend policy with reversible technology investment

In this paper, we consider a combined stochastic control problem that has emerged in

a recent paper by Décamps and Villeneuve [45] with the study of the interactions between

dividend policy and investment under uncertainty. We shall consider a firm with a tech-

nology in place that has the opportunity to invest in a new technology that increases its

profitability. The firm self-finances the opportunity cost on its cash reserve. Once installed,

the manager can decide to return back to the old technology by receiving some cash com-

pensation. The mathematical formulation of this problem leads to a combined singular

control/switching control for a one dimensional diffusion process. The diffusion process

may take two regimes old or new that are switched at stopping times decisions. Within a

regime, the manager has to choose a dividend policy that maximizes the expected value

of all payouts until bankruptcy or regime transition. The transition from one regime to

another incurs a cost or a benefit. The problem is to find the optimal mixed strategy that

maximizes the expected returns.

Our analysis is rich enough to address several important questions that have arisen

recently in the real option literature 1. What is the effect of financing constraints on invest-

ment decision? When is it optimal to postpone dividends distribution in order to invest?

Basically, two assumptions in the real option theory are that the investment decision is

made independently of the financial structure of the investment firm and also that the cash

process generated by the investment is independent of any managerial decision. In contrast,

our model studies the investment under uncertainty with the following set of assumptions.

The firm is cash constrained and must finance its investments on its cash benefits, and the

cash process generated by the investment depends only on the managerial decision to pay

or not dividends, to quit or not the project. Our major finding is to characterize the natural

intuition that the manager will delay dividend payments if the investment is sufficiently

valuable.

1. See the book of Dixit and Pyndick [47] for an overview of this literature.



5.2. A MIXED SINGULAR/SWITCHING CONTROL PROBLEM 61

5.2.1 The model formulation

The mathematical formulation of our problem has led to a mixted singular and switching

control problem. The process cash reserve is assumed to follow the following s.d.e.

dXt = µItdt+ σdWt − dZt − dKt, X0− = x, (5.2.3)

where µIt represents the quantity cash generated by the firm depending on the regime

It ∈ {0, 1} under which the firm is operating. Z represents the total amount of dividends

paid until time t whereas K represents the costs related to the investment or disinvestment

decisions. The investment cost in upgrading from technology 0 to technology 1 is assumed

to be g, whereas by selling back the technology and returning to regime 0, the firm may

get back (1− λ)g of cash, where 0 < λ < 1.

The optimal firm value is

vi(x) = sup
α∈A

E

[∫ T−

0
e−ρtdZt

]
, x ∈ R, i = 0, 1. (5.2.4)

Here, we used the notation :
∫ T−

0 e−ρtdZt =
∫

[0,T ) e
−ρtdZt.

5.2.2 Results

This mixed singular control problem has, via the dynamic programming principle, led to

a system of variational inequalities, which may be solved with the viscosity characterization.

We obtain the following results:

– The value functions vi, i = 0, 1, are continuous and are the unique viscosity solution

to the associated system of variational inequalities.

– The value functions are of class C1 on (0,+∞) and C2 on the union of the continuation

and dividend regions.

The main results of our study is the characterization of our natural intuition that the

manager should always delay dividend payment if growth opportunity of an investment

is deemed satisfying. Furthermore, we qualitatively identify the switching regions which

may take several forms depending the profits rate generated under each technology and the

investment and disinvestment costs. The results below give the complete qualitative and

explicit descriptions of the solution to our control problem:

Main results. We distinguish the following different cases:

(i) If the growth opportunity is too weak, i.e. µ1 ≤ Thresholdm

? in regime 0, it is optimal to never invest,

? in regime 1, it is optimal to distribute all cash reserve and disinvest.
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(ii) If the growth opportunity is average, i.e. Thresholdm < µ1 ≤ ThresholdM

? in regime 0, it is optimal to never invest,

? in regime 1, always stay in that regime, except when bankruptcy is reached, we

disinvest.

(iii) If the growth opportunity est sufficiently strong, i.e. ThresholdM < µ1

? in regime 1, always stay in that regime, except when bankruptcy is reached, we

disinvest.

? in regime 0, we need to separate two cases :

case 1.) It is optimal to invest when x > x∗01, however, when x < a, it is optimal to

distribute x− x0 and never invest (with x0 < a < x∗01).

case 2.) The manager delays all dividend distribution and starts investing when the

cash reserve exceeds x∗01.

5.3 An optimal dividend and investment control problem un-
der debt constraints

In this paper, we consider the problem of determining the optimal control on the divi-

dend and investment policy of a firm under debt constraints. As in the Merton model, we

consider that firm value follows a geometric Brownian process and more importantly we

consider that the firm carries a debt obligation in its balance sheet. However, as in most

studies, we still assume that the firm assets is either highly liquid and may be assimilated

to cash equivalents or cash reserve, or infinitely illiquid except the cash reserve. We allow

the company to make investment and finance it through debt issuance/raising, which would

impact its capital structure and risk profile. This debt financing results therefore in higher

interest rate on the firm’s outstanding debts. More precisely, we model the decisions to

raise or redeem some debt obligations as switching decisions controls where each regime

corresponds to a specific level debt.

Furthermore, we consider that the manager of the firm works in the interest of the

shareholders, but only to a certain extent. Indeed, in the objective function, we introduce

a penalty cost P and assume that the manager does not completely try to maximize the

shareholders’ value since it applies a penalty cost in the case of bankruptcy. This penalty

cost could represent, for instance, an estimated cost of the negative image upon his/her

own reputation due to the bankruptcy under his management leadership. Mathematically,

we formulate this problem as a combined singular and multiple-regime switching control

problem. Each regime corresponds to a level of debt obligation held by the firm.

The studies that are most relevant to our problem are the one investigating combined

singular and switching control problems, see [60] and [A4]. However, none of the above



5.3. AN OPTIMAL DIVIDEND AND INVESTMENT CONTROL PROBLEM 63

papers on dividend and investment policies, which provides qualitative solutions, has yet

moved away from the basic Bachelier model or the simplistic assumption that firms hold

no debt obligations. In our model, unlike [A5], switching from one regime, i.e. debt level,

to another directly impacts the state process itself. Indeed, the drift of the stochastic

differential equation governing the firm value would equally switch as the results of the

change in interest rate paid on the outstanding debt. A given level of debt is no other than

the threshold below which the firm value should never go to avoid bankruptcy. As such,

debt level switching also signifies a change of default constraints on the state process in our

optimal control problem. Further original contributions in terms of financial studies of our

paper include the feature of the conflicts of interest for firm manager through the presence of

the penalty cost in the event of bankruptcy. Studying a mixed singular and multi-switching

problem combining with the above financial features including debt constraints and penalty

cost turns out to be a major mathematical challenge, especially when our objective is to

provide quasi-explicit solutions. In addition, it is always tricky to overcoming the combined

difficulties of the singular control with those of the switching control, especially when there

are multiple regimes, for instance, building a strict supersolution to our HJB system in

order to prove the comparison principle.

5.3.1 The model formulation

We assume that the cash-reserve process of the firm Xx,i,α, denoted by X when there

is no ambiguity and associated to a strategy α = (Zt, (τn)n≥0, (kn)n≥0), is governed by the

following stochastic differential equation:

dXt = bXtdt− rItDItdt+ σXtdWt − dZt + dKt (5.3.5)

where It =
∑
n≥0

kn1τn≤t<τn+1 , I0− = i and kn ∈ IN := {1, ..., N}. Di and ri represent

respectively different levels of debt and their associated interest rate paid on those debts.

The process Kt represents the cash-flow due to the change in the firm’s indebtedness.

More precisely Kt =
∑
n≥0

(
Dκn+1 −Dκn − g

)
1τn+1≤t, where g represents the additional cost

associated with the change of firm’s level of debt.

For a given control strategy α =, the bankruptcy time is represented by the stopping time

Tα defined as

Tα = inf{t ≥ 0, Xx,i,α
t ≤ DIt}. (5.3.6)

We equally introduce a penalty cost or a liquidation cost P > 0, in the case of a holding

company looking to liquidate one of its own affiliate or activity. In the case of the penalty,

it mainly assumes that the manager does not completely try to maximize the shareholders’

value since it applies a penalty cost in the case of bankruptcy.
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We define the value functions which the manager actually optimizes as follows

vi(x) = sup
α∈A

E(i,x)

[∫ T−

0
e−ρtdZt − Pe−ρT

]
, x ∈ R, i ∈ {1, ..., N}, (5.3.7)

where A represents the set of admissible control strategies, and ρ the discount rate.

5.3.2 PDE Characterization

Using the dynamic programming principle, we obtain the associated system of variational

inequalities satisfied by the value functions:

min

[
−Aivi(x) , v′i(x)− 1 , vi(x)−max

j 6=i
vj(x+Dj −Di − g)

]
= 0, x > Di, i ∈ IN

vi(Di) = −P,

where the operatorAi is defined byAiφ = Liφ−ρφ, and Liϕ = [bx−riDi]ϕ
′(x)+1

2σ
2x2ϕ′′(x)

We may obtain the following results:

Proposition 5.3.1. The value functions vi are continuous on (Di,∞) and satisfy

vi(D
+
i ) := lim

x↓Di
vi(x) = −P. (5.3.8)

Theorem 5.3.1. The value functions vi, i ∈ IN , are continuous on (Di,∞), and are the

unique viscosity solutions on (Di,∞) with linear growth condition and boundary data vi(Di)

= −P , to the system of variational inequalities :

min

[
−Aivi(x) , v′i(x)− 1 , vi(x)−max

j 6=i
vj(x+Dj −Di − g)

]
= 0, x > Di. (5.3.9)

Actually, we obtain some more regularity results on the value functions.

Proposition 5.3.2. The value functions vi, i ∈ IN , are C1 on (Di,∞). Moreover, if we

set for i ∈ IN :

Si =

{
x ≥ Di , vi(x) = max

j 6=i
vj(x+Dj −Di − g),

}
(5.3.10)

Di = int ({x ≥ Di , v′i(x) = 1}), (5.3.11)

Ci = (Di,∞) \ (Si ∪ Di), (5.3.12)

then vi is C2 on the open set Ci ∪ int(Di)∪ int(Si) of (Di,∞), and we have in the classical

sense

ρvi(x)− Livi(x) = 0, x ∈ Ci.

Si, Di, and Ci respectively represent the switching, dividend, and continuation regions

when the outstanding debt is at regime i.
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5.3.3 qualitative results on the switching regions

For i, j ∈ IN and x ∈ [Di,+∞), we introduce some notations:

δi,j = Dj −Di, ∆i,j = (b− rj)Dj − (b− ri)Di and xi,j = x+ δi,j − g.

We set x∗i = sup{x ∈ [Di,+∞) : v′i(x) > 1} for all i ∈ IN
We equally define Si,j as the switching region from debt level i to j.

Si,j = {x ∈ (Di, +∞), vi(x) = vj(xi,j)}.

and notice that Si = ∪j 6=iSi,j , i ∈ IN .
We now turn to the first result which that there exists a finite level of cash such that it

is optimal to distribute dividends up to this level.

Lemma 5.3.1. For all i ∈ IN , we have x∗i := sup{x ∈ [Di,+∞) : v′i(x) > 1} < +∞.

In order to compute the dividend regions, we establish the following lemma.

Lemma 5.3.2. Let i, j ∈ IN such that j 6= i. We assume that there exists x̂i a left-boundary

of Di.
i) Assume that x̂i 6∈ Si, then we have (b− ri)Di > −ρP and ρvi(x̂i) = bx̂i − riDi.

As x→ ρvi(x)− bx+ riDi is increasing, it implies that

ρvi(x) < bx− riDi on (Di, x̂i) and ρvi(x) > bx− riDi on (x̂i,+∞).

ii) Assume that x̂i ∈ Si,j then we have

ii.a) [x̂i, x̂i + ε] ⊂ Si,j and x̂i + δi,j − g is a left-boundary of Dj .
ii.b) ρvi(x̂i) = bx̂i − riDi + ∆i,j − bg and ∆i,j > 0.

ii.c) ∀k ∈ IN − {i, j}, x̂i 6∈ Si,k.
Notice that the last equality implies that −ρP + bg < (b− rj)Dj.

We now establish an important result in determining the description of the switching

regions. The following Theorem states that it is never optimal to expand its operation, i.e.

to make investment, through debt financing, should it result in a lower “drift” ((b− ri)Di)

regime. However, when the firm’s value is low, i.e. with a relatively high bankruptcy risk,

it may be optimal to make some divestment, i.e. sell parts of the company, and use the

proceedings to lower its debt outstanding, even if it results in a regime with lower “drift”.

In other words, to lower the firm’s bankruptcy risk, one should try to decrease its volatility,

i.e. the diffusion coefficient. In our model, this clearly means making some debt repayment

in order to lower the firm’s volatility, i.e. σXt.

Theorem 5.3.2. Let i, j ∈ IN such that (b − rj)Dj > (b − ri)Di. We have the following

results:
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1) x∗j 6∈ Sj,i and D̊j = (x∗j , +∞).

2) S̊j,i ⊂ (Dj + g, x∗j ). Furthermore, if Dj < Di, then S̊j,i = ∅.

From the above Theorem, we may obtain the following Corollary and Proposition on

the determination of different regions. We will in particular see in the next section how

from these results, we may obtain the complete results in the two-regime case and above.

Corollary 5.3.1. Let m ∈ IN such that (b− rm)Dm = maxi∈IN (b− ri)Di.

1) x∗m 6∈ Sm and D̊m = (x∗m, +∞).

2) For all i ∈ IN − {m}, we have:

i) If Dm < Di, S̊m,i = ∅.
ii) If Di < Dm, S̊m,i ⊂ (Dm + g, x∗m). Furthermore, if b ≥ ri, then S̊m,i ⊂ (Dm +

g, (a∗i + δi,m + g) ∧ x∗m), where a∗i is the unique solution of the equation ρvi(x) =

(bx− riDi)v
′
i(x). We further have a∗i 6= x∗i .

We now turn to the following results ordering the left-boundaries (x∗i )i∈IN of the divi-

dend regions (Di)i∈IN .

Proposition 5.3.3. Consider i, j ∈ IN , such that (b− ri)Di < (b− rj)Dj. We always have

x∗i + δi,j − g ≤ x∗j unless there exists a regime k such that (b − rj)Dj < (b − rk)Dk and

x∗i ∈ Si,k, then we have x∗j − δi,j + g < x∗i < x∗k − δi,k + g.

5.3.4 The two regime-case

Throughout this section, we now assume that N = 2, in which case, we will get a

complete description of the different regions. We will see that the most important parameter

to consider is the so-called “drifts” ((b− ri)Di)i=1,2 and in particular their relative positions.

To avoid cases with trivial solution, i.e. immediate consumption, we will assume that

−ρP < (b − ri)Di, i = 1, 2. Throughout the following Theorems, we provide a complete

resolution to our problem in each case.

Theorem 5.3.3. We assume that (b− r2)D2 < (b− r1)D1.

We have

C1 = [D1, x
∗
1), D1 = [x∗1, +∞), and S̊1 = ∅ where ρv1(x∗1) = bx∗1 − r1D1.

1) If S2 = ∅ then we have

C2 = [D2, x
∗
2), and D2 = [x∗2, +∞) where ρv2(x∗2) = bx∗2 − r2D2.

2) If S2 6= ∅ then there exists y∗2 such that S2 = [y∗2, +∞) and we distinguish two cases

a) If x∗2 + δ2,1 − g < x∗1, then y∗2 > x∗2, y∗2 = x∗1 + δ1,2 + g and

C2 = [D2, x
∗
2), and D2 = [x∗2, +∞) where ρv2(x∗2) = bx∗2 − r2D2.
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b) If x∗2 + δ2,1 − g = x∗1 then y∗2 ≤ x∗2, ρv2(x∗2) = bx∗2 − r2D2 + ∆2,1 − bg.

We define a∗2 as the solution of ρv2(a∗2) = ba∗2 − r2D2 and have two cases

i) If a∗2 6∈ D2, we have

D2 = [x∗2, +∞) and C2 = [D2, y
∗
2).

ii) If a∗2 ∈ D2, there exists z∗2 ∈ (a∗2, y
∗
2) such that

D2 = [a∗2, z
∗
2 ] ∪ [x∗2, +∞) and C2 = [D2, a

∗
2) ∪ (z∗2 , y

∗
2).

Theorem 5.3.4. We assume that (b− r1)D1 < (b− r2)D2,

1) we have

D2 = [x∗2, +∞) where ρv2(x∗2) = bx∗2 − r2D2

S̊2 = ∅ or there exist s∗2, S
∗
2 ∈ (D2 + g, x∗2) such that S̊2 = (s∗2, S

∗
2).

2) If S̊1 = ∅ then we have

C1 = [D1, x
∗
1), and D1 = [x∗1, +∞) where ρv1(x∗1) = bx∗1 − r1D1.

3) If S̊1 6= ∅ there exists y∗1 such that S̊1 = (y∗1, +∞)

a) If x∗1 + δ1,2 − g < x∗2, then y∗1 > x∗1, y∗1 = x∗2 + δ2,1 + g and

C1 = [D1, x
∗
1), and D1 = [x∗1, +∞) where ρv1(x∗1) = bx∗1 − r1D1.

b) If x∗2 + δ2,1 − g = x∗1, then y∗1 ≤ x∗1, ρv1(x∗1) = bx∗1 − r1D1 + ∆1,2 − bg.

We define a∗1 as the solution of ρv1(a∗1) = ba∗1 − r1D1 and have two cases.

i) If a∗1 6∈ D1, we have

D1 = [x∗1, +∞) and C1 = [D1, y
∗
1).

ii) If a∗1 ∈ D1, there exists z∗1 ∈ (a∗1, y
∗
1) such that

D1 = [a∗1, z
∗
1 ] ∪ [x∗1, +∞) and C1 = [D1, a

∗
1) ∪ (z∗1 , y

∗
1).

5.4 Liquidity risk and optimal dividend/investment strate-
gies

In [71], [6], [35], [A5], [A7], the authors study an optimal dividend problem and consider

a stochastic process which represents the cash reserve of the firm. The firm goes into

bankruptcy when its cash reserve reaches zero. The underlying financial assumption behind

the above model is to consider that the firm’s assets may be separated into two types of

assets, highly liquid assets which may be assimilated as cash reserve, i.e. cash & equivalents,

or infinitely illiquid assets, i.e. productive assets that may not be sold.
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In this paper, we no longer simplify the optimal dividend and investment problem by

assuming that firm’s assets are either infinitely illiquid or liquid. For the same reason as

highlighted in financial market problems, it is necessary to take into account the liquidity

constraints. More precisely, investment (for instance acquiring producing assets) and dis-

investment (selling assets) should be possible but not necessarily at their fair value. The

firm may have to face some liquidity costs when buying or selling assets. While taking into

account liquidity constraints and costs has become the norm in recent financial markets

problems, it is still not the case in the corporate finance, to the best of our knowledge,

in particular in the studies of optimal dividend and investment strategies. In our paper,

we consider the company’s assets may be separated in two categories, cash & equivalents,

and risky assets which are subjected to liquidity costs. The risky assets are assimilated

to productive assets which may be increased when the firm decides to invest or decreased

when the firm decides to disinvest. We assume that the price of the risky assets is governed

by a stochastic process. The firm manager may buy or sell assets but has to bear liquidity

costs. The objective of the firm manager is to find the optimal dividend and investment

strategy maximizing its shareholders’ value, which is defined as the expected present value

of dividends. Mathematically, we formulate this problem as a combined multidimensional

singular and multi-regime switching control problem.

The studies that are most relevant to our problem are the one investigating combined

singular and switching control problems [60], [A4], and [A7]. By incorporating uncertainty

into illiquid assets value, we no longer have to deal with a uni-dimensional control prob-

lem but a bi-dimensional singular and multi-regime switching control problem. In such a

setting, it is clear that it will be no longer possible to easily get explicit or quasi-explicit op-

timal strategies. Consequently, to determine the four regions comprising the continuation,

dividend and investment/disinvestment regions, numerical resolutions are required.

5.4.1 Problem formulation

Let (Ω,F,P) be a probability space equipped with a filtration F = (Ft)t≥0 satisfying the

usual conditions. Let W and B be two correlated F-Brownian motions, with correlation

coefficient c.

We consider a firm which has the ability to make investment or disinvestment by buying

or selling productive assets, for instance, factories. We assume that these productive assets

are risky assets whose value process S is solution of the following equation:

dSt = St (µdt+ σdBt) , S0 = s, (5.4.13)

where µ and σ are positive constants.

We denote by Qt ∈ N the number of units of producing assets owned by the company at

time t.
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We consider a control strategy: α = ((τi, qi)i∈N, Z) where τi are F-stopping times, cor-

responding to the investment decision times of the manager, and qi are Fτi-measurable

variables valued in Z and representing the number of productive assets units bought (or

sold if qi ≤ 0) at time τi. When qi is positive, it means that the firm decides to make

investment to increase the assets quantity. Each purchase or sale incurs a fixed cost de-

noted κ > 0. The non-decreasing càdlàg process Z represents the total amount of dividends

distributed up to time t. Starting from an initial number of assets q and given a control α,

the dynamics of the quantity of assets held by the firm is governed by:
dQt = 0 for τi ≤ t < τi+1,
Qτi = Qτ−i

+ qi,

Q0 = q,

for i ∈ N. (5.4.14)

Similarly, starting from an initial cash value x and given a control α, the dynamics of

the cash reserve (or more precisely the firm’s cash and equivalents) process of the firm is

governed by:
dXt = rXtdt+ h(Qt)(bdt+ ηdWt)− dZt, for τi ≤ t < τi+1

Xτi = Xτ−i
− Sτif(qi)qi − κ,

X0 = 0,

for i ∈ N.(5.4.15)

where b, r and η are positive constants and h a non-negative, non-decreasing and concave

function satisfying h(q) ≤ H with h(1) > 0 and H > 0. The function f represents the

liquidity cost function (or impact function with the impact being temporary) and is assumed

to be non-negative, non-decreasing, such that f(0) = 1.

We denote by Y y
t = (Xx

t , S
s
t , Q

q
t ) the solution to (5.4.13)-(5.4.15) with initial condition

(Xx
0 , S

s
0, Q

q
0) = (x, s, q) := y. At each time t, the firm’s cash value and number of units of

producing assets have to remain non-negative i.e. Xt ≥ 0 and Qt ≥ 0, for all t ≥ 0.

The bankruptcy time is defined as

T := T y,α := inf{t ≥ 0, Xt < 0}.

We define the liquidation value as L(x, s, q) := x + (sf(−q)q − κ)+ and notice that L ≥ 0

on R+ × (0,+∞)× N. We introduce the following notation

S := R+ × (0,+∞)× N.

The optimal firm value is defined on S, by

v(x, s, q) = sup
α∈A(x,s,q)

E(x,s,q)

[∫ T−

0
e−ρudZu

]
(5.4.16)
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5.4.2 Characterization of auxiliary functions

The aim of this section is to provide an implementable algorithm of our problem. To

tackle the stochastic control problem as defined in (5.4.16), one usual way is to first char-

acterize the value function as a unique solution to its associated HJB equation. The second

step is to deduce the optimal strategies from smooth-fit properties and more generally from

viscosity solution techniques. The optimal strategies may be characterized by different re-

gions of the state-space, i.e. the continuation region, the dividend region as well as the

Buy and Sell regions. In such cases, the solutions may be either of explicit or quasi-explicit

nature. However, in a non-degenerate multidimensional setting such as in our problem,

getting explicit or quasi-explicit solutions is out of reach.

As such, to solve our control problem, we characterize our value function as the limit of a

sequence of auxiliary functions. The auxiliary functions are defined recursively and each

one may be characterized as a unique viscosity solution to its associated HJB equation.

This will allow us to get an implementable algorithm approximating our problem.

An approximating sequence of functions.

We recall the notation y = (x, s, q) ∈ S. From this point, we may use alternatively y or

(x, s, q). We now introduce the following subsets of A(y):

AN (y) := {α = ((τk, ξk)k∈N∗ , Z) ∈ A(y) : τk = +∞ a.s. for all k ≥ N + 1}

and the corresponding value function vN , which describes the value function when the

investor is allowed to make at most N interventions (investments or disinvestments):

vN (y) = sup
α∈AN (y)

E(x,s,q)

[∫ T−

0
e−ρudZu

]
, ∀N ∈ N (5.4.17)

We shall show in Proposition 5.4.7 that the sequence (vN )N≥0 goes to v when N goes to

infinity, but we first have to carefully study some properties of this sequence.

In the next Proposition, we recall explicit formulas for v0 and the optimal strategy associ-

ated to this singular control problem. This problem is indeed very close to the one solved

in the pioneering work of Jeanblanc and Shirayev ( see [71] ). The only difference in our

framework is due to the interest r 6= 0 and therefore the cash process X does not follow

exactly a Bachelier model. However, proofs and results can easily be adapted to obtain

Proposition 5.4.4.

Proposition 5.4.4. There exists x∗(q) ∈ [0,+∞) such that

v0(x, s, q) :=

{
Vq(x) if 0 ≤ x ≤ x∗(q)
x− x∗(q) + Vq(x

∗(q)) if x ≥ x∗(q),
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where Vq is the C2 function, solution of the following differential equation

η2h(q)2

2
y′′ + (rx+ bh(q))y′ − ρy = 0; y(0) = 0, y′(x∗(q)) = 1 and y′′(x∗(q)) = 0.(5.4.18)

Notice that x→ v0(x, s, q) is a concave and C2 function on [0,+∞) and that if h(0) = 0, it

is optimal to immediately distribute dividends up to bankruptcy therefore v0(x, s, 0) = x.

We now are able to characterize our impulse control problem as an optimal stopping

time problem, defined through an induction on the number of interventions N.

Proposition 5.4.5. (Optimal stopping)

For all (x, s, q,N) ∈ S × N∗, we have

vN (x, s, q) = sup
(τ,Z)∈T ×Z

E[

∫ T∧τ

0
e−ρu dZu + e−ρτGN−1(Xx

τ− , S
s
τ , q)1l{τ<T}], (5.4.19)

where T is the set of stopping times, Z the set of predictable and non-decreasing càdlàg

processes, and

GN−1(x, s, q) := max
n∈a(x,s,q)

vN−1 (Γ(y, n)) and G−1 = 0, (5.4.20)

with a(x, s, q) :=

{
n ∈ Z : n ≥ −q and nf(n) ≤ x− κ

s

}
, (5.4.21)

and Γ(y, n) := (x− nf(n)s− κ, s, q + n). (5.4.22)

Bounds and convergence of (vN )N≥0.

We begin by stating a standard result which says that any smooth function, which is

supersolution to the HJB equation, is a majorant of the value function.

Proposition 5.4.6. Let N ∈ N and φ = (φq)q∈N be a family of non-negative C2 functions

on R+ × (0,+∞) such that ∀q ∈ N (we may use both notations φ(x, s, q) := φq(x, s)),

φq(0, s) ≥ 0 for all s ∈ (0,∞) and

min
[
ρφ(y)− LNφ(y), φ(y)−GN−1(y),

∂φ

∂x
(y)− 1

]
≥ 0 (5.4.23)

for all y ∈ (0,+∞)× (0,+∞)× N, where we have set

LNϕ =
η2h(q)2

2

∂2ϕ

∂x2
+ (rx+ bh(q))

∂ϕ

∂x

+1l{N>0}

[
σ2s2

2

∂2ϕ

∂s2
+ cσηsh(q)

∂2ϕ

∂s∂x
+ µs

∂ϕ

∂s

]
.

then we have vN ≤ φ.

Corollary 5.4.2. Bounds:

For all N ∈ N∗ and (x, s, q) ∈ S, we have

L(x, s, q) ≤ vN (x, s, q) ≤ x+ sq +K where ρK = bH.



72 CHAPTER 5. DIVIDEND/INVESTMENT STRATEGIES UNDER CONSTRAINTS

We are able to conclude on the asymptotic behavior of our approximating sequence of

functions. The next Proposition shows that this sequence of functions goes to our value

function v when N goes to infinity.

Proposition 5.4.7. (Convergence) For all y ∈ S, we have

lim
N→+∞

vN (y) = v(y).

5.4.3 Characterization of the value functions and numerical results

Let N > 0. This subsection is devoted to the characterization of the function vN as the

unique function which satisfies the boundary condition

vN (y) = GN−1(y) on {0} × (0,+∞)× N. (5.4.24)

Below is the associated HJB equation:

min{ρvN (y)− LvN (y);
∂vN
∂x

(y)− 1; vN (y)−GN−1(y)} = 0 on (0,+∞)2 × N, (5.4.25)

where we have set

Lϕ =
η2h(q)2

2

∂2ϕ

∂x2
+
σ2s2

2

∂2ϕ

∂s2
+ cσηsh(q)

∂2ϕ

∂s∂x
+ (rx+ bh(q))

∂ϕ

∂x
+ µs

∂ϕ

∂s
.

It relies on the following Dynamic Programming Principle. Let θ ∈ T , y := (x, s, q) ∈ S
and set ν = T ∧ θ, we have

vN (y) = sup
(τ,Z)∈T ×Z

E[

∫ (ν∧τ)−

0
e−ρs dZs + e−ρ(ν∧τ)vN

(
Xx

(ν∧τ)− , S
s
ν∧τ , q

)
1l{τ<ν}] (5.4.26)

We are now able to establish the main results of this section.

Theorem 5.4.5. For all (N, q) ∈ N∗ × N, the value function vN (·, ·, q) is continuous on

(0,+∞)2. Moreover vN is the unique viscosity solution on (0,+∞)2×N of the HJB equation

(5.4.25) satisfying the boundary condition (5.4.24) and the following growth condition

|vN (x, s, q)| ≤ C1 + C2x+ C3sq, ∀(x, s, q) ∈ S,

for some positive constants C1, C2 and C3.

Below, we present some numerical results by approximating the solution of the HJB

equation. To solve the HJB equation arising from the stochastic control problem (5.4.17), we

choose to use a finite difference scheme which leads to the construction of an approximating

Markov chain. The convergence of the scheme can be shown using standard arguments as

in [76]. We may equally refer to [24], [65], and [72] for numerical schemes involving singular

control problems.

x
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Figure 5.1: Description of different regions, in (x, s) for a fixed q0.

Figure 5.2: Description of different regions, in (x, s) for q1 > q0.
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Chapter 6

Ongoing research and projects

In this Chapter, I present some on-going and future research projects. At the moment,

my future research projects concerns in particular corporate finance problems and problems

related to liquidity risk modelling.

5.1 Optimal dividend and capital injection policy under au-
dit

Joint project with E. Chevalier and A. Roch.

We consider that the firm holds a fixed amount of debt D. Unlike study in [A7], we

do not assume that the firm goes into bankruptcy when its cash reserves are below D, but

it is only in financial difficulty. The firm can inject capital at any time, and can pay out

dividends when it is not in financial difficulty. When the firm is in financial difficulty, it

can be audited at any time. The probability of being audited in the time interval [t, t+ dt)

is λdt. When the firm is being audited, bankruptcy is defined in terms of a grace period,

denoted δ. In other words, the firm is declared bankrupt when it has spent a continual

period of time δ in financial distress from the start of the audit period or if its cash reserves

hit zero at any time.

5.2 An optimal capital structure control problem under un-
certainty

Working paper, with E. Chevalier and E. Bayraktar

This paper concerns with the problem of determining an optimal control on the capital

structure, dividend and investment policy of a bank operating under solvability constraints.

We assume that the bank’s assets consist of both clients’ deposits and shareholders’ equity.

The managers of the bank may invest in either risky assets or in risk-free assets. The

objective of the manager is to optimize the bank shareholders’ value, ie. the cumulative

75
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dividend distributed over the life time of the bank while controlling its solvability. Indeed,

the bank is considered to operate under an uncertain environment and is obliged to respect

a number of constraints, in particular solvency ratio constraints as defined under the Basle

frameworks. We allow the bank to seek recapitalization or to issue new capital should they

fall under financial difficulties.

We formulate this problem as a combined impulse control, regular and singular control

problem. We will see how this bi-dimensional control problem may be reduced to a one-

dimensional one and how quasi-explicit solution may be obtained. We further enrich our

studies with some numerical illustrations.

5.3 Wages and Employment in Economies with Multi-Worker
Firms, Uncertainty and Labor Turnover Costs

Working paper, with S. Scotti and A. Vidigni

We present a dynamic general equilibrium model of the labor market where multi-

worker firms, producing with decreasing returns to scale technology subject to a number

of different productivity shocks, bargain à la Stole-Zwiebel (a generalization of Nash bar-

gaining) over wages, in presence of hiring and dismissal costs. We show that the optimal

employment policy of firms lets the marginal value of labor fluctuate persistently in an

interval, defined as the inaction range, and hirings or dismissals take place only when the

two reflecting barriers characterizing it are hit. We prove that the uncertainty generated

by random shocks which directly affect the size of the firm, increases the size of the in-

action range by making firms more cautious in both hiring and dismissal, and decreases

job creation and employment. Higher uncertainty generated by shocks to the productivity

of firms, also reduces unambiguously long run aggregate employment, consistently with

recently provided empirical evidence, but has no effect on the employment policy of each

particular firm. Additionally, we provide formal proofs for a number of well-established

empirical regularities, such as the existence of wage dispersion across observationally equiv-

alent workers, and the fact that larger firms tend to pay higher wages. We also account

for the fact that the differential growth rate of employment in large vs. small firms ap-

pears to be strongly procyclical, along many dimensions. Furthermore, we demonstrate

that Gibrat’s law holds on and off the stationary equilibrium, if idiosyncratic productivity

follows a particular diffusion process. The causal mechanism at work in our theory does not

rely on search frictions and convex vacancy creation costs (which are intentionally ignored),

but only on the interaction between labor turnover costs, the existence of firms of (endoge-

nously) variable size due to stochastic shocks, and to the relatively standard production

technology and wage setting rule assumed. Methodologically, our problem is formulated as

a bi-dimensional singular control problem and we use the viscosity theory to characterize

and solve explicitly or quasi-explicitly our problem.
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5.4 Optimal trading strategies in a market with partial in-
formation

joint project with G. Bernis (Researcher at Natixis) and S. Scotti

We consider an impulse control problem under constraints and partial information.

We consider a market model in which over-reaction and under-reaction to market news is

taken into account as in [26]. As usual, jumps are used to model the arrival of important

(positive or negative) news about the firm. An extensive literature focuses on empirical

studies on cross-section average stock returns and shows the presence of anomalies that are

classified as “Under-reaction and Over-reaction to information”. Market data will be used

for calibration purposes.
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[58] Guéant O., Lehalle C., Tapia J. (2013): Dealing with the Inventory Risk A solution to

the market making problem. Mathematics and Financial Economics, Volume 7, Issue

4, pp 477-507.

[59] Guilbaud, F. and H. Pham (2013): “Optimal high frequency trading with limit and

market orders”, Quantitative Finance, 13, 79-94.

[60] Guo X. and P. Tomecek (2007) : “Connections between singular control and optimal

switching”, to appear in SIAM J. Cont. Optim.

[61] Guo X. and Q. Zhang (2004): “Closed-form solutions for perpetual american put

options with regime switching”, SIAM J. APPL. Math., Vol. 64, No. 9, pp. 2034-2049.



BIBLIOGRAPHY 83

[62] Hamadène S. and M. Jeanblanc (2007) : “On the starting and stopping problem :

application in reversible investment”, Math. Oper. Res., 32, 182-192.

[63] Hansen, P.R. and A. Lunde (2006): “Realized Variance and Market Microstructure

Noise”, Journal of Business and Economics Statistics, 24, p.127-161.

[64] He H. and H. Mamaysky (2005) : “Dynamic trading policies with price impact”,

Journal of Economic Dynamics and Control, 29, 891-930.

[65] Hindy A., Huang C., Zhu H. (1993): Numerical Analysis of a Free-Boundary Singular

Control Problem in Financial Economics. J. Econom. Dynam. Control, 21, 297-327.

[66] Ho T., Stoll H.R. (1981): Optimal dealer pricing under transactions and return uncer-

tainty. Journal of Financial Economics, 9(1), 47-73.

[67] Hu Y. and S. Tang (2007) : “Multi-dimensional BSDE with oblique reflection and

optimal switching”, preprint.

[68] Ishii K. (1993) : “Viscosity solutions of nonlinear second order elliptic PDEs associated

with impluse control problems”, Funkcial. Ekvac., 36, 123-141.

[69] Ishii H. and P.L. Lions (1990) : “Viscosity solutions of fully nonlinear second order

elliptic partial differential equations”, Journal of Differential equations, 83, 26-78.

[70] Jacod J., Shiryaev A. N. (2003): Limit Theorems for Stochastic Processes. Springer-

Verlag.

[71] Jeanblanc M. and A. Shiryaev (1995) : “Optimization of the flow of dividends”, Rus-

sian Math Surveys, 50, 257-277.

[72] Jin Z., G. Yin, Zhu C. (2012): Numerical solutions of optimal risk control and dividend

optimization policies under a generalized singular control formulation. Automatica,

48(8), 1489-1501 .

[73] Jouini E. and H. Kallal (1995) : “Martingale and arbitrage in securities markets with

transaction costs”, Journal of Econ. Theory, 66, 178-197.

[74] Korn R. (1998) : “Portfolio optimization with strictly positive transaction costs and

impulse control”, Finance and Stochastics, 2, 85-114.
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Paris, France.

[106] Vayanos D. (1998) : “Transaction costs and asset prices : a dynamic equilibrium

model”, Rev. Fin. Studies, 11, 1-58.

[107] Villeneuve S. (2007): “On the Threshold Strategies and Smooth-Fit Principle for

Optimal Stopping Problems”, Journal of Applied Probability, 44, 181-198.

[108] Villeneuve S. and X. Warin (2014): “Optimal Liquidity management and Hedging in

the presence of a non-predictable investment opportunity.” Mathematics and Financial

Economics 8, 193-227.

[109] Zariphopoulou T. (1988) : Optimal investment-consumption models with constraints,

Phd Thesis, Brown University.

[110] Zervos M. (2003) : “A problem of sequential entry and exit decisions combined with

discretionary stopping”, SIAM J. Cont. Optim., 42, 397-421.

[111] Zervos M. , T. Johnson, and Alazemi (2013): “Buy-low and sell-high in-

vestment strategies”, Mathematical Finance, 23: 560-578. doi: 10.1111/j.1467-

9965.2011.00508.x.


	I Liquidity risk modelling and portfolio selection and liquidation
	1 Optimal Portfolio Selection under Liquidity Risk 
	1.1 Introduction
	1.2 The Model
	1.3 Viscosity characterization
	1.4 Numerical scheme and convergence results
	1.4.1 Approximation scheme
	1.4.2 Convergence results

	1.5 Numerical results

	2 Optimal slippage for liquidation through a LOB
	2.1 Liquidity Risk in Limit Order Books
	2.2 The Limit Order Book Market Model
	2.2.1 Penalty Function

	2.3 Characterization of the slippage function
	2.4 Numerical Results

	3 Optimal market dealing under constraints 
	3.1 Introduction
	3.2 Problem formulation
	3.2.1 Model settings
	3.2.2 The control problem

	3.3 Analytical properties and viscosity characterization
	3.4 Numerical Results
	3.4.1 Numerical scheme



	II STOCHASTIC CONTROL AND CORPORATE FINANCE
	4 Optimal switching control problem and exit strategies 
	4.1 Optimal switching over multiple regimes
	4.1.1 Introduction
	4.1.2 Model and problem formulation
	4.1.3 The optimal switching problem
	4.1.4 Dynamic programming PDE characterization
	4.1.5 Qualitative properties of the switching regions
	4.1.6 The three-regime case
	4.1.7 Numerical procedure

	4.2 Optimal exit strategies for an investment project
	4.2.1 Introduction
	4.2.2 The Investment Project
	4.2.3 Characterization of the value function
	4.2.4 Liquidation and continuation regions
	4.2.5 Logarithmic utility
	4.2.6 Liquidation region
	4.2.7 Explicit solutions in Logarithmic utility in the two regime case


	5 Dividend/investment strategies under constraints
	5.1 Introduction
	5.2 A mixed singular/switching control problem
	5.2.1 The model formulation
	5.2.2 Results

	5.3 An optimal dividend and investment control problem
	5.3.1 The model formulation
	5.3.2 PDE Characterization
	5.3.3 qualitative results on the switching regions
	5.3.4 The two regime-case

	5.4 Liquidity risk and optimal dividend/investment strategies
	5.4.1 Problem formulation
	5.4.2 Characterization of auxiliary functions
	5.4.3 Characterization of the value functions and numerical results



	III Ongoing research and projects
	6 Ongoing research and projects 
	5.1 Optimal dividend and capital injection policy under audit
	5.2 An optimal capital structure control problem under uncertainty
	5.3 Wages/Employment in Economies with Multi-Worker Firms
	5.4 Optimal trading strategies in a market with partial information



